
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

Quantitative Bounds for Length Generalization in Transformers

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2025

Abstract
We provide quantitative bounds on the length of sequences required to be observed during training
for a transformer to length generalize, e.g., to continue to perform well on sequences unseen during
training. Our results improve on Huang et al. [8], who show that there is a finite training length
beyond which length generalization is guaranteed, but for which they do not provide quantitative
bounds.

1. Introduction

An important problem that has arisen in the training of large language models (LLMs) is length
generalization, which is the ability to generalize to input sequences longer than those encountered
during training. Prior works have studied the ability of transformers to length generalize on simple
testbed tasks [2, 11], yet the success of length-generalization varies widely from task to task. Recent
theoretical work has thus sought to characterize which tasks admit length generalization.

In particular, Zhou et al. [22] introduced the RASP-L conjecture, which states that transformers
can length generalize on tasks which are expressible by a “simple” RASP-L program (a variant of
the RASP language introduced in Weiss et al. [19]). Huang et al. [8] later formalized and partially
proved the conjecture, showing that tasks expressible by a limiting object called a “limit transformer,”
which includes tasks expressible by a C-RASP program [20], admit length generalization at some
finite training length. However, the results in Huang et al. [8] are asymptotic in nature; for a fixed
task f on which length generalization is possible, it is not specified what the minimum training
length is for length generalization to occur.

In this paper, we aim to characterize how long training sequences need to be in order for a
transformer to generalize to sequences of arbitrary length. Specifically, we adopt the limit transformer
formulation from Huang et al. [8], and aim to understand, given a task f expressible by a limit
transformer, the minimum N such that two limit transformers f, g which agree on inputs of length
≤ N approximately agree on inputs of arbitrary length. Our main result, Theorem 4.1, is that for
one-layer limit transformers, the minimum such N scales monotonically with the parameter norms
L, positional embedding periodicity ∆, “locality” parameter τ , and inverse error ε−1.

Our results rely on the use of finite precision calculations in the attention patterns for the
transformer. It is known that finite precision is necessary for the transformer to be identifiable
from finite input sequences [8]. This assumption results in a hard attention pattern mechanism for
sequences past a certain length. A careful analysis of the possible hard attention patterns allows us to
construct auxiliary shorter input sequences on which the two transformers match and whose output
must be similar to the output on the original input, leading to the length generalization result.

© .



QUANTITATIVE BOUNDS FOR LENGTH GENERALIZATION IN TRANSFORMERS

Altogether, our results make progress towards both characterizing a natural hierarchy of “dif-
ficultly” amongst length-generalizable tasks, and more practically speaking, developing a better
understanding of how to scale training context length for LLMs.

2. Related Work

A number of works have empirically studied the ability of transformers to length generalize on
various tasks. Bhattamishra et al. [4] studies the ability of transformers to length generalize on
various formal language tasks. Anil et al. [2] show that transformers fail to generalize on certain
reasoning tasks, unless certain scratchpad prompting techniques are used. Kazemnejad et al. [11]
study the role of various positional encoding schemes on length generalization. Zhou et al. [22] study
length generalization on various algorithmic tasks, and observe that tasks with a short RASP program
[19] have better length generalization, leading to their RASP-L conjecture. This is supported by
works such as Jelassi et al. [9], who observe that for the string copying task, transformers can length
generalize when there are no repeated tokens, but fail once the string has repeats.

In light of these length generalization challenges, recent works have designed specific positional
encoding schemes, such as Alibi [15] or Abacus [13] to improve length generalization. Prior works
have also considered modifying the input with a scratchpad or extra positional information to improve
length generalization on arithmetic tasks [12, 17]. Most recently, architectural modifications such as
looping [6] or recurrence [13] have led to length generalization improvements.

Theoretically, Huang et al. [8] partially resolves the RASP-L conjecture for tasks expressible
by limit transformers. Wang et al. [18] proves that 1-layer transformers trained with GD length
generalize on a sparse token selection task. Ahuja and Mansouri [1] show that a model resembling
a self-attention head can length generalize. Golowich et al. [7] show that an abstraction of the
self-attention head can length generalize on tasks which depend on a sparse subset of input tokens.

3. Problem Formulation

3.1. Limit Transformers

We are interested in considering the ability of transformers to generalize to sequences of arbitrary
length, but real transformer architectures are limited by a bounded context length. To address this
issue, [8] introduced the concept of a limit transformer. These objects have an infinite context
length and generalized positional embeddings, allowing them to distinguish between arbitrarily many
positions in their context. The computation of a limit transformer proceeds as follows:
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Here x is the input sequence with token xi ∈ Σ in the i-th position, Exi ∈ Rd is the embedding
of the i-th token, pi is the i-th (absolute) positional embedding vector. The super- and sub-scripts
(l, h) denote the l-th layer of the transformer and the h-th attention head. a(l,h)i,j is the (l, h) attention
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Figure 1: Experiments on SimpleTask. Left: For fixed training length, as test length increases, the
test loss plateaus at a finite value. Middle: The value the test loss plateaus at decreases monotonically
with training length. Right: As the frequency ω increases, the minimum training length N needed
to obtain fixed test loss ε (here ε = 10−2) increases linearly with ω. Results are averaged over 8
random seeds.

logit between token i and j, K l,h, Ql,h, and V l,h are the the (l, h) key, query, and value embedding
matrices, respectively. The functions ϕl,h(j, i) denote allow for modifications to the attention pattern
which cannot be captured by positional embedding vectors alone. Y (l)

i denote the pre-activation
features for layer l at position i, and y

(l)
i denote the post-activation features which have been passed

through a single-hidden-layer MLP with activation ψl, plus a residual connection; Al and bl denote
the hidden layer weights and bias term for this MLP, and Bl denotes the output layer weights. Finally,
T (x)i denotes the output logits at position i which are computed via the unembedding matrix U .

Without additional constraints, a limit transformer cannot be recovered without seeing arbitrarily
long input sequences. Thus, [8] also make two additional assumptions. First, the limit transformers in
question are assumed to be ∆-periodic, defined as pi = pi+∆ for all i. Second, the limit transformers
are also translation-invariant, defined as ϕl,h(j, i) = ϕl,h(j + t, i+ t) for all t and τ -local, defined
as ϕl,h(j, i) = 0 whenever i > j + τ .

3.2. Finite-Precision Attention

The final assumption placed on limit transformers is also the key tool for simplifying our analysis.
Specifically, [8] assume that all of the transformer parameters, as well as the softmax attention,
are computed at p finite bits of precision. This is motivated by [14]. We remark that while these
design choices may seem like minutiae, they have outsized effects on the analysis [10]. There is also
empirical evidence that attention does indeed concentrate on only a few tokens [5, 16].

4. Main Results

Our main result is the following bound on the length of sequences required to appear in training
in order for the resulting transformer to length generalize. Letting V f ,E

f
s , (Af ,Bf ) be the value

matrix, token embedding, and MLP weights for f (and analgously defined for g), we define L =
max{∥Af∥F ∥Bf∥F ∥V fE

f
s∥, ∥Ag∥F ∥Bg∥F ∥V gE

g
s∥ : s ∈ Σ}.

Theorem 4.1 Suppose that |f(x) − g(x)| ≤ δ for all |x| ≤ N . Then we can guarantee that
|f(x)− g(x)| = O(δ + ε) for any sequence x provided that N = Ω(max{2p/γ , τ∆L2

ε2
}).

Remarks. Theorem 4.1 shows that, assuming that the input sequences are sufficiently long (N ≳
2p/γ), the desired training length scales polynomially in the periodicity parameter ∆, the parameter
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Figure 2: Experiments on ModPTask. Left: For fixed training length, as test length increases, the
test loss plateaus at a finite value. Middle: The value the test loss plateaus at decreases monotonically
with training length. Right: We plot the limiting test loss as a function of train length for varying
values of ∆ = p. We observe that the different curves approximately overlap, implying that the
training length needed for the limiting test loss to reach some fixed quantity ε scales linearly with ∆.
Results are averaged over 8 random seeds.

norms L, and the inverse accuracy ε. The N ≳ 2p/γ constraint is to ensure that the softmax in the
self-attention converges to a “hardmax,” i.e uniform attention over a subset of tokens. Indeed, it is
possible for this hardmax behavior to occur at smaller training lengths, implying that the training
length N need only scale with τ∆L2/ε−2. See Section 5 for empirical support of this claim.
Proof Sketch. To prove this result, given any input string x with |x| > N , we construct an auxiliary
string z of length |z| ≤ N which simultaneously approximates the attention patterns of f and g on
x. Since f(z) ≈ g(z) by assumption, this in turn implies that f(x) ≈ g(x). The complete proof is
given in Appendix A.1.

5. Experiments

We next provide empirical support for the conclusions of Theorem 4.1 on two synthetic tasks:

• SimpleTask: The vocabulary is Σ = {0, 1, 2}. Given an input sequence x1:T = (x1, . . . , xT ) ∈
ΣT , define cs(x) =

∑T
t=1 1(xt = s) to count the number of tokens equal to s. For some

function σ : R → R, the output is f∗(x1:T ) = σ
(
c0(x)−c1(x)
c0(x)+c1(x)

)
. We will specifically consider

the link function σ(z) = sin(ωz) for some ω ∈ R. One observes that f∗ is expressible by a
one-layer limit transformer with no positional embeddings and L = Θ(ω).

• ModPTask: The vocabulary is Σ = {0, 1}. Given a period p and index k, the output is defined
to be the average of all tokens in positions which are k mod p:

f∗(x1:T ) =

∑T
t=1 1(xt = 1, t ≡ k mod p)∑T

t=1 1(t ≡ k mod p)
.

One observes that f∗ is expressible by a limit transformer with ∆ = p and L = Θ(1).

We train depth 1 transformers (consisting of a single self-attention layer followed by an MLP
layer) on SimpleTask for varying frequencies ω and ModPTask for varying periods p. For a fixed
training length N , we train models on sequences of length T ≤ N , and compute the test loss on
sequences of length T ′ ≥ N . For more details, see Appendix B.
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Figure 3: For the ModPTask, the softmax attention weight approximates uniform attention on all
positions ≡ k mod p.

Results for SimpleTask and ModPTask are presented in Figure 1 and Figure 2 respectively. In
the leftmost panes of both figures, we observe that the test loss plateaus as the test length increases. In
the middle panes of both figures, we observe that the value at which the test loss plateaus at decreases
monotonically with the training length. This provides qualitative support for the conclusions of
Theorem 4.1, in particular that (i) given a target accuracy ε, tasks expressible by a one-layer limit
transformer have a finite N such that a model which fits the task on sequences up to length N
acheives ε error on sequences of all length and (ii) the value of this N increases monotonically as ε
increases. Moreover, the rightmost pane in Figure 1 shows that N scales with the parameter norm L,
while the rightmost pane in Figure 2 shows that N scales with the periodicity parameter ∆.

The proof of Theorem 4.1 relies on the assumption that the softmax attention acts as a “hardmax”
attention, uniformly attending to a subset of tokens. To check the validity of this assumption, we
consider models trained on the ModPTask with p = 5 for varying training lengths. For each trained
model, we look at the post-softmax attention probabilities on a batch of test sequences of length
80. In Figure 3, we plot the mean and standard deviation of these probabilities for tokens in the k
mod p position and tokens not in the k mod p position. We observe that the positions not equal
to k mod p receive near zero attention probabilities while those in positions equal to k mod p
receive nearly the same attention probability of 1/16 (the dashed black line). This provides evidence
that, for large enough training length, the models are indeed operating in the hardmax regime.

6. Conclusion

In this work, we made quantitative the results of Huang et al. [8] for single-layer transformers. Our
main result, Theorem 4.1, shows that the minimum training length to acheive length generalization
scales as τ∆L2/ε2, for parameter norm L, error ε, and periodicity ∆. Qualitative support for these
scalings is presented in Figure 1 and Figure 2.

One interesting direction of future work is to extend our results to transformers with larger depth.
In particular, it would be interesting to relate the minimum training length N to other notions of
complexity such as the length of the corresponding C-RASP program. Moreover, the results in
Huang et al. [8] and our main theorem assume that we have a limit transformer that agrees with
the target task on all sequences of length ≤ N . An important direction is to extend our analysis to
functions which have training error on average over some input distribution.
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Appendix A. Proofs

A.1. Proof of Theorem 4.1

In this section, we give the proof of our main theorem, which we restate for convenience.

Theorem 4.1 Suppose that |f(x) − g(x)| ≤ δ for all |x| ≤ N . Then we can guarantee that
|f(x)− g(x)| = O(δ + ε) for any sequence x provided that N = Ω(max{2p/γ , τ∆L2

ε2
}).

Proof Consider two limit transformers f and g and an input string x. Let Lip(MLPf ) be the Lipschitz
constant of the MLP in f . One can bound Lip(MLPf ) ≤ ∥Bf∥F ∥Af∥F , where (Bf ,Af ) are the
MLP weights for f ; the analogous result holds for g.

Let Af be the positions attended to by f and Ag be the positions attended to by g in the τ -prefix
of x and assume WLOG that |Af | ≤ |Ag|. Let Sf = {xi : i ∈ Af} be the set of tokens which f
attends to and similarly Sg = {xi : i ∈ Ag}. For any s ∈ Σ, let ns be the number of times s occurs
in the τ -prefix of x. We construct the auxiliary string z as follows. The τ -suffix of z is always equal
to the τ -suffix of x. If |Af |, |Ag| ≤ τ/ε, then the attention pattern in the τ -prefix of x can be directly
recreated simultaneously for f and g using at most 2τ/ε tokens by just copying the union of the
tokens in attention for f and g into z, then we must have |f(x)− g(x)| = |f(z)− g(z)| ≤ δ. Thus,
we will assume that at least |Ag| ≥ τ/ε.

We first recreate the attention pattern of f . Let ms denote the number of times a token s occurs in
the τ -prefix of z. If |Af | ≤ τ/ε, then we simply set z1:|Af | = xAf

(i.e., we set the first |Af | tokens
of z equal to the attention pattern of f on the τ -prefix of x). The tokens which we will add later do
not belong to Af ; thus, we will clearly have f(x) = f(z).

If |Af | > τ/ε, then for each s ∈ Sf we define

ms =

⌊
ns
|Af |

· τ
ε

⌋
.

For each ms, we have ns
|Af |

τ
ε − 1 ≤ ms ≤ ns

|Af |
τ
ε . Since

∑
s∈Sf

ns = |Af |, it follows that

τ

ε
− |Sf | ≤

∑
s∈Sf

ms ≤
τ

ε
.

Here we have used the fact that r − 1 ≤ ⌊r⌋ ≤ r for any real number r. We will make use of this
inequality repeatedly throughout the proof. Thus, for each s ∈ Sf , we have

ns
|Af |

− ε

τ
=

ns
|Af |

τ
ε − 1

τ/ε
≤ ms∑

s∈Sf
ms

≤
ns
|Af |

τ
ε

τ/ε− |Sf |
≤ ns

|Af |
+

2|Sf |
τ

ε

provided that |Sf |ε/τ ≤ 1/2, which will hold for small enough ε. In particular, we have∣∣∣∣∣ ms∑
s′∈Sf

ms′
− ns

|Af |

∣∣∣∣∣ ≤ 2|Σ|ε
τ

= O(ε). (1)

We can use these inequalities to bound the difference between f(x) and f(z). Since the τ -suffix
contributes at most τ O(L) terms to the computation of f(x) and f(z), and |Af | and

∑
s∈Sf

ms are
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both Ω(τ/ε) terms, the τ -suffix terms contribute at most O(Lε)-sized terms to each of f(x) and
f(z). Thus we have

∥f(x)− f(z)∥ ≤ Lip(MLPf )

∥∥∥∥∥
∑

s∈Sf
nsV fE

f
s

|Af |
−
∑

s∈Sf
msV fE

f
s∑

s′∈Sf
ms′

∥∥∥∥∥+O(Lε)

≤ ∥Bf∥F ∥Af∥F
∑
s∈Sf

∣∣∣∣∣ ns|Af |
− ms∑

s′∈Sf
m′

s

∣∣∣∣∣ ∥∥∥V fE
f
s

∥∥∥+O(Lε)

= O(
L|Σ|ε
τ

) +O(Lε) = O((
|Σ|
τ

+ 1)Lε)

since we have assumed ∥Bf∥F ∥Af∥F ∥V fE
f
s∥ = O(L) and |Sf | ≤ |Σ| = O(1). We will refer to

the portion of z which has been defined up to now as the f -prefix of z.
It now remains to extend z so that it can simulate the behavior of g without adding any tokens

in Sf so as to preserve the previous calculations. There are now two cases. If |Af ∩Ag|/|Ag| ≤ ε,
then we for each s ∈ Sg \ Sf we can set

ms =

⌊
ns
|Ag|

· τ
ε2

⌋
.

Now, observe that ∑
s∈Sg\Sf

ms =
∑

s∈Sg\Sf

⌊
ns
|Ag|

τ

ε2

⌋
≥

∑
s∈Sg\Sf

ns
|Ag|

τ

ε2
− |Sg \ Sf |

=
|Ag \Af |

|Ag|
τ

ε2
− |Sg \ Sf |

=
|Ag| − |Ag ∩Af |

|Ag|
τ

ε2
− |Sg \ Sf |

=
τ

ε2
−O(1/ε).

We also have ∑
s∈Sg\Sf

ms ≤
∑
s∈Sg

ns
|Ag|

τ

ε2
=

τ

ε2
,

so
∑

s∈Sg\Sf
ms ≈ τ/ε2 up to lower-order terms. From this we can also deduce that∣∣∣∣∣ ms∑

s′∈Sg\Sf
ms′

− ns
|Ag|

∣∣∣∣∣ = O(
ε2

τ
)

by roughly the same logic which we used to deduce (1). Since there are at most τ terms from the
τ -suffix of z and at most τ/ε terms from the f -prefix of z, these will contribute an O(Lε) term to
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the computation of g(z) (as by the computations we have just completed, the denominator for g(z)
is roughly τ/ε2). Since |Af ∩Ag|/|Ag| ≤ ε and |Ag| ≥ τ/ε, the tokens in Af ∩Ag and the tokens
in the τ -suffix together contribute at most O(Lε) to the computations of g(x). Thus we have

∥g(x)−g(z)∥ ≤ Lip(MLPg)
∑

s∈Sg\Sf

∣∣∣∣∣ ms∑
s′∈Sg\Sf

ms′
− ns

|Ag|

∣∣∣∣∣ ∥V gE
g
s∥+O(ε) = O(Lε2)+O(Lε) = O(Lε).

This completes the case when |Af ∩Ag|/|Ag| ≤ ε.
Otherwise we have |Af ∩ Ag|/|Ag| > ε. In this case, we have |Ag| < |Af ∩ Ag|/ε ≤ |Af |/ε.

Let s∗ = argmaxs∈Af
ns. For s ∈ Ag \Af , we define ms by

ms =

⌊
ms∗

ns∗
· ns
⌋
.

Note that since |Af | ≥ τ/ε and |Af | ≤ |Σ|, we must have ns∗ ≥ τ/|Σ|ε. This now allows us to
bound the scaling ratio ms∗/ns∗ . We have ms∗ = ⌊ ns∗

|Af |
τ
ε ⌋, so

τ/ε

|Af |
− ε|Σ|

τ
≤

ns∗
|Af |

τ
ε − 1

ns∗
≤ ms∗

ns∗
≤

ns∗
|Af |

τ
ε

ns∗
=

τ/ε

|Af |
.

First, we have∑
s∈Sg\Sf

ms ≤
∑

s∈Sg\Sf

ms∗

ns∗
ns =

ms∗

ns∗
|Ag \Af | ≤

ms∗

ns∗
|Ag| ≤

τ/ε

|Af |
|Af |
ε

= τ/ε2.

In particular, this implies that this construction can be completed by adding at most τ/ε2 tokens to z,
so in all cases the length of z is O(τ/ε2) as desired.

Next, for s ∈ Sg \ Sf , we have the following bounds on ms
ms∗

= ⌊ms∗ns/ns∗⌋
ms∗

:

ns
ns∗

− |Σ|ε
τ − |Σ|ε

≤ ns
ns∗

− 1

ms∗
≤ ⌊ms∗ns/ns∗⌋

ms∗
≤ ns
ns∗

.

The leftmost inequality uses the fact that ms∗ = ⌊ ns∗
|Af |

τ
ε ⌋ ≥ ⌊ 1

|Σ|
τ
ε ⌋ ≥ τ

|Σ|ε − 1. In particular, this
means that |ns/ns∗ −ms/ms∗ | = O(ε) for s ∈ Sg \ Sf .

For s ∈ Sg ∩ Sf , we have ms/ms∗ = ⌊ ns
|Af |

τ
ε ⌋/⌊

ns∗
|Af |

τ
ε ⌋ and a similar bound can be established.

For the lower bound, we have ⌊
ns
|Af |

τ
ε

⌋
⌊

ns∗
|Af |

τ
ε

⌋ ≥
ns
|Af |

τ
ε − 1

ns∗
|Af |

τ
ε

≥ ns
ns∗

− |Σ|ε
τ
.
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For the upper bound, we have ⌊
ns
|Af |

τ
ε

⌋
⌊

ns∗
|Af |

τ
ε

⌋ ≤
ns
|Af |

τ
ε

ns∗
|Af |

τ
ε − 1

=
ns
ns∗

(
1 +

1
ns∗
|Af |

τ
ε − 1

)

≤ ns
ns∗

+
2|Σ|ε
τ

for ε small enough (τ/|Σ|ε ≥ 2 suffices). Thus we have |ns/ns∗−ms/ms∗ | = O(ε) for s ∈ Sg∩Sf
as well (in fact O( |Σ|ε

τ )). Observe that this means, for any s ∈ Sg:∣∣∣∣∣ ms∑
s′∈Sg

ms′
− ns∑

s′∈Sg
ns′

∣∣∣∣∣ = ms/ms∗∑
s′∈Sg

ms′/ms∗
− ns/ns∗∑

s′∈Sg
ns′/ns∗

=

∣∣∣∣∣ ns/ns∗ +O(ε)∑
s′∈Sg

(ns′/ns∗ +O(ε))
− ns/ns∗∑

s′∈Sg
ns′/ns∗

∣∣∣∣∣
= O(ε).

Now we compare g(x) and g(z). As before, the effect of the τ -prefix contributes at most O(Lε)
to ∥g(x)− g(z)∥, so we have

∥g(x)− g(z)∥ ≤ Lip(MLPg)
∑
s∈Sg

∣∣∣∣∣ ms∑
s′∈Sg

ms′
− ns∑

s′∈Sg
ns′

∣∣∣∣∣ ∥V gE
g
s∥+O(Lε) = O(Lε).

In all cases, we have constructed z such that ∥f(x)− f(z)∥ = O(Lε) and ∥g(x)− g(z)∥ = O(Lε),
and the length of z is O(τ/ε2). Thus, provided that f and g differ by at most γ on inputs up to a
length N0 = O(τ/ε2), we have

∥f(x)− g(x)∥ ≤ ∥f(z)− g(z)∥+ ∥f(x)− f(z)∥+ ∥g(x)− g(z)∥ ≤ γ +O(Lε).

The proof is completed by substituting ε 7→ ε/L, whereby we see that we can obtain error O(γ + ε)
with N0 = O(τL2/ε2) as desired.

Including positional embedding vectors The setting with positional embedding vectors can
be reduced to the general vocabulary case at the cost of an additional factor of ∆ by considering
each possible (token, position mod ∆) combination as its own token without positional embedding
vectors.
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A.2. Expressivity of Synthetic Tasks

We sketch the constructions for each of the synthetic tasks in Section 5.
SimpleTask: Set pi = 0, and let E0,E1,E2 be orthogonal. Choose K,Q so that ai,j = ∞
when j = 0, 1 and ai,j = 0 when j = 2. The attention probabilities will then be uniform over
all 0 and 1 tokens, and thus the output of self-attention becomes Y T = ExT + c0(x)

c0(x)+c1(x)
V E0 +

c1(x)
c0(x)+c1(x)

V E1. We can then set V E0 = −V E1. It suffices to approximate the one-dimensional
function z 7→ sin(ωz) with an MLP; it is well known [3] that this can be done with weight norms
Θ(ω), as desired.
ModPTask: Let {qi}i∈[∆] be some fixed set of orthogonal embeddings, and let pi be equal to
qj , where i ̸= j mod p. These are periodic embeddings with periodicity ∆ = p. Choose K,Q
so that ai,j equals ∞ if j ≡ k mod p and 0 otherwise. The attention probabilities will then be
uniform over all positions which are k mod p. Choosing V so that V qj = 0 for all j, the output
of self-attention becomes Y T = yT + f∗(x1:T )V E1 + (1− f∗(x1:T )V E0. Choosing the readout
layer appropriately, we can ensure that T (x)T = f∗(x1:T ), as desired.

Appendix B. Experimental Methodology

Training Procedure: The model architecture is one layer of a single self-attention head followed by
an MLP. The embedding dimension is d = 16 and the MLP width is 256. We use the µP initialization
[21], and train using the Adam optimizer with learning rate η = 10−2/d for the hidden layers and
η = 10−2 for the embedding layers. We train all of the models using online SGD (sampling a fresh
batch of size 1024 at each step), until the training loss crosses below 10−5.
Data Generation:

• SimpleTask: Each sequence x1:T is generated by first sampling a probability vector p ∈ R3

uniformly at random over the simplex, then sampling each xi i.i.d, where xi = s with
probability ps. This ensures that Var(f∗) = Θ(1).

• ModPTask: Each sequence x1:T is generated by first generating q0, . . . , qp−1 i.i.d uniformly
from [0, 1]. Then, each xi is sampled from Bernoulli(pk), where k ≡ i mod p. This ensures
that Var(f∗) = Θ(1), and also that attending to incorrect positions mod p cannot help the
model.
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