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Abstract

This paper focuses on developing a more effective method of hierarchical propa-
gation for semi-supervised Video Object Segmentation (VOS). Based on vision
transformers, the recently-developed Associating Objects with Transformers (AOT)
approach introduces hierarchical propagation into VOS and has shown promis-
ing results. The hierarchical propagation can gradually propagate information
from past frames to the current frame and transfer the current frame feature from
object-agnostic to object-specific. However, the increase of object-specific infor-
mation will inevitably lead to the loss of object-agnostic visual information in deep
propagation layers. To solve such a problem and further facilitate the learning
of visual embeddings, this paper proposes a Decoupling Features in Hierarchical
Propagation (DeAOT) approach. Firstly, DeAOT decouples the hierarchical propa-
gation of object-agnostic and object-specific embeddings by handling them in two
independent branches. Secondly, to compensate for the additional computation
from dual-branch propagation, we propose an efficient module for constructing hi-
erarchical propagation, i.e., Gated Propagation Module, which is carefully designed
with single-head attention. Extensive experiments show that DeAOT significantly
outperforms AOT in both accuracy and efficiency. On YouTube-VOS, DeAOT can
achieve 86.0% at 22.4fps and 82.0% at 53.4fps. Without test-time augmentations,
we achieve new state-of-the-art performance on four benchmarks, i.e., YouTube-
VOS (86.2%), DAVIS 2017 (86.2%), DAVIS 2016 (92.9%), and VOT 2020 (0.622).
Project page: https://github.com/z-x-yang/AOT.

1 Introduction

Video Object Segmentation (VOS), which aims at recognizing and segmenting one or multiple objects
of interest in a given video, has attracted much attention as a fundamental task of video understanding.
This paper focuses on semi-supervised VOS, which requires algorithms to track and segment objects
throughout a video sequence given objects’ annotated masks at one or several frames.

Early VOS methods are mainly based on finetuning segmentation networks on the annotated frames [7,
32, 51] or constructing pixel-wise matching maps [10, 50]. Based on the advance of attention
mechanisms [5,48,53], many attention-based VOS algorithms have been proposed in recent years and
achieved significant improvement. STM [34] and the following works [11, 43, 44] leverage a memory
network to store and read the target features of predicted past frames and apply a non-local attention
mechanism to match the target in the current frame. Furthermore, AOT [61, 63, 65] introduces
hierarchical propagation into VOS based on transformers [8, 48] and can associate multiple objects
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(a) AOT-like hierarchical propagation (b) Decoupling features (ours) (c) Comparison

Figure 1: (a) AOT [63] hierarchically propagates (Prop)object-speci�cinformation (i.e., speci�c to
the given object(s)) into theobject-agnosticvisual embedding. (b) By contrast, DeAOT decouples
the propagation of visual and ID embeddings in two branches. (c) Speed-accuracy comparison. All
the results were fairly recorded on the same device, 1 Tesla V100 GPU.

collaboratively by utilizing the IDenti�cation (ID) mechanism [63]. The hierarchical propagation can
gradually propagate ID information from past frames to the current frame and has shown promising
VOS performance with remarkable scalability.

Fig. 1a shows that AOT's hierarchical propagation can transfer the current frame feature from an
object-agnostic visual embedding to an object-speci�c ID embedding by hierarchically propagating
the reference information into the current frame. The hierarchical structure enables AOT to be
structurally scalable between state-of-the-art performance and real-time ef�ciency. Intuitively, the
increase of ID information will inevitably lead to the loss of initial visual information since the
dimension of features is limited. However, matching objects' visual features, the only clues provided
by the current frame, is crucial for attention-based VOS solutions. To avoid the loss of visual
information in deeper propagation layers and facilitate the learning of visual embeddings, a desirable
manner (Fig. 1b) is to decouple object-agnostic and object-speci�c embeddings in the propagation.

Based on the above motivation, this paper proposes a novel hierarchical propagation approach for
VOS, i.e., Decoupling Features in Hierarchical Propagation (DeAOT). Unlike AOT, which shares the
embedding space for visual (object-agnostic) and ID (object-speci�c) embeddings, DeAOT decouples
them into different branches using individual propagation processes while sharing their attention
maps. To compensate for the additional computation from the dual-branch propagation, we propose
a more ef�cient module for constructing hierarchical propagation,i.e., Gated Propagation Module
(GPM). By carefully designing GPM for VOS, we are able to use single-head attention to match
objects and propagate information instead of the stronger multi-head attention [48], which we found
to be an ef�ciency bottleneck of AOT [63].

To evaluate the proposed DeAOT approach, a series of experiments are conducted on three VOS
benchmarks (YouTube-VOS [57], DAVIS 2017 [39], and DAVIS 2016 [38]) and one Visual Object
Tracking (VOT) benchmark (VOT 2020 [24]). On the large-scale VOS benchmark, YouTube-VOS,
the DeAOT variant networks remarkably outperform AOT counterparts in both accuracy and run-time
speed as shown in Fig. 1c. Particularly, our R50-DeAOT-L can achieve86.0% at a nearly real-time
speed,22.4fps, and our DeAOT-T can achieve82.0% at53.4fps, which is superior compared to AOT-
T [63] (80.2%, 41.0fps). Without any test-time augmentations, our SwinB-DeAOT-L achieves top-
ranked performance on four VOS/VOT benchmarks,i.e., YouTube-VOS 2018/2019 (86.2%/86.1%),
DAVIS 2017 Val/Test (86.2%/82.8%), DAVIS 2016 (92.9%), and VOT 2020 (0.622 EAO).

Overall, our contributions are summarized below:

• We propose a highly-effective VOS framework, DeAOT, by decoupling object-agnostic and object-
speci�c features in hierarchical propagation. DeAOT achieves top-ranked performance and ef�-
ciency on four VOS/VOT benchmarks [24,38,39,57].

• We design an ef�cient module, GPM, for constructing hierarchical matching and propagation. By
using GPM, DeAOT variants are consistently faster than AOT counterparts, although DeAOT's
propagation processes are twice as AOT's.
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2 Related Work

Semi-supervised Video Object Segmentation.Given a video with one or several annotated frames
(the �rst frame in general), semi-supervised VOS [52] requires algorithms to propagate the mask
annotations to the entire video. Traditional methods often solve an optimization problem with an
energy de�ned over a graph structure [2,4,49]. Based on deep neural networks (DNN), deep learning
based VOS methods have achieved signi�cant progress and dominated the �eld in recent years.

Finetuning-based Methods.Early DNN-based methods rely on �ne-tuning pre-trained segmentation
networks at test time to make the networks focus on the given object. Among them, OSVOS [7] and
MoNet [56] propose to �ne-tune pre-trained networks on the �rst-frame annotation. OnAVOS [51]
extends the �rst-frame �ne-tuning by introducing an online adaptation mechanism. Following
these approaches, MaskTrack [37] and PReM [32] further utilize optical �ow to help propagate the
segmentation mask from one frame to the next.

Template-based Methods.To avoid using the test-time �ne-tuning, many researchers regard the
annotated frames as templates and investigate how to match with them. For example, OSMN [60]
employs a network to extract object embedding and another one to predict segmentation based on
the embedding. PML [10] learns pixel-wise embedding with the nearest neighbor classi�er, and
VideoMatch [22] uses a matching layer to map the pixels of the current frame to the annotated frame
in a learned embedding space. Following these methods, FEELVOS [50] and CFBI(+) [62,64] extend
the pixel-level matching mechanism by additionally doing local matching with the previous frame,
and RPCM [58] proposes a correction module to improve the reliability of pixel-level matching.
Instead of using matching mechanisms, LWL [6] proposes to use an online few-shot learner to learn
to decode object segmentation.

Attention-based Methods.Based on the advance of attention mechanisms [5,48,53], STM [34] and the
following works (e.g., KMN [43] and STCN [11]) leverage a memory network to embed past-frame
predictions into memory and apply a non-local attention mechanism on the memory to propagate
mask information to the current frame. Differently, SST [17] proposes to calculate pixel-level
matching maps based on the attention maps of transformer blocks [48]. Recently, AOT [61,63,65]
introduces hierarchical propagation into VOS and can associate multiple objects collaboratively with
the proposed ID mechanism.

Visual Transformers. Transformers [48] was initially proposed to build hierarchical attention-based
networks for natural language processing (NLP). Compared to RNNs, transformer networks model
global correlation or attention in parallel, leading to better memory ef�ciency, and thus have been
widely used in NLP tasks [15, 40, 46]. Similar to Non-local Neural Networks [53], transformer
blocks compute correlation with all the input elements and aggregate their information by using
attention mechanisms [5]. Recently, transformer blocks were introduced to computer vision and
have shown promising performance in many tasks, such as image classi�cation [16,30,47], object
detection [8]/segmentation [25,35,54,66], image generation [36], and video understanding [1,26,31].

Based on transformers, AOT [63] proposes a Long Short-Term Transformer (LSTT) structure for
constructing hierarchical propagation. By hierarchically propagating object information, AOT
variants [63] have shown promising performance with remarkable scalability. Unlike AOT, which
shares the embedding space for object-agnostic and object-speci�c embeddings, we propose to
decouple them into different branches using individual propagation processes. Such a dual-branch
paradigm avoids the loss of object-agnostic information and achieves signi�cant improvement.
Besides, a more ef�cient structure, GPM, is proposed for hierarchical propagation.

3 Rethinking Hierarchical Propagation for VOS

Attention-based VOS methods [11, 34, 43, 63] are dominating the �eld of VOS. In these methods,
STM [34] and following algorithms [11, 43] uses a single attention layer to propagate mask in-
formation from memorized frames to the current frame. The use of only a single attention layer
restricts the scalability of algorithms. Hence, AOT [63] introduces hierarchical propagation into VOS
by proposing the Long Short-term Transformer (LSTT) structure, which can propagate the mask
information in a hierarchical coarse-to-�ne manner. By adjusting the layer number of LSTT, AOT
variants can be ranged from state-of-the-art performance to real-time run-time speed.
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Let Q 2 RHW � C andK; V 2 RT HW � C denote the query embedding of the current frame, the
key embedding, and the value embedding of the memorized frames respectively, whereT, H ,
W, C represent the temporal, height, width, and channel dimensions. The formula of a common
attention-based VOS propagation is,

Att (Q; K; V ) = Corr (Q; K )V = sof tmax (
QK tr
p

C
)V; (1)

where the matching (or attention) map is calculated by the correlation function,Corr (� ; � ).

To formulate a hierarchical propagation withL layers, we further de�neX t
l 2 RHW � C as the

input feature embedding ofl-th propagation layer (l 2 f 1; 2; :::; Lg) at t frame. Moreover,X m
l =

Concat(X m 1
l ; :::; X m T

l ) andY m = Concat(Y m 1 ; :::; Y m T ) stands for the feature embeddings and
object masks in the memorized frames with indicesm = f m1; :::; mT g. Then, the formulation of
l-th propagation layer in AOT's hierarchical propagation can be simpli�ed as,

eX t
l = Att (X t

l W K
l ; X m

l W K
l ; X m

l W V
l + ID (Y m )) ; (2)

whereID (� ) denotes the IDenti�cation (ID) embedding [63] function used to encode masks. Besides,
W K

l 2 RC � Ck andW V
l 2 RC � Cv are trainable parameters for projecting features into matching

space and propagation space, respectively. For simplicity, the formulation keeps only the parts related
to mask propagation in LSTT.

Obviously, before all the propagation layers, the current frame feature,X t
1, is an object-agnostic

feature extracted from an image encoder (e.g., ResNet-50 [21]). Nevertheless, the mask information
ID (Y m ) will be gradually and hierarchically propagated into the current frame, and the output
feature, eX t

L , will become object-speci�c and can be decoded into the ID/mask prediction by a
decoder network (e.g., FPN [27]). In other words, step by step, the hierarchical propagation transfers
the current frame feature,X t

l , from an object-agnostic visual embedding to an object-speci�c ID
embedding, as demonstrated in Fig. 1a.

Figure 2: The performance of
AOT [63] will be degraded by in-
creasing ID's maximum number.

Intuitively, the absorption of object-speci�c ID information will
inevitably lead to the oblivion of object-agnostic visual infor-
mation withinX t

1 since the channel dimension ofX t
l is limited.

Such a phenomenon can also be observed by increasing the ID
information directly. As shown in Fig. 2, the performance of
AOT heavily drops as we increase the information amount of
ID (Y m ) by containing more IDs inside. On the other hand, the
signi�cant progress of VOS in recent years is mainly based on
matching object-agnostic visual embeddings (e.g., pixel-level
matching methods [58,62,64] and single-layer attention-based
methods [11,34,43] mentioned above). Hence, we argue that
the loss of visual information in deeper propagation layers
limits the performance of hierarchical propagation.

How to design a hierarchical propagation structure which can
keep or even re�ne the initial object-agnostic visual informa-
tion? Fig. 1b shows a simple, straightforward, and desirable
approach,i.e., propagating object-agnostic and object-speci�c information in two different branches
(Visual Branch and ID Branch). The object-agnostic branch is responsible for gathering visual
information, re�ning visual features, and matching objects. By contrast, the object-speci�c branch is
responsible for absorbing ID information propagated from memorized frames. These two branches
share the attention maps used to match objects and propagate features. Compared to the single-
branch LSTT, our dual-branch approach can keep and further re�ne visual features in the hierarchical
propagation and thus can further facilitate the learning of visual embeddings.

4 Decoupling Features in Hierarchical Propagation

This section will introduce a new framework, Decoupling Features in Hierarchical Propagation
(DeAOT), for solving semi-supervised video object segmentation. We show an overview of DeAOT
in Fig. 3a. Given a video with a reference frame annotation, DeAOT propagates the annotation
to the entire video frame-by-frame. The multi-object annotation is encoded by the IDenti�cation
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(a) Overview (b) Gated Propagation Module (GPM) (c) GP function

Figure 3: (a) Overview. Decoupling Features in Hierarchical Propagation (DeAOT) decouples the
propagation of visual embedding and IDenti�cation (ID) embedding [63] in two branches,i.e., Visual
Branch and ID Branch. The propagation module is the proposed ef�cient GPM module. (b) A
demonstration of the Gated Propagation Module (GPM) in both Visual and ID branches. LN: Layer
Normalization [3]. (c) We propose to use the Gated Propagation (GP) function to construct GPM.
DW-Conv: depth-wise convolution. Mul: matrix multiplication.

(ID) mechanism [63]. Different from AOT, DeAOT decouples the hierarchical propagation of
visual embedding and ID embedding,i.e., DeAOT propagates these two embeddings in two branches.
Furthermore, DeAOT constructs the hierarchical propagation by using the proposed Gated Propagation
Module (GPM), which is more ef�cient and effective than the LSTT block used in AOT.

4.1 Hierarchical Dual-branch Propagation

Different from the previous attention-based VOS methods [34,43,44,63], DeAOT propagates objects'
visual features and mask features in two parallel branches. In detail, the visual branch is responsible
for matching objects, gathering past visual information, and re�ning object features. To re-identify
the objects, the ID branch reuses the matching maps (attention maps) calculated by the visual branch
to propagate the ID embedding (encoded by the ID mechanism [63]) from past frames to the current
frame. Both the branches share the same hierarchical structure withL propagation layers.

Visual Branch is responsible for matching objects by calculating attention maps on patch-wise visual
embeddings. The visual embeddings in the memorized frames will be propagated to the current
frame regarding the attention maps. Since the propagation is not directly related to the object-speci�c
ID embedding, the visual branch can learn to re�ne visual embeddings to be more contrastive but
avoid being biased toward the given object-speci�c information. LetI denote visual embeddings, we
modify Eq. 2 into a layer of object-agnostic visual propagation,

eI t
l = Att (I t

l W K
l ; I m

l W K
l ; I m

l W V
l )

= Corr (I t
l W K

l ; I m
l W K

l )I m
l W I

l ;
(3)

which doesn't leverage the object-speci�c ID embedding,ID (Y m ). Thus, the visual branch can
learn to keep and re�ne the visual embedding in the hierarchical propagation.

ID Branch is designed for propagating the object-speci�c information from past frames to the current
frame. The prediction of object-speci�c segmentation is essential for VOS and can not be processed
by the above object-agnostic visual propagation branch. LetM denote the object-speci�c embeddings
in our identi�cation branch, the formulation of our object-speci�c ID propagation is,

fM t
l = Att (I t

l W K
l ; I m

l W K
l ; M m

l W V
l + ID (Y m ))

= Corr (I t
l W K

l ; I m
l W K

l )(M m
l W V

l + ID (Y m )) ;
(4)

whereW V
l 2 RC � Cv is a trainable projection matrix for the identi�cation propagation. Particularly,

the identi�cation propagation shares the same attention maps,Corr (I t
l W K

l ; I m
l W K

l ), from the
visual branch, since the identi�cation of objects is mainly based on objects' visual features instead of
their ID indices. Without the visual information, the tracking of objects is inapplicable.
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