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ABSTRACT

Mixed-precision compression reduces model size and enhances inference effi-
ciency, yet mainstream research focuses on minimizing accuracy loss from param-
eter compression. However, experimental evidence and observations often reveals
performance improvements under specific conditions, challenging the assumed
performance-efficiency tradeoff. These gains, often attributed to fortuitous align-
ments, lack systematic explanation and exhibit instability in performance across
models and datasets. This work investigates these phenomena using a loss-driven
framework based on total differential analysis, addressing three interconnected
questions: (1) What conditions enable mixed-precision compression to enhance
performance? (2) How can we model and control performance instability to en-
sure lossless outcomes? (3) What are the theoretical boundaries for achieving
lossless compression? We take two mainstream compression methods as exam-
ples, parameter decomposition and quantization and propose a loss-driven(LoD)
theoretical framework. For decomposition, we optimize layer-wise ranks within
lossless neighborhoods. For quantization, we formulate compression as a grouped
knapsack optimization problem. Extensive experiments across diverse datasets
and architectures validate consistent, stable gains. And the code will be released.

1 INTRODUCTION

With the rapid growth in scale and complexity of deep neural networks, demands on memory and
computational resources have surged, making model compression a critical technique for accelerat-
ing inference and reducing deployment costs. Among various approaches, post-training compres-
sion has gained popularity due to its low overhead and compatibility with existing training pipelines.
Within this context, mixed precision compression stands out: it applies heterogeneous compression
strategies across layers—such as assigning different quantization bit-widths Banner et al. (2018);
Liu et al. (2021a); Hu et al. (2023); Zhang et al. (2024) or decomposition Bisgard (2020) ranks ac-
cording to layer sensitivity—to flexibly allocate resources while preserving accuracy. Representative
approaches include multi-point quantization that linearly combines discrete values to approximate
full-precision weights Liu et al. (2021a). AWQ Lin et al. (2024) which jointly calibrates weights
and activations to improve low-bit robustness. Together, these methods demonstrate the potential of
mixed compression to achieve an optimal performance–efficiency trade-off.

Conventional wisdom views compression as inherently lossy, implying an unavoidable trade-off
between efficiency and accuracy. However, emerging empirical evidence challenges this paradigm,
revealing that compression can sometimes preserve or even enhance accuracy. For instance, as
shown in Fig. 1, DAC Li et al. (2019) reproduces baseline accuracy after decomposing convolutional
layers; MAESTRO Horváth et al. (2024) achieves a 0.72% gain on ResNet-50 via low-rank ordered
decomposition; and RQ Louizos et al. (2019) and CET Zhang et al. (2025) employs bit-allocation
strategies to surpass baselines in some cases. These methods highlight compression’s potential to
refine parameters under similar compression rates, improving generalization in specific settings.

Yet, this serendipity masks a deeper issue: the underlying mechanisms remain largely unexplained,
with academia often attributing such gains to fortuitous alignments or unexplained anomalies rather
than principled processes. Moreover, these improvements are not universally stable, frequently vary-
ing across models, datasets or other conditions, which hinders reliable application. This instability
raises a pivotal question: how can we systematically model and control it to transform empirical
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Figure 1: The traditional trade-off between compression and accuracy has been shaken by recent
findings. The chart on the right shows that existing methods can occasionally achieve ”lossless”
compression under certain conditions, but its stability and interpretability remain challenges.

luck into predictable outcomes? To address this, we propose LoD, a unified loss-driven differen-
tiable framework, focusing on three key questions:

1) Under what conditions can mixed precision compression yield performance gains?

2) How can we effectively model the instability in compression performance? Is first-order
analysis sufficient, or does second-order analysis better control these fluctuations?

3) How can we theoretically characterize the boundaries of lossless compression? At what
compression levels can performance gains be achieved?

To answer these questions, we propose LoD, a model-agnostic, loss-driven differentiable framework.
We then instantiate LoD on two representative mixed precision techniques, Tensor Decomposition:
LoD integrates loss-preserving neighborhoods with low-rank constraints to automatically determine
optimal per-layer ranks; Quantization: LoD reformulates the bit-width search as a grouped knap-
sack optimization within a lossless region. Empirical results demonstrate that LoD consistently
enables performance improvements under both compression schemes, providing the first rigorous
explanation for these elusive gains. Our contributions are as follows:

• We provide the systematic theoretical exploration of performance gains in mixed precision
compression, shifting from empirical luck to predictable mechanisms.

• From differential neighborhoods, we formally delineate the scope and relative impact of
first- and higher-order terms, offering analyzable boundaries for lossless compression.

• We propose a model-agnostic, loss-driven analytical framework, LoD, and apply it to pa-
rameter decomposition and model quantization. Empirical studies across diverse tasks and
model architectures demonstrate its consistent effectiveness and broad applicability.

2 LOSS-DRIVEN ANALYTICAL FRAMEWORK

This section explores the mechanisms underlying performance gains from compression by address-
ing 3 questions.

2.1 UNDER WHAT CONDITIONS CAN MIXED PRECISION COMPRESSION LEAD TO
PERFORMANCE GAINS?

Consider an n-layer neural network with parameters w = (wn, . . . , w1) and empirical loss:

f(w) =
1

m

∑
(xi,yi)∈D

ℓ(modeln(xi, w), yi), model(x) = h1(h2(. . . hn(hn+1, wn) . . . , w2), w1) (1)

where D denotes the dataset, m its size, ℓ the per-sample loss, and hi the network layers. This
formulation is general and independent of the specific network architecture or compression method.

Compression techniques, such as quantization and decomposition, introduce perturbations to
weights and activations. Accordingly, the post-compression loss for a sample is expressed as:

2
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Figure 2: The figure shows three regimes in perturbation magnitude φ: Gradient (first-order), Hes-
sian (second-order), and High-order / No-Taylor (higher-order). Markers are per-layer empirical
thresholds φmax; beyond this scale higher-order terms cause performance instability.

ℓ̄(w, xi, yi) = L(h1(h2(. . . hn−1(hn(hn+1+ϵn, wn+δn)+ϵn−1, wn−1+δn−1)+· · ·+ϵ1, w1+δ1), yi), (2)

where δi and ϵi denote the compression-induced errors in hn’s weights and its activations. This
perspective enables the analysis of compression effects using perturbation theory and differential.

For any network layer i, assuming its activation and gradient vectors have bounded second-order
moments, by applying the total differential, we obtain

min
ϵ∈E

f̄(w)− f(w) =
1

m

∑
(xj ,yj)∈D

n∑
i=1

∂ℓ

∂hi+1
· ϵi +

∂ℓ

∂wi
· δi +

1

2
(ϵi, δi)H(ϵi, δi)

⊤ +O(||(ϵi, δi)||3) (3)

where H represents the Hessian matrix and O(||(ϵi, δi)||3) represents the high-order term, · is inner
product and ∗ is the scalar product, f̄(w) = 1

m

∑
ℓ̄(·). Eq. 3 directly links compression and model

performance. Thus, we optimize the above expression to make f̄(w)− f(w) < 0 to obtain the gain.

Basis 1 The total differential relies on a linear approximation assumption, valid only when the
changes in the function’s variables are sufficiently small.

The constraint lies in the magnitude of compression-induced noise. To theoretically quantify the
loss shift caused by perturbations, we define a local perturbation neighborhoodN (x) that measures
the discrepancy between the actual loss change and its total differential approximation.

Definition 1 (Perturbation Neighborhood) For a given compression level k, we define the pertur-
bation neighborhood as the discrepancy between the loss change and its differential approximation:

N (θki ) =
∣∣∣ℓ̃(w + θki , xi, yi)−

(
ℓ(w, xi, yi) +∇ℓ(w)⊤θki + 1

2
(θi)

⊤Hθi +O(∥θi∥n)
)∣∣∣, (4)

where θki = δki , ℓ̃ = ℓ for weight perturbations, or θki = ϵki , ℓ̃ = ℓ̂ for activation perturbations.

The parameter k controls the compression level, such as bit-width (e.g., 4/8-bit) or rank. When k
denotes rank, larger values correspond to lower compression. The expansion in Definition 1 de-
composes the loss shift into first-order (gradient), second-order (Hessian), and higher-order contri-
butions, each scaling with the perturbation magnitude. The perturbation neighborhood N (θki ) thus
quantifies how well the total differential approximates the true loss change under compression.

2.2 HOW WE EFFECTIVELY MODEL THE INSTABILITY IN COMPRESSION PERFORMANCE?

Performance instability stems from nonlinear effects in Eq. 3, particularlythe second-order term
,(ϵi, δi)⊤H(ϵi, δi) and higher-order, which amplify loss fluctuations when perturbations exceed lin-
ear regimes. To answer the significance of higher-order terms, we first carry out a theoretical deriva-
tion. Specifically, we analyze perturbations of the separable form ∆ = φu (direction u, scalar
magnitude φ). By differential expansion (Eq. 3) ∆L ≈ φg⊤u + 1

2φ
2u⊤Hu + R3(φ, u), with

g = ∇wℓ and remainder R3 = O(φ3). Requiring ∆L < 0 yields the quadratic condition
1
2
(u⊤Hu)φ2 − |g⊤u|φ+R3 < 0. (5)

3
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Denote a = |g⊤u| and b = 1
2u

⊤Hu. If R3 is negligible the positive root gives the upper bound

φmax ≈ 2|g⊤u|
u⊤Hu

, (6)

Eq. 6 defines the maximal perturbation scale φmax under which the first-order approximation dom-
inates. When φ > φmax, the second-order curvature term becomes dominant and amplifies the
performance fluctuations. To make this bound operational we estimate its ingredients on a small cal-
ibration set: g is obtained by averaging per-layer gradients, u⊤Hu is estimated via Hessian-vector
products (or an empirical-Fisher proxy when Hv is too costly). Plugging these estimates yields a
numeric φmax for each layer. Please see the Appendix for the complete algebraic derivation.

We then validate the analytic threshold by controlled perturbation experiments: for increasing per-
turbation magnitudes φ (in the chosen norm) we record the proportion of the observed loss change
explained by the first-order term. The results, summarized in Fig. 2, show distinct regimes for
activations and weights and provide the empirical critical magnitudes reported below.

• For activation perturbations, when |ϵ| < 10−3, the first-order term explains over 90% of the
observed loss shift, while the second- and higher-order terms contribute negligibly. When 10−3 ≤
|ϵ| < 8 × 10−2, the second-order term’s contribution becomes significant, warranting its inclusion
if high approximation fidelity is desired. However, when 8 × 10−2, higher-order terms become
non-negligible, and the approximation loss of first- and second-order terms degrades rapidly.

• For weight perturbations, we observe a higher tolerance to noise. When |ϵ| < 8 × 10−3, the
first-order gradient term remains dominant, even though a well-trained model ideally has vanishing
weight gradients. In practice, small but non-zero gradients persist and must be accounted for. When
8 × 10−3 ≤ |ϵ| < 2 × 10−1, second-order effects start to manifest, though still moderate. Only
when |ϵ| < 2 × 10−1 do higher-order terms begin to meaningfully affect the loss, primarily due to
compounding curvature effects.

Despite the theoretical advantages of including second-order terms (e.g., curvature-aware approxi-
mations), we choose to truncate the expansion at the first order in our method. The decision is based
on 3 key observations: (1) The marginal gain from second-order terms is often negligible—as con-
firmed by our experiments, where the second-order error contributed less than 10−5 to the loss; (2)
In decomposition settings, low-rank approximations distort the original covariance structure, lead-
ing to unreliable Hessian estimates; (3) Second-order terms introduce substantial computational and
memory overhead. LoD can give an operational first-order dominating radius φmax, which serves
as an empirical threshold for determining whether the first-order approximation is valid.

Answer: Within the first-order range, the Eq. 3 is updated to 1
m

∑
(xj ,yj)∈D

n∑
i=1

∂ℓ
∂hi+1

· ϵi +

∂ℓ
∂wi
· δi. Choosing ϵ and δ in the opposite direction of the corresponding gradients leads to

a lower loss than the full-precision model. Concretely, for each component i, choosing ϵi =
−η sign( ∂ℓ

∂hi+1
),δi = −η sign( ∂ℓ

∂wi
), with a suitably small compression step size η, ensures

every inner product is negative. With sufficiently small perturbations, such gradient-opposing
choices allow mixed precision compression to achieve stable gains over the original model.

2.3 THEORETICAL CHARACTERIZATION OF LOSSLESS COMPRESSION BOUNDARIES

To characterize the conditions for lossless compression, we model the noise as a perturbation vector
e applied to activations. Let p = ∇ht+1

ℓ = [p1, . . . , pk]
⊤ and e = [e1, . . . , ek]

⊤, assuming pi, ei
i.i.d. entries and independence respectively, abbr. p, e. The induced loss change is approximated by
∆ℓ ≈ p⊤e =

∑k
i=1 piei. Its expectation and variance satisfy

E[p⊤e] =

k∑
i=1

E[pi]E[ei] = kE[p]E[e]. (7)

The variance in general is

Var(p⊤e) =

k∑
i=1

Var(piei) = k
(
Var(p)Var(e) + Var(p)E[e]2 + Var(e)E[p]2

)
, (8)
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To ensure an expected reduction in loss, we require E[p⊤e] < 0. In practice, this is achieved by
selecting rounding directions or rank-dependent noise so that E[p] opposes E[e]. Applying Cheby-
shev’s inequality, we obtain a high-probability bound on failure to reduce loss:

P (p⊤e ≥ 0) ≤ Var(p⊤e)

(E[p⊤e])2
=

Var(p)Var(e) + Var(p)E[e]2 +Var(e)E[p]2

kE[p]2E[e]2
. (9)

This bound defines a lossless-compression regime: if the denominator dominates the numerator,
the failure probability becomes negligible. Otherwise, the perturbation magnitude must be reduced
(e.g., via higher bit-width or rank). For example, in INT8 quantization, each activation is mapped to
one of 256 discrete levels. The per-element perturbation ei has extremely small variance Var(e) ≈
(0.5/127)2

3 . Typical activation gradients satisfy E[p] < 10−1. Taking channel counts > 104, the
failure probability falls below 10−3.

3 LOD QUANTIZATION AND DECOMPOSITION

Decomposition. Guided by LoD, we address decomposition as a rank-deficiency problem: the rank
of each weight matrix is selected to minimize the loss shift within the differential neighborhood. For
efficiency, we employ a low-rank factorization with an inequality constraint:

min
δk

f̄(w)− f(w) ≈ 1

m

n∑
i=1

∑
(xj ,yj)∈D

(
gi|δki |2 cos θi

)
+ λ

n∑
i=1

N (δki ) (10)

We aim to minimize the additional loss induced by a low-rank perturbation δk = W − LR⊤ in
each layer. Specifically, the optimization seeks δk that minimizes the weighted projection onto the
gradient,

∑
i gi|δki |2 cos θi, where gi = ||∂ℓ/∂wi||2 and θi is the angle between δki and the gradient

∂ℓ/∂wi, thereby encouraging perturbations along the gradient-negative direction to reduce loss. The
perturbation is constrained within a parameter-wise neighborhood |δki,j | ≤ τi,j , given in Fig. 2, and
restricted to a low-rank subspace Sk = span{u1, ..., uk} with 0 < k < rankmax = NM

N+M (N and
M are the dimensions of the matrix), while an additional penalty term λ

∑
iN (δki ) controls the

amplitude of each perturbation. This formulation jointly captures the directionality, magnitude, and
rank properties of the perturbation to efficiently minimize loss.

Algorithm 1 Layer-wise Optimal Rank Selection

Input: Neural network M with n layers, maximum rank rankmax, tolerance τ
Output: Optimal ranks {ka}

1: for each layer Layera in M do
2: Initialize candidate list A← ∅
3: for c = 1, . . . , rankmax do
4: Compute rank-c subspace Sc = span{u1, . . . , uc}
5: Generate δc ∈ Sc with |δci,j | ≤ τ
6: Align along gradient-negative direction: δci ← −sign(δci ·Gi) · δci
7: Compute projected loss L(δc)
8: if L(δc) < ϵ then
9: Record c in A and early stop

10: end if
11: end for
12: Select optimal rank: ka = minA
13: end for
14: return {ka}

Algorithm 1 generates candidate perturbations in each rank-c subspace (obtained via SVD), aligning
them with the negative gradient, evaluating the projected loss, and selecting the minimal rank satis-
fying the loss threshold ϵ. This ensures that the chosen ranks both respect the low-rank structure and
reduce loss, in accordance with LoD principles. For more implementation details, see the appendix.

Quantization. We propose a novel mixed precision quantization method grounded in the Loss-
driven (LoD) framework, which addresses two key challenges in post-training quantization: (1) how

5
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to achieve lossless or near-lossless quantization in mixed precision settings, and (2) how to efficiently
select the optimal bit-width for each layer, a known NP-hard problem. For the first challenge,
LoD quantization is applied for first-order analysis, ensuring lossless quantization within the first-
order bounds. The second challenge is reformulated as a group knapsack problem, which is solved
efficiently using dynamic programming. In the LoD framework, the loss function is treated as the
”value P ”, each layer i is considered a ”group” with one bit-width j choice per group, and the
model size is treated as the ”knapsack capacity W ”. This transforms the original problem into a
low-computation group knapsack problem, where the goal is to select the optimal bit-width for each
layer to minimize loss while keeping the quantized model size within the specified capacity C.

min

n∑
i=1

P [i][j] s.t.

n∑
i=1

W [i][j] < C, j ∈ [1, k], j ∈ Z (11)

where n is the number of model layers. The problem scale of the grouped knapsack is very small,
usually less than n ∗ k, and has a significant efficiency advantage. The overall process of our pro-
posed method is shown in Algorithm 2. In the algorithm, ϵ and δ denote the quantization noise of

Algorithm 2 Lossless Mixed Precision Search Grouped Knapsack Algorithm

1: Input: Neural network M with n layers, quantization levels [q1, q2, ..., qk], maximum error
errormax, calibration dataset D

2: Output: Cost matrix P , weight matrix W of size n× k
3: Calibrate network M with dataset D to collect data distribution
4: for each qj in [q1, q2, ..., qk] do
5: for each Layeri in M do
6: Calculate model size W [i][j] at qj
7: Compute ||ϵi|| and scaleinput for Layeri
8: Calculate slope =

finput(M ;scaleinput,i)−f(M)
scaleinput

9: Compute fluc = fweight(M ; scaleweight, i)− f(M)
10: if ∥fluc∥ < errormax then
11: Update P [i][j] = slope× ||ϵi||√

size(ei)

12: else
13: Compute ||δi|| and scaleweight

14: Update P [i][j] = slope× ||ϵi||√
size(ϵi)

+ fluc
scaleweight

× ||δi||√
size(δi)

15: end if
16: end for
17: end for
18: return P , W

activations and weights, and Scale is the quantization parameter. The slope represents the gradi-
ent magnitude, f(M) the loss of model M , and fweight/input(M ; , noise, i) the loss when injecting
noise into layer i’s weights or inputs. Quantization directions may be positive or negative. We
set the quantization level in Algorithm 2 to k = 4 (2/4/8/16 bit), yielding a total complexity of
O(nk · feature). Based on the P and W matrices, the optimization in Eq. 11 can then be solved
via standard dynamic programming.

4 EXPERIMENT

4.1 DATASETS AND DETAILS.

Datasets. The ImageNet-1K dataset Krizhevsky et al. (2017) consists of 1.28 million training and
50K validation images. ImageNet-1K is usually used as the benchmark for model compression. The
Stanford Question Answering Dataset (SQuAD) Rajpurkar et al. (2016) is a collection of question-
answer pairs derived from Wikipedia articles. In SQuAD, the correct answers to questions can be any
sequence of tokens in the given text. MNLI Williams et al. (2017) is a dataset for natural language
reasoning tasks. Its corpus is a collection of textual implication annotations of sentences through
crowdsourcing. The task is to predict whether the premise sentence and the hypothesis sentence are
logically compatible (entailment, contradiction, neutral). MMLU Hendrycks et al. (2020) evaluates

6
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large language models on 57 subjects across STEM, humanities, and social sciences, requiring broad
knowledge and reasoning ability.

Details. The LoD scheme does not involve fine-tuning or retraining. We utilize the VGG Simonyan
& Zisserman (2014), MobileNet Howard (2017), ResNet He et al. (2016) series (including ResNet-
18, 34, and 50) to determine the error bounds depicted in Fig. 2. In the implementation, error bounds
can be flexibly computed using Eq. 4 across various models on multiple datasets. Experiments
show that, although the error bounds vary, the majority of models fall within this defined range. The
parameters errormax and γ are set to approximately 10−4 in the algorithm. Quantization parameters
are calculated using the ACIQ method. The validation set of ImageNet is used as the calibration set,
where we check gradients without updating the weights. To ensure fairness, all experiments are
conducted under identical optimization settings and executed on two NVIDIA A800 GPUs. The
models are implemented based on pre-trained full-precision configurations in PyTorch.

4.2 ABLATION

Compressed Noise Bounds. Theoretical compression error bounds depend critically on model
sensitivity to perturbations. High sensitivity restricts the compressible range, as large perturbations
violate first-order approximation assumptions, impeding stable lossless compression.

To evaluate this, we calculate the upper bound of the first-order approximation error Nϵk under
different activation perturbations ϵ using Eq. 4. Fig. 3a reports the computed values across several
representative models on ImageNet. These values reflect the deviation between actual loss and
its first-order predicted counterpart. Smaller values indicate that first-order approximation is more
accurate. Experiments demonstrate that for small noise (e.g., ϵ ≤ 10−3), LoD’s first-order estimate
closely matches observed loss, indicating negligible second-order effects.

For instance, to ensure the loss change is smaller than 6 ∗ 10−5 (the smallest positive number repre-
sentable in FP16), it suffices to keep ϵ <

√
0.00006. In this case, higher-order terms can be safely

ignored and first-order estimates dominate. This suggests that the theoretical bounds not only re-
flect model robustness but also serve as a practical criterion for determining whether LoD-based
quantization is appropriate for a given model.

ResNet-18 ResNet-34 ResNet-50 ResNet-101 BERT

0.005

0.01

0.015

0.02

0.025

0

[1e-1] [8e-2] [1e-2] [1e-3] [1e-4] [1e-5]

1e-3 1e-2

2e-1 1

8e-2Weight: δ 

Activation: ε 

 Gradient 

8e-3

Hessian

High-order

Gradient 

Hessian

High-order

No-Taylor

No-Taylor

Gradient

Compression 

Noise1

Compression 

Noise2

Tradeoff

Compression Accuracy

Traditional perspective

Lossless

Compression Accuracy

RQ

BERT ResNet50 ConvNeXtMethod

DAC

Chenna

Zhang

Maestro

CET

LoD (Ours)

VGG16

0/6

1/6

1/6

1/6

1/6

2/6

2018

2019

2023

2023

2024

2025

New observations 

Lossless
 Rate

ResNet18 Swin_T

6/6

Model Size100% 0

Performance

Loss Curve

V
al

ue

LoD

M
od

el
 L

os
s

1.021

0.921

Rank

SVD

SVD

ResNext-50 -Ours
ResNext-50 -SVD

Original Model Loss

50 75 100 125 150 175 200 225

LoD

Figure 3: Left(a) Computed neighborhood Nϵk under different activation noises ϵ; color denotes
noise level, y-axis shows neighborhood magnitude. Middle(b) and Right(c) LoD performance and
loss curves for quantization and decomposition.

Why 2-bit Quantization Is Avoided. Although gradients in well-trained models are near zero, 2-
bit quantization often introduces noise around 10−1—exceeding the first-order neighborhood and
causing unstable neighborhood change in Fig. 3a. In contrast, 4-bit and 8-bit quantization induce
much smaller noise (< 5× 10−3), remaining within controllable bounds. Therefore, LoD primarily
uses 4-bit and 8-bit for stability, selectively applying 2-bit only to layers with sufficient tolerance.

4.3 EVALUATION OF LOD

To rigorously assess the effectiveness of LoD, we perform decomposition and quantization experi-
ments alongside standard benchmarks.

Gains Brought by Decomposition. As shown in Table 1, we apply LoD to decompose various
models Liu et al. (2021b; 2022) on ImageNet, achieving consistent loss reduction across both con-
volutional and transformer-based architectures. Unlike quantization, decomposition changes the
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Table 1: LoD-Decomposition consistently improves performance across both CV and NLP tasks.
Acc. and Entropy represent accuracy and cross entropy (%). Compress indicates compression rate.

Model / Task Top-1 / Acc ↑ Top-5 / EM / Acc ↑ Entropy ↓ ±std Compress. ↓
Swin S (ImageNet) 81.08→ 81.13 95.61→ 95.61 81.19→ 81.00 ±0.004 ↓43%
Swin T (ImageNet) 82.78→ 82.78 96.29→ 96.33 73.97→ 71.34 ±0.073 ↓29%
VGG16 (ImageNet) 69.20→ 69.43 88.90→ 88.94 114.54→ 114.22 ±0.011 ↓67%

VGG19 BN (ImageNet) 74.21→ 74.22 91.84→ 91.89 104.26→ 102.14 ±0.041 ↓43%
ResNet-50 (ImageNet) 76.13→ 76.10 92.86→ 92.90 96.18→ 95.05 ±0.016 ↓56%

ConvNeXt L (ImageNet) 84.12→ 84.12 96.87→ 96.88 77.09→ 76.91 ±0.008 ↓33%
BERT base (SQuAD) 85.74→ 85.67 80.49→ 80.42 44.61→ 44.60 ±0.000 ↓45%

BERT base (MNLI Val/Test) 82.77→ 82.78 83.91→ 83.92 2.89→ 2.89 ±0.004 ↓45%
TinyLlama (MMLU) 26.93→ 27.01 - - ↓22%

Table 2: Comparison of Full-Prec (Full-Precision) and LoD-Quantized Models Across Tasks. LoD
uses 2/4/8 bit mixed precision quantization. Acc and Entropy represent accuracy and cross entropy
(%). Compress indicates compression rate, std represents standard deviation.

Task Model Metric ↑ Full Prec. Ours Entropy ↓ ±std Compress. ↓
MNIST CNN Top-1 97.51 97.66 7.92→ 7.86 ±0.019 ↓73%

CIFAR

VGG13 Acc. 73.69 74.09 127.26→ 125.03 ±0.062 ↓74%
MobileNet Acc. 66.21 66.59 156.53→ 156.31 ±0.000 ↓69%
ResNet-14 Acc. 86.68 87.23 36.34→ 35.76 ±0.016 ↓56%

MobileNet V2 Acc. 62.44 62.88 163.58→ 162.45 ±0.023 ↓71%

ImageNet

VGG16 BN Top-1/Top-5 73.34 / 91.51 73.71 / 91.52 106.62→ 105.43 ±0.009 ↓66%
MobileNet V1 Top-1/Top-5 70.28 / 89.43 70.84 / 89.68 114.79→ 114.66 ±0.014 ↓68%
MobileNet V2 Top-1/Top-5 71.89 / 90.29 71.89 / 90.30 114.80→ 114.78 ±0.003 ↓71%

ResNet-50 Top-1/Top-5 75.06 / 92.42 75.09 / 92.44 100.19→ 98.54 ±0.082 ↓66%
SQuAD BERT EM / F1 80.49 / 88.15 80.51 / 88.15 44.61→ 44.61 ±0.002 ↓45%

structure of weight matrices, making compression more sensitive and challenging. Despite this,
LoD steadily lowers the loss while preserving Top-1/Top-5 accuracy, demonstrating its robustness.

Fig. 3c illustrates the performance and loss curves for LoD when compressing the ResNext-50
model. During decomposition, LoD identifies the lowest rank suitable for lossless compression.
Compared to SVD methods, LoD more reliably identifies low-rank matrices that preserve accuracy,
achieving effective model compression.

Gains Brought by Quantization. Table 2 shows that LoD quantization achieves lossless or im-
proved performance across various tasks in both computer vision (CV) and natural language pro-
cessing (NLP). Notably, in CV tasks like ImageNet and CIFAR-100, LoD successfully reduces
model size with mixed precision quantization (e.g., 8/4/2-bit) while maintaining or enhancing ac-
curacy. For instance, even 2-bit quantization is feasible for certain layers in models like VGG and
MobileNet, thanks to their low sensitivity to quantization noise.

In NLP tasks, such as BERT on SQuAD, LoD applies more conservative 8-bit quantization, yet
still achieves lossless compression with up to 45% storage reduction. This demonstrates LoD’s
robustness in maintaining stability in more sensitive tasks.

The primary goal is not just minimizing bit-widths, but ensuring theoretical stability under quan-
tization. Our differential analysis shows that when quantization noise is aligned with the negative
gradient, it can even reduce loss further, underscoring LoD’s effective use of noise directionality.

Comparisons. Fig. 1 compares LoD with quantization and decomposition methods on ImageNet,
showing existing approaches often achieve limited lossless rates (e.g., 2/6) with unstable gains
Louizos et al. (2019); Chenna (2023); Zhang et al. (2025; 2023); Hu et al. (2021). In contrast, the
proposed LoD method achieves a full lossless rate of 6/6 across all models, demonstrating superior
stability while maintaining accuracy. For detailed comparison data, please see the Appendix.

Table 3 evaluates LoD against existing compression methods Wang et al. (2019); Liu et al. (2021a);
Hu et al. (2023); Frantar et al. (2023); Zhang et al. (2024); Lin et al. (2024); Zhang et al. (2025)
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Table 3: Compression results. Quant indicates LoD quantization. Convolution, Transformer and
LLM use quantization. Drop indicates performance reduction. Compressed model outperforming
origin yields negative values.

Model Method Orgin Quant ↑ Drop ↓ Size
Multipoint 71.78 / 90.19 70.70 / 89.70 1.08 / 0.49 2.09 MB
Hu et al. 72.91 / 90.82 72.67 / 90.64 0.24 / 0.18 2.09 MB

HAQ 71.87 / 90.32 71.85 / 90.24 0.02 / 0.08 2.09 MB
CET 71.89 / 90.29 71.88 / 90.10 0.01 / 0.19 2.10 MB

Convolution
(ImageNet)

MobileNet-V2

Ours 71.89 / 90.29 71.89 / 90.30 0.00 / -0.01 2.09 MB
FPxInt 80.49 / 88.15 80.51 / 88.03 -0.02 / 0.12 67.73 MBTransformer

(SQuAD1.1)
BERT

Ours 80.49 / 88.15 80.51 / 88.15 -0.02 / 0.00 63.20 MB
GPTQ 26.93 26.01 0.82 1.80 GB
AWQ 26.93 26.98 -0.05 1.80 GB

LLM
(MMLU)

TinyLlama
Ours 26.93 27.01 -0.08 1.80 GB

across convolutional (MobileNet-V2, ImageNet), transformer (BERT, SQuAD1.1), and large lan-
guage model (TinyLlama, MMLU) architectures, using Top 1/5, EM/F1, and average score. Un-
like other methods, which often suffer from performance degradation or inconsistent gains, LoD
achieves lossless or improved accuracy across all models, significantly reducing model sizes while
maintaining stability.

Table 4 compares LoD’s first-order approximation with second-order and full Hessian inversion on
ResNet-50, showing LoD’s 0.7 s/layer and ∆Loss of O(10−3) versus 450 s (O(10−6)) and 30,000
s (O(10−8)) for higher-order methods. This justifies LoD’s first-order truncation, as its ∆Loss en-
sures stable, lossless compression (6/6 rate, Table 3). Higher-order terms are impractical due to
complexity and instability. Using differential neighborhood analysis, LoD controls nonlinear fluc-
tuations. A more detailed second-order discussion is provided in the Appendix. Moreover, LoD’s
training-free design enables quantization in under 5 minutes and decomposition in 15 minutes, en-
hancing deployment efficiency across diverse architectures.

Table 4: Comparison of approximation methods on ResNet-50. Time measures computational cost
per layer, ∆Entropy quantifies cross entropy change approximation. LoD’s first-order approach
balances efficiency and stability, supporting its use in mixed precision compression.

Method Time ∆Entropy Notes

LoD ∼ 0.7 s O(10−3) Gradient
Second-Order ∼ 450 s O(10−6) ∼300 Hessian–vector products
Full Hessian ∼ 3× 104 s O(10−8) O(n3) Inversion
Higher-Order Intractable < O(10−8) Impractical due to computational complexity
HAQ 384 h O(10−3) Quantization-aware training

Limitations. LoD leverages differential neighborhood analysis (Eq. 4) to explain performance gains
in mixed-precision compression. However, in extreme compression scenarios, such as 2-bit quan-
tization or extremely low-rank approximations, large compression errors (δ/ϵ) render higher-order
derivative terms non-negligible. Furthermore, existing extreme compression techniques have yet to
achieve lossless performance. These factors introduce uncertainty, preventing stable performance
improvements and exceeding LoD’s first-order analysis scope. In the appendix, we provide detailed
limitations of LoD compression, as well as experiments and analysis of the second-order term.

5 CONCLUSION

This work challenges the view that compression degrades performance, often deemed fortuitous.
We provide a systematic theoretical analysis of mixedprecision compression gains, using differen-
tial neighborhoods to bound first- and higher-order effects for stable, lossless outcomes. Our LoD
framework, applied to quantization and decomposition, consistently achieves interpretable, mode-
lagnostic improvements across diverse tasks and architectures, as validated by extensive results.
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