Exploring Personalization Shifts in Representation Space of LL.Ms

Anonymous ACL submission

Abstract

Personalization has become a pivotal field
of study in contemporary intelligent systems.
While large language models (LLMs) excel at
general knowledge tasks, they often struggle
with personalization, i.e., adapting their outputs
to individual user expectations. Existing ap-
proaches that steer LLM behavior to meet users’
implicit preferences and behavior patterns, pri-
marily relying on tune-free methods (e.g., RAG,
PAG) or parameter fine-tuning methods (e.g.,
LoRA), face challenges in effectively balanc-
ing effectiveness and efficiency. Moreover, the
mechanisms underlying personalized prefer-
ences remain underexplored. To address these
challenges, we first uncover key patterns of
user-specific information embedded in the
representation space. Specifically, we find
that (1) personalized information lies within a
low-rank subspace represented by vectors, and
(2) these vectors demonstrate both a collective
shift shared across users and a personalized
shift unique to each individual user. Building
on these insights, we introduce PerFit, a novel
two-stage solution that directly fine-tunes
interventions in the hidden representation
space by addressing both collective and user-
specific shifts, thereby achieving precise steer-
ing of LLM with minimal parameter overhead.
Experimental results demonstrate that PerFit
delivers strong performance across six datasets
while cutting the number of parameters by
an average of 92.3% compared to the state-of-
the-art methods.

1 Introduction

Large language models (LLMs) demonstrate re-
markable abilities in text generation and complex
reasoning (Radford et al.; Chang et al., 2024; Hu
et al., 2024; Zhang et al., 2024d,c; Zhu et al., 2024;
Wang et al., 2023, 2024a), thanks to comprehen-
sive pre-training on diverse and large-scale datasets
that equip them with broad general knowledge.
Nonetheless, their optimization for wide-ranging

tasks means they often struggle to adapt to individ-
ual user preferences. For instance, different users
may expect distinct outputs even when given the
same input. Accordingly, integrating user tastes
and preferences into LLMs has propelled person-
alized large language models (PLLMs) to the fore-
front of research (Liu et al., 2025; Chen, 2023;
Zhang et al., 2024e; Liu et al., 2024). In real-world
scenarios, user preferences are often implicit, like
writing style and tone (Salemi et al., 2023; Tan
et al., 2024b; Zhuang et al., 2024). Enabling LLMs
to grasp this implicit information and generalize
effectively to user queries remains a core research
challenge for PLLMs.

Existing techniques can be broadly catego-
rized into tune-free methods, such as retrieval-
augmented generation (RAG) (Fan et al., 2024)
and profile-augmented generation (PAG), and
parameter-efficient fine-tuning methods (PEFT),
like low-rank adaptation (LoRA) (Hu et al., 2021;
Yang et al., 2024). Non-tuned methods (Madaan
et al., 2022; Salemi et al., 2023; Zhuang et al.,
2024) emphasize efficiency and flexibility by lever-
aging external information or user profiles without
modifying model parameters, but often struggle
to achieve high personalization and generalization
capability, especially when retrieved contexts con-
tain noise that is misaligned with the user’s real
intent (Shi et al., 2023). In contrast, parameter
fine-tuning methods (Tan et al., 2024b,a; Wagner
et al., 2024; Qi et al., 2024) update model parame-
ters based on user data, enabling deeper and better
personalization. Taking into account both model
performance and the protection of user privacy,
a prevalent approach is to allocate an individual
PEFT module for each user (Tan et al., 2024b,a; Qi
et al., 2024; Wagner et al., 2024; Gao and Zhang,
2024). LoRA still requires millions of parameters
for good performance, though it reduces parameter
counts (Wu et al., 2024; Cho et al., 2024; Guo et al.,
2024). This leads to high communication costs and
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Figure 1: Illustration of our personalized fine-tuning method in representation space PerFit: (a) instead of tuning
parameters, PerFit directly fine-tunes the hidden representations, where & represents fine-tuning with learnable
parameters. (b) Experimental results show PerFit similarly strong performance on six datasets while reducing
parameters by 92.3% on average compared to OPPU (Tan et al., 2024b).

limited scalability in edge-cloud setups—where the
base LLM runs in the cloud and personalized pa-
rameters reside on user devices such as phones (Qi
et al., 2024; Wagner et al., 2024) (Appendix B).
Therefore, striking a balance between effective-
ness and efficiency remains a significant challenge
for existing methods.

To solve this problem, we take the initial step
of investigating how personalized information is
captured by LLMs, thereby laying the groundwork
for our alternative lightweight fine-tuning solution.
This effort is motivated by recent advances in acti-
vation engineering (Wang et al., 2024b; Arditi et al.;
Turner et al., 2023; Zhang et al., 2024b), which al-
lows precise control of LLM outputs by targeting
internal representation interventions related to at-
tributes like harmlessness (Bolukbasi et al., 2016;
Park et al.), truthfulness (Li et al., 2023), and hu-
mor (Von Riitte et al., 2024). Therefore, the key
question we investigate in this paper is:

Does personalized information induce dis-
cernible patterns in LLMs’ hidden represen-
tation space that enable efficient guidance
of model behavior?

We conduct exploratory experiments to uncover
personalized information encoded in the hidden
representation space, named d-vectors (Section 2),
revealing two key observations. (1) The §-
vectors can be effectively represented within a low-

dimensional orthogonal subspace (Observation 1).
This suggests learning a low-rank subspace to get
interventions representing user information in the
representation space. (2) Vectors for all users in
the low-rank subspace exhibit a clear collective
shift, characterized by a common direction of de-
viation. Based on the collective shift, the vectors
subsequently disperse towards multiple directions
for different users (Observation 2). This suggests
a two-stage approach to learn the collective and
personalized shifts, respectively.

The intriguing findings inspire our personalized
fine-tuning approach, which directly fine-tunes
LLMs in the low-rank hidden representation sub-
space rather than model parameters, named PerFit.
Specifically, we first train the collective shift using
data from all users, and then, based on this, learn
the personalized shifts for each user. To the best
of our knowledge, this is the first work to fine-
tune LLMs in representation space tailored to
personalized LLLM tasks. The learned collective
shift, combined with the personalized shift, is di-
rectly added to the model’s hidden representation
space as an intervention to steer the model’s out-
put toward fulfilling individual users’ personalized
requirements. Experimental results demonstrate
that PerFit delivers strong performance across six
personalization datasets while cutting the number
of parameters by an average of 92.3% compared
to the LoRA-based methods.
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Figure 2: (1) The first row depicts the low-rank vector representations projected onto the first two principal
components, with mean vectors indicated by yellow stars, demonstrating directional bias in the reduced-dimensional
space. (2) The second row comprises violin plots of the coordinate value distributions across the first five feature
dimensions. Here, the zeroth dimension shows a significant mean shift from zero, indicating a shared directional
bias (i.e., collective shift) among users, whereas the remaining dimensions have means near zero with relatively
large standard deviations, reflecting individual user variability (i.e., personalized shifts).

2 Uncovering Personalization in
Representation Space

Building on the insights of activation steering (Ap-
pendix C.2), in this section, we aim to investigate
whether patterns related to personalized informa-
tion exist within the hidden representation space.
If so, we can develop methods that leverage these

patterns to guide personalization directly in repre-
sentation space, achieving a better balance between
effectiveness and parameter efficiency.

2.1 Extracting personalization vectors

Following the analysis paradigm of activa-

tion engineering (Arditi et al.), for each user
u; € U, given their original query set Q7 %,



Table 1: Minimum feature dimensions r needed to ex-
plain 0.8 and 0.9 of variance. %o represents the 7 as a
per mille of total dimensions.

0.8 0.9 0.95
T %0 T %0 T %o
LaMP-2N 1 3.65 414.60 20 72.90
LaMP-5 4 098 40 9.77 203 49.56
LaMP-7 3 073 32 781 17743.21

we enhance each query by incorporating the
most relevant personalized information. The
resulting personalization-enhanced query set is
denoted as QV". At layer /, let hg)(q) € R?
be the hidden state (residual stream activation)
corresponding to the last token ¢ of the input
query q. The mean residual representations for

the original and personalized inputs are defined
L L {4
as mg ) = |Q<i)1rig‘ ZqEQ?rig hg )(q)7n£ ) =
{4
ot Sgear h'”(q).  The
means (Belrose, 2024) personalization vector at
the layer ¢ is then vl@ = ny) — mz@), which
captures the principal change in the model’s
internal representation induced by personalized

information of user <.

difference-in-

Note that personalized information, unlike
clear-cut traits such as harmlessness or helpful-
ness that can be manipulated via a single vector,
is inherently more complex and diverse. There-
fore, we consider each user a special personality
and analyze all users together to capture both col-
lective and personalized aspects. The collection of

Z@) for all users ¢ € U is called §-vectors in this

paper for simplicity.

A%

Using Llama2-7B as the base (i.e., non-
personalized) LLM (Tan et al., 2024b,a; Kong
et al., 2024), we conducted an analytical study
on the widely-used personalization benchmark
LaMP (Salemi et al., 2024b). To isolate the per-
sonalized information, We focus on the residual
stream representation of the last token, h! .= hfl,
which aggregates information from the entire in-
put sequence at layer ¢, specifically analyzing the
16th layer following previous activation steering
approaches (Arditi et al.). The personalized in-
formation we concatenate for each user Q7"%, is
derived via the BM25 algorithm to identify the
most relevant details of each query from the user’s
historical documents.

2.2 Observations

Based on the §-vectors, which isolate the personal-
ized information of all users, we proceed to uncover
the underlying personalization patterns. Below are
the key observations.

Observation 1 (Low-rank Subspace). The
d-vectors can be effectively represented
within a low-dimensional orthogonal sub-
space, significantly reducing the original
feature space dimensionality.

We performed singular value decomposition
(SVD) (Stewart, 1993) on the obtained d-vectors
to determine the intrinsic rank required to represent
them with minimal loss of information. Table 1
reveals that the effective rank is significantly lower
than the full dimensionality of the feature matrix,
accounting for approximately 0.073% of the orig-
inal dimensions. This observation suggests that
the J-vectors vectors lie predominantly within a
low-dimensional orthogonal subspace, suggesting
substantial redundancy in the high-dimensional rep-
resentations.

Observation 2 (Collective and Personalized
Shifts). The §-vectors exhibit a collective
shift, accompanied by personalized shifts
reflecting individual variability.

We further plotted the mean and standard devi-
ation of each dimension within the low-rank sub-
space based on the SVD. As shown in Figure 2,
there is a significant shift with small variance in
the low-rank subspace, indicating a collective shift
across all vectors.

2.3 Personalized Shifts: A Case Study

This section aims to answer the question: "Do
the personalized shifts of the d-vectors encompass
personalization?" The personalized information
regarding implicit styles in the LaMP dataset is
challenging to quantify. To explore this, we select
samples within the representation space for a case
study to determine whether nearby representations
exhibit similar styles.

For instance, in the context of Tweet Paraphrase,
the template of added personalized information and
the queries is illustrated in Figure 3. Using the col-
lective shift vector as a reference, we identify the
top 10 users with the nearest vectors, the top 10



Personalized Information:
abstract: <abstract>. title: <title>

Query:

Given this author’s previous publications, try to describe a
template for their titles. I want to be able to accurately
predict the title of one of the papers from the abstract.
abstract: <query_abstract>. title:

Figure 3: Personalized Information template. Replace
the content inside the <> with the actual descriptions of
the abstract and title for each query.

Closest-10 Closest Users: {title}

o 1 Turning Cliques Into Paths To Achieve

Planarity

MetaSpace II: Object and full-body

tracking for interaction and navigation
in social VR

Vmotion: Designing A Seamless Walking
Experience In Vr

: Neural networks and machine learning in
bioinformatics
- theory and applications

: Why traditional usability criteria fall
short in ambient assisted living
environments

Intelligent Web Service

- From Web Services to .Plug&Play. Service
Integration

: Outage probability guaranteed relay
selection in cooperative communications

: Towards an Object-Oriented Programming
Language for Physarum Polycephalum

Computing : A Petri Net Model Approach

& #9: Contextual Grouping of Labels

& #10: Axioms For Centrality

\ J

Figure 5: Closest-10 closest users. These sentences
indicate that a majority of individuals prefer to employ
punctuation marks, such as commas and dashes.

vectors at an intermediate distance, and the 10 far-
thest vectors. We then present their corresponding
personalized information regarding the titles gener-
ated by the user previously, aligning with the user’s

LaMP-5: Scholarly Titié

Second Principal Component

55 it
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Figure 4: Selected samples from the representation
space. The red circle, green circle, and blue circle
represent the 10 points that are farthest, at an interme-
diate distance, and closest to the collective vector.

Intermediate-10 Users: {title}

21 Exploiting temporal influence in online
recommendation

& #2: 0n measuring affects of github issues’
commenters

& #3: Evaluation of tone mapping operators
using a High Dynamic Range display

& #4: Differential Entropy Preserves

Variational Information of
Near-Infrared Spectroscopy Time Series

Associated With Working Memory

: Toward real-time endoscopically-guided

robotic navigation based on a 3D
virtual surgical field model

: Time-varying noise estimation for
speech enhancement and recognition

using sequential Monte Carlo method

: On collision-free reinforced barriers
for multi domain IoT |[with
heterogeneous UAVs

Dense depth maps by active color
illumination and image pyramids

New results on optimizing rooted
triplets consistency

& #10: Machine learning-based detection of
open source license exceptions

\. J

Figure 6: Intermediate-10 closest users. The titles of
these examples rarely use punctuation marks; instead,
they favor terms such as ’based on’ and ’using’ to indi-
cate specific methodologies. Additionally, the descrip-
tions of the titles are more precise compared to those of
the closest users.



Farthest-10 Users: {query_abstract}

& #1: An abstract is not available x5

: However, not ... ( incomplete ) x3

: After the publication of the DOI
version

: http://www.w3.org/1998/Math/MathML"

Figure 7: Farthest-10 closest users. The distant points
are all outliers, and the query of users lacks effective
abstract information. As shown above, there is no indi-
cation of the user’s methodology.

preferences, as illustrated in Figure 5, Figure 6,
and Figure 7, respectively. The points we select
are highlighted in Figure 4.

From these examples, it is evident that while the
style may not convey significant information, users
with personalized vectors that represent different
regions in the embedding space exhibit clear and
intuitive differences in their corresponding person-
alized information.

Moreover, an interesting discovery is that the
points that are farther from the collective shift
tend to be outliers. The queries associated with
these outlier points lack effective information, re-
sulting in the inability to incorporate meaningful
personalization. Consequently, compared to the
collective shift, there is a considerable deviation in
these instances. This further validates and supports
the direct correlation between J-vectors and per-
sonalized information in the embedding space. It
also demonstrates that the personalized shift, based
on the collective shift, can effectively reflect indi-
vidualized information.

3 Methodology: PerFit

These findings have practical implications: un-
derstanding and isolating personalized represen-
tations enables the development of more efficient,
lightweight fine-tuning methods with reduced com-
putational demand. Leveraging the observations,
the personalized method PerFit is proposed to
directly fine-tune the representation low-rank
subspace and the intervention vector, rather than
the model parameters. Inspired by the represen-
tation fine-tuning paradigm (Wu et al., 2024), we
propose a novel two-stage formulation specifically

designed to achieve the personalization goal '.

Intuitive Explanation. PerFit is designed to
align with our key observations (Figure 8).

* R is an orthogonal matrix that projects vec-
tors from a high-dimensional space onto a
low-dimensional subspace, consistent with the
low-rank subspace observation (Observa-
tion 1). Its transpose, R, performs the in-
verse mapping by projecting vectors from the
low-dimensional subspace back to the origi-
nal high-dimensional space. The intervention
vector v corresponds to the J-vectors , and
the model directly learns these vectors during
training.

* Two-stage fine-tuning functions @pge) ©
®ape() are designed based on Observation 2
that AOM) is tuned by all users’ data U/ to get
the collective shift for the first stage. Then,

we fine-tune A@Z@) for each user u; € U to

get the personalized shifts.

PerFit — Personalized Fine-Tuning in Representa-
tion Space

Pperrit(h) = (Pre@ © Paew) (h), (1)

where for s = 1,2, prges) =

x +ROT(Wx + b — RO)x) o

intervention vector v (%)

Here, h,x € R? and o is the functional com-
position, and AO) = (R(*), W() b(*)) are
trainable parameter sets with R(®), W() ¢
R"=xd b®) e R", where, 7, < d, R®
is a row-wise orthogonal matrix satisfying
RE(RENT =1,..

4 Experiments

We conduct extensive experiments to evaluate our
proposed PerFit method across six diverse tasks
from the LaMP benchmark. Our evaluation mainly
focuses on the following three research questions:

* RQ1. How does PerFit perform compared
to state-of-the-art personalized approaches in

"For simplicity, we remove the layer index £ in the nota-
tion.
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Figure 8: Illustration of two-stage personalized fine-tuning PerFit. (a) The first stage tunes on all users to obtain
the collective shift. (b) The second-stage intervention vector is learned from the intervened representation of stage 1

and fine-tuned individually for each user.

terms of both effectiveness and efficiency?
(Section 4.2)

* RQ2. To what extent does PerFit improve
computational and memory efficiency while
maintaining competitive performance? (Sec-
tion 4.3)

* RQ3. How does our two-stage training ap-
proach contribute to the model’s performance,
and what is the impact of each stage? (Sec-
tion 4.4)

4.1 Experimental Setup

This section outlines the experimental settings for
evaluating our proposed PerFit method. We de-
scribe the datasets, baseline models, and key imple-
mentation parameters used in our evaluation. For
additional setup details, please refer to the corre-
sponding subsections in Appendix D.

Datasets. We conduct experiments on six di-
verse tasks from the LaMP benchmark (Salemi
et al., 2024b): three classification tasks (News Cat-
egorization, Movie Tagging, Product Rating) and
three generation tasks (News Headline Generation,
Scholarly Title Generation, Tweet Paraphrasing).
Following established practices (Tan et al., 2024b),
data from approximately 100 users with the most
extensive interaction histories for each task con-
stitute our test set, while the remaining data is
used for training the base (i.e., non-personalized)
LLM. Detailed dataset statistics are provided in
Appendix D.1.

Baselines. PerFit is compared against a range
of baselines, all implemented using Llama2-7B as
the base model. These include Non-Tuned Methods:

Non-Personalized, Profile Augmented Generation
(PAG) (Richardson et al., 2023), Retrieval Aug-
mented Generation (RAG) (Salemi et al., 2024b)
(with £ € {1,2,4} retrieved documents), and
StyleVector (Zhang et al., 2025); and Tuned Meth-
ods: Collective LoRA (Hu et al., 2021) (LoRA-C),
Personalized LoRA (LoRA-P), OPPU (Tan et al.,
2024b). Details of each baseline are available in
Appendix D.2.

Implementation Details. Key training settings
are consistent across both training stages: we
use the AdamW optimizer with a learning rate of
1 x 107, weight decay of 1 x 1072, and BF16
precision. Gradient clipping is applied with a max-
imum norm of 0.3. Batch sizes are generally 16,
with exceptions for Product Rating (batch size 2)
and Scholarly Title Generation (batch size 4) due
to computational requirements. The base LLM
is trained for 3 epochs, and the personal PEFT
stage for 2 epochs. For inference, we set the tem-
perature to 0.1, top-k sampling to 10, and top-p
sampling to 0.9. PEFT-based methods (LoRA,
OPPU) utilize a LoRA rank » = 8 and o = 8. For
our representation-based methods, hyperparame-
ters such as low-rank dimensions, intervention lay-
ers, and positions were determined via a 20-trial
random search.

4.2 Main Results (RQ1)

We evaluate PerFit against state-of-the-art person-
alized approaches across six diverse tasks from the
LaMP benchmark. The results are presented in Ta-
bles 2 and 3, which demonstrate the effectiveness
of our method in both personalized classification
and generation scenarios.



Table 2: Results on classification tasks. We report Accuracy (Acc) and F1 Score (F1) for LaMP-2N and LaMP-2M,
and Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for LaMP-3. For PerFit, we show the
parameter percentage relative to the total model and the parameter reduction compared to OPPU. Blue and red
numbers represent Stage-1 and Stage-2 parameters, respectively.

News Categorization =~ Movie Tagging Product Rating
Method (LaMP-2N) (LaMP-2M) (LaMP-3)

Acc T F1 1 Acc T F1 1 MAE| RMSE/]
LoRA-C 0.787 0.538 0.478 0.425 0.223 0.491
LoRA-P 0.591 0.397 0.528 0.383 0.183 0.502
OPPU 0.810 0.589 0.600 0.493 0.179 0.443
Ours (PerFit) 0.818 0.586 0.630 0.518 0.179 0.443
- Param. Percentage | (%) 0.0058 0.0117 0.0078 0.0010 0.0117 0.0015
- Param. Reduction 1 (%) 93.75 81.25 91.67 98.44 87.50 97.66

Table 3: Results on generation tasks. We report ROUGE-1 (R-1) and ROUGE-L (R-L) metrics for LaMP-4,
LaMP-5, and LaMP-7 tasks. The table compares both Non-Tuned Methods and Tuned Methods to demonstrate the
effectiveness of different personalization approaches. For PerFit, we show the parameter percentage relative to
the total model size and the parameter reduction compared to OPPU. Blue and red numbers represent Stage-1 and

Stage-2 parameters respectively.

News Headline Gen. Scholarly Title Gen. Tweet Paraphrasing
Method (LaMP-4) (LaMP-5) (LaMP-7)
R-11 R-L 1 R-11 R-L1 R-11 R-L 1
Non-Tuned Methods
Non-Personalized 0.030 0.029 0.145 0.118 0.126 0.123
PAG 0.098 0.082 0.149 0.121 0.135 0.124
RAG (k=1) 0.101 0.085 0.152 0.122 0.149 0.140
RAG (k=2) 0.106 0.088 0.167 0.132 0.136 0.130
RAG (k=4) 0.110 0.092 0.169 0.135 0.164 0.157
StyleVector 0.104 0.086 0.156 0.125 0.132 0.127
Tuned Methods
LoRA-C 0.186 0.167 0.476 0.415 0.527 0.474
LoRA-P 0.120 0.108 0.489 0.435 0.398 0.333
OPPU 0.191 0.171 0.519 0.442 0.539 0.483
Ours (PerFit) 0.207 0.186 0.521 0.451 0.525 0.472
- Param. Percentage | (%) 0.0117 0.0015 0.0039 0.0010 0.0078 0.0039
- Param. Reduction 1 (%) 87.50 97.66 95.83 98.44 91.67 93.75
Personalized Classification Tasks. On classi- LaMP-5, PerFit achieves the best performance

fication tasks, PerFit achieves superior perfor-
mance across all metrics. For LaMP-2N, our
method attains the highest accuracy of 81.8%, sur-
passing OPPU by 0.8 percentage points. In LaMP-
2M, PerFit achieves the best results with 63.0%
accuracy and 51.8% F1 score, demonstrating sub-
stantial improvements over baselines. For LaMP-
3, PerFit achieves comparable performance to
OPPU with an MAE of 0.179 and RMSE of 0.443,
while utilizing significantly fewer parameters.

Personalized Generation Tasks. In generation
tasks, PerFit demonstrates consistent improve-
ments over existing approaches. For LaMP-4,
our method achieves the highest ROUGE-1 score
of 20.7% and ROUGE-L score of 18.6%, outper-
forming both Non-tuned and Tuned baselines. On

with a ROUGE-1 score of 52.1% and ROUGE-L
score of 45.1%. While OPPU achieves marginally
better performance on LaMP-7, our method main-
tains competitive results while utilizing signifi-
cantly fewer parameters.

4.3 Efficiency Analysis (RQ2)

We conduct a detailed analysis of parameter effi-
ciency based on the results in the main tables. As
shown in Tables 2 and 3, our PerFit method con-
sistently achieves state-of-the-art or highly com-
petitive performance while dramatically reducing
the number of trainable parameters. Specifically,
in the first stage, PerFit requires only 0.0058% to
0.0117% of the total model parameters for classi-
fication tasks, and 0.0039% to 0.0117% for gen-
eration tasks. In the second stage, it uses an even
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Figure 9: Performance versus parameter count on four
datasets. Marker size reflects the relative training time?.

smaller proportion of 0.0010% to 0.0015% for clas-
sification tasks and 0.0010% to 0.0039% for genera-
tion tasks. This two-stage design achieves a remark-
able parameter reduction of 81.25% to 98.44%
compared to strong baselines such as OPPU. This
substantial reduction highlights the efficiency of
our approach in both memory and computational
cost.

The accompanying Figure 9 provides a visual
summary of these findings, plotting model per-
formance against the proportion of trainable pa-
rameters for four representative datasets. Notably,
PerFit not only reduces parameter count but also
achieves a 17.0% to 35.8% reduction in training
time compared to existing fine-tuning baselines.
This demonstrates that our method delivers both
parameter and runtime efficiency without sacrific-
ing performance, making it a practical and scalable
solution for personalized adaptation in LLMs.

4.4 Ablation Study (RQ3)

To validate our two-stage design and low-rank
subspace intervention, we conduct an ablation
study across diverse tasks (Table 4). Using only
Stage-1 (collective shift learning) results in 2.6%-
16.4% accuracy drops, confirming the importance
of personalized adaptation in Stage-2. When train-
ing only Stage-2, both Ours @ Stage-2 (C+P) and
Ours@Stage-2 (P) configurations show limited per-
formance without Stage-1’s collective information.
However, the higher rank configuration (C+P) still
outperforms Ours @ Stage-2 (P), demonstrating that

Figure 10: Impact of Collective and Per-
sonalized Rank on Movie Tagging Per-
formance.

increased rank helps capture more dimensions of
user-specific information, though with diminishing
returns. This aligns with Observation 1, suggesting
that essential personalized information lies within
a lower rank subspace.

4.5 Hyperparameter Analysis

Layer-wise Intervention. Figure 11 (left and
middle) presents the results of intervening at a
single layer for both Movie Tagging and News
Headline Gen. tasks. We observe a clear trend:
as the intervention layer moves from lower (ear-
lier) to higher (later) layers, the overall perfor-
mance—across all metrics—steadily declines. This
finding is particularly intriguing when contrasted
with prior work in knowledge editing (KE), where
middle layers are typically used for learning and
storing new knowledge (Meng et al., 2022). In our
case, however, intervening at earlier layers yields
better results. We hypothesize that this difference
arises because, unlike KE tasks that typically re-
quire editing a small set of knowledge points, our
method’s first stage must absorb and encode a large
amount of user-specific information. This process
likely depends more heavily on modifications to

Larger markers indicate longer training times. Note that
these training times refer to the first stage of training and are
provided for reference only, as they are influenced by various
factors including dataset size and hardware specifications. The
size primarily serve to illustrate the relative time relationships
between different methods.

3@Stage-2 degenerates into a one-stage model, equivalent
to the ReFT model detailed in Appendix D.2



Table 4: Ablation results across diverse tasks, evaluating the impact of different training stages and configurations.
Ours@Stage-2 (C+P) denotes the configuration where the rank is set to the sum of both stages’ ranks, while
Ours @Stage-2 (P) represents the configuration with only the Stage-2 rank®. ref. LoRA-P represents the reference

values using LoRA-P.

Method News Categorization Movie Tagging News Headline Tweet Paraphrasing
Acc T F11 Acc T F11 R-1t1 R-LT R-171 R-L 1
Ours 0.818 0.586 0.630 0.518 0.195 0.175 0.525 0.472
@Stage-1 0.792 0.529 0.466 0.415 0.189 0.169 0.493 0.450
@Stage-2 (C+P) 0.803 0.604 0.620 0.496 0.194 0.175 0.483 0.438
@Stage-2 (P) 0.801 0.594 0.599 0473 0.190 0.171 0.478 0.433
ref. LoORA-P 0.591 0.397 0.528 0.383 0.120 0.108 0.398 0.333
Movie Tagging News Headline Gen. Movie Tagging (Ours vs OPPU)
0.65 I 0.22
[o.%ﬁ%,‘\o\o\o | 0.65 O/H_O\O
0.60 0.616 f 0.20
o 0.590 0187 o183 0.55 ”—_%\%\%\%
0.55 0.18 O\O\le\ |
0.50 0.16 0.153) | 0.45
0.145]
0.45 | 0.14 | 0.35
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]_ayer Index Layer Index # Layer
—— Accuracy F1 Score ROUGE-1 —— ROUGE-L (- Ours -$% OPPU

Figure 11: Layer-wise and cumulative intervention analysis. Left & Middle: Performance metrics (Acc, F1, R-1,
R-L) versus single intervention layer position for Movie Tagging and News Headline Generation tasks. Right:

Performance on Movie Tagging versus number of intervention layers®.

lower-level model parameters, which are responsi-
ble for foundational feature extraction and repre-
sentation.

Cumulative Intervention. As shown in the right
panel of Figure 11, increasing the number of inter-
vention layers generally leads to improved perfor-
mance on the Movie Tagging task. This suggests
that leveraging more layers allows the model to
better capture and utilize personalized information.
However, we observe that when interventions are
applied to as many as all layers, performance un-
expectedly drops. This indicates that editing too
many layers may introduce negative side effects,
possibly due to interference or redundancy among
the interventions at different layers.

Collective vs. Personalized Rank. Figure 10
presents a heatmap analysis of the impact of col-
lective (Stage-1) and personalized (Stage-2) rank
on Movie Tagging performance, measured by both
accuracy and F1 score. Overall, we observe that
increasing either the collective rank or the personal-
ized rank generally leads to improved performance.
However, the effect of the personalized rank ap-
pears to be more pronounced: even when the col-
lective rank is low, a sufficiently high personal-
ized rank can achieve near-optimal results. This
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suggests that while both components contribute to
model capacity, the personalized rank plays a more
critical role in capturing user-specific information.
These findings highlight the importance of allocat-
ing sufficient capacity to the personalized subspace,
and indicate that effective personalization can be
achieved even with a modest collective rank, pro-
vided the personalized rank is adequately set.

5 Conclusions and Future Work

By uncovering fundamental patterns in user-
specific information—including shared collective
and unique personalized shifts—our work intro-
duces a novel two-stage method that fine-tunes in-
terventions directly in the hidden representation
space. Through extensive experiments across six
diverse tasks, we demonstrate that this approach
achieves efficient personalization with significantly
reduced parameter overhead. This work paves the
way for scalable, effective personalization in in-
telligent systems and reveals insights into user-
specific information in LLLMs. Future work could
explore finer-grained personalization styles, such
as community-level and group-level relationships.

*The layers are selected symmetrically around layer 15,
with the spacing between layers determined as (# Model Lay-
ers / # Intervened Layer).
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A Example Appendix
B Related Work

The methods for personalized large language mod-
els (PLLMs) can be mainly divided into two types
based on whether fine-tuning is involved (Liu et al.,
2025): one type is the method that does not require
fine-tuning of the large language models (LLMs),
and the other type is the method that requires fine-
tuning.

Tune-Free Methods. Tune-free methods primar-
ily use three approaches: input prompting, vector
steering, and logits steering. (1) For input prompt-
ing, key approaches include profile-augmented gen-
eration (PAG) (Richardson et al., 2023), which uses
an instruction-tuned language model to create a tex-
tual user profile from the user’s personalized data,
and retrieval-augmented generation (RAG) (Salemi
et al., 2024a), which enhances responses by retriev-
ing relevant entries from user history. (2) Vector
steering, as implemented in StyleVector (Zhang
et al., 2025), uses a separate LLM to generate con-
trastive pairs of personalized and non-personalized
responses to modify model behavior. This method
depends on pre-constructed contrastive pairs and
doesn’t tune model parameters; it has limited un-
derstanding of personalization. (3) Logits steering:
CoS (He et al., 2024) achieves personalization by
summing the logits from two rounds of outputs
from the LLM: one round uses a standard prompt,
while the other incorporates a user’s explicit con-
text in the prompt. Its main focus differs from our
implicit personalization tasks.

Limitations: Although tune-free methods are ef-
ficient because they use external data sources, their
personalization capabilities are limited since they
rely on historical information instead of adapting
the model’s internal parameters, especially for cap-
turing users’ implicit tastes and style.

Fine-Tuning Methods. The one PEFT per user
paradigm trains a Parameter-Efficient Fine-Tuning
(PEFT) model tailored to each user using low-rank
adaptation (LoRA)(Hu et al., 2021; Yang et al.,
2024; Zhang et al., 2024a). OPPU(Tan et al.,
2024b) encodes personalized user information in
PEFT parameters, enhancing the overall user ex-
perience. While research following OPPU primar-
ily focuses on framework enhancements, such as
parameter collaboration in privacy-sensitive con-
texts (Qi et al., 2024; Wagner et al., 2024), the
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area of enhancing personalized fine-tuning remains
underexplored.

Limitations. Despite the strong performance of
the LoRA architecture, it still requires millions
of parameters, which poses a significant burden
in personalized scenarios with a large number of
users.

Note that some methods for aligning human
preferences in LLMs use reinforcement learning.
While these approaches vary—some requiring fine-
tuning (Rame et al., 2024; Lau et al., 2024; Poddar
et al., 2024; Shi et al., 2024) and others not (Chen
et al., 2024) — they mainly rely on reward mod-
els based on average annotator preferences. This
approach requires predefined (explicit) preferences
and fails to account for how different users might
want different outputs for the same prompt, which
differs from our task and objectives that propose
a novel personalized fine-tuning method that cap-
tures users’ implicit tastes and strikes a balance
between effectiveness and efficiency.

C Preliminary

C.1 Problem Statement

Let U = {u;}}¥, be a set of N users. Each user
u; is associated with a set of input queries Q; =
{qj@ };‘;1 and corresponding desired outputs );

{yj(.z)};‘él, which implies the user’s personalized
preferences and expectations. Here, n; denotes
the number of queries for user u;. The base (i.e.,
non-personalized) LLM, denoted by My, generates
generic outputs gj? = My (qj(-l)
q} € Q;. Suppose Oq denotes the base model
parameters and ©; denotes the parameters for user
u;, and the personalized parameters increment as
AO; :=0; \ 0.

Our objective is to adapt My into personaliz(e;l

models M; for each user u; such that for every qu ,

) for any input query

the personalized output g)]@ = Mz(q(l)) closely

matches the desired output y](-i) while minimizing
parameter overhead |A©;|. Formally, this can be

expressed as minimizing the aggregate loss:

N M;

Z Z [,(Mi(qj(-i)), yj(.i)) s.t.

where L(-,-) measures the discrepancy between
model output and user target. This formulation
encapsulates personalized fine-tuning of the base
LLM to PLLM.



C.2 Hidden State Representations and
Activation Steering

Hidden State Representation. Our work con-
centrates on decoder-only transformer architec-
tures (Liu et al., 2018). For the base model
My, each layer { € L comprises the multi-head
attention and feed-forward modules MHA§ and
FFNé. Thus, the model can be expressed as:
My = Qrer (FFNg o MHAé), (O denotes the
composition of functions applied in sequence. The
parameter set Oy is partitioned accordingly: ©¢ =

Urer (@%/[HAZ U @OFFNZ> , where (J denotes the

union of sets. The layer ¢ of the base model M
updates the hidden state hf € RY of the token ¢ as
follows:

h{*! = hf + FFN (hf + MHA§(h{,)),

where MHAY attends causally over tokens 1
through ¢, d is the hidden dimension.

Activation Steering. Recent studies have ex-
plored how certain features are linearly represented
in model hidden representation space utilizing
activation steering (Tigges et al., 2023; Zhang
et al., 2024b; Arditi et al.), such as harmless-
ness (Bolukbasi et al., 2016; Park et al.), truth-
fulness (Li et al., 2023), and humor (Von Riitte
et al., 2024). These feature directions serve as
effective causal mechanisms, enabling precise con-
trol over model behavior and outputs via simple
linear interventions. Activation steering adds an
intervention (i.e., vector) v/ € R? to the hidden
state at layer £, modifying the model’s behavior:
flf = h{ + v*. The next layer uses flf instead of
h{: hi*! = h{ + FFN‘(h{ + MHA‘(h{,)). This
can be applied at any layer(s) to steer the model’s
output.

D Experiments

D.1 Datasets

Our experiments utilize the LaMP bench-
mark (Salemi et al., 2024b), a collection of per-
sonalization tasks from which we select six distinct
tasks - three for classification and three for genera-
tion>. In alignment with the OPPU framework (Tan

SWe omitted the LaMP-1 citation dataset because we were
unable to reproduce results using the OPPU prompt, and for
most queries, we could not get outputs in the required format.
This may be due to limitations in Llama2’s instruction fol-
lowing capabilities. Like OPPU, we did not use the LaMP-6
dataset due to privacy concerns. The remaining six datasets
still ensure task diversity.

et al., 2024b), we recognize the importance of sub-
stantial user history for effective model personal-
ization. Consequently, we identify and select about
100 most prolific users (those with the most exten-
sive interaction histories) from the time-ordered
LaMP variant to serve as our test cohort. The re-
maining users’ data is allocated for training the
collective LLM in the first stage. The dataset statis-
tics are listed in Table 5.

D.2 Baselines

To provide a comprehensive comparison, we eval-
uate our method against a diverse set of base-
lines, categorized into Non-Tuned and Tuned ap-
proaches. All baseline models are implemented
using Llama2-7B® as the foundation model.

Non-Tuned Methods

* Non-Personalized: This approach utilizes the
pre-trained model without any modifications
to generate responses for user queries. It estab-
lishes a performance floor for our experiments
and serves as a reference point for measur-
ing the effectiveness of personalization tech-
niques.

* Profile Augmented Generation (PAG): This
method synthesizes a textual user profile us-
ing an instruction-tuned language model (e.g.,
Vicuna-13B”), derived from the user’s inter-
action history. The generated profile is then
prepended to each query to provide explicit
contextual information about user preferences,
enabling the model to generate more person-
alized responses without parameter updates.

Retrieval Augmented Generation (RAG):
This technique implements the BM25 algo-
rithm to retrieve the most relevant entries from
a user’s history (with k& = 1,2,4) for each
query. These retrieved entries serve as supple-
mentary context for the model during infer-
ence, allowing it to access specific historical
interactions that may be relevant to the current

query.

StyleVector (Zhang et al., 2025): This frame-
work represents a training-free approach that
disentangles and encodes personalized writing

] lama2-7B open-source model: https://huggingface.
co/meta-1lama/Llama-2-7b-hf

"Vicuna-13B open-source model: https://1lmsys.org/
blog/2023-03-30-vicuna/


https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Table 5: Dataset statistics for the LaMP benchmark. We present the average sequence length measured in token
count, where #Q represents the quantity of queries, L;,, and L,,; denote the average input and output sequence
lengths respectively, #History indicates the volume of historical interactions, and #Classes shows the number of
classification categories for classification tasks. #Users shows the number of users in the base LLM training stage
and personal PEFT training stage (format: first stage/second stage).

Task | #Users | Base LLM Training | Personal PEFT Training
| | #Q Lin  Louwt | #Q  #History  Lin  Lou: #Classes
2M 829/ 100 3,181 92.1 - 3,302 55.6 92.6 - 15
2N 274 /49 3,662 68.2 - 6,033 219.9 63.5 - 15
3 1,543 /100 | 22,388 128.7 - 112 959.8 211.9 - 5
4 19,899 /101 | 7,275 33.9 9.2 6,275 270.1 25.2 11.1 -
5 14,581/101 | 16,075 162.1 9.7 107 442.9 171.6 103 -
7 13,337/100 | 14,826  29.7 18.3 109 121.2 294 18.0 -

style as a vector within the LLM’s activation
space. StyleVector enables style-controlled
generation during inference without requir-
ing retrieval mechanisms or parameter storage.
The style vector is computed as the mean dif-
ference between positive and negative exem-
plars, and is injected into a specific token rep-
resentation at a predetermined layer. Unlike
our proposed method, StyleVector depends on
carefully selected sample pairs, making it par-
ticularly sensitive to data quality and quantity,
and necessitates more sophisticated vector en-
gineering.

Tuned Methods

¢ Personalized LoRA (LoRA-P) (Hu et al.,
2021): This standard parameter-efficient fine-
tuning (PEFT) methodology creates individ-
ual models that are fine-tuned on each user’s
historical data. The approach produces user-
specific parameter adaptations that capture in-
dividual preferences and behaviors through
low-rank matrix decompositions of weight up-
dates.

Collective LoRA (LoRA-C) (Huet al., 2021):
This method employs LoRA fine-tuning on
the collective history of all users excluding
the 100 test users. The approach quantifies
the benefits of collaborative training without
personalization and provides a model that cap-
tures general user behaviors rather than indi-
vidual preferences.

OPPU (Tan et al., 2024b): This technique in-
tegrates a two-stage approach combining col-
laborative and personalized fine-tuning. The
first stage trains on collective user data (simi-
lar to LoORA-C), while the second stage adapts

16

these parameters to individual users (similar to
LoRA-P). This dual-stage process allows the
model to benefit from both collective knowl-
edge and individual customization.

E Broader Impacts

Personalized Large Language Models (LLMs), par-
ticularly through methods like fine-tuning in repre-
sentation space, offer transformative potential for
human-computer interaction and information ac-
cess. This approach, by subtly adapting LLMs
via their underlying representation space rather
than full model retraining, significantly enhances
resource efficiency and scalability, making deep
personalization feasible for a broader range of ap-
plications and users. This personalized tailoring
promises to revolutionize user experience by match-
ing communication style, vocabulary, and level of
detail to individual needs, improving efficiency
in tasks, and fostering hyper-personalized learn-
ing. Such adaptation inherently boosts accessibility,
bridging communication gaps for diverse users.
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