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Abstract001

Personalization has become a pivotal field002
of study in contemporary intelligent systems.003
While large language models (LLMs) excel at004
general knowledge tasks, they often struggle005
with personalization, i.e., adapting their outputs006
to individual user expectations. Existing ap-007
proaches that steer LLM behavior to meet users’008
implicit preferences and behavior patterns, pri-009
marily relying on tune-free methods (e.g., RAG,010
PAG) or parameter fine-tuning methods (e.g.,011
LoRA), face challenges in effectively balanc-012
ing effectiveness and efficiency. Moreover, the013
mechanisms underlying personalized prefer-014
ences remain underexplored. To address these015
challenges, we first uncover key patterns of016
user-specific information embedded in the017
representation space. Specifically, we find018
that (1) personalized information lies within a019
low-rank subspace represented by vectors, and020
(2) these vectors demonstrate both a collective021
shift shared across users and a personalized022
shift unique to each individual user. Building023
on these insights, we introduce PerFit, a novel024
two-stage solution that directly fine-tunes025
interventions in the hidden representation026
space by addressing both collective and user-027
specific shifts, thereby achieving precise steer-028
ing of LLM with minimal parameter overhead.029
Experimental results demonstrate that PerFit030
delivers strong performance across six datasets031
while cutting the number of parameters by032
an average of 92.3% compared to the state-of-033
the-art methods.034

1 Introduction035

Large language models (LLMs) demonstrate re-036

markable abilities in text generation and complex037

reasoning (Radford et al.; Chang et al., 2024; Hu038

et al., 2024; Zhang et al., 2024d,c; Zhu et al., 2024;039

Wang et al., 2023, 2024a), thanks to comprehen-040

sive pre-training on diverse and large-scale datasets041

that equip them with broad general knowledge.042

Nonetheless, their optimization for wide-ranging043

tasks means they often struggle to adapt to individ- 044

ual user preferences. For instance, different users 045

may expect distinct outputs even when given the 046

same input. Accordingly, integrating user tastes 047

and preferences into LLMs has propelled person- 048

alized large language models (PLLMs) to the fore- 049

front of research (Liu et al., 2025; Chen, 2023; 050

Zhang et al., 2024e; Liu et al., 2024). In real-world 051

scenarios, user preferences are often implicit, like 052

writing style and tone (Salemi et al., 2023; Tan 053

et al., 2024b; Zhuang et al., 2024). Enabling LLMs 054

to grasp this implicit information and generalize 055

effectively to user queries remains a core research 056

challenge for PLLMs. 057

Existing techniques can be broadly catego- 058

rized into tune-free methods, such as retrieval- 059

augmented generation (RAG) (Fan et al., 2024) 060

and profile-augmented generation (PAG), and 061

parameter-efficient fine-tuning methods (PEFT), 062

like low-rank adaptation (LoRA) (Hu et al., 2021; 063

Yang et al., 2024). Non-tuned methods (Madaan 064

et al., 2022; Salemi et al., 2023; Zhuang et al., 065

2024) emphasize efficiency and flexibility by lever- 066

aging external information or user profiles without 067

modifying model parameters, but often struggle 068

to achieve high personalization and generalization 069

capability, especially when retrieved contexts con- 070

tain noise that is misaligned with the user’s real 071

intent (Shi et al., 2023). In contrast, parameter 072

fine-tuning methods (Tan et al., 2024b,a; Wagner 073

et al., 2024; Qi et al., 2024) update model parame- 074

ters based on user data, enabling deeper and better 075

personalization. Taking into account both model 076

performance and the protection of user privacy, 077

a prevalent approach is to allocate an individual 078

PEFT module for each user (Tan et al., 2024b,a; Qi 079

et al., 2024; Wagner et al., 2024; Gao and Zhang, 080

2024). LoRA still requires millions of parameters 081

for good performance, though it reduces parameter 082

counts (Wu et al., 2024; Cho et al., 2024; Guo et al., 083

2024). This leads to high communication costs and 084
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Figure 1: Illustration of our personalized fine-tuning method in representation space PerFit: (a) instead of tuning
parameters, PerFit directly fine-tunes the hidden representations, where represents fine-tuning with learnable
parameters. (b) Experimental results show PerFit similarly strong performance on six datasets while reducing
parameters by 92.3% on average compared to OPPU (Tan et al., 2024b).

limited scalability in edge-cloud setups—where the085

base LLM runs in the cloud and personalized pa-086

rameters reside on user devices such as phones (Qi087

et al., 2024; Wagner et al., 2024) (Appendix B).088

Therefore, striking a balance between effective-089

ness and efficiency remains a significant challenge090

for existing methods.091

To solve this problem, we take the initial step092

of investigating how personalized information is093

captured by LLMs, thereby laying the groundwork094

for our alternative lightweight fine-tuning solution.095

This effort is motivated by recent advances in acti-096

vation engineering (Wang et al., 2024b; Arditi et al.;097

Turner et al., 2023; Zhang et al., 2024b), which al-098

lows precise control of LLM outputs by targeting099

internal representation interventions related to at-100

tributes like harmlessness (Bolukbasi et al., 2016;101

Park et al.), truthfulness (Li et al., 2023), and hu-102

mor (Von Rütte et al., 2024). Therefore, the key103

question we investigate in this paper is:104

Does personalized information induce dis-
cernible patterns in LLMs’ hidden represen-
tation space that enable efficient guidance
of model behavior?

105

We conduct exploratory experiments to uncover106

personalized information encoded in the hidden107

representation space, named δ-vectors (Section 2),108

revealing two key observations. (1) The δ-109

vectors can be effectively represented within a low-110

dimensional orthogonal subspace (Observation 1). 111

This suggests learning a low-rank subspace to get 112

interventions representing user information in the 113

representation space. (2) Vectors for all users in 114

the low-rank subspace exhibit a clear collective 115

shift, characterized by a common direction of de- 116

viation. Based on the collective shift, the vectors 117

subsequently disperse towards multiple directions 118

for different users (Observation 2). This suggests 119

a two-stage approach to learn the collective and 120

personalized shifts, respectively. 121

The intriguing findings inspire our personalized 122

fine-tuning approach, which directly fine-tunes 123

LLMs in the low-rank hidden representation sub- 124

space rather than model parameters, named PerFit. 125

Specifically, we first train the collective shift using 126

data from all users, and then, based on this, learn 127

the personalized shifts for each user. To the best 128

of our knowledge, this is the first work to fine- 129

tune LLMs in representation space tailored to 130

personalized LLM tasks. The learned collective 131

shift, combined with the personalized shift, is di- 132

rectly added to the model’s hidden representation 133

space as an intervention to steer the model’s out- 134

put toward fulfilling individual users’ personalized 135

requirements. Experimental results demonstrate 136

that PerFit delivers strong performance across six 137

personalization datasets while cutting the number 138

of parameters by an average of 92.3% compared 139

to the LoRA-based methods. 140
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Figure 2: (1) The first row depicts the low-rank vector representations projected onto the first two principal
components, with mean vectors indicated by yellow stars, demonstrating directional bias in the reduced-dimensional
space. (2) The second row comprises violin plots of the coordinate value distributions across the first five feature
dimensions. Here, the zeroth dimension shows a significant mean shift from zero, indicating a shared directional
bias (i.e., collective shift) among users, whereas the remaining dimensions have means near zero with relatively
large standard deviations, reflecting individual user variability (i.e., personalized shifts).

2 Uncovering Personalization in141

Representation Space142

Building on the insights of activation steering (Ap-143

pendix C.2), in this section, we aim to investigate144

whether patterns related to personalized informa-145

tion exist within the hidden representation space.146

If so, we can develop methods that leverage these147

patterns to guide personalization directly in repre- 148

sentation space, achieving a better balance between 149

effectiveness and parameter efficiency. 150

2.1 Extracting personalization vectors 151

Following the analysis paradigm of activa- 152

tion engineering (Arditi et al.), for each user 153

ui ∈ U , given their original query set Qorig
i , 154

3



Table 1: Minimum feature dimensions r needed to ex-
plain 0.8 and 0.9 of variance. ‰ represents the r as a
per mille of total dimensions.

0.8 0.9 0.95

r ‰ r ‰ r ‰

LaMP-2N 1 3.65 4 14.60 20 72.90
LaMP-5 4 0.98 40 9.77 203 49.56
LaMP-7 3 0.73 32 7.81 177 43.21

we enhance each query by incorporating the155

most relevant personalized information. The156

resulting personalization-enhanced query set is157

denoted as Qper
i . At layer ℓ, let h(ℓ)

t (q) ∈ Rd158

be the hidden state (residual stream activation)159

corresponding to the last token t of the input160

query q. The mean residual representations for161

the original and personalized inputs are defined162

as m
(ℓ)
i = 1

|Qorig
i |

∑
q∈Qorig

i
h
(ℓ)
t (q),n

(ℓ)
i =163

1
|Qpers

i |
∑

q∈Qpers
i

h
(ℓ)
t (q). The difference-in-164

means (Belrose, 2024) personalization vector at165

the layer ℓ is then v
(ℓ)
i = n

(ℓ)
i − m

(ℓ)
i , which166

captures the principal change in the model’s167

internal representation induced by personalized168

information of user i.169

Note that personalized information, unlike170

clear-cut traits such as harmlessness or helpful-171

ness that can be manipulated via a single vector,172

is inherently more complex and diverse. There-173

fore, we consider each user a special personality174

and analyze all users together to capture both col-175

lective and personalized aspects. The collection of176

v
(ℓ)
i for all users i ∈ U is called δ-vectors in this177

paper for simplicity.178

Using Llama2-7B as the base (i.e., non-179

personalized) LLM (Tan et al., 2024b,a; Kong180

et al., 2024), we conducted an analytical study181

on the widely-used personalization benchmark182

LaMP (Salemi et al., 2024b). To isolate the per-183

sonalized information, We focus on the residual184

stream representation of the last token, hℓ := hℓ
n,185

which aggregates information from the entire in-186

put sequence at layer ℓ, specifically analyzing the187

16th layer following previous activation steering188

approaches (Arditi et al.). The personalized in-189

formation we concatenate for each user Qorig
i , is190

derived via the BM25 algorithm to identify the191

most relevant details of each query from the user’s192

historical documents.193

2.2 Observations 194

Based on the δ-vectors, which isolate the personal- 195

ized information of all users, we proceed to uncover 196

the underlying personalization patterns. Below are 197

the key observations. 198

Observation 1 (Low-rank Subspace). The
δ-vectors can be effectively represented
within a low-dimensional orthogonal sub-
space, significantly reducing the original
feature space dimensionality.

199

We performed singular value decomposition 200

(SVD) (Stewart, 1993) on the obtained δ-vectors 201

to determine the intrinsic rank required to represent 202

them with minimal loss of information. Table 1 203

reveals that the effective rank is significantly lower 204

than the full dimensionality of the feature matrix, 205

accounting for approximately 0.073% of the orig- 206

inal dimensions. This observation suggests that 207

the δ-vectors vectors lie predominantly within a 208

low-dimensional orthogonal subspace, suggesting 209

substantial redundancy in the high-dimensional rep- 210

resentations. 211

Observation 2 (Collective and Personalized
Shifts). The δ-vectors exhibit a collective
shift, accompanied by personalized shifts
reflecting individual variability.

212

We further plotted the mean and standard devi- 213

ation of each dimension within the low-rank sub- 214

space based on the SVD. As shown in Figure 2, 215

there is a significant shift with small variance in 216

the low-rank subspace, indicating a collective shift 217

across all vectors. 218

2.3 Personalized Shifts: A Case Study 219

This section aims to answer the question: "Do 220

the personalized shifts of the δ-vectors encompass 221

personalization?" The personalized information 222

regarding implicit styles in the LaMP dataset is 223

challenging to quantify. To explore this, we select 224

samples within the representation space for a case 225

study to determine whether nearby representations 226

exhibit similar styles. 227

For instance, in the context of Tweet Paraphrase, 228

the template of added personalized information and 229

the queries is illustrated in Figure 3. Using the col- 230

lective shift vector as a reference, we identify the 231

top 10 users with the nearest vectors, the top 10 232
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Personalized Information:
abstract: <abstract>. title: <title>

Query:
Given this author’s previous publications, try to describe a
template for their titles. I want to be able to accurately
predict the title of one of the papers from the abstract.
abstract: <query_abstract>. title:

Figure 3: Personalized Information template. Replace
the content inside the <> with the actual descriptions of
the abstract and title for each query.

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
First Principal Component

6

4

2

0

2

4

6

8

10

Se
co

nd
 P

rin
cip

al
 C

om
po

ne
nt

LaMP-5: Scholarly Title

Figure 4: Selected samples from the representation
space. The red circle, green circle, and blue circle
represent the 10 points that are farthest, at an interme-
diate distance, and closest to the collective vector.

Closest-10 Closest Users: {title}

  #1: Turning Cliques Into Paths To Achieve
Planarity

  #2: MetaSpace II: Object and full-body

tracking for interaction and navigation
in social VR

  #3: Vmotion: Designing A Seamless Walking
Experience In Vr

  #4: Neural networks and machine learning in
bioinformatics
- theory and applications

  #5: Why traditional usability criteria fall
short in ambient assisted living
environments

  #6: Intelligent Web Service

- From Web Services to .Plug&Play. Service
Integration

  #7: Outage probability guaranteed relay
selection in cooperative communications

  #8: Towards an Object-Oriented Programming
Language for Physarum Polycephalum

Computing : A Petri Net Model Approach

  #9: Contextual Grouping of Labels

  #10:Axioms For Centrality

Figure 5: Closest-10 closest users. These sentences
indicate that a majority of individuals prefer to employ
punctuation marks, such as commas and dashes.

vectors at an intermediate distance, and the 10 far-233

thest vectors. We then present their corresponding234

personalized information regarding the titles gener-235

ated by the user previously, aligning with the user’s236

Intermediate-10 Users: {title}

  #1: Exploiting temporal influence in online
recommendation

  #2: On measuring affects of github issues’
commenters

  #3: Evaluation of tone mapping operators

using a High Dynamic Range display

  #4: Differential Entropy Preserves
Variational Information of
Near-Infrared Spectroscopy Time Series

Associated With Working Memory

  #5: Toward real-time endoscopically-guided

robotic navigation based on a 3D
virtual surgical field model

  #6: Time-varying noise estimation for
speech enhancement and recognition

using sequential Monte Carlo method

  #7: On collision-free reinforced barriers

for multi domain IoT with
heterogeneous UAVs

  #8: Dense depth maps by active color

illumination and image pyramids

  #9: New results on optimizing rooted
triplets consistency

  #10:Machine learning-based detection of
open source license exceptions

Figure 6: Intermediate-10 closest users. The titles of
these examples rarely use punctuation marks; instead,
they favor terms such as ’based on’ and ’using’ to indi-
cate specific methodologies. Additionally, the descrip-
tions of the titles are more precise compared to those of
the closest users.
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Farthest-10 Users: {query_abstract}

  #1: An abstract is not available ×5

  #2: However, not ... ( incomplete ) ×3

  #3: After the publication of the DOI
version

  #4: ḧttp://www.w3.org/1998/Math/MathML¨

Figure 7: Farthest-10 closest users. The distant points
are all outliers, and the query of users lacks effective
abstract information. As shown above, there is no indi-
cation of the user’s methodology.

preferences, as illustrated in Figure 5, Figure 6,237

and Figure 7, respectively. The points we select238

are highlighted in Figure 4.239

From these examples, it is evident that while the240

style may not convey significant information, users241

with personalized vectors that represent different242

regions in the embedding space exhibit clear and243

intuitive differences in their corresponding person-244

alized information.245

Moreover, an interesting discovery is that the246

points that are farther from the collective shift247

tend to be outliers. The queries associated with248

these outlier points lack effective information, re-249

sulting in the inability to incorporate meaningful250

personalization. Consequently, compared to the251

collective shift, there is a considerable deviation in252

these instances. This further validates and supports253

the direct correlation between δ-vectors and per-254

sonalized information in the embedding space. It255

also demonstrates that the personalized shift, based256

on the collective shift, can effectively reflect indi-257

vidualized information.258

3 Methodology: PerFit259

These findings have practical implications: un-260

derstanding and isolating personalized represen-261

tations enables the development of more efficient,262

lightweight fine-tuning methods with reduced com-263

putational demand. Leveraging the observations,264

the personalized method PerFit is proposed to265

directly fine-tune the representation low-rank266

subspace and the intervention vector, rather than267

the model parameters. Inspired by the represen-268

tation fine-tuning paradigm (Wu et al., 2024), we269

propose a novel two-stage formulation specifically270

designed to achieve the personalization goal 1. 271

Intuitive Explanation. PerFit is designed to 272

align with our key observations (Figure 8). 273

• R is an orthogonal matrix that projects vec- 274

tors from a high-dimensional space onto a 275

low-dimensional subspace, consistent with the 276

low-rank subspace observation (Observa- 277

tion 1). Its transpose, R⊤, performs the in- 278

verse mapping by projecting vectors from the 279

low-dimensional subspace back to the origi- 280

nal high-dimensional space. The intervention 281

vector v corresponds to the δ-vectors , and 282

the model directly learns these vectors during 283

training. 284

• Two-stage fine-tuning functions ϕ∆Θ(2) ◦ 285

ϕ∆Θ(1) are designed based on Observation 2 286

that ∆Θ(1) is tuned by all users’ data U to get 287

the collective shift for the first stage. Then, 288

we fine-tune ∆Θ
(2)
i for each user ui ∈ U to 289

get the personalized shifts. 290

PerFit — Personalized Fine-Tuning in Representa-
tion Space

ΦPerFit(h) = (ϕ∆Θ(2) ◦ ϕ∆Θ(1)) (h), (1)

where for s = 1, 2, ϕ∆Θ(s) :=

x+R(s)⊤(W(s)x+ b(s) −R(s)x
)︸ ︷︷ ︸

intervention vector v(s)

(2)

Here, h,x ∈ Rd and ◦ is the functional com-
position, and ∆Θ(s) =

(
R(s),W(s),b(s)

)
are

trainable parameter sets with R(s),W(s) ∈
Rrs×d, b(s) ∈ Rrs , where, rs ≪ d, R(s)

is a row-wise orthogonal matrix satisfying
R(s)(R(s))⊤ = Irs .

291

4 Experiments 292

We conduct extensive experiments to evaluate our 293

proposed PerFit method across six diverse tasks 294

from the LaMP benchmark. Our evaluation mainly 295

focuses on the following three research questions: 296

• RQ1. How does PerFit perform compared 297

to state-of-the-art personalized approaches in 298

1For simplicity, we remove the layer index ℓ in the nota-
tion.
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Figure 8: Illustration of two-stage personalized fine-tuning PerFit. (a) The first stage tunes on all users to obtain
the collective shift. (b) The second-stage intervention vector is learned from the intervened representation of stage 1
and fine-tuned individually for each user.

terms of both effectiveness and efficiency?299

(Section 4.2)300

• RQ2. To what extent does PerFit improve301

computational and memory efficiency while302

maintaining competitive performance? (Sec-303

tion 4.3)304

• RQ3. How does our two-stage training ap-305

proach contribute to the model’s performance,306

and what is the impact of each stage? (Sec-307

tion 4.4)308

4.1 Experimental Setup309

This section outlines the experimental settings for310

evaluating our proposed PerFit method. We de-311

scribe the datasets, baseline models, and key imple-312

mentation parameters used in our evaluation. For313

additional setup details, please refer to the corre-314

sponding subsections in Appendix D.315

Datasets. We conduct experiments on six di-316

verse tasks from the LaMP benchmark (Salemi317

et al., 2024b): three classification tasks (News Cat-318

egorization, Movie Tagging, Product Rating) and319

three generation tasks (News Headline Generation,320

Scholarly Title Generation, Tweet Paraphrasing).321

Following established practices (Tan et al., 2024b),322

data from approximately 100 users with the most323

extensive interaction histories for each task con-324

stitute our test set, while the remaining data is325

used for training the base (i.e., non-personalized)326

LLM. Detailed dataset statistics are provided in327

Appendix D.1.328

Baselines. PerFit is compared against a range329

of baselines, all implemented using Llama2-7B as330

the base model. These include Non-Tuned Methods:331

Non-Personalized, Profile Augmented Generation 332

(PAG) (Richardson et al., 2023), Retrieval Aug- 333

mented Generation (RAG) (Salemi et al., 2024b) 334

(with k ∈ {1, 2, 4} retrieved documents), and 335

StyleVector (Zhang et al., 2025); and Tuned Meth- 336

ods: Collective LoRA (Hu et al., 2021) (LoRA-C), 337

Personalized LoRA (LoRA-P), OPPU (Tan et al., 338

2024b). Details of each baseline are available in 339

Appendix D.2. 340

Implementation Details. Key training settings 341

are consistent across both training stages: we 342

use the AdamW optimizer with a learning rate of 343

1 × 10−4, weight decay of 1 × 10−2, and BF16 344

precision. Gradient clipping is applied with a max- 345

imum norm of 0.3. Batch sizes are generally 16, 346

with exceptions for Product Rating (batch size 2) 347

and Scholarly Title Generation (batch size 4) due 348

to computational requirements. The base LLM 349

is trained for 3 epochs, and the personal PEFT 350

stage for 2 epochs. For inference, we set the tem- 351

perature to 0.1, top-k sampling to 10, and top-p 352

sampling to 0.9. PEFT-based methods (LoRA, 353

OPPU) utilize a LoRA rank r = 8 and α = 8. For 354

our representation-based methods, hyperparame- 355

ters such as low-rank dimensions, intervention lay- 356

ers, and positions were determined via a 20-trial 357

random search. 358

4.2 Main Results (RQ1) 359

We evaluate PerFit against state-of-the-art person- 360

alized approaches across six diverse tasks from the 361

LaMP benchmark. The results are presented in Ta- 362

bles 2 and 3, which demonstrate the effectiveness 363

of our method in both personalized classification 364

and generation scenarios. 365
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Table 2: Results on classification tasks. We report Accuracy (Acc) and F1 Score (F1) for LaMP-2N and LaMP-2M,
and Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for LaMP-3. For PerFit, we show the
parameter percentage relative to the total model and the parameter reduction compared to OPPU. Blue and red
numbers represent Stage-1 and Stage-2 parameters, respectively.

Method
News Categorization Movie Tagging Product Rating

(LaMP-2N) (LaMP-2M) (LaMP-3)

Acc ↑ F1 ↑ Acc ↑ F1 ↑ MAE ↓ RMSE ↓

LoRA-C 0.787 0.538 0.478 0.425 0.223 0.491
LoRA-P 0.591 0.397 0.528 0.383 0.183 0.502
OPPU 0.810 0.589 0.600 0.493 0.179 0.443
Ours (PerFit) 0.818 0.586 0.630 0.518 0.179 0.443
- Param. Percentage ↓ (%) 0.0058 0.0117 0.0078 0.0010 0.0117 0.0015
- Param. Reduction ↑ (%) 93.75 81.25 91.67 98.44 87.50 97.66

Table 3: Results on generation tasks. We report ROUGE-1 (R-1) and ROUGE-L (R-L) metrics for LaMP-4,
LaMP-5, and LaMP-7 tasks. The table compares both Non-Tuned Methods and Tuned Methods to demonstrate the
effectiveness of different personalization approaches. For PerFit, we show the parameter percentage relative to
the total model size and the parameter reduction compared to OPPU. Blue and red numbers represent Stage-1 and
Stage-2 parameters respectively.

Method
News Headline Gen. Scholarly Title Gen. Tweet Paraphrasing

(LaMP-4) (LaMP-5) (LaMP-7)

R-1 ↑ R-L ↑ R-1 ↑ R-L ↑ R-1 ↑ R-L ↑

Non-Tuned Methods
Non-Personalized 0.030 0.029 0.145 0.118 0.126 0.123
PAG 0.098 0.082 0.149 0.121 0.135 0.124
RAG (k=1) 0.101 0.085 0.152 0.122 0.149 0.140
RAG (k=2) 0.106 0.088 0.167 0.132 0.136 0.130
RAG (k=4) 0.110 0.092 0.169 0.135 0.164 0.157
StyleVector 0.104 0.086 0.156 0.125 0.132 0.127

Tuned Methods
LoRA-C 0.186 0.167 0.476 0.415 0.527 0.474
LoRA-P 0.120 0.108 0.489 0.435 0.398 0.333
OPPU 0.191 0.171 0.519 0.442 0.539 0.483
Ours (PerFit) 0.207 0.186 0.521 0.451 0.525 0.472
- Param. Percentage ↓ (%) 0.0117 0.0015 0.0039 0.0010 0.0078 0.0039
- Param. Reduction ↑ (%) 87.50 97.66 95.83 98.44 91.67 93.75

Personalized Classification Tasks. On classi-366

fication tasks, PerFit achieves superior perfor-367

mance across all metrics. For LaMP-2N, our368

method attains the highest accuracy of 81.8%, sur-369

passing OPPU by 0.8 percentage points. In LaMP-370

2M, PerFit achieves the best results with 63.0%371

accuracy and 51.8% F1 score, demonstrating sub-372

stantial improvements over baselines. For LaMP-373

3, PerFit achieves comparable performance to374

OPPU with an MAE of 0.179 and RMSE of 0.443,375

while utilizing significantly fewer parameters.376

Personalized Generation Tasks. In generation377

tasks, PerFit demonstrates consistent improve-378

ments over existing approaches. For LaMP-4,379

our method achieves the highest ROUGE-1 score380

of 20.7% and ROUGE-L score of 18.6%, outper-381

forming both Non-tuned and Tuned baselines. On382

LaMP-5, PerFit achieves the best performance 383

with a ROUGE-1 score of 52.1% and ROUGE-L 384

score of 45.1%. While OPPU achieves marginally 385

better performance on LaMP-7, our method main- 386

tains competitive results while utilizing signifi- 387

cantly fewer parameters. 388

4.3 Efficiency Analysis (RQ2) 389

We conduct a detailed analysis of parameter effi- 390

ciency based on the results in the main tables. As 391

shown in Tables 2 and 3, our PerFit method con- 392

sistently achieves state-of-the-art or highly com- 393

petitive performance while dramatically reducing 394

the number of trainable parameters. Specifically, 395

in the first stage, PerFit requires only 0.0058% to 396

0.0117% of the total model parameters for classi- 397

fication tasks, and 0.0039% to 0.0117% for gen- 398

eration tasks. In the second stage, it uses an even 399

8



Figure 9: Performance versus parameter count on four
datasets. Marker size reflects the relative training time2.

Figure 10: Impact of Collective and Per-
sonalized Rank on Movie Tagging Per-
formance.

smaller proportion of 0.0010% to 0.0015% for clas-400

sification tasks and 0.0010% to 0.0039% for genera-401

tion tasks. This two-stage design achieves a remark-402

able parameter reduction of 81.25% to 98.44%403

compared to strong baselines such as OPPU. This404

substantial reduction highlights the efficiency of405

our approach in both memory and computational406

cost.407

The accompanying Figure 9 provides a visual408

summary of these findings, plotting model per-409

formance against the proportion of trainable pa-410

rameters for four representative datasets. Notably,411

PerFit not only reduces parameter count but also412

achieves a 17.0% to 35.8% reduction in training413

time compared to existing fine-tuning baselines.414

This demonstrates that our method delivers both415

parameter and runtime efficiency without sacrific-416

ing performance, making it a practical and scalable417

solution for personalized adaptation in LLMs.418

4.4 Ablation Study (RQ3)419

To validate our two-stage design and low-rank420

subspace intervention, we conduct an ablation421

study across diverse tasks (Table 4). Using only422

Stage-1 (collective shift learning) results in 2.6%-423

16.4% accuracy drops, confirming the importance424

of personalized adaptation in Stage-2. When train-425

ing only Stage-2, both Ours@Stage-2 (C+P) and426

Ours@Stage-2 (P) configurations show limited per-427

formance without Stage-1’s collective information.428

However, the higher rank configuration (C+P) still429

outperforms Ours@Stage-2 (P), demonstrating that430

increased rank helps capture more dimensions of 431

user-specific information, though with diminishing 432

returns. This aligns with Observation 1, suggesting 433

that essential personalized information lies within 434

a lower rank subspace. 435

4.5 Hyperparameter Analysis 436

Layer-wise Intervention. Figure 11 (left and 437

middle) presents the results of intervening at a 438

single layer for both Movie Tagging and News 439

Headline Gen. tasks. We observe a clear trend: 440

as the intervention layer moves from lower (ear- 441

lier) to higher (later) layers, the overall perfor- 442

mance—across all metrics—steadily declines. This 443

finding is particularly intriguing when contrasted 444

with prior work in knowledge editing (KE), where 445

middle layers are typically used for learning and 446

storing new knowledge (Meng et al., 2022). In our 447

case, however, intervening at earlier layers yields 448

better results. We hypothesize that this difference 449

arises because, unlike KE tasks that typically re- 450

quire editing a small set of knowledge points, our 451

method’s first stage must absorb and encode a large 452

amount of user-specific information. This process 453

likely depends more heavily on modifications to 454

2Larger markers indicate longer training times. Note that
these training times refer to the first stage of training and are
provided for reference only, as they are influenced by various
factors including dataset size and hardware specifications. The
size primarily serve to illustrate the relative time relationships
between different methods.

3@Stage-2 degenerates into a one-stage model, equivalent
to the ReFT model detailed in Appendix D.2
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Table 4: Ablation results across diverse tasks, evaluating the impact of different training stages and configurations.
Ours@Stage-2 (C+P) denotes the configuration where the rank is set to the sum of both stages’ ranks, while
Ours@Stage-2 (P) represents the configuration with only the Stage-2 rank3. ref. LoRA-P represents the reference
values using LoRA-P.

Method News Categorization Movie Tagging News Headline Tweet Paraphrasing

Acc ↑ F1 ↑ Acc ↑ F1 ↑ R-1 ↑ R-L ↑ R-1 ↑ R-L ↑

Ours 0.818 0.586 0.630 0.518 0.195 0.175 0.525 0.472
@Stage-1 0.792 0.529 0.466 0.415 0.189 0.169 0.493 0.450
@Stage-2 (C+P) 0.803 0.604 0.620 0.496 0.194 0.175 0.483 0.438
@Stage-2 (P) 0.801 0.594 0.599 0.473 0.190 0.171 0.478 0.433
ref. LoRA-P 0.591 0.397 0.528 0.383 0.120 0.108 0.398 0.333

Figure 11: Layer-wise and cumulative intervention analysis. Left & Middle: Performance metrics (Acc, F1, R-1,
R-L) versus single intervention layer position for Movie Tagging and News Headline Generation tasks. Right:
Performance on Movie Tagging versus number of intervention layers4.

lower-level model parameters, which are responsi-455

ble for foundational feature extraction and repre-456

sentation.457

Cumulative Intervention. As shown in the right458

panel of Figure 11, increasing the number of inter-459

vention layers generally leads to improved perfor-460

mance on the Movie Tagging task. This suggests461

that leveraging more layers allows the model to462

better capture and utilize personalized information.463

However, we observe that when interventions are464

applied to as many as all layers, performance un-465

expectedly drops. This indicates that editing too466

many layers may introduce negative side effects,467

possibly due to interference or redundancy among468

the interventions at different layers.469

Collective vs. Personalized Rank. Figure 10470

presents a heatmap analysis of the impact of col-471

lective (Stage-1) and personalized (Stage-2) rank472

on Movie Tagging performance, measured by both473

accuracy and F1 score. Overall, we observe that474

increasing either the collective rank or the personal-475

ized rank generally leads to improved performance.476

However, the effect of the personalized rank ap-477

pears to be more pronounced: even when the col-478

lective rank is low, a sufficiently high personal-479

ized rank can achieve near-optimal results. This480

suggests that while both components contribute to 481

model capacity, the personalized rank plays a more 482

critical role in capturing user-specific information. 483

These findings highlight the importance of allocat- 484

ing sufficient capacity to the personalized subspace, 485

and indicate that effective personalization can be 486

achieved even with a modest collective rank, pro- 487

vided the personalized rank is adequately set. 488

5 Conclusions and Future Work 489

By uncovering fundamental patterns in user- 490

specific information—including shared collective 491

and unique personalized shifts—our work intro- 492

duces a novel two-stage method that fine-tunes in- 493

terventions directly in the hidden representation 494

space. Through extensive experiments across six 495

diverse tasks, we demonstrate that this approach 496

achieves efficient personalization with significantly 497

reduced parameter overhead. This work paves the 498

way for scalable, effective personalization in in- 499

telligent systems and reveals insights into user- 500

specific information in LLMs. Future work could 501

explore finer-grained personalization styles, such 502

as community-level and group-level relationships. 503

4The layers are selected symmetrically around layer 15,
with the spacing between layers determined as (# Model Lay-
ers / # Intervened Layer).
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A Example Appendix737

B Related Work738

The methods for personalized large language mod-739

els (PLLMs) can be mainly divided into two types740

based on whether fine-tuning is involved (Liu et al.,741

2025): one type is the method that does not require742

fine-tuning of the large language models (LLMs),743

and the other type is the method that requires fine-744

tuning.745

Tune-Free Methods. Tune-free methods primar-746

ily use three approaches: input prompting, vector747

steering, and logits steering. (1) For input prompt-748

ing, key approaches include profile-augmented gen-749

eration (PAG) (Richardson et al., 2023), which uses750

an instruction-tuned language model to create a tex-751

tual user profile from the user’s personalized data,752

and retrieval-augmented generation (RAG) (Salemi753

et al., 2024a), which enhances responses by retriev-754

ing relevant entries from user history. (2) Vector755

steering, as implemented in StyleVector (Zhang756

et al., 2025), uses a separate LLM to generate con-757

trastive pairs of personalized and non-personalized758

responses to modify model behavior. This method759

depends on pre-constructed contrastive pairs and760

doesn’t tune model parameters; it has limited un-761

derstanding of personalization. (3) Logits steering:762

CoS (He et al., 2024) achieves personalization by763

summing the logits from two rounds of outputs764

from the LLM: one round uses a standard prompt,765

while the other incorporates a user’s explicit con-766

text in the prompt. Its main focus differs from our767

implicit personalization tasks.768

Limitations: Although tune-free methods are ef-769

ficient because they use external data sources, their770

personalization capabilities are limited since they771

rely on historical information instead of adapting772

the model’s internal parameters, especially for cap-773

turing users’ implicit tastes and style.774

Fine-Tuning Methods. The one PEFT per user775

paradigm trains a Parameter-Efficient Fine-Tuning776

(PEFT) model tailored to each user using low-rank777

adaptation (LoRA)(Hu et al., 2021; Yang et al.,778

2024; Zhang et al., 2024a). OPPU(Tan et al.,779

2024b) encodes personalized user information in780

PEFT parameters, enhancing the overall user ex-781

perience. While research following OPPU primar-782

ily focuses on framework enhancements, such as783

parameter collaboration in privacy-sensitive con-784

texts (Qi et al., 2024; Wagner et al., 2024), the785

area of enhancing personalized fine-tuning remains 786

underexplored. 787

Limitations. Despite the strong performance of 788

the LoRA architecture, it still requires millions 789

of parameters, which poses a significant burden 790

in personalized scenarios with a large number of 791

users. 792

Note that some methods for aligning human 793

preferences in LLMs use reinforcement learning. 794

While these approaches vary—some requiring fine- 795

tuning (Rame et al., 2024; Lau et al., 2024; Poddar 796

et al., 2024; Shi et al., 2024) and others not (Chen 797

et al., 2024) — they mainly rely on reward mod- 798

els based on average annotator preferences. This 799

approach requires predefined (explicit) preferences 800

and fails to account for how different users might 801

want different outputs for the same prompt, which 802

differs from our task and objectives that propose 803

a novel personalized fine-tuning method that cap- 804

tures users’ implicit tastes and strikes a balance 805

between effectiveness and efficiency. 806

C Preliminary 807

C.1 Problem Statement 808

Let U = {ui}Ni=1 be a set of N users. Each user 809

ui is associated with a set of input queries Qi = 810

{q(i)j }ni
j=1 and corresponding desired outputs Yi = 811

{y(i)j }ni
j=1, which implies the user’s personalized 812

preferences and expectations. Here, ni denotes 813

the number of queries for user ui. The base (i.e., 814

non-personalized) LLM, denoted by M0, generates 815

generic outputs ŷ0j := M0(q
(i)
j ) for any input query 816

qij ∈ Qi. Suppose Θ0 denotes the base model 817

parameters and Θi denotes the parameters for user 818

ui, and the personalized parameters increment as 819

∆Θi := Θi \Θ0. 820

Our objective is to adapt M0 into personalized 821

models Mi for each user ui such that for every q
(i)
j , 822

the personalized output ŷ(i)j = Mi(q
(i)
j ) closely 823

matches the desired output y(i)j while minimizing 824

parameter overhead |∆Θi|. Formally, this can be 825

expressed as minimizing the aggregate loss: 826

min
{Mi}Ni=1

N∑
i=1

Mi∑
j=1

L
(
Mi(q

(i)
j ), y

(i)
j

)
s.t. 827

where L(·, ·) measures the discrepancy between 828

model output and user target. This formulation 829

encapsulates personalized fine-tuning of the base 830

LLM to PLLM. 831
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C.2 Hidden State Representations and832

Activation Steering833

Hidden State Representation. Our work con-834

centrates on decoder-only transformer architec-835

tures (Liu et al., 2018). For the base model836

M0, each layer ℓ ∈ L comprises the multi-head837

attention and feed-forward modules MHAℓ
0 and838

FFNℓ
0. Thus, the model can be expressed as:839

M0 = ⃝ℓ∈L
(
FFNℓ

0 ◦MHAℓ
0

)
, ⃝ denotes the840

composition of functions applied in sequence. The841

parameter set Θ0 is partitioned accordingly: Θ0 =842 ⋃
ℓ∈L

(
ΘMHAℓ

0 ∪ΘFFNℓ

0

)
, where

⋃
denotes the843

union of sets. The layer ℓ of the base model M0844

updates the hidden state hℓ
t ∈ Rd of the token t as845

follows:846

hℓ+1
t = hℓ

t + FFNℓ
0

(
hℓ
t +MHAℓ

0(h
ℓ
1:t)

)
,847

where MHAℓ
0 attends causally over tokens 1848

through t, d is the hidden dimension.849

Activation Steering. Recent studies have ex-850

plored how certain features are linearly represented851

in model hidden representation space utilizing852

activation steering (Tigges et al., 2023; Zhang853

et al., 2024b; Arditi et al.), such as harmless-854

ness (Bolukbasi et al., 2016; Park et al.), truth-855

fulness (Li et al., 2023), and humor (Von Rütte856

et al., 2024). These feature directions serve as857

effective causal mechanisms, enabling precise con-858

trol over model behavior and outputs via simple859

linear interventions. Activation steering adds an860

intervention (i.e., vector) vℓ ∈ Rd to the hidden861

state at layer ℓ, modifying the model’s behavior:862

h̃ℓ
t = hℓ

t + vℓ. The next layer uses h̃ℓ
t instead of863

hℓ
t : h

ℓ+1
t = h̃ℓ

t +FFNℓ
(
h̃ℓ
t +MHAℓ(h̃ℓ

1:t)
)
. This864

can be applied at any layer(s) to steer the model’s865

output.866

D Experiments867

D.1 Datasets868

Our experiments utilize the LaMP bench-869

mark (Salemi et al., 2024b), a collection of per-870

sonalization tasks from which we select six distinct871

tasks - three for classification and three for genera-872

tion5. In alignment with the OPPU framework (Tan873

5We omitted the LaMP-1 citation dataset because we were
unable to reproduce results using the OPPU prompt, and for
most queries, we could not get outputs in the required format.
This may be due to limitations in Llama2’s instruction fol-
lowing capabilities. Like OPPU, we did not use the LaMP-6
dataset due to privacy concerns. The remaining six datasets
still ensure task diversity.

et al., 2024b), we recognize the importance of sub- 874

stantial user history for effective model personal- 875

ization. Consequently, we identify and select about 876

100 most prolific users (those with the most exten- 877

sive interaction histories) from the time-ordered 878

LaMP variant to serve as our test cohort. The re- 879

maining users’ data is allocated for training the 880

collective LLM in the first stage. The dataset statis- 881

tics are listed in Table 5. 882

D.2 Baselines 883

To provide a comprehensive comparison, we eval- 884

uate our method against a diverse set of base- 885

lines, categorized into Non-Tuned and Tuned ap- 886

proaches. All baseline models are implemented 887

using Llama2-7B6 as the foundation model. 888

Non-Tuned Methods 889

• Non-Personalized: This approach utilizes the 890

pre-trained model without any modifications 891

to generate responses for user queries. It estab- 892

lishes a performance floor for our experiments 893

and serves as a reference point for measur- 894

ing the effectiveness of personalization tech- 895

niques. 896

• Profile Augmented Generation (PAG): This 897

method synthesizes a textual user profile us- 898

ing an instruction-tuned language model (e.g., 899

Vicuna-13B7), derived from the user’s inter- 900

action history. The generated profile is then 901

prepended to each query to provide explicit 902

contextual information about user preferences, 903

enabling the model to generate more person- 904

alized responses without parameter updates. 905

• Retrieval Augmented Generation (RAG): 906

This technique implements the BM25 algo- 907

rithm to retrieve the most relevant entries from 908

a user’s history (with k = 1, 2, 4) for each 909

query. These retrieved entries serve as supple- 910

mentary context for the model during infer- 911

ence, allowing it to access specific historical 912

interactions that may be relevant to the current 913

query. 914

• StyleVector (Zhang et al., 2025): This frame- 915

work represents a training-free approach that 916

disentangles and encodes personalized writing 917

6Llama2-7B open-source model: https://huggingface.
co/meta-llama/Llama-2-7b-hf

7Vicuna-13B open-source model: https://lmsys.org/
blog/2023-03-30-vicuna/
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Table 5: Dataset statistics for the LaMP benchmark. We present the average sequence length measured in token
count, where #Q represents the quantity of queries, Lin and Lout denote the average input and output sequence
lengths respectively, #History indicates the volume of historical interactions, and #Classes shows the number of
classification categories for classification tasks. #Users shows the number of users in the base LLM training stage
and personal PEFT training stage (format: first stage/second stage).

.

Task #Users Base LLM Training Personal PEFT Training

#Q Lin Lout #Q #History Lin Lout #Classes

2M 829 / 100 3,181 92.1 - 3,302 55.6 92.6 - 15
2N 274 / 49 3,662 68.2 - 6,033 219.9 63.5 - 15
3 1,543 / 100 22,388 128.7 - 112 959.8 211.9 - 5
4 19,899 / 101 7,275 33.9 9.2 6,275 270.1 25.2 11.1 -
5 14,581 / 101 16,075 162.1 9.7 107 442.9 171.6 10.3 -
7 13,337 / 100 14,826 29.7 18.3 109 121.2 29.4 18.0 -

style as a vector within the LLM’s activation918

space. StyleVector enables style-controlled919

generation during inference without requir-920

ing retrieval mechanisms or parameter storage.921

The style vector is computed as the mean dif-922

ference between positive and negative exem-923

plars, and is injected into a specific token rep-924

resentation at a predetermined layer. Unlike925

our proposed method, StyleVector depends on926

carefully selected sample pairs, making it par-927

ticularly sensitive to data quality and quantity,928

and necessitates more sophisticated vector en-929

gineering.930

Tuned Methods931

• Personalized LoRA (LoRA-P) (Hu et al.,932

2021): This standard parameter-efficient fine-933

tuning (PEFT) methodology creates individ-934

ual models that are fine-tuned on each user’s935

historical data. The approach produces user-936

specific parameter adaptations that capture in-937

dividual preferences and behaviors through938

low-rank matrix decompositions of weight up-939

dates.940

• Collective LoRA (LoRA-C) (Hu et al., 2021):941

This method employs LoRA fine-tuning on942

the collective history of all users excluding943

the 100 test users. The approach quantifies944

the benefits of collaborative training without945

personalization and provides a model that cap-946

tures general user behaviors rather than indi-947

vidual preferences.948

• OPPU (Tan et al., 2024b): This technique in-949

tegrates a two-stage approach combining col-950

laborative and personalized fine-tuning. The951

first stage trains on collective user data (simi-952

lar to LoRA-C), while the second stage adapts953

these parameters to individual users (similar to 954

LoRA-P). This dual-stage process allows the 955

model to benefit from both collective knowl- 956

edge and individual customization. 957

E Broader Impacts 958

Personalized Large Language Models (LLMs), par- 959

ticularly through methods like fine-tuning in repre- 960

sentation space, offer transformative potential for 961

human-computer interaction and information ac- 962

cess. This approach, by subtly adapting LLMs 963

via their underlying representation space rather 964

than full model retraining, significantly enhances 965

resource efficiency and scalability, making deep 966

personalization feasible for a broader range of ap- 967

plications and users. This personalized tailoring 968

promises to revolutionize user experience by match- 969

ing communication style, vocabulary, and level of 970

detail to individual needs, improving efficiency 971

in tasks, and fostering hyper-personalized learn- 972

ing. Such adaptation inherently boosts accessibility, 973

bridging communication gaps for diverse users. 974
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