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ABSTRACT

In this study, we propose a novel framework for semi-supervised time-series
classification based on masked time-series modeling, a recent advance in self-
supervised learning effective for capturing intricate temporal structures within
time series. The proposed method effectively extracts intrinsic semantic infor-
mation from unlabeled instances by reflecting diverse temporal resolutions and
considering various masking ratios during model training. Then, we incorpo-
rate the semantic information extracted from unlabeled time series with super-
visory features, including hard-to-learn class information, learned from labeled
ones to improve classification performance. Through extensive experiments on
semi-supervised time-series classification, we demonstrate the superiority of our
approach by achieving state-of-the-art performance.

1 INTRODUCTION

Recent advances in deep learning have shown promising performance in time-series classification,
a fundamental task driven by the growing accessibility of vast time-series data (Bagnall et al., 2017;
Lee et al., 2023). These remarkable achievements require numerous labeled training instances, but in
practice, they are frequently lacking, whereas unlabeled ones abound. Annotating all unlabeled time
series within a reasonable time and cost is often infeasible; thereby, semi-supervised learning, which
leverages both labeled and unlabeled instances to mitigate label sparsity, has attracted considerable
attention in time-series classification (de Carvalho Pagliosa & de Mello, 2018).

The semi-supervised learning aims to enhance the generalization capability of models by incorpo-
rating a large set of unlabeled instances with a few labeled ones during model training, leading to
boosting model performance. Recent studies for semi-supervised learning have actively exploited
self-supervised learning, e.g., contrastive learning, to learn implicit structures within unlabeled time
series under the supervision of self-generated labels (Liu et al., 2022; 2023). However, they have
two limitations. First, most of them capture coarse-grained context information focused on instance-
level, insufficiently recognizing temporal patterns of time series (Wang & Isola, 2020). Second, the
model performance highly depends on techniques to construct self-generated labels, such as data
augmentations and time sampling functions (You et al., 2021). Especially for time series, it is also
challenging to adopt proper perturbations that do not corrupt the time-series nature (Yue et al., 2022).

The concept of masked modeling has emerged in natural language processing and computer vision
to deal with high sensitivity to constructing self-generated labels and to capture fine-grained context
information (Devlin et al., 2018; Xie et al., 2022). The masked modeling aims to learn useful repre-
sentations reflecting semantic information from data by enabling a model to reconstruct the masked
content based on the unmasked part. However, unlike texts and images, which possess rich semantic
information within words or patches, the semantic information of time series is generally contained
in temporal variations, such as trend and periodicity (Dong et al., 2023). Thus, to sufficiently con-
sider time-series characteristics, some studies extended this concept to time series, which is called
masked time-series modeling (MTM) (Nie et al., 2022; Dong et al., 2023). Despite its empirical
success, MTM has not yet been introduced to semi-supervised time-series classification.

Moreover, directly applying the existing MTMs to semi-supervised time-series classification still has
two potential drawbacks. First, it is challenging to reflect diverse temporal resolutions. Considering
them can enrich the semantic information of time series because its temporal dependencies span
different time intervals (Zerveas et al., 2021). However, the transformer architecture adopted as
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(a) 5 layers (w/o relation-preserving) (b) 20 layers (w/o relation-preserving)

(c) 5 layers (with relation-preserving) (d) 20 layer (with relation-preserving)

Figure 1: Visualization of data space and latent spaces produced by the sequential sub-encoders,
f1 and f2, for SyntheticControl dataset. In (a) and (b), we present each space when f2 has 5 and
20 layers, respectively, without relation-preserving. In contrast, (c) and (d) show each space when
f2 has 5 and 20 layers, respectively, with relation-preserving. In (b), representations of each class
obtained from f2 exhibit diminished distinctiveness compared to those generated by f1. However,
in (d) with relation-preserving, representations of each class remain distinguishable.

an encoder in MTMs insufficiently captures temporal patterns at different time scales (Yang & Lu,
2023). Second, they are sensitive to masking ratios; it is often impractical to individually explore
the optimal one for each dataset originating from various sources within reasonable time and cost.

To address these challenges, we propose the first MTM-based framework for semi-supervised time-
series classification, masked dual-temporal autoencoders (MDTA). MDTA captures relevant seman-
tic information from unlabeled time series and incorporates it with supervisory features obtained
from labeled ones to enhance model performance. Specifically, we develop a dual-temporal en-
coder comprising two sequential sub-encoders to learn intrinsic temporal patterns within time series
by capturing temporal dependencies at different time scales. However, as shown in Figures 1(a)
and (b), our encoder can cause information loss due to its deep architecture, leading to performance
degradation. Thus, we introduce a simple yet effective loss function, relation-preserving, to ensure
a lossless flow of temporal information within the encoder. Moreover, during model training, we use
random masking ratios to avoid exploring optimal masking ratios while further enhancing the abil-
ity to capture temporal relations of time series. Then, by sharing the dual-temporal encoder, MDTA
directly classifies labeled instances and follows the masked modeling procedure for unlabeled ones.
Through this approach, labeled instances provide useful supervisory features for classification, and
unlabeled ones enrich the semantic information of time series, improving classification performance.

The superiority of the proposed method is demonstrated by extensive comparative experiments on
semi-supervised time-series classification, where it outperforms state-of-the-art methods (SOTAs)
by successfully leveraging semantic information from unlabeled time series.

This study has the following contributions:

• We propose a novel MTM-based framework for semi-supervised time-series classification.
To our knowledge, this work is the first exploration of MTM for this purpose.

• To effectively capture intricate temporal patterns within time series across diverse temporal
resolutions, we develop a dual-temporal encoder comprising two sequential sub-encoders.
In addition, we solve the potential information loss problem between the sub-encoders by
introducing a relation-preserving loss function.

• We use random masking ratios at each training epoch to avoid the high-cost tuning process
for searching optimal masking ratios along with enhancing classification performance.

• The proposed method captures the inherent temporal information of time series and suc-
cessfully incorporates them with supervisory features, achieving outstanding performance
in semi-supervised time-series classification compared to SOTAs.
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2 RELATED WORKS

Label sparsity is one of the practical obstacles hindering the use of deep learning in time-series
classification. Thus, to alleviate reliance on labeled instances, semi-supervised learning for time-
series classification has been studied extensively (de Carvalho Pagliosa & de Mello, 2018).

Some recent studies for semi-supervised time-series classification have exploited self-supervised
learning, such as contrastive learning, to extract context information from unlabeled time series. For
example, Jawed et al. (2020) proposed a semi-supervised time-series classification method combin-
ing self-supervised learning and multi-task learning. Fan et al. (2021) identified temporal relations
by using the past-future segments and constructing the positive and negative pairs to extract useful
context from unlabeled instances. Extending Fan et al. (2021), Xi et al. (2022) considered tempo-
ral patterns between not only the past and future segments but also the present one. In addition,
Liu et al. (2022) learned temporal structures of unlabeled instances with self-generated labels ob-
tained by randomly applying time sampling functions to the input time series; Eldele et al. (2023)
introduced temporal and contextual contrasting for semi-supervised time-series classification (see
Section C). However, these methods have some limitations, such as high sensitivity to constructing
self-generated labels and insufficient reflection of context information.

To address these problems, masked modeling has emerged in natural language processing and com-
puter vision (Devlin et al., 2018; Xie et al., 2022), and some studies have recently extended masked
modeling to time series. For example, in time-series representation learning, Zerveas et al. (2021)
designed a transformer encoder for MTM, while Dong et al. (2023) utilized MTM to capture com-
plementary temporal variations from multiple masked series. In addition, Nie et al. (2022) achieved
performance improvement in long-term time-series forecasting using MTM. Despite their empirical
success, there have not yet been any attempts to introduce MTM to semi-supervised time-series clas-
sification. Moreover, conventional MTMs have two notable drawbacks: the incapability to reflect
diverse temporal resolutions and high sensitivity to masking ratios.

In contrast, our method, MDTA, is the first MTM framework for semi-supervised time-series clas-
sification. It captures valuable semantic information from unlabeled time series by effectively re-
flecting diverse temporal resolutions and using random masking ratios during model training. Then,
we achieved superior classification performance by incorporating the obtained semantic information
with supervisory features learned from labeled instances.

3 PROPOSED METHOD

3.1 PROBLEM STATEMENT

Let D = {(xi, yi)}ni=1 be a set of n samples, where xi ∈ Rt×v is a time-series instance with t
lengths and v variables, and yi denotes the class label of xi. We suppose some of the labels to be
missing; thereby, D is split into two subsets: a labeled set Dℓ = {(xi, yi)}nℓ

i=1 of size nℓ and an
unlabeled set Du = {(xi, ·)}ni=nℓ+1 of size nu = n − nℓ. We define two sequential sub-encoders
f1 : x → u and f2 : u → z, and a decoder g : z → û, where z ∈ Rt×dz , u ∈ Rt×du , and
û ∈ Rt×du . Especially for Dℓ, we also define a classification head h : z → ŷ. The objective is
optimizing f , g, and h using all accessible instances in D to improve classification performance.

3.2 MASKED DUAL-TEMPORAL AUTOENCODERS

To enhance classification performance by effectively incorporating a large set of unlabeled instances
with labeled ones, we propose MDTA, a novel MTM framework for semi-supervised time-series
classification. It consists of three components: dual-temporal encoder, simple decoder, and classi-
fication head. Figure 2 shows an overview of the proposed method.

3.2.1 DUAL-TEMPORAL ENCODER

To effectively learn inherent temporal structures of time series, we develop a dual-temporal encoder
f sequentially configured with multi-resolution sub-encoder f1 and transformer-based sub-encoder
f2 (f := f2 ◦ f1). Note that the weights of this encoder are shared in MTM and supervised training.
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Figure 2: Overview of the proposed method

(a) Sub-encoder f1

(b) Sub-encoder f2

Figure 3: Configuration
of each sub-encoder

Multi-resolution sub-encoder. Despite the effectiveness and scalabil-
ity of the transformer used as an encoder in MTMs, it has a limitation in
controlling diverse temporal resolutions (Yang & Lu, 2023). Since tem-
poral dependencies span various time intervals, reflecting diverse resolu-
tions can significantly improve model performance for time-series clas-
sification (Zerveas et al., 2021). Thus, we construct the multi-resolution
sub-encoder f1 before the transformer-based sub-encoder f2 to capture
temporal dependencies at different time scales.

Let xi ∈ Rt×v = [xi,1, · · · ,xi,t] be a time series composed of a se-
quence of t observations. xi are mapped onto a du-dimensional latent
space along the temporal dimension using f1 as follows:

ui = f1(xi), (1)

where ui ∈ Rt×du = [ui,1, · · · ,ui,t] is the high-level temporal features
used as the input for the subsequent sub-encoder f2.

Specifically, the sub-encoder f1 is designed by one-dimensional con-
volutional layers with causal padding and dilated filters (DilatedConv).
This architecture ensures that the model does not perturb the temporal
order of the input time series and considers diverse temporal resolutions
by gradually increasing dilation rates ρ. In particular, the causal padding
prevents the convolution filter from observing future inputs beyond the
current time step by zero-padding the left side of xi. In addition, the
dilated filters, convolution filters with strides controlled by ρ, allow the
model to recognize various temporal patterns at different time scales. For
a single time step τ 1, the output of DilatedConv, x′

i,τ , is calculated by
x′
i,τ =

∑k−1
κ=0 xi,(τ−κρ−(k−1)ρ) × cκ, where cκ is the weight (or kernel

coefficient) at time step κ in the convolution filter, and k is the filter size.

By passing xi through several temporal blocks comprising DilatedConvs
and GeLU activation functions (see Figure 3(a)), we obtain temporal
features ui. By the sub-encoder f1, we learn high-level features reflect-
ing intricate temporal patterns using various dilation rates, which control
how the receptive field of the convolution filter expands across time steps. Moreover, these features
enhance the efficiency of the subsequent f2 by leading it to access high-level temporal information
obtained from f1. That is, we can achieve the same performance with the relatively shallow f2.

Transformer-based sub-encoder. The high-level features ui are used as inputs for the subsequent
sub-encoder f2. As in Figure 3(b), we construct f2 as the transformer introduced in Zerveas et al.
(2021). Note that f2 can be flexibly replaced by any model with a similar transformer architecture.

Following the MTM paradigm (Zerveas et al., 2021; Dong et al., 2023), we hide some time steps of
ui with uniformly distributed masks and make the model predict the masked values. In particular,
we create a binary mask mi ∈ Rt with a masking ratio r ∈ [0.1, 0.9]. Then, the masked features
ũi ∈ Rt×du are derived by element-wise multiplication: ũi = mi ⊙ ui.

1Here, we show the operation for a single time step for clear presentation; all input values are embedded
simultaneously by a single matrix multiplication.
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Time series inherently contains information redundancy, enabling the recovery of missing values
even with a brief understanding of temporal patterns observed at adjacent time steps. However,
when the masking ratio is high, the information redundancy can be eliminated, creating a challenging
self-supervisory task that allows the model to identify sophisticated temporal relations. In addition,
as shared by most conventional MTMs, exploring an optimal masking ratio for each individual
dataset can be time-consuming. Thus, during model training, we randomly pick the masking ratio
r ∈ [0.1, 0.9] for every epoch to avoid searching the optimal masking ratio while enhancing the
capability to extract semantic information from ui. In other words, MDTA can capture inherent
temporal relations by simultaneously considering a wide range of masking ratios.

Subsequently, since the transformer is insensitive to the ordering of input time series, we add posi-
tional encodings ξi ∈ Rt×du , obtained by deterministic sinusoidal encoding (Vaswani et al., 2017),
to ũi to indicate the sequential nature of the time series: ũi = ũi + ξi.

Finally, a semantic representation zi ∈ Rt×dz is generated by

zi = f2(mi ⊙ ui + ξi). (2)

Relation-preserving. The dual-temporal encoder f := f2 ◦ f1 has a potential risk that temporal
information obtained from f1 can be distorted after passing through f2. In other words, as shown
in Figures 1(a) and (b), information loss can be caused within f because of its deep sequential
architecture, leading to performance degradation by making the representations of some classes
indistinguishable. Thus, we introduce a simple yet effective loss function, relation-preserving, to
maintain temporal structures captured from f1, even after passing f2. To identify structural relations
between latent features of ui along the temporal dimension, we create an adjacency matrix Ai ∈
Rdu×du based on similarities between latent features across time steps of ui as follows:

Ai = ⌊σ(u⊤
i ui)⌉, (3)

where σ is a sigmoid function that maps input values to the range from zero to one. Ai is regarded
as the ground truth of temporal structures that should be maintained. Then, we obtain another
adjacency matrix Âi ∈ Rdz×dz with zi generated by f2 as follows:

Âi = σ(z⊤
i zi). (4)

Note that du and dz should have the same dimension. Finally, we minimize the difference between
each element of Ai and Âi to preserve structural relations from f1 as follows:

LRP,i = −
∑

apq∈Ai,âpq∈Âi

apq log âpq + (1− apq) log(1− âpq), (5)

where apq and âpq are the (p, q) element of Ai and Âi, respectively. As shown in Figures 1(c)
and (d), this loss function helps to capture intricate temporal patterns in time series effectively and
enhances model performance by ensuring a lossless flow of temporal information between f1 and
f2. The effect of this loss function is further discussed in Section 4.2.

3.2.2 SIMPLE DECODER

Following the MTM paradigm, a decoder only predicts masked values, so its architecture can be
flexibly designed regardless of the encoder architecture (He et al., 2022). Thus, we design the
lightweight decoder g as one fully connected layer to reduce calculations in the training phase. Note
that this decoder reconstructs ui obtained by f1. In addition, we calculate a mean squared error only
for masked content; thereby, reconstruction loss function is defined as follows:

LRE,i =
1

|M|
∑
τ∈M

(ûi,τ − ui,τ )
2, (6)

where M is a set of indices of masked values, and ûi,τ is the reconstructed value by the decoder g.

3.2.3 CLASSIFICATION HEAD

We employ a classification head h along with f and g to obtain supervisory features, including hard-
to-learn class information, from labeled instances. Here, we design h by two fully connected layers
with batch normalization and a GeLU activation function.
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Given a semantic representation zi corresponding to (xi, yi) ∈ Dℓ, we first pass zi through an
average pooling layer (AP) and then use it as input for classification head h. Formally, we get the
predicted class label by ŷi = h(AP(zi)) = h(AP(f(xi))), where f := f2◦f1; thereby, classification
loss function is defined with the cross-entropy as follows:

LCL,i = −yi log ŷi. (7)

3.2.4 OPTIMIZATION

Following previous works (Xi et al., 2022; Liu et al., 2022), we first train f , g, and h with the
supervised learning using labeled time-series instances and then update f and g with the MTM
paradigm using all accessible ones2. Specifically, given D and its subsets Dℓ and Du, we train f , g,
and h using Dℓ by classification loss function as follows:

Lℓ =
1

nℓ

nℓ∑
i=1

LCL,i. (8)

Subsequently, we update f and g using all accessible instances, including unlabeled ones, in D =
Dℓ ∪ Du by relation-preserving and reconstruction loss functions as follows:

L =
1

n

n∑
i=1

αLRP,i + βLRE,i, (9)

where α and β are the weights for each loss. Through this learning process, the labeled instances
enable the model to capture useful supervisory features suitable for classification, while all acces-
sible ones enhance the implicit semantic information of time series. The algorithm of the proposed
method is summarized in Algorithm 1.

Algorithm 1 Learning procedure of MDTA

Input: Set of n samples D, its labeled subset Dℓ = {(xi, yi)}nℓ
i=1 and unlabeled subset Du =

{(xi)}ni=nℓ+1, dual temporal encoder f := f2 ◦ f1, simple decoder g, and classification head h
Output: Trained f , g, and h

Initialize f , g, and h.
for each epoch do

for (xi, yi) ∈ Dℓ do
Obtain ui and zi by equations (1) and (2), respectively.
Calculate LCL,i by equation (7).

end for
Update f , g, and h by equation (8).
for (xi, ·) ∈ D do

Obtain ui and zi by equations (1) and (2), respectively.
Generate adjacency matrices Ai and Âi by equations (3) and (4), respectively.
Calculate LRP,i and LRE,i by equations (5) and (6), respectively.

end for
Update f , g, and h by equation (9).

end for

4 EXPERIMENTAL RESULTS

We evaluated the model performance of the proposed method, MDTA, on semi-supervised time-
series classification compared to seven baselines on 15 univariate time-series classification datasets
from the UCR archive (Dau et al., 2018). Here, we describe the experimental results in detail.
The experimental setting, such as datasets and baseline methods, and implementation details are
provided in Sections A and B, respectively.

2To enrich the inherent semantic information of time series, we also use labeled time series as well as
unlabeled ones to train f and g following the MTM paradigm.
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Table 1: Average classification performance across label ratios ranging from 0.1 to 0.9 under induc-
tive inference for MDTA and baselines. For each dataset, the best score is highlighted in boldface.

Dataset CE Pseudo Π-model FixMatch MTL SSTSC iTimes MDTA (ours)

CBF 99.20 99.30 99.26 99.40 98.38 99.38 99.44 99.71
CricketX 52.26 52.62 61.92 59.66 40.38 41.89 67.04 64.07

ECGFiveDays 98.49 98.51 83.44 83.33 98.39 98.24 95.33 99.81
Lightning2 67.56 68.89 68.98 69.87 67.56 67.64 71.56 75.23
MoteStrain 93.29 93.46 94.15 94.19 89.17 92.31 93.56 95.03

Plane 96.98 96.98 85.98 88.73 84.87 94.50 85.66 96.88
PowerCons 89.41 88.89 85.37 86.23 87.84 89.07 87.78 93.58

RefrigerationDevices 58.60 57.61 57.04 57.32 57.51 58.19 60.64 59.56
SonyAIBORobotSurface1 97.35 97.21 93.44 94.22 93.28 96.80 94.20 99.61

SwedishLeaf 84.16 84.83 70.34 69.66 55.45 76.93 56.18 86.18
SyntheticControl 96.19 97.70 97.98 97.52 96.98 93.78 97.31 98.11

ToeSegmentation1 84.16 84.44 84.73 84.36 82.30 82.39 86.71 94.03
Trace 91.94 93.22 91.72 92.72 91.50 91.44 95.78 98.44

TwoPatterns 99.81 99.85 99.30 99.48 98.91 99.73 96.86 99.97
Yoga 83.99 83.98 64.72 63.85 74.76 80.58 75.92 85.17

Average Rank 4.27* 3.67* 5.20* 5.07* 6.93* 5.27* 4.27* 1.27
(p-value) (1.22e-4) (1.22e-4) (6.10e-5) (6.10e-5) (6.10e-5) (6.10e-5) (2.01e-3) -

4.1 SEMI-SUPERVISED TIME-SERIES CLASSIFICATION

The model performance on semi-supervised time-series classification can be evaluated by induc-
tive and transductive inferences. The inductive inference involves measuring model performance
using a test dataset separate from the training dataset, while the transductive inference evaluates
model performance for unlabeled instances in the training dataset. Here, referring to Xi et al. (2022)
and Liu et al. (2022), we focus on providing the results under inductive inference, but those under
transductive inference are also given in Table 8 in Section J.

(a) SonyAIBO. (b) SwedishLeaf

(c) ToeSegment. (d) Trace

Figure 4: Accuracy scores of MDTA and
baselines on (a) SonyAIBORobotSurface1,
(b) SwedishLeaf, (c) ToeSegmentation1, and
(d) Trace, when label ratio is 0.1.

Table 1 depicts the classification performance of
MDTA compared to the baselines for 15 time-series
datasets. Here, we show the classification perfor-
mance by averaging accuracy scores across label ra-
tios from 0.1 to 0.9 on each dataset. The complete
results with standard deviations for different label
ratios on each dataset are provided in Table 7 in
Section J. Moreover, we performed statistical tests
on the classification performance to ensure the sig-
nificance of performance improvement by MDTA.
Specifically, we employed a two-sample Wilcoxon
signed rank test between MDTA and each baseline.
The superscript * for the average rank in Table 1 im-
plies the rank test’s p-value was smaller than 0.01.

MDTA achieved the best performance in 12 out of
15 datasets, and the average rank was 1.27, remark-
ably outperforming the baselines. Moreover, the
proposed method showed relatively lower standard
deviations than the baselines in most datasets (see
Table 7 in Section J), and the statistical test shows
that MDTA performed significantly better than the
baselines. When the labels were highly limited,
MDTA also exhibited outstanding performance in
most datasets (see Table 7 in Section J). In partic-
ular, as in Figure 4, MDTA improved classification
performance by more than 4% in four datasets, SonyAIBORobotSurface1, SwedishLeaf, ToeSegmen-
tation1, and Trace, than the second-best scores when the label ratio was 0.1. These results support
the effectiveness of MDTA in leveraging unlabeled instances.

In addition, our method showed superior performance in most datasets regardless of the number
of classes and sequence length by effectively incorporating intrinsic semantic information of time
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series with supervisory features. By contrast, the baselines exhibited performance differences ac-
cording to the characteristics of time-series datasets. For example, Pseudo, the second-best method
in average rank, showed relatively low performance in the datasets with long sequences, such as
RefrigerationDevices and Lightning2 datasets, because it does not consider temporal dependency
of time series; iTimes, one of the SOTAs in semi-supervised time-series classification, performed
poorly in SwedishLeaf, the dataset with the largest number of classes, and SonyAIBORobotSurface1,
that with the shortest average sequence length.

4.2 ABLATION STUDIES

MDTA has three key components: 1) dual-temporal encoder architecture that effectively captures
intricate temporal structures with diverse resolutions by two sequential sub-encoders, 2) relation-
preserving loss function that prevents information loss within the encoder, and 3) random masking
ratios to avoid the effort of exploring optimal masking ratios while enhancing model performance.

To demonstrate their effectiveness, we compared MDTA to three ablation models: MDTA with that
the multi-resolution sub-encoder in the dual-temporal encoder is replaced by one fully connected
layer (MDTA w/o f1), MDTA without relation-preserving (MDTA w/o LRP ), and MDTA without
random masking ratios (MDTA w/o RM). For MDTA w/o RM, we fixed the masking ratio to 0.5.
The classification performance of ablation models and MDTA is listed in Table 2. Here, we show
the results by averaging accuracy scores across label ratios from 0.1 to 0.9 on each dataset. The
complete results for all label ratios on each dataset are given in Table 9 in Section J.

Table 2: Average classification performance across label ratios ranging from 0.1 to 0.9 for MDTA
and the ablation models. For each dataset, the best score is highlighted in boldface.

Dataset MDTA (ours) MDTA w/o f1 MDTA w/o LRP MDTA w/o RM

CBF 99.71 99.60 99.08 99.22
CricketX 64.07 34.24 58.78 61.32

ECGFiveDays 99.81 82.49 99.87 99.56
Lightning2 75.23 67.85 72.59 67.41
MoteStrain 95.03 90.38 93.03 94.52

Plane 96.88 93.83 97.27 96.12
PowerCons 93.58 86.78 92.70 92.23

RefrigerationDevices 59.56 53.85 60.07 58.22
SonyAIBORobotSurface1 99.61 93.75 99.38 99.35

SwedishLeaf 86.18 68.89 83.60 83.36
SyntheticControl 98.11 83.86 96.85 97.99

ToeSegmentation1 94.03 90.74 91.98 91.91
Trace 98.44 94.54 98.52 95.74

TwoPatterns 99.97 98.11 99.88 99.93
Yoga 85.17 77.33 78.29 84.16

Average Decline Rate (%) - 9.60 1.75 1.81

Dual-temporal encoder. In general, temporal dependencies, one of the unique characteristics of
time series, span various time intervals within a time series; hence, reflecting diverse resolutions en-
ables the model to recognize the temporal dependencies easily, improving classification performance
(Zerveas et al., 2021). Thus, we designed the dual-temporal encoder f with the multi-resolution
sub-encoder f1 to allow the model to capture intrinsic temporal patterns at different time scales. To
examine its effect, we compared the classification performance of MDTA and MDTA w/o f1. As
shown in Table 2, the performance of MDTA w/o f1 highly decreased by approximately 9.60% com-
pared to that of MDTA on average. Thus, we demonstrated that the proposed encoder architecture
effectively improves classification performance by considering diverse temporal resolutions.

Relation-preserving. The proposed encoder architecture comprising two sequential sub-encoders
has one potential risk: temporal information obtained from the multi-resolution sub-encoder, f1,
can be corrupted by passing through the transformer-based sub-encoder, f2. To address this risk,
we introduced relation-preserving, LRP , that minimizes the temporal structural difference between
representations generated by f1 and f2. We conducted two experiments to investigate the effects of
this loss function on preventing temporal information loss and improving classification performance.

The information loss can be more severe when the number of layers in f2 is larger. We constructed
four models, each with either 5 or 20 layers in f2, and either the relation-preserving loss term or
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Figure 5: Accuracy scores of MDTA and the ablation models using fixed masking ratios, r, of 0.2,
0.5, and 0.8, respectively. Here, we provide the scores when the label ratio is 0.1 because it best
demonstrates the effect of masking ratios in capturing semantic information of time series.

not. Here, we trained those models with 100 epochs when the label ratio was 0.1. As in Figures 1(a)
and (b), the models without relation-preserving caused information loss between two sub-encoders
by mixing the representations of some classes when the number of layers is large. In this case,
the model with 20 layers in f2 achieved an accuracy of 70%. By contrast, in Figures 1(c) and (d),
the models with relation-preserving learned the representations to successfully discriminate for all
classes with an accuracy of 96.67%, even after passing through f2 with 20 layers. We further provide
the graphical analysis of MDTA in forming distinct groups for each class in Figure 7 in Section F.

Also, as in Table 2, MDTA w/o LRP exhibited 1.75% lower classification performance than MDTA
on average. Thus, we demonstrated that the relation-preserving ensures a lossless flow of temporal
information between two sub-encoders, enhancing classification performance.

Random masking ratios. One practical drawback of conventional MTMs is their sensitivity to
masking ratios. As shown in Figure 5, when we fix the masking ratio to a certain value, the perfor-
mances highly vary by the datasets. However, searching for an optimal masking ratio for each dataset
is often impractical. Thus, we used random masking ratios to avoid exploring optimal masking ra-
tios while enhancing the capability to capture temporal relations within time series. Consequently,
Figure 5 and Table 2 demonstrate that random masking ratios enhance the model’s generalization
performance without the high-cost tuning process for finding optimal ratios (see Section G.1).

Furthermore, the random masking ratios help the model to identify intricate temporal relations;
thereby, the model can be robust to missing values occurring in the inference phase because the
model can easily recover the missing parts. We validated the better robustness against missing
values of the proposed method than the models with the fixed masking ratios (see Section G.2).

5 CONCLUSION

We proposed a novel MTM-based framework, MDTA, for semi-supervised time-series classifica-
tion. MDTA effectively captures semantic information of time series by reflecting diverse temporal
resolutions without information loss within the dual-temporal encoder and using random masking
ratios. Then, we incorporated the extracted semantic information from unlabeled instances with
supervisory features obtained from labeled ones to enhance classification performance. Through
extensive experiments on semi-supervised time-series classification, we demonstrated that MDTA is
effective for capturing semantic information on time series as well as performs better than SOTAs.

Nevertheless, the proposed method is relatively inefficient compared to the other baselines because it
employs two consecutive sub-encoders (see Table 6). Although we used the transformer architecture
introduced in Zerveas et al. (2021), the first proposed transformer for time series to extract their
useful representations, its computational inefficiency has also been demonstrated in Cheng et al.
(2023). In other words, the efficiency of our approach can be improved by replacing the transformer
architecture with one of the recent transformers, improving computational efficiency. In addition,
another possible solution for future research direction is to devise a lightweight transformer encoder
architecture that can reflect diverse temporal resolutions.
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A EXPERIMENTAL SETTINGS

Baselines. To demonstrate the efficacy of the proposed method, we compared MDTA with seven
baseline methods, including SOTAs in semi-supervised time-series classification and a fully super-
vised model as follows:

• CE is trained in a supervised manner using cross-entropy loss for only labeled instances.

• Pseudo (Lee et al., 2013) is a semi-supervised learning approach that generates pseudo-
labels of unlabeled instances based on the current model prediction to supervise them.

• Π-model (Laine & Aila, 2016) is a semi-supervised method that incorporates consistency
regularization into pseudo-labeling, exploiting relationships between labeled and unlabeled
instances during training.

• FixMatch (Sohn et al., 2020) is a semi-supervised learning method that creates high-
confident pseudo-labels for weakly augmented unlabeled instances and uses these labels
to supervise strongly augmented instances.

• MTL (Jawed et al., 2020) is a semi-supervised time-series classification method combining
self-supervised learning and multi-task learning.

• SSTSC (Xi et al., 2022) is a SOTA in semi-supervised time-series classification that con-
siders the inherent temporal information of time series by exploring the temporal relations
between past, present, and future.

• iTimes (Liu et al., 2022) is another SOTA in semi-supervised time-series classification that
captures the temporal structure of unlabeled instances by training the model to recognize
time sampling functions that are randomly applied to input time series.

Datasets. We used 15 univariate time-series classification datasets from the UCR time-series clas-
sification archive (Dau et al., 2018). Due to the limited computing resources and time, it was difficult
to utilize all datasets in the UCR archive. Hence, as many previous studies did (Jawed et al., 2020;
Fan et al., 2021; Xi et al., 2022; Liu et al., 2022; Eldele et al., 2023), we selected some datasets with
various data types, quantities, and sequence lengths. A detailed description of the datasets is listed
in Table 3. The archive separately provided training and test datasets; hence, we used the training
dataset to train the model and the test dataset to evaluate the trained model. In addition, we set 20%
of the training data as a validation dataset and split the remaining training dataset into labeled and
unlabeled instances according to label ratios. All instances were normalized with a z-score. Note
that the proposed method can also cover multivariate time series, although we confined the evalua-
tion to univariate time series (v = 1) to ensure fair comparisons with the baselines (Xi et al., 2022;
Liu et al., 2022).

Table 3: Detailed description of 15 datasets. The data type, numbers of data and classes, and
sequence lengths are provided for each dataset.

Dataset Abbreviation Data Type Number of Data Number of Classes Sequence Length

CBF CB Simulated 930 3 128
CricketX CX Motion 780 12 300

ECGFiveDays EF ECG 884 2 136
Lightning2 L2 Sensor 121 2 637
MoteStrain MS Sensor 1272 2 84

Plane PL Sensor 210 7 144
PowerCons PC Power 360 2 144

RefrigerationDevices RD Device 750 2 720
SonyAIBORobotSurface1 SR Sensor 621 2 70

SwedishLeaf SL Image 1125 15 128
SyntheticControl SC Simulated 600 6 60

ToeSegmentation1 T1 Motion 268 2 277
Trace TR Sensor 200 4 275

TwoPatterns TP Simulated 5000 4 128
Yoga YO Image 3300 2 426

Evaluation metric. We evaluated the classification performance by measuring the accuracy score.
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B IMPLEMENTATION DETAILS

Time-series datasets have been collected from various sources, and their label ratio also varies;
hence, selecting appropriate hyperparameters for each dataset is impractical. Therefore, we used
fixed hyperparameters regardless of the datasets and their label ratios to avoid impractical tuning
efforts (Yue et al., 2022). In MDTA, the multi-resolution sub-encoder f1 contained four temporal
blocks, each comprising two DilatedConvs with GeLU activation functions (see Figure 3(a)), and
the skip connections were introduced between neighboring blocks. For the l-th block, the dilation
rate ρ was set as 2l. The kernel size was set to 3; each DilatedConv had a dimension of 16; a
residual block mapped the hidden features to du-dimensional temporal features, ui. Subsequently,
the sub-encoder f2 consisted of the transformer block with batch normalization proposed in Zerveas
et al. (2021). In particular, we configured f2 with eight heads for multi-head attention and three
transformer blocks (see Figure 3(b)). The dimensions of two fully connected layers in each trans-
former block were set to 256 and dz . Then, f2 mapped the temporal features ui to a dz-dimensional
representation zi. The decoder g was designed as a fully connected layer, reconstructing the seman-
tic representation zi generated by f2 into a du-dimensional temporal features ûi. The classification
head h was constructed with two fully connected layers with batch normalization and a GeLU acti-
vation function, with a hidden dimension 256. This head produced predicted class labels ŷi using zi
of xi obtained by f := f2 ◦ f1 as input. The dimensions du and dz were both set to 64. Moreover,
the loss weights, α and β, used in equation (9) for the MTM paradigm are set differently at every
epoch by the adaptive loss weighting strategy introduced in Heydari et al. (2019).

Table 4: Average classification performance across label ratios ranging from 0.1 to 0.9 for the base-
lines with different encoder architectures. The higher average score is highlighted in boldface for
each baseline. (D: Dataset, Trans: transformer architecture)

D CE Pseudo Pi FixMatch MTL SSTSC iTimes

Trans SimConv Trans SimConv Trans SimConv Trans SimConv Trans SimConv Trans SimConv Trans SimConv

CB 99.61 99.20 99.61 99.30 99.45 99.26 93.20 99.40 98.63 98.38 99.71 99.38 99.67 99.44
CX 31.44 52.26 31.38 52.62 62.17 61.92 26.60 59.66 24.29 40.38 31.67 41.89 36.38 67.04
EF 76.22 98.49 77.07 98.51 84.77 83.44 74.12 83.33 74.50 98.39 76.20 98.24 77.94 95.33
L2 60.89 67.56 63.38 68.89 68.18 68.98 59.11 69.87 60.71 67.56 67.02 67.64 75.20 71.56
MS 87.50 93.29 88.83 93.46 94.20 94.15 85.53 94.19 87.28 89.17 89.89 92.31 91.90 93.56
PL 89.10 96.98 87.88 96.98 85.45 85.98 48.57 88.73 69.52 84.87 75.03 94.50 52.22 85.66
PC 86.73 89.41 86.36 88.89 86.11 85.37 84.44 86.23 86.30 87.84 85.59 89.07 85.31 87.78
RD 61.69 58.60 62.46 57.61 57.13 57.04 58.99 57.32 61.87 57.51 62.50 58.19 60.21 60.64
SR 91.57 97.35 90.99 97.21 94.22 93.44 89.21 94.22 82.20 93.28 91.18 96.80 92.50 94.20
SL 60.38 84.16 62.51 84.83 71.92 70.34 22.82 69.66 31.86 55.45 57.91 76.93 52.55 56.18
SC 91.00 96.19 91.59 97.70 97.24 97.98 69.67 97.52 80.15 96.98 85.93 93.78 89.07 97.31
T1 78.56 84.16 78.48 84.44 85.10 84.73 76.34 84.36 72.80 82.30 76.50 82.39 78.19 86.71
TR 98.78 91.94 94.00 93.22 94.39 91.72 98.22 92.72 91.78 91.50 97.39 91.44 99.61 95.78
TP 51.64 99.81 61.02 99.85 99.34 99.30 28.41 99.48 83.52 98.91 89.18 99.73 72.68 96.86
YO 64.13 83.99 65.23 83.98 66.56 64.72 58.00 63.85 66.30 74.76 77.90 80.58 64.05 75.92

Average 75.28 86.23 76.05 86.50 83.08 82.56 64.88 82.70 71.45 81.15 77.57 84.19 75.17 84.26

Following Xi et al. (2022) and Liu et al. (2022), for the baseline methods, we employed a simple
four-layer convolutional neural network (SimConv) with ReLU activation function and batch nor-
malization as a backbone encoder. In particular, the dimensions of four layers were set to 8, 16, 32,
and 64, respectively; the kernel size was set to 4, and the stride to 2 for every layer. The encoder
architecture of baselines differed from MDTA due to the better performance of SimConv compared
to the transformer architecture in most baselines. Table 4 shows the classification performance of the
baseline methods by averaging accuracy scores across label ratios from 0.1 to 0.9 on each dataset.
The classifier for the baselines was configured with the same architecture as the classification head
h of the proposed method. We used time-warping and magnitude-warping augmentations for all
baselines during model training (Xi et al., 2022; Liu et al., 2022). The baseline methods, except
iTimes, were implemented based on the official code of SSTSC3; iTimes was implemented with the
code provided by its authors4.

We set the batch size and maximum training epoch to 10 and 1000, respectively, for all methods,
including the proposed one. We used the Adam optimizer with weight decay (AdamW) (Loshchilov
& Hutter, 2017) with a learning rate of 0.001 for model training. Also, we adapted an early stopping
strategy with a patience of 50 epochs based on validation accuracy to efficient model training. We
repeated the experiments five times and reported the average and standard deviation.

3https://github.com/mrxiliang/sstsc
41909030127@stu.hrbust.edu.cn
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All experiments were executed using the Pytorch platform on a system with an Intel Core i9-10900X
CPU clocked at 3.70 GHz, 256 GB RAM, and GeForce RTX 3090 24GB GPU. The source code is
attached as a zip file in the submission.

C COMPARISON WITH CA-TCC

The proposed method can be distinguished from CA-TCC (Eldele et al., 2023) in the architectures
and purposes of using convolutional neural network (CNN) and transformer. First, CA-TCC used
the Residual network introduced in Wang et al. (2017) as a CNN encoder to extract high-level
representations to be augmented for contrastive learning because contrastive learning in the latent
space generally performs better than that in the data space (Yue et al., 2022). By contrast, the
proposed method used CNN with causal padding and dilated filters as the former sub-encoder to
reflect various temporal resolutions while enhancing the efficiency of the latter transformer-based
sub-encoder (Fan et al., 2020).

Second, CA-TCC just employed the transformer to extract useful representations used for contextual
contrasting. In contrast, the proposed method used the transformer as the encoder architecture of the
masked autoencoder for masked time-series modeling, which is effective in capturing fine-grained
semantic information of time series.

To summarize, CA-TCC is a contrastive learning-based semi-supervised time-series classification
method, which inherits the limitations of the existing contrastive learning methods and transformer
architectures: the high sensitivity to data augmentations and the impossibility of considering di-
verse temporal resolutions. By contrast, we proposed a masked time-series modeling-based semi-
supervised time-series classification framework by considering diverse temporal resolutions and ran-
dom masking ratios. In addition, we did not use contrastive learning, so any data augmentations with
strong inductive biases are not required (Yue et al., 2022).

Furthermore, we compared the proposed method with the most recent work, CA-TCC. Table 5 shows
the average accuracy scores across label ratios from 0.1 to 0.9 under inductive inference. The pro-
posed method performs better than CA-TCC on average, achieving better performance in 10 out of
15 datasets. Especially for several datasets, such as PowerCons, SonyAIBORobotSurface1, Swedish-
Leaf, SyntheticControl, ToeSegmentation1, Trace, and Yoga, our method shows overwhelming per-
formance compared to CA-TCC. In contrast, the performance gaps in five datasets that CA-TCC
beats our method are relatively small.

Table 5: Average classification performance across label ratios ranging from 0.1 to 0.9 for MDTA
and CA-TCC. The higher average score is highlighted in boldface for each baseline.

Method Dataset

CB CX EF L2 MS PL PC RD SR SL SC T1 TR TP YO

CA-TCC 99.84 71.03 97.27 75.67 93.24 96.35 87.20 62.26 77.90 77.67 91.85 67.87 81.94 100.00 80.76
MDTA 99.71 64.07 99.81 75.23 95.03 96.88 93.58 59.56 99.61 86.18 98.11 94.03 98.44 99.97 85.17

D COMPARISON WITH SEMITIME

The proposed method and SemiTime (Fan et al., 2021) are totally different regarding the aims and
approaches, although they share the binary cross-entropy loss.

Our relation-preserving loss function aims to prevent the loss of the temporal structural information
obtained from the former sub-encoder while passing through the subsequent sub-encoder, whereas
the binary cross-entropy used in SemiTime aims to capture temporal dependency by using the past
and future segments. Therefore, our relation-preserving loss function minimizes the difference be-
tween gram matrices derived from the outputs of two sub-encoders, whereas SemiTime encourages
the positive pairs of segments to be consistent and the negative pairs to be distant.

E VISUALIZATION OF RELATION-PRESERVING

Here, we present Figure 6 that is enlarged Figure 1 to enhance visibility.
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(a) 5 layers (w/o relation-preserving)

(b) 20 layers (w/o relation-preserving)

(c) 5 layers (with relation-preserving)

(d) 20 layer (with relation-preserving)

Figure 6: The enlarged Figure 1 —Visualization of data space and latent spaces produced by the
sequential sub-encoders, f1 and f2, for SyntheticControl dataset. In (a) and (b), we present each
space when f2 has 5 and 20 layers, respectively, without relation-preserving. In contrast, (c) and
(d) show each space when f2 has 5 and 20 layers, respectively, with relation-preserving. In (b),
representations of each class obtained from f2 exhibit diminished distinctiveness compared to those
generated by f1. However, in (d), representations of each class remain distinguishable.
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F GRAPHICAL ANALYSIS

As in Figure 7, we performed a graphical analysis for the representations learned by MDTA using
UMAP (McInnes et al., 2018). We selected the six largest datasets: CBF, ECGFiveDays, MoteS-
train, SwedishLeaf, TwoPatterns, and Yoga. For each dataset, we compared the data space and
latent spaces produced by the sequential sub-encoders, f1 and f2, using all accessible instances.
Consequently, we observed that as the representations of each class pass through each sub-encoder,
they form gradually more distinct groups for each class. Through this analysis, we can reaffirm
the effectiveness of the proposed method, especially for the dual-temporal encoder architecture and
relation-preserving loss function.

G EFFECTS OF RANDOM MASKING RATIOS

G.1 GENERALIZATION PERFORMANCE

In general, exploring optimal masking ratios for each individual dataset within reasonable time and
cost is impractical. In addition, if we consider various masking ratios during model training, the
information redundancy originating from the correlation between time steps can be eliminated from
diverse perspectives; thereby, a variety of challenging self-supervisory tasks that allow the model
to identify sophisticated temporal relations are created. Therefore, we used random masking ratios
to enhance model generalization performance by identifying intricate temporal relations without the
inefficiency of searching for proper masking ratios.

To demonstrate this effect of random masking ratios, in Figure 5, we compared the random masking
ratio with three fixed masking ratios of 0.2 (low), 0.5 (medium), and 0.8 (high). Although these
fixed masking ratios may not be optimal for every dataset, we can examine the overall tendency
of each dataset against the low, medium, and high masking ratios. Consequently, when we fix
the masking ratio to a certain value, the performances highly vary by the datasets. In contrast, the
random masking ratio achieved the best performance in 12 out of 15 datasets and also showed decent
performances in the remaining datasets.

In addition, in Table 2, we compared the average classification performance of the random mask-
ing ratio with that of the fixed ratio of 0.5 in more detail. Consequently, the average classification
performance of the fixed ratio of 0.5 showed a drop rate of 1.81% compared to the proposed ran-
dom masking ratio. Specifically, as shown in Table 9, which provides the complete results, the
performance of the fixed masking ratio of 0.5 remarkably decreased by over 10% in several cases,
especially for low label ratios on some datasets. Therefore, we demonstrate the random masking
ratio enhances the generalization performance of the model without the high-cost tuning process for
finding optimal masking ratios.

G.2 ROBUSTNESS TO MISSING VALUES

By masking several time steps and predicting the masked parts, inherent temporal relations that are
not easily identified can be captured. Then, the model can be robust to missing values because it can
relatively easily infer the missing parts. Thus, regarding robustness against missing values, the MTM
paradigm can prevent a drastic performance decrease through the captured temporal structures, even
if some missing values occur in the inference phase.

MDTA enhances the capability to capture complex temporal relations within time series using ran-
dom masking ratios during model training. Thus, our method is more robust against missing values
than MDTAs with fixed masking ratios. To confirm this, we analyzed the robustness against missing
values of MDTA. We compared the classification performance of MDTA with those of the models
with the fixed masking ratios r of 0.2, 0.5, and 0.8, respectively, when the missing ratio varies from
0.1 to 0.9 for input time series in the inference phase. Here, we set the label ratio to 0.5.

Consequently, in Figure 8, the proposed method was more robust to missing values than the models
with the fixed masking ratios in most datasets by considering a wide range of masking ratios in the
training phase. Especially in Trace, MDTA maintained decent performance even with high missing
ratios. However, when it is difficult to capture temporal structures, e.g., missing ratios are over 0.5,
the model performance is likely to decrease even using random masking ratios.
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(a) CBF (b) CricketX (c) ECGFiveDays

(d) Lightning2 (e) MoteStrain (f) Plane

(g) PowerCons (h) RefrigerationDevices (i) SonyAIBORobotSurface1

(j) SwedishLeaf (k) SyntheticControl (l) ToeSegmentation1

(m) Trace (n) TwoPatterns (o) Yoga

Figure 8: Accuracy scores of MDTA and the ablation models using fixed masking ratios of 0.2, 0.5,
and 0.8, respectively, when varying missing ratios ∈ [0.1, 0.9]

H SENSITIVITY ANALYSIS ON LOSS WEIGHTS

To examine the impact of loss weights, α and β, used in equation (9) for the MTM paradigm,
we performed sensitivity analysis against them. We compared the adaptive loss weighting strategy
(Heydari et al., 2019) to three fixed loss weights. Here, the pairs of α and β for the fixed loss weights
were set to (0.2, 0.8), (0.5, 0.5), and (0.8, 0.2). Consequently, as shown in Figure 9, the adaptive loss
weighting exhibits comparable performance with the three fixed loss weights on average. However,
in some datasets, such as CricketX, SwedishLeaf, and Yoga, the adaptive loss weighting performs
notably better than the others. In addition, it allows us to reduce the effort for finding optimal
values for α and β on each dataset. Therefore, we used the adaptive loss weighting strategy for the
experiments performed in this paper.
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Figure 9: Accuracy scores for different α and β. Here, we compared the adaptive loss weighting
strategy and three fixed loss weights.

I TRAINING EFFICIENCY

Table 6 shows the average training time per epoch of the proposed method with that of baseline
methods across label ratios from 0.1 to 0.9 on 15 datasets. As mentioned in 5, MDTA performs
slower than other baselines because it employs two sequential consecutive sub-encoders.

Table 6: Average training time (sec) per epoch of the baselines and MDTA across label ratios from
0.1 to 0.9 on each dataset

Dataset Pseudo Π-model FixMatch MTL SSTSC iTimes MDTA

CBF 0.57 0.97 0.98 0.90 1.39 0.93 5.74
CricketX 0.48 0.83 0.85 0.79 1.19 0.80 4.83

ECGFiveDays 0.54 0.92 0.95 0.89 1.32 0.90 5.45
Lightning2 0.09 0.14 0.15 0.14 0.21 0.14 0.79
MoteStrain 0.76 1.29 1.34 1.23 1.90 1.30 7.88

Plane 0.13 0.22 0.23 0.21 0.31 0.21 1.25
PowerCons 0.23 0.39 0.40 0.36 0.55 0.37 2.20

RefrigerationDevices 0.48 0.85 0.88 0.80 1.19 0.83 5.01
SonyAIBORobotSurface1 0.38 0.66 0.68 0.60 0.93 0.63 3.80

SwedishLeaf 0.71 1.21 1.24 1.13 1.73 1.16 6.95
SyntheticControl 0.37 0.63 0.65 0.62 0.92 0.61 3.74

ToeSegmentation1 0.17 0.29 0.30 0.28 0.42 0.28 1.65
Trace 0.13 0.22 0.22 0.21 0.31 0.21 1.23

TwoPatterns 3.05 5.06 5.68 4.81 7.77 4.86 31.94
Yoga 1.91 3.47 3.58 3.26 4.85 3.35 21.55

J COMPLETE EXPERIMENTAL RESULTS

Here, we provide complete experimental results with standard deviations on semi-supervised time-
series classification presented in Section 4.1 and ablation studies in Section 4.2.

J.1 SEMI-SUPERVISED TIME-SERIES CLASSIFICATION

We evaluated the model performance on semi-supervised time-series classification under both in-
ductive and transductive inferences.

Table 7 depicts the classification performance of the proposed method compared to the baselines for
various label ratios ∈ [0.1, 0.9] under inductive inference. The proposed method achieved outstand-
ing performance compared to the baselines on most datasets, especially with low label ratios. For
example, in SonyAIBORobotSurface1, SwedishLeaf, ToeSegmentation1, and Trace datasets, MDTA
improved classification performance by more than 4% than the second-best accuracy scores when
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the label ratio was 0.1. These results demonstrate the effectiveness of MDTA in leveraging unlabeled
instances in semi-supervised time-series classification under inductive inference.

In Table 8, we present the classification performance under transductive inference for MDTA and
the baselines. The transductive inference evaluates model performance for unlabeled instances in
the training dataset. Since MDTA focuses on enhancing the model’s generalization performance on
the test datasets, it may not perform well on transductive inference. Nevertheless, as shown in Table
8, MDTA and Pseudo perform better than the others under the transductive setting. Although the
performance of the two methods is comparable, MDTA performs remarkably better than Pseudo in
some datasets, such as Lightning2, Trace, and TwoPatterns, regardless of label ratios.

J.2 ABLATION STUDIES

MDTA has three key components: dual-temporal encoder, relation-preserving loss function, and
random masking ratios. To demonstrate their effectiveness, we compared MDTA to MDTA w/o f1,
MDTA w/o LRP , and MDTA w/o RM. Here, we used a fixed masking ratio of 0.5 for MDTA w/o RM.

Table 9 presents complete results on the ablation studies shown in Table 2 in Section 4.2. The
performance of ablation models decreased compared to that of MDTA in most datasets. Especially
for MDTA w/o f1, which replaces the multi-resolution sub-encoder with one fully connected layer,
showed remarkable performance degradation compared with the proposed method. Therefore, we
demonstrate that each component of MDTA is essential to capture semantic information of time
series effectively, enhancing model performance.

Table 7: Classification performance of baselines and MDTA for various label ratios ∈ [0.1, 0.9]
under inductive inference. The value in parentheses denotes the standard deviation. For each label
ratio in datasets, the best score is highlighted in boldface. (D: Dataset, LR: Label Ratio)

D LR CE Pseudo Π-model FixMatch MTL SSTSC iTimes MDTA

CB

0.1 98.06 (1.11) 98.92 (0.76) 99.03 (0.99) 98.60 (0.87) 96.99 (0.73) 98.82 (0.40) 97.96 (1.61) 99.78 (0.26)
0.2 98.82 (0.92) 99.25 (0.55) 98.71 (0.26) 99.68 (0.43) 97.63 (2.17) 99.46 (0.59) 99.03 (0.40) 99.57 (0.40)
0.3 99.03 (0.71) 98.92 (1.23) 99.57 (0.40) 99.03 (0.86) 99.14 (0.94) 99.46 (0.68) 99.68 (0.26) 99.68 (0.43)
0.4 99.25 (0.55) 99.25 (0.80) 99.46 (0.48) 99.78 (0.43) 98.92 (1.13) 99.03 (1.94) 99.68 (0.43) 99.78 (0.26)
0.5 99.46 (0.68) 99.03 (0.71) 99.03 (0.71) 99.46 (0.00) 98.71 (1.47) 99.68 (0.43) 99.35 (0.63) 99.57 (0.40)
0.6 99.46 (0.83) 99.57 (0.40) 99.46 (0.34) 99.46 (0.83) 99.03 (0.63) 99.46 (0.34) 99.78 (0.26) 99.57 (0.22)
0.7 99.78 (0.26) 99.14 (0.55) 99.25 (0.43) 99.46 (0.59) 97.63 (1.75) 99.57 (0.40) 99.68 (0.43) 99.78 (0.43)
0.8 99.25 (0.73) 99.68 (0.65) 99.46 (0.59) 99.57 (0.40) 99.68 (0.43) 99.68 (0.26) 99.78 (0.26) 100.00 (0.00)
0.9 99.68 (0.43) 99.89 (0.22) 99.35 (0.53) 99.57 (0.40) 97.63 (1.82) 99.25 (1.05) 100.00 (0.00) 99.68 (0.43)

CX

0.1 34.10 (4.50) 36.28 (4.86) 47.44 (4.39) 42.18 (3.30) 27.56 (3.06) 30.38 (5.14) 49.87 (2.70) 49.10 (4.82)
0.2 44.10 (5.07) 42.44 (4.91) 59.62 (1.62) 52.05 (3.18) 35.26 (2.40) 37.56 (3.55) 61.41 (3.96) 48.97 (3.96)
0.3 44.49 (6.58) 47.95 (2.20) 57.31 (6.34) 56.03 (4.34) 34.87 (4.63) 39.23 (3.33) 63.72 (2.45) 61.92 (3.68)
0.4 51.54 (4.93) 51.54 (6.06) 61.41 (3.43) 59.49 (5.84) 35.77 (5.52) 42.05 (3.62) 67.82 (3.15) 65.64 (3.88)
0.5 57.69 (4.33) 55.90 (1.96) 63.97 (2.48) 66.03 (3.69) 40.90 (3.25) 40.51 (3.66) 69.74 (1.24) 67.56 (2.35)
0.6 59.23 (1.50) 58.21 (3.28) 66.03 (2.40) 66.15 (3.45) 44.23 (6.41) 43.08 (5.82) 72.69 (4.54) 68.97 (4.67)
0.7 57.05 (2.03) 58.33 (3.27) 67.18 (2.31) 63.08 (2.83) 42.05 (6.37) 46.92 (6.48) 72.95 (3.85) 70.26 (4.01)
0.8 60.38 (1.37) 62.69 (2.00) 67.44 (4.18) 64.74 (5.03) 48.59 (1.79) 52.31 (5.39) 72.44 (4.75) 71.41 (3.33)
0.9 61.79 (2.71) 60.26 (2.92) 66.92 (2.58) 67.18 (1.96) 54.23 (3.28) 45.00 (8.27) 72.69 (2.97) 72.82 (1.32)

EF

0.1 94.80 (0.97) 96.72 (1.40) 76.72 (5.89) 75.37 (4.71) 95.48 (1.38) 95.71 (1.46) 84.86 (3.70) 99.55 (0.42)
0.2 98.64 (0.85) 97.74 (1.19) 83.28 (4.53) 71.53 (2.25) 98.19 (1.73) 97.63 (2.30) 93.79 (2.70) 99.89 (0.23)
0.3 98.53 (1.11) 98.53 (1.05) 80.79 (4.73) 79.55 (8.03) 98.98 (0.42) 97.85 (1.15) 94.35 (3.52) 99.89 (0.23)
0.4 99.32 (0.23) 98.31 (1.01) 78.53 (1.01) 84.63 (3.06) 98.98 (0.42) 98.19 (0.97) 93.45 (3.15) 99.66 (0.45)
0.5 98.87 (0.71) 98.53 (0.45) 84.29 (6.26) 82.71 (2.92) 98.31 (1.24) 98.98 (1.04) 97.06 (0.97) 99.77 (0.45)
0.6 98.64 (1.05) 99.10 (0.28) 79.10 (5.85) 88.47 (3.89) 99.32 (0.55) 98.76 (0.90) 98.19 (0.97) 99.89 (0.23)
0.7 99.21 (0.58) 99.21 (0.58) 89.04 (2.22) 86.21 (3.00) 98.98 (0.42) 99.32 (0.42) 98.98 (0.90) 99.66 (0.45)
0.8 99.32 (0.23) 99.44 (0.36) 89.38 (3.00) 91.98 (3.18) 98.53 (1.22) 98.76 (0.66) 98.76 (0.83) 100.00 (0.00)
0.9 99.10 (0.28) 98.98 (0.42) 89.83 (3.57) 89.49 (3.04) 98.76 (0.66) 98.98 (0.66) 98.53 (0.92) 100.00 (0.00)

L2

0.1 59.20 (6.88) 60.80 (4.66) 63.20 (3.92) 64.80 (5.88) 64.00 (6.69) 63.20 (6.88) 64.80 (7.76) 61.60 (4.08)
0.2 62.40 (4.80) 63.20 (4.66) 62.40 (4.08) 66.40 (7.42) 62.40 (6.50) 64.80 (2.99) 72.80 (10.24) 73.60 (4.08)
0.3 64.80 (2.99) 70.40 (6.50) 65.60 (7.42) 68.00 (4.38) 68.80 (4.66) 68.00 (5.66) 75.20 (6.88) 66.40 (5.99)
0.4 69.60 (6.97) 66.40 (4.80) 72.00 (8.00) 69.60 (8.24) 66.40 (6.50) 64.80 (6.40) 71.20 (5.88) 67.20 (13.00)
0.5 67.20 (5.88) 68.80 (5.31) 72.00 (6.69) 73.60 (6.50) 68.00 (4.38) 68.80 (1.60) 69.60 (5.43) 76.80 (6.88)
0.6 67.20 (6.40) 72.00 (4.38) 67.20 (6.40) 71.20 (9.26) 65.60 (6.97) 68.80 (2.99) 67.20 (5.31) 85.60 (3.20)
0.7 72.80 (4.66) 69.60 (10.31) 72.00 (8.39) 72.00 (9.80) 70.40 (5.43) 66.40 (5.99) 76.00 (6.69) 84.30 (2.53)
0.8 73.60 (6.97) 76.80 (4.66) 76.80 (9.93) 76.00 (5.06) 73.60 (5.43) 72.80 (3.92) 73.60 (6.97) 78.40 (5.99)
0.9 71.20 (1.60) 72.00 (2.53) 69.60 (5.43) 67.20 (4.66) 68.80 (2.99) 71.20 (4.66) 73.60 (8.24) 83.20 (6.88)

MS

0.1 88.78 (1.82) 89.73 (3.08) 91.84 (2.51) 90.35 (1.54) 86.20 (3.36) 88.31 (1.76) 89.88 (1.63) 91.14 (0.95)
0.2 92.55 (1.26) 90.59 (2.57) 93.49 (1.13) 93.96 (1.69) 87.61 (2.13) 91.61 (2.07) 93.41 (1.17) 95.29 (0.43)
0.3 91.76 (1.53) 93.33 (1.92) 93.49 (0.95) 94.35 (0.88) 87.92 (2.53) 91.37 (2.00) 93.33 (1.24) 95.22 (1.00)
0.4 93.49 (1.60) 93.18 (1.37) 93.88 (0.84) 94.82 (0.76) 89.65 (2.90) 91.45 (1.80) 93.88 (0.81) 95.14 (1.60)
0.5 93.18 (1.37) 94.04 (1.20) 94.98 (1.83) 95.22 (1.09) 93.25 (0.80) 93.65 (1.17) 94.20 (1.73) 95.06 (1.01)
0.6 93.80 (1.30) 95.29 (0.66) 94.27 (1.50) 94.27 (1.66) 90.67 (1.74) 93.41 (3.08) 93.73 (0.89) 95.37 (1.56)
0.7 94.98 (0.67) 94.98 (0.84) 95.29 (0.82) 94.20 (1.50) 84.16 (9.14) 94.04 (0.84) 93.96 (1.10) 96.24 (0.64)
0.8 95.45 (0.91) 94.82 (0.63) 95.69 (0.96) 95.06 (0.68) 92.47 (1.83) 92.16 (1.31) 94.75 (0.40) 95.69 (0.61)
0.9 95.61 (0.94) 95.22 (1.06) 94.43 (2.12) 95.45 (0.53) 90.59 (4.21) 94.75 (1.62) 94.90 (0.86) 96.08 (0.61)
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PL

0.1 93.33 (4.10) 91.43 (6.49) 53.33 (14.17) 62.86 (10.17) 63.81 (11.41) 85.71 (6.90) 63.33 (12.47) 95.71 (0.95)
0.2 96.19 (2.43) 94.76 (2.33) 80.00 (9.83) 75.71 (8.30) 77.14 (6.14) 92.86 (3.98) 69.52 (12.90) 95.71 (1.78)
0.3 95.71 (2.33) 96.67 (1.90) 82.86 (9.21) 88.10 (7.97) 85.24 (11.31) 92.38 (3.50) 81.90 (10.17) 95.71 (1.78)
0.4 97.62 (1.51) 98.10 (1.78) 88.10 (9.04) 92.38 (7.59) 91.43 (5.13) 94.29 (3.87) 89.05 (8.33) 95.71 (1.78)
0.5 96.67 (1.17) 98.10 (1.78) 87.62 (6.97) 96.19 (3.23) 86.19 (10.15) 96.67 (2.43) 93.81 (2.43) 96.67 (1.90)
0.6 97.62 (1.51) 98.57 (1.17) 93.81 (8.98) 95.71 (4.36) 90.95 (8.16) 93.81 (4.67) 95.24 (1.51) 97.62 (1.51)
0.7 98.57 (1.17) 97.62 (1.51) 93.33 (3.81) 93.33 (5.91) 90.95 (5.91) 97.62 (1.51) 84.29 (8.05) 96.67 (2.43)
0.8 98.57 (1.17) 98.10 (0.95) 95.24 (4.76) 96.19 (4.15) 86.67 (9.11) 98.10 (2.33) 97.14 (0.95) 99.05 (1.17)
0.9 98.57 (1.17) 99.52 (0.95) 99.52 (0.95) 98.10 (1.78) 91.43 (5.35) 99.05 (1.17) 96.67 (3.23) 99.05 (1.90)

PC

0.1 85.00 (3.22) 86.94 (3.36) 84.44 (1.62) 87.50 (1.96) 84.17 (4.08) 86.39 (1.62) 85.56 (3.12) 86.67 (2.26)
0.2 85.00 (4.16) 85.83 (2.22) 86.11 (1.76) 85.83 (2.04) 86.67 (1.67) 88.33 (1.42) 86.39 (3.22) 91.67 (1.76)
0.3 88.33 (2.08) 87.22 (2.39) 84.17 (0.68) 84.72 (1.96) 88.06 (3.36) 88.61 (1.62) 87.22 (2.04) 93.33 (1.62)
0.4 88.89 (3.73) 87.22 (2.83) 84.72 (1.52) 85.83 (2.39) 88.89 (1.96) 88.33 (1.88) 87.78 (1.84) 90.56 (1.62)
0.5 90.56 (1.36) 89.72 (1.88) 86.67 (2.26) 87.22 (1.04) 86.94 (3.24) 90.83 (2.08) 87.78 (2.04) 94.44 (2.91)
0.6 91.11 (1.88) 91.67 (1.96) 86.67 (2.08) 85.83 (1.62) 87.78 (2.83) 89.72 (3.58) 87.22 (2.39) 94.44 (1.24)
0.7 90.83 (0.68) 89.72 (1.88) 85.28 (1.88) 85.83 (1.36) 87.78 (4.60) 88.06 (2.08) 88.33 (1.42) 95.56 (1.84)
0.8 92.78 (2.39) 89.72 (1.67) 83.89 (1.42) 88.06 (1.67) 91.11 (1.42) 90.28 (1.96) 90.28 (1.24) 97.22 (0.88)
0.9 92.22 (1.88) 91.94 (2.22) 86.39 (1.04) 85.28 (1.11) 89.17 (5.08) 91.11 (2.26) 89.44 (2.08) 98.33 (0.56)

RD

0.1 54.00 (4.42) 52.40 (4.12) 52.00 (3.38) 51.07 (2.25) 56.00 (4.46) 56.13 (4.53) 52.27 (4.31) 53.60 (2.09)
0.2 56.67 (3.07) 55.73 (1.40) 56.00 (3.64) 55.33 (1.74) 56.00 (2.49) 57.20 (2.08) 57.60 (3.71) 58.00 (3.65)
0.3 57.60 (1.55) 56.27 (2.84) 56.13 (2.59) 57.87 (2.96) 54.27 (2.00) 56.40 (2.82) 58.13 (2.36) 57.07 (2.29)
0.4 55.47 (4.18) 56.13 (3.04) 58.53 (1.52) 55.87 (2.25) 58.00 (1.12) 59.20 (3.56) 59.87 (2.61) 58.27 (3.20)
0.5 59.73 (1.87) 59.33 (4.75) 57.20 (3.80) 60.67 (3.77) 57.73 (3.90) 58.00 (4.68) 61.87 (2.36) 61.07 (1.16)
0.6 60.61 (2.80) 57.20 (4.74) 55.60 (1.19) 58.00 (2.27) 58.00 (1.84) 55.33 (3.18) 62.80 (2.04) 60.40 (3.64)
0.7 60.80 (2.99) 59.47 (3.52) 58.67 (3.86) 61.73 (1.61) 58.93 (4.35) 59.07 (4.31) 62.40 (0.90) 61.73 (3.26)
0.8 61.20 (1.29) 58.93 (3.60) 58.13 (3.19) 58.00 (0.73) 59.47 (1.95) 60.53 (3.71) 64.67 (6.15) 62.27 (4.10)
0.9 61.33 (2.49) 63.07 (1.67) 61.07 (1.74) 57.33 (0.73) 59.20 (3.30) 61.87 (1.54) 66.13 (1.76) 63.60 (2.82)

SR

0.1 95.36 (2.50) 94.08 (0.82) 92.64 (1.55) 92.96 (0.60) 92.96 (2.65) 95.36 (1.38) 92.16 (0.78) 99.52 (0.39)
0.2 96.80 (1.34) 96.80 (2.37) 92.48 (1.48) 94.72 (0.82) 93.92 (1.20) 95.84 (0.93) 92.32 (2.18) 99.36 (0.60)
0.3 98.24 (1.18) 96.96 (1.28) 94.72 (1.93) 94.56 (1.85) 92.96 (3.52) 96.48 (0.82) 93.60 (1.82) 99.04 (0.93)
0.4 96.96 (1.55) 96.32 (0.82) 93.12 (1.09) 93.92 (1.09) 95.36 (1.28) 97.12 (0.82) 93.60 (2.26) 99.52 (0.64)
0.5 98.08 (0.39) 98.08 (1.20) 93.60 (1.13) 95.36 (1.55) 96.64 (0.32) 96.48 (0.64) 95.04 (1.38) 99.84 (0.32)
0.6 97.76 (1.06) 98.24 (1.28) 93.44 (1.55) 94.40 (1.01) 93.76 (3.87) 97.60 (0.88) 95.68 (1.57) 99.52 (0.64)
0.7 97.60 (0.72) 98.40 (0.88) 93.12 (1.30) 94.56 (1.63) 87.52 (15.78) 97.76 (1.06) 95.68 (0.82) 100.00 (0.00)
0.8 97.28 (1.20) 97.92 (1.20) 94.24 (1.47) 93.12 (1.09) 90.56 (13.00) 97.44 (1.18) 94.56 (1.78) 99.84 (0.32)
0.9 98.08 (0.64) 98.08 (0.96) 93.60 (2.21) 94.40 (1.01) 95.84 (1.18) 97.12 (1.09) 95.20 (1.89) 99.84 (0.32)

SL

0.1 63.64 (5.72) 70.22 (3.13) 52.36 (9.53) 51.56 (7.16) 41.87 (3.50) 57.78 (6.94) 44.44 (3.96) 74.67 (3.80)
0.2 75.02 (2.47) 76.27 (1.34) 69.24 (2.67) 65.69 (4.17) 43.29 (4.40) 66.67 (5.09) 46.13 (3.53) 76.62 (3.43)
0.3 83.64 (1.67) 82.22 (0.84) 67.11 (3.18) 66.31 (4.52) 55.82 (10.28) 75.47 (3.64) 53.16 (5.31) 85.07 (3.09)
0.4 85.96 (2.81) 84.53 (4.34) 70.40 (4.47) 71.11 (3.01) 66.13 (10.21) 81.60 (2.87) 57.16 (2.51) 87.73 (1.55)
0.5 87.56 (2.28) 88.00 (1.97) 71.82 (1.68) 71.91 (4.81) 54.76 (10.12) 84.18 (4.25) 56.71 (4.20) 87.29 (1.24)
0.6 89.87 (1.39) 88.62 (1.72) 74.49 (3.42) 71.02 (3.87) 55.82 (13.74) 80.53 (2.15) 60.98 (4.14) 89.96 (1.79)
0.7 90.31 (1.55) 91.20 (1.30) 73.07 (1.70) 74.22 (5.64) 58.84 (10.11) 81.69 (7.88) 62.49 (5.48) 92.00 (1.57)
0.8 89.51 (2.49) 90.84 (2.83) 75.73 (6.00) 77.87 (3.91) 58.93 (6.15) 83.11 (3.45) 62.76 (5.22) 90.84 (2.22)
0.9 91.91 (2.29) 91.56 (1.23) 78.84 (2.00) 77.24 (4.89) 63.56 (6.82) 81.33 (4.39) 61.78 (5.75) 91.47 (1.79)

SC

0.1 88.00 (5.23) 95.67 (2.20) 95.67 (1.78) 95.50 (1.35) 92.17 (1.25) 86.50 (5.44) 92.67 (3.99) 96.67 (2.11)
0.2 92.33 (4.20) 95.83 (4.01) 97.83 (0.85) 97.67 (0.62) 96.83 (0.82) 94.33 (3.47) 95.17 (1.43) 97.00 (1.35)
0.3 96.83 (1.93) 95.50 (1.63) 97.33 (0.82) 96.67 (1.83) 96.33 (2.51) 93.00 (2.72) 96.83 (2.32) 99.00 (0.62)
0.4 97.67 (1.70) 98.33 (1.39) 98.67 (1.94) 98.50 (1.43) 97.33 (2.07) 93.67 (2.33) 98.17 (1.33) 98.67 (0.85)
0.5 97.17 (1.25) 98.50 (0.97) 97.33 (1.11) 97.50 (1.39) 98.00 (1.25) 94.50 (2.51) 98.33 (0.53) 98.00 (0.85)
0.6 99.33 (0.62) 98.17 (1.11) 97.67 (1.33) 97.83 (1.87) 97.50 (1.05) 95.67 (2.26) 98.00 (1.13) 97.67 (1.11)
0.7 98.17 (1.78) 99.50 (0.41) 99.17 (1.29) 96.50 (1.78) 98.17 (1.53) 95.33 (1.80) 97.83 (1.13) 98.50 (0.97)
0.8 98.17 (0.62) 99.00 (0.62) 99.33 (0.62) 98.50 (0.62) 98.33 (0.91) 95.50 (2.61) 99.17 (0.00) 98.17 (1.22)
0.9 98.00 (1.13) 98.83 (0.67) 98.83 (1.13) 99.00 (1.22) 98.17 (1.43) 95.50 (2.21) 99.67 (0.41) 99.33 (0.62)

T1

0.1 68.15 (7.63) 71.85 (6.35) 68.89 (9.76) 72.59 (6.24) 72.22 (7.12) 69.63 (5.57) 69.63 (4.63) 82.59 (1.89)
0.2 75.19 (4.32) 77.41 (7.35) 77.41 (5.54) 80.74 (7.91) 77.41 (8.06) 73.33 (8.41) 83.33 (3.31) 89.26 (4.12)
0.3 81.48 (4.68) 82.59 (4.77) 81.85 (7.63) 80.37 (2.77) 73.33 (6.69) 81.85 (5.79) 81.85 (4.12) 96.67 (2.16)
0.4 87.41 (2.96) 84.44 (4.77) 83.33 (5.62) 82.22 (8.25) 84.44 (3.81) 85.19 (3.31) 87.41 (2.72) 95.56 (2.22)
0.5 86.30 (6.37) 84.81 (6.56) 89.26 (2.46) 89.63 (3.23) 87.78 (4.77) 85.56 (6.97) 88.89 (4.83) 94.81 (2.96)
0.6 88.89 (4.54) 85.56 (4.29) 90.37 (3.19) 85.56 (4.29) 81.48 (4.22) 82.96 (4.60) 88.89 (5.11) 97.04 (1.48)
0.7 90.00 (3.01) 90.37 (1.39) 91.11 (4.29) 87.41 (2.72) 86.67 (4.29) 86.30 (5.19) 91.85 (2.77) 97.04 (2.77)
0.8 88.89 (2.62) 91.85 (3.01) 90.37 (1.81) 89.26 (3.59) 87.04 (4.06) 88.52 (5.16) 94.44 (3.10) 96.30 (3.10)
0.9 91.11 (2.46) 91.11 (2.16) 90.00 (3.23) 91.48 (2.51) 90.37 (2.96) 88.15 (3.63) 94.07 (1.39) 97.04 (1.48)

TR

0.1 75.50 (10.42) 72.00 (11.34) 74.50 (3.67) 80.50 (6.78) 75.50 (5.10) 67.50 (8.22) 81.50 (8.46) 90.00 (10.25)
0.2 84.00 (6.24) 92.50 (5.70) 83.50 (5.83) 89.50 (8.28) 81.50 (8.46) 86.00 (9.70) 96.00 (3.39) 99.50 (1.00)
0.3 93.50 (4.06) 94.50 (6.20) 95.50 (6.00) 92.00 (9.92) 90.50 (4.30) 94.50 (4.30) 95.50 (3.32) 99.00 (1.22)
0.4 94.00 (2.55) 94.50 (6.60) 95.00 (7.58) 91.50 (6.63) 94.50 (4.00) 87.00 (11.00) 97.00 (2.92) 99.50 (1.00)
0.5 95.00 (3.87) 97.50 (2.74) 93.00 (5.34) 94.00 (5.61) 92.50 (7.25) 96.00 (4.06) 99.50 (1.00) 100.00 (0.00)
0.6 96.50 (2.55) 95.00 (2.74) 96.50 (2.55) 96.50 (1.22) 94.50 (9.80) 97.50 (2.74) 97.50 (2.24) 100.00 (0.00)
0.7 93.00 (5.10) 98.00 (1.87) 97.50 (1.58) 96.50 (2.00) 99.50 (1.00) 97.00 (2.45) 96.50 (2.00) 99.00 (2.00)
0.8 97.00 (2.45) 98.50 (2.00) 93.50 (5.15) 96.50 (3.39) 98.50 (2.00) 98.50 (2.00) 99.00 (1.22) 100.00 (0.00)
0.9 99.00 (1.22) 96.50 (3.74) 96.50 (2.55) 97.50 (3.87) 96.50 (5.83) 99.00 (1.22) 99.50 (1.00) 99.00 (1.22)

TP

0.1 99.30 (0.40) 99.60 (0.32) 98.98 (0.50) 98.94 (0.42) 96.88 (1.66) 99.06 (0.72) 93.28 (3.15) 99.94 (0.08)
0.2 99.76 (0.29) 99.86 (0.15) 99.00 (0.30) 99.46 (0.14) 98.56 (0.57) 99.72 (0.22) 95.34 (1.08) 99.94 (0.08)
0.3 99.90 (0.11) 99.74 (0.16) 99.32 (0.41) 99.42 (0.15) 98.72 (1.55) 99.82 (0.12) 96.92 (0.80) 100.00 (0.00)
0.4 99.86 (0.15) 99.84 (0.27) 99.44 (0.33) 99.20 (0.18) 98.78 (0.75) 99.82 (0.12) 96.88 (0.44) 100.00 (0.00)
0.5 99.88 (0.07) 99.90 (0.15) 99.22 (0.44) 99.50 (0.46) 99.66 (0.31) 99.82 (0.07) 97.62 (1.06) 99.96 (0.08)
0.6 99.88 (0.07) 99.90 (0.13) 99.42 (0.18) 99.70 (0.32) 98.84 (1.31) 99.78 (0.24) 98.20 (0.32) 99.96 (0.05)
0.7 99.92 (0.07) 99.96 (0.05) 99.36 (0.21) 99.60 (0.30) 99.10 (0.96) 99.84 (0.05) 97.74 (0.92) 100.00 (0.00)
0.8 99.82 (0.07) 99.94 (0.08) 99.36 (0.57) 99.76 (0.20) 99.86 (0.08) 99.90 (0.20) 97.78 (0.54) 99.96 (0.05)
0.9 99.94 (0.08) 99.90 (0.06) 99.62 (0.24) 99.76 (0.08) 99.78 (0.15) 99.84 (0.21) 98.02 (0.59) 100.00 (0.00)

YO

0.1 75.36 (1.07) 72.76 (1.80) 62.12 (1.34) 61.58 (3.08) 66.21 (2.47) 73.70 (1.91) 68.97 (1.83) 73.48 (5.14)
0.2 77.36 (2.69) 78.36 (1.85) 63.36 (0.57) 63.30 (3.10) 69.79 (1.24) 77.30 (0.94) 71.61 (2.86) 78.45 (5.09)
0.3 82.18 (2.00) 81.64 (0.52) 65.36 (2.16) 61.94 (2.50) 72.94 (4.46) 80.36 (1.63) 74.15 (1.95) 81.73 (6.28)
0.4 83.55 (1.28) 84.21 (1.61) 65.03 (3.93) 61.64 (0.94) 76.21 (3.59) 79.18 (2.94) 71.30 (1.78) 86.03 (5.85)
0.5 86.12 (1.02) 85.64 (1.18) 65.39 (2.08) 64.33 (1.47) 79.00 (1.27) 81.76 (3.62) 77.94 (2.18) 89.36 (0.65)
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0.6 86.85 (1.61) 87.24 (1.12) 66.88 (6.83) 62.21 (2.33) 77.15 (4.57) 81.15 (4.57) 79.39 (1.99) 88.03 (4.09)
0.7 86.94 (0.86) 88.24 (1.26) 64.18 (2.68) 65.82 (3.01) 76.58 (2.95) 84.24 (2.11) 78.88 (0.87) 88.33 (7.22)
0.8 88.52 (1.57) 89.06 (0.65) 65.06 (0.82) 65.70 (3.22) 75.73 (8.45) 83.52 (1.70) 80.03 (2.22) 92.27 (2.88)
0.9 89.03 (0.82) 88.64 (1.21) 65.12 (1.76) 68.12 (5.30) 79.27 (1.98) 84.00 (2.23) 81.00 (3.95) 88.82 (4.23)

Table 8: Classification performance of baselines and MDTA for various label ratios ∈ [0.1, 0.9]
under transductive inference. The value in parentheses denotes the standard deviation. For each
label ratio in datasets, the best score is highlighted in boldface. (D: Dataset, LR: Label Ratio)

D LR CE Pseudo Π-model FixMatch MTL SSTSC iTimes MDTA

CB

0.1 98.01 (0.93) 98.76 (0.77) 98.88 (0.86) 98.37 (0.90) 96.06 (1.35) 98.73 (0.73) 97.97 (0.96) 99.48 (0.37)
0.2 98.83 (0.17) 98.88 (0.39) 98.88 (0.38) 99.33 (0.25) 98.83 (1.46) 99.42 (0.18) 99.19 (0.46) 99.27 (0.63)
0.3 99.44 (0.38) 99.79 (0.38) 99.64 (0.26) 99.49 (0.56) 99.13 (0.64) 99.79 (0.19) 99.74 (0.16) 99.90 (0.41)
0.4 99.16 (0.74) 99.58 (0.38) 98.98 (0.77) 99.58 (0.24) 98.86 (1.22) 98.98 (1.15) 99.76 (0.29) 99.64 (0.48)
0.5 99.14 (0.87) 99.86 (0.18) 99.21 (0.53) 99.64 (0.39) 98.85 (1.42) 99.86 (0.18) 99.14 (0.49) 99.48 (0.38)
0.6 99.55 (0.49) 99.82 (0.34) 99.82 (0.22) 99.64 (0.44) 99.73 (0.36) 99.91 (0.18) 99.91 (0.18) 99.91 (0.18)
0.7 99.88 (0.24) 99.52 (0.29) 99.64 (0.29) 99.88 (0.24) 99.28 (0.88) 99.64 (0.29) 99.40 (0.38) 99.50 (0.73)
0.8 100.00 (0.00) 99.82 (0.44) 99.64 (0.44) 99.28 (1.05) 99.82 (0.36) 100.00 (0.00) 100.00 (0.00) 99.64 (0.45)
0.9 99.64 (0.73) 100.00 (0.00) 98.18 (1.15) 98.18 (1.15) 97.09 (3.37) 100.00 (0.00) 99.64 (0.73) 100.00 (0.00)

CX

0.1 41.28 (3.65) 40.14 (4.46) 49.45 (4.68) 43.71 (1.43) 32.26 (2.49) 36.86 (4.17) 53.87 (3.10) 49.62 (4.10)
0.2 54.39 (5.92) 53.53 (4.63) 60.86 (2.15) 55.35 (2.31) 44.39 (1.59) 45.13 (4.71) 64.92 (4.03) 53.14 (0.81)
0.3 57.31 (5.81) 60.68 (3.89) 61.47 (5.34) 60.55 (6.14) 50.95 (5.69) 54.07 (4.67) 71.87 (3.24) 64.50 (0.00)
0.4 67.71 (5.59) 67.29 (2.06) 65.14 (3.71) 63.86 (6.05) 50.07 (6.83) 58.57 (3.24) 76.57 (3.74) 69.43 (2.22)
0.5 73.08 (9.92) 70.43 (1.75) 69.15 (1.41) 68.80 (0.72) 59.06 (3.87) 56.32 (7.61) 76.58 (2.15) 74.78 (2.35)
0.6 78.18 (9.97) 78.40 (3.84) 71.34 (3.78) 71.02 (3.80) 63.21 (13.95) 60.53 (10.32) 80.64 (2.98) 74.89 (2.34)
0.7 80.14 (13.82) 80.71 (3.54) 69.43 (3.45) 67.86 (5.59) 58.43 (13.86) 69.14 (9.05) 84.71 (2.29) 74.57 (2.29)
0.8 86.02 (11.95) 87.10 (2.26) 72.90 (4.78) 71.61 (6.51) 67.10 (2.77) 73.12 (7.13) 85.81 (5.33) 78.44 (1.33)
0.9 88.70 (11.03) 89.57 (2.95) 70.43 (1.74) 70.87 (3.53) 78.26 (9.33) 72.61 (16.24) 84.78 (3.07) 80.50 (3.67)

EF

0.1 95.56 (1.10) 97.32 (0.78) 82.81 (2.39) 82.52 (2.12) 97.53 (1.52) 96.77 (1.58) 87.92 (2.19) 99.40 (0.25)
0.2 98.96 (0.46) 99.01 (0.28) 87.31 (3.69) 79.34 (2.21) 98.87 (0.50) 98.11 (1.79) 96.46 (1.75) 99.86 (0.19)
0.3 99.51 (0.52) 99.14 (0.36) 85.82 (3.93) 85.28 (5.64) 99.46 (0.24) 98.44 (1.39) 95.63 (2.53) 99.68 (0.38)
0.4 99.94 (0.13) 99.43 (1.19) 82.70 (0.60) 87.23 (4.31) 99.25 (0.62) 98.55 (1.04) 95.72 (2.91) 99.68 (0.35)
0.5 99.92 (0.15) 99.70 (0.53) 88.23 (3.75) 85.89 (2.21) 99.47 (0.51) 99.55 (0.73) 97.36 (1.86) 99.77 (0.19)
0.6 99.34 (0.64) 99.62 (0.35) 83.68 (3.41) 90.66 (2.91) 99.72 (0.38) 99.43 (0.69) 99.34 (0.57) 99.62 (0.36)
0.7 99.75 (0.50) 99.87 (0.31) 93.71 (1.87) 91.57 (1.81) 99.75 (0.50) 99.37 (0.40) 99.50 (0.47) 100.00 (0.00)
0.8 99.81 (0.38) 100.00 (0.00) 92.83 (2.77) 93.02 (2.96) 99.25 (0.38) 99.06 (1.19) 98.11 (1.58) 100.00 (0.00)
0.9 100.00 (0.00) 100.00 (0.00) 90.94 (5.65) 94.34 (2.39) 100.00 (0.00) 99.25 (1.51) 98.11 (1.19) 100.00 (0.00)

L2

0.1 61.56 (8.82) 68.13 (5.85) 65.94 (4.98) 68.75 (7.57) 63.44 (8.98) 68.44 (4.24) 66.56 (6.96) 64.33 (4.67)
0.2 67.02 (3.22) 69.47 (6.96) 69.74 (2.28) 65.61 (5.72) 69.12 (2.85) 66.32 (5.59) 67.54 (6.14) 72.50 (5.36)
0.3 72.40 (4.08) 71.50 (4.56) 68.80 (6.14) 67.20 (0.98) 74.40 (4.08) 70.80 (3.25) 72.80 (10.93) 76.50 (5.72)
0.4 78.14 (5.42) 75.81 (6.41) 65.12 (9.53) 68.84 (8.00) 74.88 (3.42) 73.02 (2.37) 72.09 (2.55) 70.83 (17.00)
0.5 79.44 (4.16) 77.22 (4.61) 64.44 (5.39) 68.89 (7.74) 83.33 (3.93) 72.78 (4.08) 77.78 (4.97) 78.00 (5.42)
0.6 78.57 (6.68) 77.14 (12.90) 62.14 (7.35) 67.86 (3.19) 73.21 (3.99) 75.71 (6.93) 79.29 (4.16) 89.00 (5.83)
0.7 86.67 (15.47) 75.24 (11.51) 69.52 (9.81) 65.71 (8.19) 85.71 (5.22) 81.90 (9.23) 77.14 (4.67) 88.00 (6.00)
0.8 87.14 (15.25) 67.14 (7.28) 72.86 (13.09) 75.71 (7.28) 91.43 (8.33) 78.57 (12.78) 85.71 (10.10) 88.00 (4.00)
0.9 80.00 (11.43) 80.00 (10.69) 60.00 (10.69) 68.57 (16.66) 80.00 (7.00) 92.86 (7.14) 80.00 (11.43) 84.00 (14.97)

MS

0.1 91.15 (1.62) 91.74 (1.99) 92.61 (1.20) 91.74 (1.06) 89.81 (1.43) 90.36 (1.24) 91.18 (1.11) 90.74 (0.91)
0.2 93.63 (1.16) 94.22 (1.40) 93.46 (0.73) 94.22 (1.69) 90.74 (1.94) 93.56 (1.19) 93.96 (0.74) 94.63 (1.46)
0.3 95.20 (1.18) 94.37 (0.87) 94.78 (0.71) 94.78 (0.59) 93.10 (0.48) 94.07 (1.90) 94.15 (0.74) 95.77 (0.09)
0.4 95.58 (0.91) 95.01 (0.91) 94.70 (0.58) 95.01 (1.52) 92.43 (2.23) 95.54 (0.92) 95.10 (1.45) 96.09 (0.68)
0.5 96.64 (1.22) 96.59 (0.45) 94.96 (1.65) 95.64 (0.73) 95.85 (0.67) 96.59 (0.80) 95.91 (0.95) 97.68 (0.61)
0.6 96.97 (1.46) 96.71 (0.83) 95.79 (0.98) 94.93 (2.32) 92.96 (2.84) 95.39 (2.71) 94.74 (1.43) 95.93 (0.25)
0.7 96.67 (1.85) 97.28 (1.66) 96.05 (0.73) 94.04 (2.84) 92.00 (5.67) 96.93 (1.14) 95.35 (0.59) 95.82 (0.73)
0.8 98.03 (2.00) 98.16 (0.77) 95.00 (2.23) 94.21 (1.83) 95.79 (1.35) 95.92 (1.92) 96.32 (1.59) 95.47 (0.98)
0.9 98.68 (2.04) 97.89 (1.34) 95.79 (2.11) 96.32 (0.98) 95.53 (3.49) 98.42 (1.53) 96.32 (2.11) 96.29 (1.14)

PL

0.1 93.81 (2.31) 90.09 (6.56) 55.58 (11.06) 62.48 (5.89) 66.73 (8.39) 89.56 (3.03) 63.19 (12.35) 96.00 (0.93)
0.2 95.60 (2.94) 96.40 (2.00) 78.60 (9.26) 75.20 (8.75) 80.20 (7.22) 93.20 (2.56) 71.80 (11.16) 97.40 (3.26)
0.3 97.73 (1.02) 99.09 (1.33) 82.05 (8.49) 87.05 (9.90) 88.41 (9.71) 94.77 (2.34) 84.55 (12.67) 97.50 (1.94)
0.4 97.87 (1.07) 98.93 (0.53) 89.87 (6.98) 91.73 (6.61) 92.27 (5.16) 97.60 (1.55) 92.53 (3.64) 96.29 (1.94)
0.5 98.10 (1.19) 99.37 (0.78) 86.03 (7.34) 95.24 (3.33) 92.06 (11.96) 96.83 (1.74) 91.43 (3.56) 96.00 (2.00)
0.6 99.60 (0.80) 99.20 (0.98) 92.80 (8.63) 94.80 (4.12) 94.40 (8.52) 98.00 (2.19) 92.40 (2.33) 96.00 (1.79)
0.7 98.38 (2.16) 99.46 (1.32) 93.51 (2.16) 95.14 (3.15) 93.51 (7.37) 99.46 (1.08) 88.65 (10.59) 94.00 (3.27)
0.8 98.40 (3.20) 99.20 (1.96) 96.80 (3.92) 97.60 (3.20) 86.40 (10.31) 99.20 (1.60) 96.80 (3.92) 95.00 (4.47)
0.9 100.00 (0.00) 98.33 (0.00) 95.00 (6.67) 96.67 (4.08) 96.67 (6.67) 98.33 (3.33) 95.00 (4.08) 96.00 (4.90)

PC

0.1 87.84 (2.74) 89.18 (1.89) 86.98 (1.80) 89.18 (1.53) 85.05 (4.87) 87.73 (2.12) 84.41 (3.33) 90.63 (0.84)
0.2 89.19 (1.31) 88.49 (0.65) 88.37 (1.60) 87.79 (0.64) 90.23 (2.42) 90.12 (1.72) 87.21 (3.83) 92.12 (0.80)
0.3 91.26 (3.96) 92.58 (2.22) 88.61 (1.64) 90.20 (1.84) 92.45 (1.49) 90.60 (1.84) 88.58 (0.86) 92.00 (1.03)
0.4 92.25 (3.40) 94.11 (0.62) 88.99 (2.57) 90.08 (2.70) 90.12 (3.85) 92.71 (1.26) 88.37 (1.34) 93.50 (1.43)
0.5 93.33 (2.77) 94.26 (1.59) 89.35 (1.67) 88.52 (0.45) 92.13 (2.12) 93.89 (1.39) 87.41 (2.39) 93.60 (1.20)
0.6 95.35 (1.64) 94.65 (0.57) 87.44 (1.14) 89.30 (2.37) 92.09 (2.69) 95.64 (0.96) 87.44 (3.07) 95.00 (0.79)
0.7 95.94 (3.37) 95.94 (2.92) 88.44 (3.64) 86.88 (2.12) 92.81 (5.81) 97.81 (0.77) 85.63 (4.35) 98.00 (1.94)
0.8 97.67 (2.08) 97.67 (1.86) 85.12 (3.15) 86.63 (4.47) 97.67 (2.94) 99.42 (1.01) 90.70 (3.60) 98.50 (1.22)
0.9 100.00 (0.00) 100.00 (0.00) 90.48 (7.97) 93.33 (7.13) 98.10 (3.81) 100.00 (0.00) 91.43 (5.55) 95.00 (0.00)

RD

0.1 54.96 (4.41) 56.99 (2.49) 53.38 (3.49) 53.19 (3.57) 57.28 (4.13) 54.91 (3.09) 55.11 (1.90) 56.70 (2.44)
0.2 58.33 (3.84) 62.56 (2.82) 56.94 (2.05) 57.28 (2.22) 57.56 (1.52) 56.06 (1.27) 59.22 (4.10) 57.72 (3.03)
0.3 62.60 (5.90) 62.79 (3.88) 58.16 (0.79) 58.35 (1.70) 61.59 (4.07) 66.79 (3.34) 62.41 (1.04) 58.97 (1.84)
0.4 67.33 (5.80) 68.96 (2.57) 59.41 (1.84) 57.41 (1.72) 62.96 (6.57) 66.44 (2.91) 65.33 (2.65) 60.15 (1.63)
0.5 65.07 (5.91) 77.60 (2.94) 60.09 (2.60) 58.84 (4.25) 64.98 (4.66) 70.76 (7.68) 67.56 (1.97) 61.45 (0.97)
0.6 74.78 (8.58) 73.44 (5.87) 60.11 (2.71) 58.67 (3.74) 75.11 (4.75) 69.11 (4.83) 70.67 (4.00) 62.56 (2.47)
0.7 78.22 (7.85) 77.48 (3.52) 62.22 (4.11) 62.67 (2.23) 73.63 (9.31) 75.11 (2.83) 72.44 (4.67) 63.54 (2.78)
0.8 74.44 (11.27) 80.00 (6.00) 60.22 (7.52) 61.56 (3.41) 78.89 (10.11) 71.78 (10.27) 73.11 (6.06) 62.89 (3.69)
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0.9 76.00 (12.36) 81.33 (6.06) 64.00 (5.14) 63.11 (6.22) 78.22 (8.60) 80.44 (9.15) 73.78 (6.65) 70.50 (2.92)

SR

0.1 96.47 (2.79) 96.35 (1.45) 92.99 (1.90) 91.02 (2.34) 94.31 (1.91) 95.27 (1.01) 94.31 (2.28) 96.85 (0.85)
0.2 97.24 (1.76) 96.43 (1.19) 94.48 (1.32) 94.95 (0.64) 93.94 (1.13) 95.89 (1.25) 95.42 (1.22) 97.93 (0.38)
0.3 98.69 (0.67) 98.85 (0.57) 94.77 (0.58) 95.00 (1.00) 92.92 (3.29) 97.85 (0.52) 94.62 (0.49) 98.92 (0.15)
0.4 98.03 (1.05) 99.37 (0.59) 94.80 (0.54) 95.34 (1.05) 96.59 (3.27) 98.21 (0.75) 93.90 (2.73) 98.64 (0.95)
0.5 98.82 (0.40) 99.14 (0.55) 96.02 (1.25) 96.56 (1.21) 97.74 (1.10) 98.39 (0.90) 96.34 (1.61) 99.56 (0.65)
0.6 98.65 (1.21) 98.78 (0.43) 94.46 (2.82) 95.00 (1.10) 96.22 (5.26) 99.59 (0.54) 96.76 (1.44) 99.29 (0.64)
0.7 98.56 (1.35) 99.82 (0.67) 95.14 (0.44) 95.50 (1.27) 98.50 (2.12) 99.46 (0.72) 97.48 (1.44) 99.45 (0.45)
0.8 99.19 (1.62) 99.73 (0.00) 95.41 (2.20) 94.05 (0.66) 92.70 (9.92) 99.19 (1.08) 96.22 (1.01) 99.43 (0.70)
0.9 98.92 (2.16) 100.00 (0.00) 96.76 (3.15) 97.30 (1.71) 96.22 (3.67) 100.00 (0.00) 98.38 (1.32) 98.00 (1.63)

SL

0.1 65.86 (1.71) 69.36 (1.93) 48.86 (8.58) 49.06 (6.32) 41.88 (2.61) 58.42 (5.20) 43.59 (3.75) 74.33 (3.36)
0.2 76.70 (2.38) 80.26 (2.66) 67.52 (2.85) 63.74 (3.46) 45.11 (5.53) 69.07 (5.16) 46.15 (2.49) 76.56 (3.83)
0.3 85.68 (2.63) 85.17 (1.89) 65.81 (3.69) 65.25 (3.14) 55.97 (11.67) 79.92 (2.83) 51.99 (5.56) 85.96 (2.75)
0.4 87.26 (3.13) 87.31 (1.77) 67.70 (4.16) 70.32 (2.18) 68.84 (8.10) 84.69 (2.98) 54.96 (2.19) 87.00 (1.44)
0.5 91.04 (3.30) 91.69 (1.33) 69.67 (2.43) 70.21 (2.79) 59.70 (11.92) 91.16 (2.16) 56.38 (2.69) 88.36 (2.16)
0.6 93.41 (3.63) 92.37 (1.03) 75.04 (4.55) 70.37 (3.63) 59.26 (14.47) 87.11 (2.02) 58.30 (4.55) 90.22 (2.18)
0.7 94.95 (4.49) 94.26 (1.02) 70.79 (1.21) 74.16 (4.57) 61.88 (15.15) 87.13 (8.85) 61.78 (6.11) 94.80 (0.75)
0.8 94.96 (2.41) 95.26 (1.44) 73.78 (5.19) 73.19 (4.74) 63.11 (3.61) 91.56 (1.37) 62.22 (6.49) 94.00 (1.32)
0.9 95.52 (3.78) 97.01 (2.43) 77.91 (2.39) 71.04 (2.43) 69.85 (8.57) 87.46 (4.28) 64.18 (10.21) 94.33 (2.26)

SC

0.1 89.69 (3.25) 93.46 (1.21) 93.95 (1.39) 94.57 (1.23) 93.15 (2.17) 89.26 (3.94) 90.68 (2.06) 98.13 (1.14)
0.2 93.19 (3.76) 97.08 (2.64) 96.60 (1.41) 97.50 (0.92) 96.11 (0.94) 94.93 (2.42) 94.31 (0.84) 98.79 (1.00)
0.3 96.11 (1.49) 97.30 (1.56) 96.51 (1.31) 95.16 (1.87) 96.35 (1.98) 95.16 (1.80) 95.56 (0.85) 99.12 (0.16)
0.4 98.52 (0.90) 97.78 (0.75) 97.69 (0.59) 97.13 (1.84) 98.06 (1.15) 96.39 (1.26) 96.85 (0.90) 99.33 (0.38)
0.5 99.11 (0.27) 98.78 (0.57) 97.56 (1.03) 96.33 (1.67) 99.22 (0.83) 97.11 (0.65) 97.22 (0.61) 98.56 (1.14)
0.6 99.03 (0.56) 99.03 (0.52) 97.36 (2.54) 97.08 (1.83) 98.61 (0.88) 98.89 (0.71) 96.53 (2.28) 98.29 (1.07)
0.7 99.44 (0.45) 99.26 (0.00) 98.33 (1.70) 94.81 (4.17) 99.63 (0.45) 97.41 (1.23) 96.67 (1.61) 99.20 (0.40)
0.8 98.89 (1.04) 98.61 (0.68) 97.78 (0.68) 96.67 (2.08) 99.44 (0.68) 99.17 (1.11) 97.22 (1.76) 99.14 (0.70)
0.9 100.00 (0.00) 100.00 (0.00) 98.89 (2.22) 96.11 (2.22) 99.44 (1.11) 99.44 (1.11) 97.22 (1.76) 97.33 (2.49)

T1

0.1 69.86 (5.35) 75.56 (4.74) 73.75 (7.38) 72.08 (4.55) 76.94 (2.17) 73.61 (4.85) 75.69 (2.28) 76.29 (3.08)
0.2 80.94 (5.54) 86.25 (3.78) 82.19 (2.00) 84.38 (3.09) 82.50 (4.70) 79.84 (4.85) 86.25 (4.88) 88.50 (3.31)
0.3 86.25 (3.27) 89.11 (1.87) 84.64 (6.93) 82.32 (4.87) 80.89 (9.13) 85.00 (4.32) 86.07 (3.22) 88.91 (2.78)
0.4 89.58 (2.95) 90.42 (1.47) 88.54 (5.51) 85.83 (5.21) 91.04 (2.76) 90.83 (3.19) 89.79 (2.41) 86.00 (1.33)
0.5 93.50 (5.88) 95.50 (3.59) 91.50 (1.66) 92.00 (1.70) 93.75 (3.71) 93.00 (4.72) 92.25 (2.00) 87.25 (3.30)
0.6 96.25 (3.64) 94.38 (1.59) 93.75 (3.28) 87.81 (5.17) 92.19 (3.70) 93.44 (3.75) 93.13 (4.59) 90.33 (3.86)
0.7 97.50 (2.04) 96.25 (1.56) 93.75 (1.86) 91.67 (2.64) 95.42 (4.25) 93.33 (4.04) 92.92 (5.53) 91.50 (2.00)
0.8 98.13 (3.75) 96.88 (1.98) 92.50 (3.75) 92.50 (4.68) 97.50 (3.64) 95.00 (3.75) 95.00 (2.50) 91.33 (5.81)
0.9 95.00 (7.29) 97.50 (0.00) 90.00 (5.00) 96.25 (5.00) 96.25 (3.06) 97.50 (3.06) 98.75 (2.50) 92.00 (4.00)

TR

0.1 75.74 (9.23) 76.30 (13.61) 75.00 (2.11) 82.78 (10.4) 74.63 (4.74) 72.59 (5.7) 83.15 (7.09) 87.20 (10.65)
0.2 90.00 (2.43) 93.75 (3.81) 84.58 (6.89) 91.04 (5.21) 83.54 (8.24) 90.21 (4.91) 95.00 (4.14) 99.11 (9.92)
0.3 94.76 (4.91) 96.43 (2.71) 93.33 (9.72) 91.90 (10.03) 92.14 (3.50) 95.95 (4.36) 94.52 (3.42) 98.75 (2.67)
0.4 96.39 (1.42) 98.33 (2.58) 93.33 (8.02) 93.89 (6.37) 94.44 (0.88) 91.67 (7.81) 98.61 (1.24) 99.43 (1.40)
0.5 97.67 (2.26) 99.00 (1.25) 92.33 (2.26) 96.67 (3.80) 93.67 (5.81) 96.33 (4.00) 97.33 (0.82) 100.00 (0.00)
0.6 97.92 (2.28) 99.17 (2.64) 97.08 (2.12) 97.08 (2.83) 95.00 (7.05) 96.67 (4.68) 99.58 (0.83) 99.50 (1.00)
0.7 96.11 (2.22) 98.89 (1.36) 96.67 (3.24) 95.56 (4.51) 99.44 (1.11) 96.67 (5.39) 96.67 (2.72) 99.33 (0.00)
0.8 99.17 (1.67) 100.00 (0.00) 92.50 (3.12) 95.00 (3.12) 98.33 (2.04) 97.50 (2.04) 100.00 (0.00) 100.00 (0.00)
0.9 100.00 (0.00) 100.00 (0.00) 98.33 (3.33) 98.33 (3.33) 98.33 (3.33) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

TP

0.1 99.18 (0.30) 99.29 (0.19) 98.69 (0.19) 98.90 (0.12) 97.24 (1.58) 99.07 (0.61) 93.02 (3.56) 99.95 (0.06)
0.2 99.81 (0.10) 99.67 (0.11) 99.04 (0.37) 99.37 (0.23) 98.78 (0.26) 99.70 (0.11) 94.97 (1.06) 99.95 (0.05)
0.3 99.91 (0.11) 99.85 (0.12) 99.06 (0.29) 99.42 (0.11) 99.04 (1.38) 99.59 (0.38) 96.67 (0.94) 99.98 (0.02)
0.4 99.90 (0.09) 99.93 (0.11) 99.51 (0.32) 99.33 (0.35) 98.58 (1.17) 99.84 (0.10) 96.53 (0.70) 99.99 (0.02)
0.5 99.95 (0.05) 99.84 (0.08) 99.35 (0.25) 99.53 (0.38) 99.79 (0.13) 99.88 (0.03) 97.80 (0.73) 99.99 (0.03)
0.6 99.93 (0.06) 99.87 (0.03) 99.17 (0.19) 99.52 (0.12) 98.78 (1.38) 99.92 (0.09) 97.62 (0.28) 99.97 (0.04)
0.7 99.87 (0.13) 99.98 (0.05) 99.44 (0.25) 99.33 (0.55) 99.31 (0.71) 99.87 (0.08) 98.13 (0.79) 100.00 (0.00)
0.8 99.87 (0.27) 99.97 (0.08) 99.33 (0.62) 99.70 (0.24) 99.80 (0.24) 99.90 (0.13) 97.90 (1.02) 99.97 (0.07)
0.9 99.93 (0.13) 100.00 (0.00) 99.40 (0.39) 99.47 (0.50) 99.73 (0.25) 99.93 (0.13) 98.53 (0.62) 100.00 (0.00)

YO

0.1 74.99 (1.21) 74.30 (1.76) 61.57 (1.15) 61.36 (2.53) 68.46 (2.52) 74.23 (1.50) 69.69 (2.90) 75.12 (4.66)
0.2 81.10 (2.50) 81.70 (1.49) 61.78 (0.97) 62.73 (3.17) 74.07 (1.95) 80.24 (1.81) 70.90 (2.58) 79.97 (5.05)
0.3 86.06 (2.17) 86.00 (1.51) 65.45 (2.30) 61.27 (1.04) 74.99 (5.06) 83.80 (1.66) 75.17 (1.71) 83.43 (7.23)
0.4 87.98 (1.81) 87.59 (1.78) 65.39 (4.77) 61.65 (0.74) 80.61 (2.61) 84.24 (3.15) 72.41 (1.60) 88.90 (5.98)
0.5 90.59 (2.45) 89.52 (1.41) 65.07 (1.92) 65.49 (1.35) 82.83 (1.86) 85.07 (5.00) 78.65 (1.82) 92.65 (0.73)
0.6 92.53 (3.63) 91.39 (0.87) 67.20 (5.98) 61.44 (2.19) 80.51 (5.89) 84.27 (4.89) 80.30 (1.76) 90.66 (5.18)
0.7 91.99 (2.93) 93.06 (2.48) 65.32 (5.60) 66.70 (2.72) 81.18 (3.67) 89.26 (2.79) 80.34 (2.10) 90.58 (8.36)
0.8 94.60 (3.08) 94.29 (0.87) 65.20 (2.42) 66.46 (3.39) 79.04 (9.23) 88.69 (1.73) 81.46 (4.09) 95.49 (1.77)
0.9 94.95 (2.02) 93.23 (2.40) 65.96 (4.01) 68.38 (5.25) 82.93 (2.60) 90.00 (3.86) 84.24 (3.05) 91.47 (3.99)

Table 9: Classification performance of ablation models and MDTA for various label ratios ∈
[0.1, 0.9]. The value in parentheses denotes the standard deviation. For each label ratio in datasets,
the best score is highlighted in boldface.

Dataset Label Ratio MDTA (ours) MDTA w/o f1 MDTA w/o LRP MDTA w/o RM

CB

0.1 99.78 (0.26) 99.46 (0.65) 99.46 (0.43) 98.39 (0.71)
0.2 99.57 (0.40) 99.64 (0.26) 98.57 (0.87) 99.82 (0.22)
0.3 99.68 (0.43) 99.64 (0.43) 98.75 (0.80) 99.10 (0.68)
0.4 99.78 (0.26) 99.64 (0.43) 99.10 (0.43) 98.92 (0.79)
0.5 99.57 (0.40) 99.64 (0.26) 98.57 (0.73) 99.10 (0.68)
0.6 99.57 (0.22) 99.28 (0.53) 99.46 (0.26) 99.46 (0.43)
0.7 99.78 (0.43) 99.82 (0.22) 99.28 (0.63) 99.28 (0.40)
0.8 100.00 (0.00) 99.64 (0.43) 99.10 (0.48) 99.28 (0.40)
0.9 99.68 (0.43) 99.64 (0.26) 99.46 (0.43) 99.64 (0.26)
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CX

0.1 49.10 (4.82) 22.65 (2.79) 28.42 (3.52) 41.88 (3.95)
0.2 48.97 (3.96) 24.36 (5.48) 50.85 (3.52) 52.35 (1.55)
0.3 61.92 (3.68) 31.62 (4.01) 55.77 (2.21) 52.99 (5.36)
0.4 65.64 (3.88) 34.62 (4.28) 62.61 (2.53) 60.04 (4.31)
0.5 67.56 (2.35) 32.91 (4.00) 65.17 (2.34) 57.26 (9.82)
0.6 68.97 (4.67) 39.53 (10.11) 64.32 (1.94) 68.16 (3.11)
0.7 70.26 (4.01) 39.32 (4.32) 62.82 (7.64) 67.95 (2.61)
0.8 71.41 (3.33) 40.17 (3.38) 69.02 (3.55) 74.15 (2.54)
0.9 72.82 (1.32) 42.95 (9.15) 70.09 (2.70) 77.14 (1.04)

EF

0.1 99.55 (0.42) 78.91 (2.35) 100.00 (0.00) 99.06 (0.42)
0.2 99.89 (0.23) 81.73 (2.03) 99.62 (0.45) 99.81 (0.23)
0.3 99.89 (0.23) 81.36 (1.37) 99.81 (0.23) 99.81 (0.23)
0.4 99.66 (0.45) 81.73 (0.42) 100.00 (0.00) 99.25 (0.66)
0.5 99.77 (0.45) 82.30 (1.31) 99.81 (0.23) 99.06 (0.71)
0.6 99.89 (0.23) 82.86 (3.45) 99.62 (0.45) 99.81 (0.23)
0.7 99.66 (0.45) 82.49 (5.03) 100.00 (0.00) 99.44 (0.45)
0.8 100.00 (0.00) 88.70 (3.73) 100.00 (0.00) 99.81 (0.23)
0.9 100.00 (0.00) 82.30 (3.18) 100.00 (0.00) 100.00 (0.00)

L2

0.1 61.60 (4.08) 52.00 (7.33) 52.00 (7.42) 61.33 (5.99)
0.2 73.60 (4.08) 60.00 (1.60) 54.67 (7.33) 57.33 (13.72)
0.3 66.40 (5.99) 57.33 (8.16) 69.33 (6.50) 57.33 (12.80)
0.4 67.20 (13.00) 64.00 (7.76) 80.00 (4.08) 54.67 (15.05)
0.5 76.80 (6.88) 76.00 (1.60) 85.33 (1.96) 74.67 (5.43)
0.6 85.60 (3.20) 78.67 (2.53) 78.67 (5.99) 81.33 (5.31)
0.7 84.30 (2.53) 76.00 (3.20) 78.67 (5.43) 73.33 (7.42)
0.8 78.40 (5.99) 74.67 (2.99) 76.00 (6.88) 72.00 (3.92)
0.9 83.20 (6.88) 72.00 (3.20) 78.67 (2.99) 74.67 (4.08)

MS

0.1 91.14 (0.95) 81.96 (3.27) 88.76 (1.51) 90.07 (1.39)
0.2 95.29 (0.43) 90.98 (0.46) 92.68 (1.20) 93.59 (1.41)
0.3 95.22 (1.00) 90.59 (1.37) 91.11 (2.87) 93.59 (1.38)
0.4 95.14 (1.60) 91.90 (0.97) 94.64 (0.91) 96.34 (0.46)
0.5 95.06 (1.01) 88.10 (2.26) 93.07 (0.64) 93.99 (0.74)
0.6 95.37 (1.56) 90.59 (2.18) 93.73 (1.00) 95.56 (0.77)
0.7 96.24 (0.64) 92.16 (1.42) 94.12 (0.91) 96.60 (0.46)
0.8 95.69 (0.61) 93.46 (1.13) 93.46 (1.30) 95.16 (1.01)
0.9 96.08 (0.61) 93.73 (1.04) 95.69 (0.46) 95.82 (0.72)

PL

0.1 95.71 (0.95) 93.65 (1.17) 96.83 (0.95) 97.62 (0.95)
0.2 95.71 (1.78) 94.44 (1.78) 96.83 (1.51) 96.83 (1.78)
0.3 95.71 (1.78) 93.65 (2.13) 96.03 (1.78) 95.24 (0.95)
0.4 95.71 (1.78) 93.65 (2.33) 97.62 (1.90) 96.03 (1.78)
0.5 96.67 (1.90) 93.65 (1.17) 97.62 (1.90) 93.65 (4.10)
0.6 97.62 (1.51) 93.65 (1.90) 96.03 (3.01) 97.62 (0.95)
0.7 96.67 (2.43) 94.44 (1.51) 97.62 (1.90) 95.24 (2.43)
0.8 99.05 (1.17) 95.24 (1.90) 98.41 (1.17) 96.83 (1.51)
0.9 99.05 (1.90) 92.06 (2.43) 98.41 (1.17) 96.03 (3.01)

PC

0.1 86.67 (2.26) 85.65 (0.88) 85.65 (1.67) 85.19 (1.84)
0.2 91.67 (1.76) 86.11 (0.68) 88.43 (3.97) 91.20 (2.42)
0.3 93.33 (1.62) 87.04 (1.88) 94.91 (1.36) 89.81 (2.42)
0.4 90.56 (1.62) 85.65 (2.48) 89.81 (1.42) 91.67 (1.42)
0.5 94.44 (2.91) 88.89 (1.42) 92.59 (2.83) 89.81 (2.22)
0.6 94.44 (1.24) 87.04 (2.69) 93.98 (2.39) 93.98 (2.39)
0.7 95.56 (1.84) 87.50 (1.67) 95.37 (1.36) 95.37 (1.88)
0.8 97.22 (0.88) 87.50 (2.91) 95.83 (1.88) 96.76 (1.36)
0.9 98.33 (0.56) 85.65 (0.56) 97.69 (0.68) 96.30 (1.04)

RD

0.1 53.60 (2.09) 48.89 (1.24) 54.00 (2.41) 52.00 (2.17)
0.2 58.00 (3.65) 54.00 (2.78) 58.89 (4.11) 54.89 (3.44)
0.3 57.07 (2.29) 52.00 (3.17) 58.44 (4.17) 53.11 (4.69)
0.4 58.27 (3.20) 57.78 (3.56) 58.67 (3.02) 57.78 (4.16)
0.5 61.07 (1.16) 50.22 (4.59) 60.00 (2.25) 59.78 (1.42)
0.6 60.40 (3.64) 56.00 (2.52) 62.44 (1.19) 61.11 (2.60)
0.7 61.73 (3.26) 54.44 (4.37) 62.67 (3.06) 59.33 (2.60)
0.8 62.27 (4.10) 52.22 (4.64) 61.56 (2.25) 62.44 (2.51)
0.9 63.60 (2.82) 59.11 (1.95) 64.00 (1.71) 63.56 (3.14)

SR

0.1 99.52 (0.39) 92.80 (2.12) 98.67 (0.60) 99.47 (0.64)
0.2 99.36 (0.60) 93.33 (2.30) 99.47 (0.39) 99.20 (0.64)
0.3 99.04 (0.93) 94.13 (1.09) 98.67 (0.72) 99.47 (0.39)
0.4 99.52 (0.64) 93.87 (1.18) 99.73 (0.32) 99.47 (0.39)
0.5 99.84 (0.32) 92.80 (2.02) 100.00 (0.00) 99.20 (0.32)
0.6 99.52 (0.64) 93.87 (1.68) 99.47 (0.39) 99.20 (0.96)
0.7 100.00 (0.00) 94.40 (1.87) 100.00 (0.00) 99.20 (0.39)
0.8 99.84 (0.32) 94.40 (0.93) 99.20 (0.39) 99.47 (0.64)
0.9 99.84 (0.32) 94.13 (1.72) 99.20 (0.64) 99.47 (0.64)

SL

0.1 74.67 (3.80) 56.15 (2.09) 54.52 (4.39) 67.70 (6.53)
0.2 76.62 (3.43) 60.30 (2.15) 76.59 (2.29) 76.15 (4.20)
0.3 85.07 (3.09) 63.85 (2.70) 85.33 (1.24) 81.63 (2.95)
0.4 87.73 (1.55) 67.56 (4.26) 86.81 (2.09) 81.48 (1.72)
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0.5 87.29 (1.24) 68.15 (3.72) 89.19 (1.55) 85.33 (2.46)
0.6 89.96 (1.79) 70.37 (2.82) 88.59 (1.74) 89.04 (1.34)
0.7 92.00 (1.57) 77.48 (6.07) 90.52 (1.76) 88.44 (1.07)
0.8 90.84 (2.22) 76.89 (4.50) 89.48 (1.32) 89.78 (0.82)
0.9 91.47 (1.79) 79.26 (4.52) 91.41 (0.28) 90.67 (1.62)

SC

0.1 96.67 (2.11) 60.56 (6.74) 94.44 (1.05) 96.94 (0.91)
0.2 97.00 (1.35) 77.50 (4.10) 97.50 (0.85) 98.06 (0.53)
0.3 99.00 (0.62) 81.94 (4.28) 98.06 (0.82) 97.22 (1.13)
0.4 98.67 (0.85) 86.94 (3.00) 96.11 (1.25) 97.78 (1.11)
0.5 98.00 (0.85) 87.50 (3.70) 96.11 (1.55) 97.78 (1.11)
0.6 97.67 (1.11) 88.61 (3.03) 97.50 (1.18) 98.61 (0.62)
0.7 98.50 (0.97) 88.06 (4.20) 98.06 (0.53) 98.06 (1.13)
0.8 98.17 (1.22) 92.22 (3.27) 95.56 (1.87) 99.17 (0.33)
0.9 99.33 (0.62) 91.39 (3.59) 98.33 (0.82) 98.33 (0.67)

T1

0.1 82.59 (1.89) 76.54 (5.81) 79.63 (4.60) 76.54 (2.77)
0.2 89.26 (4.12) 86.42 (5.62) 90.74 (1.48) 89.51 (2.72)
0.3 96.67 (2.16) 88.89 (3.19) 89.51 (5.16) 93.21 (3.01)
0.4 95.56 (2.22) 89.51 (6.35) 91.98 (2.77) 96.30 (1.48)
0.5 94.81 (2.96) 93.21 (2.34) 92.59 (3.31) 92.59 (2.46)
0.6 97.04 (1.48) 95.68 (1.17) 95.06 (2.03) 95.06 (1.66)
0.7 97.04 (2.77) 95.68 (1.39) 95.06 (0.91) 92.59 (2.72)
0.8 96.30 (3.10) 96.30 (0.00) 95.68 (0.74) 93.83 (3.59)
0.9 97.04 (1.48) 94.44 (0.74) 97.53 (1.39) 97.53 (1.39)

TR

0.1 90.00 (10.25) 75.00 (7.91) 90.00 (9.00) 79.17 (9.80)
0.2 99.50 (1.00) 91.67 (3.00) 100.00 (0.00) 88.33 (8.94)
0.3 99.00 (1.22) 96.67 (1.87) 98.33 (1.22) 97.50 (1.22)
0.4 99.50 (1.00) 97.50 (1.00) 100.00 (0.00) 98.33 (2.00)
0.5 100.00 (0.00) 97.50 (3.00) 100.00 (0.00) 100.00 (0.00)
0.6 100.00 (0.00) 99.17 (1.00) 100.00 (0.00) 100.00 (0.00)
0.7 99.00 (2.00) 98.33 (1.22) 100.00 (0.00) 100.00 (0.00)
0.8 100.00 (0.00) 99.17 (1.00) 99.17 (1.00) 98.33 (2.00)
0.9 99.00 (1.22) 95.83 (2.24) 99.17 (1.00) 100.00 (0.00)

TP

0.1 99.94 (0.08) 95.17 (1.68) 99.67 (0.15) 99.80 (0.19)
0.2 99.94 (0.08) 93.67 (5.53) 99.83 (0.20) 100.00 (0.00)
0.3 100.00 (0.00) 97.90 (1.10) 99.83 (0.09) 100.00 (0.00)
0.4 100.00 (0.00) 99.47 (0.21) 99.97 (0.04) 99.90 (0.12)
0.5 99.96 (0.08) 98.30 (0.64) 99.80 (0.19) 99.97 (0.04)
0.6 99.96 (0.05) 99.50 (0.23) 99.97 (0.04) 99.90 (0.05)
0.7 100.00 (0.00) 99.67 (0.19) 99.93 (0.05) 99.80 (0.14)
0.8 99.96 (0.05) 99.73 (0.09) 99.90 (0.12) 100.00 (0.00)
0.9 100.00 (0.00) 99.57 (0.23) 100.00 (0.00) 100.00 (0.00)

YO

0.1 73.48 (5.14) 65.91 (3.49) 71.46 (4.15) 71.16 (3.89)
0.2 78.45 (5.09) 72.32 (3.20) 71.82 (6.39) 76.31 (4.33)
0.3 81.73 (6.28) 74.14 (1.96) 80.96 (2.07) 87.78 (0.46)
0.4 86.03 (5.85) 74.29 (4.98) 76.67 (5.89) 87.02 (2.11)
0.5 89.36 (0.65) 79.09 (4.38) 77.02 (5.99) 90.91 (0.69)
0.6 88.03 (4.09) 79.29 (2.57) 79.55 (1.69) 80.15 (5.63)
0.7 88.33 (7.22) 83.64 (1.46) 83.84 (3.26) 87.68 (2.52)
0.8 92.27 (2.88) 84.24 (1.99) 83.54 (3.52) 86.16 (5.02)
0.9 88.82 (4.23) 83.08 (2.71) 79.80 (5.31) 90.25 (2.34)
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