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ABSTRACT

The pursuit of optimal conditions for software execution poses a complex challenge.
This task can be automated by harnessing the structured nature of programming
languages, especially from compiler intermediate representations of code (IR). The
manipulation of source code using Large Language Models (LLMs) is a thriving
area of study in Natural Language Processing (NLP) literature. However, in this
study we illustrate how we can circumvent the need for exceedingly large models
by employing domain-specific language models. These models have a reduced
number of parameters but retain the ability to capture the relationships within
source code elements. We introduce GEPCode, a graph neural network designed
to model IR with the flexibility to adapt to new tasks. This flexibility is obtained
through special “meta” nodes, that allow for the representation of additional task-
dependent contextual information. Pre-training is performed by solving node
and graph-level tasks, resulting in a general language model. After a fine-tuning
phase on two downstream tasks, Device Mapping and Algorithm Classification, we
achieve average accuracy results of 88.9% (NVIDIA) and 92.3% (AMD) for the
former and 97.2% for the latter. Comparing our methodology with state-of-the-art
models trained from scratch, our results are similar or better, yet providing a more
flexible model. Moreover, we achieve similar accuracy results in downstream tasks
compared to state-of-the-art pre-trained language models based on Transformers,
while utilizing 100 times fewer parameters.

1 INTRODUCTION

The current landscape of computing systems is characterized by high complexity in hardware
architectures and configurations, as well as in programming languages, techniques, and compilation
options. Achieving optimal software execution performance often requires thorough exploration of
various configuration parameters and manual profiling of source code across different compute units.
However, this process becomes impractical as the number of possible alternatives increases(Magni
et al., 2014; Ivanov et al., 2024). Recently, deep learning techniques based on Natural Language
Processing (NLP), such as Language Models (LMs), have been utilized to address this complexity
(Zhang et al., 2024; Allamanis et al., 2018). Current research focuses on two main approaches:
custom end-to-end architectures, that are trained from scratch on a single task, and more general
Language Models (LMs), that are pre-trained on a large amount of code samples and can be fine-
tuned on a variety of downstream tasks. The key question in this context is whether alternative
representations of code can be used to develop general, efficient, and compact language models
of source code. Answering this question could help bridging the gap between the efficiency of
task-specific architectures and the generality of larger language models.

We present GEPCode, a Graph-based, Efficient, Pre-trained, Context-aware Language Model (LM)
of graph representations of source code. GEPCode leverages a graph-based representation of code,
following recent works highlighting their ability to capture structural patterns related to the causal
and temporal dependencies between data (e.g. variables and constants) and instructions (Brauckmann
et al., 2020; Cummins et al., 2021b; TehraniJamsaz et al., 2023; Yamaguchi et al., 2014; Guo et al.,
2021). GEPCode tackles several open problems in the field. Firstly, many optimization-related
tasks require considering additional task-dependent contextual information. For instance, the task of
heterogeneous device mapping (i.e. predicting which device would run a given program faster in a
heterogeneous machine) pairs code samples with dynamic parameters affecting decisions, such as the
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size of input data. Previous solutions often separate the encoding of the code sample from that of the
external parameters (Cummins et al., 2021b; 2017a; Ben-Nun et al., 2018; Barchi et al., 2019; 2021;
Parisi et al., 2022; Brauckmann et al., 2020; Hakimi et al., 2023). However, we argue that it would be
better to insert this contextual information inside the representation, allowing models to reason upon
it during processing, constructing context-aware source code encodings. Then, we address the size of
recent pre-trained models of source code (Niu et al., 2023; Feng et al., 2020; Guo et al., 2021; Wang
et al., 2021; Peng et al., 2021). While large-scale models achieve state-of-the-art performance across
various downstream tasks, we posit that efficiency should be prioritized in the context of source code
optimization, especially where computing and memory resources may be limited. We also consider
recent studies that are critical of the effectiveness of Large Language Models (LLMs) for source code
optimization and analysis (Chen et al., 2023; Fang et al., 2024; Karmakar & Robbes, 2021). In this
work, we show that our model achieves comparable results to those of Transformer-based LMs while
using over 100 times fewer parameters. This positions GEPCode as competitive alternative, and will
hopefully encourage a discussion on the trade-offs within this domain. To achieve these results, we
developed an effective pre-training pipeline that incorporates both graph-level and node-level targets
for enhanced robustness. We pre-train GEPCode on a large collection of code (Armengol-Estapé
et al., 2022), obtaining a general and flexible model.

Our contribution can be summarized as follows: i) We design a novel graph-based source code
representation introducing an innovative method for incorporating contextual information directly
into model reasoning; ii) We develop a language model (LM) for our representation by pre-training
a Graph Neural Network (GNN) on a large and diverse dataset of source code samples through a
novel technique that fully leverages the information in our representation; iii) We evaluate our model
across various downstream tasks, demonstrating the capability of our model to compute effective
representations of source code. We show that our results are comparable or even better than those
of larger pre-trained models, despite containing over 100 times fewer parameters. We achieve an
average accuracy of 90.6% on the heterogeneous device mapping task, and of 97.2% on algorithm
classification.

The rest of this paper is organized as follows. Section 2 presents related works that address similar
problems in literature. Section 3 details our novel graph-based source code representation. Section 4
describes the architecture of our language model and the pre-training and fine-tuning tasks. Section
5 reports experimental results and compares our model to the existing literature. We also propose
ablation studies to motivate our main design choices. Finally, Section 6 wraps up the work.

2 BACKGROUND AND RELATED WORKS

Several works (Cummins et al., 2017a; Vavaroutsos et al., 2022) have employed Recurrent Neural
Networks (RNN), especially Long Short-Term Memory (LSTM) cells (Hochreiter et al., 1997), as the
core mechanism for operating on sequences of raw code tokens. In order to benefit from structural
features of code and to create LMs that are independent from specific source languages, other studies
(Barchi et al., 2019; 2021; Ben-Nun et al., 2018; Brauckmann et al., 2020; VenkataKeerthy et al.,
2020; Hakimi et al., 2023; Niu et al., 2023) have explored the option to work on tokens of LLVM-IR
code, a low-level IR used internally by the LLVM compiler (Lattner et al., 2004) which offers explicit
memory-related operations and facilitates access to control and data flow. Graph representations are
also common transformations in the compilation pipeline and can easily be extracted from IR. For
instance, Abstract Syntax Trees (ASTs), depicting the syntactic structure of source code, Control
Flow Graphs (CFGs) and Data Flow Graphs (DFGs), representing code operations by means of
dependencies between data and instructions, are directly employed or combined with other inputs by
some source code language models (Brauckmann et al., 2020; Ben-Nun et al., 2018). More recently,
works such as ProGraML (Cummins et al., 2021b) and its extension Perfograph (TehraniJamsaz et al.,
2023) have designed expressive graph-based representations that can be easily employed in Deep
Learning pipelines.

Transformer-based models (Vaswani et al., 2017) have recently emerged for graph modeling (Ying
et al., 2021; Dwivedi & Bresson, 2021; Zhang et al., 2020; Shirzad et al., 2023). However, these
models often have billions of parameters, making their training and inference processes resource-
intensive. Therefore, we focus on pre-training methods specifically designed for GNNs, which
typically have fewer parameters. Masked Graph Autoencoders (Li et al., 2023a; Hou et al., 2022;
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(a) Example detailing the main components of our source code representation.
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Figure 1: The main contributions in our graph representation of source code.

2023; Tu et al., 2023; Tian et al., 2023) and Contrastive self-supervised learning (Wu et al., 2021; Xia
et al., 2022) are widely used frameworks in this context. The former masks elements of the input
graphs and uses an encoder-decoder architecture to reconstruct the original elements, while the latter
works by generating multiple “views” for each graph through data augmentation and by training
models to maximize an agreement measure within views of the same graph. In this work, we employ
both techniques to pre-train our network.

Existing literature on graph pre-training methodologies acknowledges that discrepancies between
pre-training and fine-tuning tasks often result in decreased performance on downstream tasks (Lu
et al., 2021; Liu et al., 2023a; Sun et al., 2023; Li et al., 2023b; Liu et al., 2023b; Wang et al.,
2024). On the other hand, many current graph-based representations of source code (Cummins et al.,
2021b; Brauckmann et al., 2020; Ben-Nun et al., 2018; Yamaguchi et al., 2014) frame program-level
tasks as graph-level problems, while several pre-training techniques focus primarily on node-level
or edge-level targets without further addressing this gap (Guo et al., 2021; Zhang et al., 2020; Hu
et al., 2020b; Tu et al., 2023; Li et al., 2023a; Hou et al., 2022; 2023; Tian et al., 2023). Instead, our
representation design allows to cast program-level tasks as node-level problems, bridging the divide
between node-level pre-training and downstream tasks.

3 SOURCE CODE REPRESENTATION

The proposed graph-based representation expands upon the approach introduced in ProGraML
(Cummins et al., 2021b) and further extended in Perfograph (TehraniJamsaz et al., 2023). Our
representation expresses LLVM-IR code samples as graphs G = (V,E), where V is the set of nodes
and E is the set of edges. Fig. 1a shows a schematic example of the representation. Each node
v ∈ V is mapped to a token within a vocabulary of LLVM-IR elements, comprising instruction names
(e.g. add, switch, br, . . . ), data types (e.g. i32, <2 x double>, . . . ), and so on. Hard-coded
constants may be annotated with the value of the variables they represent (e.g. i32 0), while all
external dependencies are represented by a single [ext] node. Edges are directed and represent
dependencies between the elements of code. They have a type attribute, specifying the kind of
dependency among DATA (e.g. an instruction using or returning a variable), CONTROL (e.g. an
instruction following another) or CALL (e.g. an instruction calling a function, or a function returning
a value to the caller). Edges also have a position attribute, distinguishing operands order. In the
following sections, we provide a detailed description of our source code representation extensions.

3.1 NUMERICAL ENCODINGS

We propose a novel method for embedding numerical values, enriching the node representation
of hard-coded constants and variables, and the edge representation of contextual dependencies.
Perfograph (TehraniJamsaz et al., 2023) implements a similar concept, but their approach does not
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differentiate between positive and negative numbers and necessitates preliminary processing steps
to handle the large diversity of digit counts. In contrast, our method employs a signed, fixed-size
numerical representation that can be easily vectorized and processed in parallel with the rest of the
data. Our representation encodes numbers using two 8-dimensional vectors (digit and order), as can
be seen in Fig. 1b. All numbers are explicitly transformed into single-precision floating points, then
converted into their hexadecimal representation through the IEEE-754 encoding standard. The digit
vector is populated by the 8 hexadecimal digits, mapped to the range 0-15 for convenience, while the
order vector contains the values of the 8-1 range indicating their order. Since the IEEE-754 standard
encodes sign into the first bit, the sign in our representation is implicitly present into the first digit.

3.2 NODE-LEVEL DESCRIPTION

Our new source code representation extensions, aim to achieve two primary goals: aggregating a
global graph representation into a specialized node in order to bridge the gap between node-level
pre-training and program-level fine-tuning tasks, and integrating contextual information into the graph
representation. Contextual information can include simple graph properties, such as the diameter of
the graph, but also key features for guiding decisions in downstream tasks, like the size of an input
matrix for a kernel or device and framework parameters. To this end, we include two novel node types:
i) [CLS], collecting a global graph representation; ii) [META], representing general contextual
meta-information related to the code sample or the graph. Each graph contains a single [CLS] node
and a variable number of [META] nodes, depending on the availability of external information for
the task. Nodes are mapped to feature vectors on the basis of a vocabulary K comprising the most
frequent |K| = 344 tokens extracted from a large dataset of LLVM-IR code files compiled from
various open-source projects. Note that all [META] nodes are mapped to the same feature vector,
representing “general contextual information”; actual meta-information, are instead encoded in edges
(see Section 3.3). For a detailed analysis of the dataset and of the vocabulary extraction process,
please refer to Appendix A.

3.3 EDGE-LEVEL DESCRIPTION

In the graphs collected for our vocabulary-creation step, we observed that 6% of nodes lack incoming
connections, typically indicating variables and constants that are not outputs of prior operations but
are used by later instructions. Therefore, we introduce a new edge type, BACK, to connect DATA
dependencies back to their sources, improving the connectivity within the graphs. Additionally, we
propose two novel edge types: i) META, connecting [META] nodes to a [CLS] node. They allow
[CLS] nodes to receive meta-information, enabling a more specialized global graph representation.
We note that these connections are unidirectional, so that the [CLS] node only acts as a receiver
and has no outgoing connections, preserving the original graph structure; ii) CLS, connecting non-
[META] and non-[CLS] nodes to a [CLS] node. They enable the [CLS] nodes to receive and
aggregate information from all other nodes within the graph, allowing the iterative construction of the
global representation ([CLS] and [META] refer to node tokens when enclosed in square brackets,
to edge types otherwise). Moreover, we incorporate meta-information as additional features included
in edges. These features are only significant in META edges; for other edge types, they are replaced
by zero-padding. Since the nature of available meta-information varies depending on the application,
we employ the previously described numerical encodings in order to incorporate diverse information
avoiding type limitations.

4 LANGUAGE MODELING

In this Section, we report the process behind our pre-training and fine-tuning experiments, describing
the model architecture, as well as the employed datasets and training tasks.

4.1 MODEL ARCHITECTURE

Initially, every node v ∈ V is mapped to a learnable feature vector h0∗
v by lookup in a fixed-size

embedding table Ev ∈ R|K|×d, where d denotes the hidden dimensionality of the network. Numerical
encodings for numbers contained within nodes are processed to generate fixed-size embeddings:

hn = (Edig (dig(n)) + Eord (ord(n))) (1)

4
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Figure 2: Scheme for the pre-training and fine-tuning phases.

where E(∗) are specialized embedding tables for the digits (retrieved by function “dig”) and orders
(retrieved by function “ord”). The initial value of each node h0

v is then computed by summing h0∗
v

and its optional numerical embedding together.

We implement a GNN-based LM processing the input graphs through a local aggregation mechanism
called message passing, repeated for a number of steps T . At each step, t ∈ [0, . . . , T − 1], three
fundamental operations are executed: i) Message emission: A message for each pair of neighboring
nodes (v, w) is generated by modulating the source features ht

v by their edge position attribute and
processing the result through a specific MLP for the connection type. Meta-information are embedded
as in Eq. 1 and added to the messages.

msgtv,w = MLPtype(ev,w)(h
t
v ⊙ POS(ev,w)) + hmeta(ev,w) (2)

where ⊙ denotes the Hadamard product and POS(ev,w) is implemented as a sinusoidal encoding
(Vaswani et al., 2017). ii) Message aggregation: Nodes receive messages from each incoming
connection and aggregate them through an attention-based mechanism:

mt+1
v =

∑
w∈N (v)

σ
(
MLPgate(msgtv,w)

)
⊙ MLPθ(msgtv,w) (3)

where σ is the sigmoid function, MLPgate maps messages to an attention score and N (v) is a function
returning the neighbors of node v. iii) Update: Function U , a Gated Recurrent Unit (GRU) cell (Cho
et al., 2014), updates nodes features based on their current state and the aggregated message mt+1

v :
ht+1
v = U

(
ht
v,m

t+1
v

)
(4)

At the end of message passing, node representations contain contextual information for their T -step
neighborhood, while the [CLS] node holds the global, meta-informed graph representation.

4.2 PRE-TRAINING

During pre-training, we expose our GNN to a vast and diverse collection of graph representations of
source code. We pre-train our model utilizing the synth-compilable subset of the Exebench dataset
(Armengol-Estapé et al., 2022). We employed Clang (Clang) for compiling code into LLVM-IR with
-O1 compilation level, then used a custom version of the ProGraML’s Python library (Cummins et al.,
2021b) to turn source code into a graph representation and applied Perfograph and our source code
representation extensions directly at this level. Only 70% of the available samples, equivalent to
1.6 M, were successfully processed into our representation. Our training set comprises 1.3 M graphs,
with the remaining graphs are equally split between validation and testing.

4.2.1 TASKS DEFINITION

Our representation models global graph information as node features into the [CLS] node. Graph-
level tasks are therefore easily expressible in terms of node-level tasks, while edge-level tasks (such as
link prediction) can also be cast as node-level problems by aggregating the two ends of a connection
into a single representation (e.g. by feature-wise product or sum). In other words, models using our
representation can be robustly pre-trained simply using node-level self-supervision. We propose to
solve three tasks in parallel: Attribute Masking, Meta Prediction and Contrastive Learning. Fig. 2
exemplifies the usage of the model during the pre-training and fine-tuning phases.
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Attribute Masking The Attribute Masking task (Hu et al., 2020a) is akin to Masked Language
Modeling (MLM) in BERT (Devlin et al., 2018). We mask a random subset of nodes and edge types
within the graph, replacing node encodings with a special [MASK] token and edge types with a
special MASK type with probability p. During the random sampling process, we deliberately avoid
masking the [CLS] and [META] nodes and CLS, MASK and BACK edges, so that only the nodes and
edges of the core graph are affected. At the end of the T GNN message passing steps, we employ two
separate learnable linear projections Dv ∈ Rd×|K| and De ∈ Rd×3 (where 3 is the size of the set of
maskable edge types, DATA, CONTROL, CALL) to compute probability distributions over the target
spaces for each masked attribute. The loss for this task Lm is a sum of two categorical cross-entropy
terms (σ denotes the softmax function).

Lmask =
1

|Vm|
∑
v∈Vm

− log
(
k∗v · σ

(
D⊤

v h
T
v

))
+

1

|Em|
∑

(v,w)∈Em

− log
(
type∗(ev,w) · σ

(
D⊤

e h
T
v

))
(5)

where Vm and Em represent the two sets of masked nodes and edges, h∗
v ∈ R1×|K| and type∗(ev,w) ∈

R1×3 are the one-hot encoded targets (original node token and edge type).

Meta Prediction To enhance the network’s ability to effectively capture meta-information into the
global representation, we also task the model with predicting 3 graph properties i) graph diameter;
ii) average node degree; iii) graph clustering coefficient. We pre-computed these statistics on the
training sets of Exebench (Armengol-Estapé et al., 2022) in order to analyze their distribution and
determine suitable thresholds for normalization. Subsequently, we introduced a [META] node for
each property into all graphs, connecting them to the [CLS] node accordingly. The respective META
edges contain the numerical (or hexadecimal) encoding of the normalized property value. Following
the message passing phase, we map the final representation of the [CLS] node hT

G to predictions
using a distinct linear layer MLPm for each property m. The loss function for this task LM is the
average mean squared error (MSE).

Lmeta =
1

|M |
∑
m∈M

(
m− MLPm

(
hT
G

))2

(6)

Contrastive Learning Finally, we propose incorporating a graph-level task to increase the ro-
bustness of the global representation. We adapt SimGRACE (Xia et al., 2022), a graph contrastive
learning technique designed to maximize the agreement between different representations of the same
graph, while distancing the representations of distinct graphs. Unlike traditional contrastive learning
approaches that compute a secondary representation of inputs using data augmentations, SimGRACE
generates an alternative view hT ′

G for input graph G by perturbing the model’s parameters with
Gaussian noise and passing the input through the network a second time. Gradients are not computed
during this second pass. Subsequently, a projection head is applied to the final representations, which
are compared using cosine similarity (denoted as sim) against the representations of other graphs in
the mini-batch B. A temperature hyper-parameter η is employed to increase label entropy. The loss
for this task Lcl is thus defined as:

Lcl =
1

|B|
∑
G∈B

− log
exp

(
sim

(
hT
G, h

T ′
G

)
/η

)
∑

g∈B,g ̸=G exp
(
sim

(
hT
G, h

T
g

)
/η

) (7)

4.2.2 PRE-TRAINING PIPELINE

Computing the overall loss necessitates careful definition of operation flow. Contrastive Learning
requires no masking during model processing, as the source of variability between representations
is the perturbation of parameters. Conversely, the Attribute Masking task demands that the GNN
processes a partially masked graph, while there are no special requirements for Meta Prediction. To
combine these requirements into a unified pipeline, we use 3 separate GNN passes. Given a mini-
batch of graphs B = [G1, . . . , GN ], we first pass the unmasked graphs into the network, computing
hT
G for each G ∈ B in Eq. 7. Then, we block the gradient and perturb the network’s parameter using

Gaussian noise. We pass the unmasked graphs into the network a second time, computing hT ′

G for
each G ∈ B in Eq. 7. Finally, we restore gradient computation and the original model parameters, as
we mask the input graphs and pass them to the GNN a third time. This step computes hT

v and hT
G

6
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for all involved nodes and graphs in Eq. 5 and 6. A final loss L is calculated as a weighted sum of
the various elements, where the coefficients have been selected to normalize the range of each loss
function (in this work, λmask = 1, λmeta = 2 and λcl = 0.5). This ensures that each loss contributes
equally to the overall optimization process.

L = λmaskLmask + λmetaLmeta + λclLcl (8)

4.3 DOWNSTREAM TASKS

We evaluate GEPCode on two downstream tasks aimed at optimizing compile-time choices and
testing the representation capabilities of the model: Heterogeneous Device Mapping (DevMap) and
Algorithm Classification. For these tasks, we transform the available source code into our graph-based
representation following the procedure designed for the pre-training dataset, compiling code with the
-O1 optimization level in order to maintain a similar input distribution and inserting [META] nodes
as appropriate. The graph is then processed by our LM, initialized using the weights obtained at the
end of the best pre-training epoch in terms of validation loss. A final MLP classifier is appended at
the end of the model in order to map the produced representations to the decision space according to
the task. All reported results are averaged over 5 experiments with different random seeds.

4.3.1 HETEROGENEOUS DEVICE MAPPING

The DevMap task concerns predicting the most efficient device for executing a kernel. This is a crucial
task in the context of embedded systems, where a vast heterogeneity of hardware configurations
exists. Results for this task are assessed using the DevMap dataset, introduced in (Cummins et al.,
2017a;b). This collection contains 680 samples of OpenCL kernels, each paired with two auxiliary
values: the Work Group size, affecting the amount of parallelism, and the size of input data, affecting
transfer time between host and executing device. Each combination has been run on the CPU and
GPU of 2 separate heterogeneous machines, resulting in two distinct versions of the dataset (NVIDIA
and AMD, depending on the GPU model). Before transforming code into our graph representation,
we re-introduce external imports and constants into the raw kernels. Auxiliary inputs are represented
as [META] nodes, and their numerical information is normalized and inserted into the respective
edges. The dataset is notoriously small and unbalanced; specifically, the DevMap NVIDIA dataset
has a distribution of 43% CPU and 57% GPU, while the DevMap AMD dataset shows a distribution
of 58% CPU and 42% GPU. Therefore, we employ stratified 10-fold cross-validation for training
and evaluating the model, reporting the Matthews Correlation Coefficient and F1 Score, as proposed
in (Parisi et al., 2022).

4.3.2 ALGORITHM CLASSIFICATION

A general language model of code should be able to recognize high-level features that are resistant
to minor variations in implementations. To this end, the objective of Algorithm Classification is to
categorize programs based on the problems they address. For this task we employ POJ-104 (Mou
et al., 2015), a collection of 104 classes of algorithms, each exemplified by about 500 C++ programs.
We split the dataset by randomly sampling 80% of the code samples for the train set (about 300
programs per algorithm) and evenly distributing the remaining files between validation and testing.
For this task there are no meta-inputs, so no [META] node is added to the graphs. The resulting
representation is processed through the GNN, and a final a 104-way classifier selects the appropriate
algorithm class.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this Section, we report the results of our experiments. We compare GEPCode with previous works
in literature, and we perform several ablation studies aimed at motivating our design choices.

5.1 SETUP

We implemented our models and data processing procedures in PyTorch and PyTorch Geometric
(Paszke et al., 2019; Fey et al., 2019). For all experiments, we use T = 6 steps of message passing,
a hidden dimensionality and initial embedding size of 256 and an Adam optimizer (Kingma & Ba,
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Table 1: Result comparison. Pre-training dataset, approximate number of parameters and standard
deviation are reported when disclosed or applicable.

Model Name Pre-train set Core Arch. DevMap Accuracy POJ-104 Params.
NVIDIA AMD Accuracy (×106)

ProGraML Cummins et al. (2021b) - GNN .800 .866 .962 0.09
DeepTune Cummins et al. (2017a) - RNN .803 .837 - 0.08
CDFG Brauckmann et al. (2020) - GNN .814 .864 - 0.09
DeepTune Exp. Vavaroutsos et al. (2022) - RNN .815 .874 - -
DeepLLVM Barchi et al. (2019) - RNN .823 .853 - 0.08
DeepLLVM-CNN Barchi et al. (2021) - CNN .873±.009 .890±.006 - 0.08
IR2Vec VenkataKeerthy et al. (2020) - No-DL .887 .913 .961 -
Siamese DeepLLVM Parisi et al. (2022) - CNN .888±.009 .917±.007 - 0.08
Perfograph TehraniJamsaz et al. (2023) - GNN+Manual .900 .940 .950 0.05
DeepLLVM-CNN+ML Hakimi et al. (2023) - CNN+ML .911 .922 .955 -

Inst2vec Ben-Nun et al. (2018) NCC SkipGram+RNN .820 .828 .948 0.6
CodeBERT Feng et al. (2020) CodeSearchNet Husain et al. (2019) Transformer .868 .956 .954 125
CodeT5 Wang et al. (2021) CodeSearchNet Transformer .885 .931 .959 220
IRGen Li et al. (2022) POJ104/GCJ Genetic+CNN .899 .943 .980 -
OSCAR Peng et al. (2021) OSCAR Transformer .895 .941 .981 163
FAIR Niu et al. (2023) OSCAR Transformer .916 .965 .983 138

GEPCode-100k Exebench Armengol-Estapé et al. (2022) GNN .852±.012 .911±.003 .955±.006 0.13
GEPCode Exebench GNN .889±.008 .923±.008 .972±.001 1.3

Figure 3: Model accuracies with respect to the number of parameters. Models lacking either the
number of parameters or accuracy results are not shown. We also indicate the Pareto front of previous
models.

2017). We also designed a small-scale version of GEPCode (GEPCode100k) that only uses 125 k
parameters by reducing the amount of message passing layers (T = 4) and using a dimensionality
of 64. By default, we use an Adam optimizer with a learning rate of 2.5 × 10−4 and a dropout
rate of 0.3. We pre-train until convergence with a fixed mask rate of 0.4, using a batch size of 64.
Most of our pre-training experiments lasted ∼30-40 hours on a single Quadro RTX 6000 GPU,
comprising 65-75 k training steps. Fine-tuning for both downstream tasks runs for 100 epochs. The
final classifiers for the tasks are 2-layer MLPs with sizes [64, out], where out = 2 for DevMap and
out = 104 for Algorithm Classification.

5.2 RESULTS

On the DevMap task, GEPCode achieves an accuracy of 88.9% on the NVIDIA variant of the dataset,
and of 92.3% on the AMD variant, with a standard deviation of 0.8%. The Matthews Correlation
Coefficient (MCC) is 0.775 and 0.854 and the F1-scores are 0.902 and 0.914 respectively. The
predictions of the model lead to a 1.45x speedup on the NVIDIA dataset, where predictions are
compared against the naive choice of always running kernels on GPU, and to a 3.34x speedup on the
AMD dataset, where we use CPU times as baseline since they frequently outmatch GPU times on
this variant. For the task of Algorithm Classification, we instead achieve a test accuracy of 97.2%.

We compare the results of our methodology to both end-to-end approaches and pre-trained LMs of
code in Table 1 and visually in Fig. 3. Our model exhibits a minor performance drop on the DevMap
and Algorithm Classification tasks with respect to other pre-trained Transformer-based models, but it
achieves a considerable gain in terms of efficiency, with two orders of magnitude fewer parameters,
and outperforms pre-trained models with a comparable number of parameters. We further observe
that, while end-to-end solutions that achieve better results on DevMap exist, they lack generality,
resulting in a considerably inferior performance on Algorithm Classification. Finally, we observe that
the performance of GEPCode100k is still remarkable, considering the reduced number of parameters.
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Table 2: Ablation studies results.

Experiment name DevMap Accuracy

NVIDIA AMD

baseline .8594 ± .0090 .8735 ± .0110
aggr-concat-hex .8541 ± .0097 .8809 ± .0142
CLS-concat-hex .8671 ± .0084 .8768 ± .0118
CLS-META-hex .8891 ± .0069 .9285 ± .0055

Our experimental setup includes a server equipped with an Intel Xeon 5220 CPU (72 cores) and an
Nvidia Quadro RTX 6000 GPU. The average inference time is 23 milliseconds when utilizing the
GPU, compared to 239 milliseconds when using the CPU. Inference tests with CodeT5 on our setup
yielded results of 112.0 ms ± 0.3 µs on GPU and 557 ms ± 74 ms on CPU.

Overall, GEPCode places itself as a good trade-off between efficiency and effectiveness. We report
mean and standard deviation only for papers that include repeated experiments, ensuring a more
accurate comparison.

5.3 ANALYSIS

We empirically evaluate the design choices presented in the previous sections through additional
experiments. For all experiments, we first pre-train our GNN with the appropriate modifications
and then fine-tune the weights following the same setup of Section 5.1. We start from a baseline
that does not use [CLS] nor [META] nodes, instead concatenating normalized auxiliary inputs to a
final aggregation of all node representations after T message passing steps. In this experiment, we
also employ numerical encodings similar to those proposed by Perfograph (TehraniJamsaz et al.,
2023). Starting from this baseline, we gradually introduce the novel elements of our methodology:
i) aggr-concat-hex uses the hexadecimal numerical representation of Section 3.1; ii) CLS-concat-
hex adds the [CLS] node into the representation, collecting a context-independent global graph
representation. Auxiliary inputs are still included by concatenation at the end of message passing and
don’t influence the graph representation directly; iii) CLS-META-hex introduces [META] nodes
into the representation, allowing the creation of context-aware representations. Table 2 shows the
impact of this sequence of experiments on DevMap test accuracy.

We don’t observe definitive improvements from switching the baseline numerical encodings with
hexadecimal representations. However, our representation is compact and efficient, using only
two 8-dimensional vectors to represent any single-precision floating point number in the range
± ∼ 3.4× 1038 with an exact precision of up to 7 decimal digits. The size of Perfograph numerical
embeddings is instead variable and requires up to 5x larger vectors to represent a similar range.

All experiments, including baseline, aggr-concat-hex, CLS-concat-hex, and CLS-META-hex, incor-
porate contextual information. The key distinction between CLS-concat-hex and CLS-META-hex is
that the former concatenates contextual information to the final graph representation, while the latter
handles contextual information through META nodes. This approach integrates the contextual data
more effectively, rather than relegating its analysis solely to final layers.

Including the [CLS] and [META] nodes into our representation has instead a clear positive effect.
A T-test between the results of the aggr-concat-hex and the CLS-concat-hex experiments reveals
that the statistical significance of the observed difference might be small, with p-values of 0.078 and
0.67 on the NVIDIA and AMD variants respectively. However, the difference between CLS-concat-
hex and CLS-META-hex is statistically significant, with p-values smaller than 1%, motivating the
inclusion of both communication mechanisms at the same time.

Limitations We acknowledge that our system has one main limitation: it needs compilable source
code in order to generate the graph-based representation. Furthermore, large source code files could
impact the memory requirements of the model, as this would result in more nodes, messages and
updates throughout the message passing phase.
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6 CONCLUSIONS

In this paper we presented GEPCode, an efficient, graph-based language model of source code
that leverages graph representations to effectively capture the structural patterns of IR. We design
two components that expand upon previous representations: the [CLS] node aggregates global
features through a specialized network of connections, while [META] nodes represent external
contextual information and allow the network to produce specialized program embeddings. We also
propose a compact encoding that can be employed to process numerical information efficiently. This
representation facilitates the pre-training of our LM, allowing the utilization of both node-level and
graph-level tasks and reducing the discrepancies between the pre-training and fine-tuning phases.
Experimental results demonstrate that our LM is able to bridge the gap between the efficiency of task-
specific architectures and the generality of larger LMs, while using a limited number of parameters.
For future works, we are planning to test our model on a greater number of downstream tasks and to
study the impact of input graphs dimension.
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Table 3: DCG Dataset description, indicating subset sources and the number of source code, LLVM-
IR and graph files.

Name Cit. License C Files Compiled Graphs

Blas Blas BSD 3-Clause 300 300 216
bowtie2 Langmead et al. (2012) GPL-3.0 57 57 25
bwa-mem Vasimuddin et al. (2019) MIT 24 24 15
cBench Fursin (2014) LGPL 2.1 711 711 66
CLGen Cummins et al. (2017b) MIT 996 996 996
eigen Guennebaud et al. (2010) BSD 3-Clause 4, 998 4, 998 3,368
gemm_synth Ben-Nun et al. (2018) BSD 3-Clause 3, 700 3, 700 3,072
Gromacs Berendsen et al. (1995) LGPL-2.1 1, 249 1, 205 828
JotaiBench Kind et al. (2022) GPL-3.0 5, 535 5, 535 5,535
Linux Linux GPL-2.0 13, 920 13, 920 8,585
LLVM Lattner et al. (2004) Apache-2.0 21, 371 21, 371 17,598
MiBench Guthaus et al. (2001) MIT 40 40 38
OpenCV OpenCV BSD 3-Clause 442 442 254
POJ104 Mou et al. (2015) MIT 49, 816 49, 815 49,804
stencil_synth Ben-Nun et al. (2018) BSD 3-Clause 12, 800 12, 800 12,721
Tensorflow Abadi et al. (2015) Apache 2.0 1, 985 1, 985 683

Total 117,967 117,922 103,813

A VOCABULARY AND DATASET ANALYSIS

In order to create the vocabulary, we collected a large, heterogeneous collection of compilable C/C++
and LLVM-IR code sourced from a wide range of open-source projects and publicly available bench-
marks. This dataset includes over 100 k code samples, covering libraries for scientific computation,
biologically-oriented projects, and executable code from popular GitHub repositories. A summary of
the sources for the code samples is provided in Table 3.

We converted the code samples to graphs by either compiling the source code from scratch using
Clang (Clang), adapting the compilation procedure for each subset, or by downloading pre-compiled
LLMV-IR code files from available collections, such as the CompilerGym project (Cummins et al.,
2021a). The ProGraML Python library (Cummins et al., 2021b) was then used to generate graph
representations. We discarded source code files that resulted in compilation errors and LLVM-IR files
that took longer than five seconds to convert into graphs. Moreover, to ensure meaningful samples
and stabilize the training process considering memory constraints, we excluded graphs with fewer
than 5 or more than 3,000 nodes. These thresholds were selected on the basis of the distribution of
unfiltered graph nodes, ensuring that not more than 10% of the graphs would be removed.

After generating all graphs, we found that 99.5% of the nodes in the dataset could be represented
with a dictionary of only 341 tokens. We included the [CLS] and [META] tokens to represent
the corresponding nodes in our graph representation, and an additional [UNK] token, to map all
infrequent elements of the language, bringing the total size of the set to 344. This set is sufficiently
general, covering a significant portion of the nodes from other datasets as well: DevMap has only
4.97% of nodes not covered by the vocabulary, while POJ-104 has 1.05% and ExeBench has 0.55%.
Therefore, we employ this collection of tokens as our main vocabulary for all experiments.
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