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ABSTRACT

Vertical Federated Learning (VFL) enables collaborative training with feature-
partitioned data, yet remains vulnerable to private label leakage through gradient
transmissions. In this work, we propose DPZV, a gradient-free VFL framework
that achieves tunable differential privacy (DP) with formal performance guaran-
tees. By leveraging zeroth-order (ZO) optimization, DPZV eliminates explicit gra-
dient exposure. It further enhances security by providing provable differential
privacy guarantees. Standard DP techniques like DP-SGD are difficult to apply
in zeroth-order VFL due to VFL’s distributed nature and the high variance in-
curred by vector-valued noise. DPZV overcomes these limitations by injecting
low-variance scalar noise at the server, enabling controllable privacy with reduced
memory overhead. We conduct a comprehensive theoretical analysis showing that
DPZV attains convergence rate comparable to first order (FO) optimization meth-
ods while satisfying formal (ϵ, δ)-DP guarantees. Experiments on image and lan-
guage benchmarks demonstrate that DPZV outperforms several baselines in terms
of achieved accuracy under a wide range of privacy constraints (ϵ ≤ 10), thereby
elevating the privacy-utility tradeoff in VFL.

1 INTRODUCTION

Vertical Federated Learning (VFL) has emerged as a compelling paradigm for scenarios where dif-
ferent institutions each hold complementary features for the same set of users. For example, hospi-
tals may store patients’ medical records while insurance companies possess demographic or finan-
cial information, and jointly training models on such partitioned data can unlock richer predictive
power than any single party could achieve alone (Hardy et al., 2017; Chen et al., 2020a; Castiglia
et al., 2023). VFL achieves this by maintaining local submodels at each party and coordinating
training through the exchange of intermediate representations and gradients, without directly shar-
ing raw data. However, unlike conventional Federated Learning (FL) where only model parameters
are communicated, VFL’s reliance on transmitting intermediate results introduces new attack sur-
faces. Recent studies have shown that adversaries can exploit these updates to recover sensitive
attributes or even infer labels, leading to feature leakage (Jin et al., 2021; Ye et al., 2024) and label
leakage (Fu et al., 2022; Zou et al., 2022). These vulnerabilities underscore the urgent need for
integrating stronger, principled privacy-preserving mechanisms into the VFL framework.

To mitigate privacy risks introduced by the transmission of intermediate gradients, one promising
direction is to integrate Zeroth-order (ZO) optimization (Nesterov & Spokoiny, 2017; Fang et al.,
2022) into VFL (Zhang et al., 2021; Wang et al., 2024). By avoiding gradient transmission, ZO
substantially reduces the risk of label leakage, offering a stronger baseline defense against label in-
ference. (Zhang et al., 2021). Beyond privacy, ZO-VFL further offers practical advantages such as
reduced backward communication and lower memory overhead. However, ZO remains vulnerable
for two key reasons: (i) malicious clients can still approximate gradients from perturbation infor-
mation, and (ii) adversaries may infer sensitive attributes from local model parameters. Moreover,
ZO provides no built-in mechanism for adjustable privacy, limiting their flexibility in practical de-
ployments where institutions require adaptive privacy guarantees. These limitations raise the central
research question of this work:
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How can we enable an enhanced and controllable privacy mechanism in zeroth-order VFL which
maintains convergence guarantees while elevating the privacy-utility tradeoff?

Key Challenges. In this paper, we take a differential privacy (DP) (Dwork et al., 2006) approach
to zeroth-order VFL, aiming to provide adjustable privacy levels under varying budgets. However,
incorporating DP into ZO-based VFL is not a straightforward adaptation and poses several key
challenges. In particular, existing strategies for achieving DP within the VFL framework typically
involve injecting vector-valued noise into the forward embeddings (Chen et al., 2020a; Xie et al.,
2024). While providing formal privacy guarantees, it requires adding noise with the same shape
as the transmitted embeddings, which are typically high-dimensional. This high-dimensional noise
introduces substantial variance amplification (Abadi et al., 2016). Moreover, ZO methods inher-
ently produce noisy gradient estimates (Ghadimi & Lan, 2013): when combined with the additional
variance introduced by DP noise, the compounded effect can lead to substantial performance degra-
dation. This situation can be further exacerbated when the privacy budget is tight. On the other hand,
conventional DP algorithms(e.g., DP-SGD(Abadi et al., 2016)) injects noise on the gradient, which
is also incompatible with ZO methods, as ZO does not involve transmitting backward gradients.

Contributions. To address the above challenges, we propose Differentially Private Zeroth-Order
VFL (DPZV), a novel ZO-based VFL framework that achieves a controllable differential privacy
level with convergence guarantees. By injecting scalar-valued noise rather than high-dimensional
vector noise, DPZVmitigates variance amplification, thereby enhancing the tradeoff between privacy
and model performance in VFL. Our main contributions can be summarized as follows:

• DPZV is the first ZO optimization framework for vertical federated learning (VFL) that en-
ables tunable differential privacy. By injecting calibrated scalar-valued noise instead of high-
dimensional vector noise, DPZV provides privacy guarantees while preserving model accuracy.
Moreover, the use of ZO optimization substantially reduces memory overhead, making DPZV
particularly suitable for privacy-critical and resource-constrained environments (section 3).

• We provide a rigorous theoretical analysis establishing both convergence and privacy guarantees
for DPZV. Specifically, we show that DPZV achieves a convergence rate on the same order as first-
order DP-SGD, despite using only ZO estimators. This result indicates that our DPZV framework
attains privacy without sacrificing training efficiency. Furthermore, we prove that our method sat-
isfies (ϵ, δ)-DP, confirming its ability to provide an adjustable privacy control mechanism (sections
4 and 5).

• Through experiments on image and language benchmarks, we demonstrate that DPZV obtains ro-
bust convergence performance under strict privacy budgets. While other DP baselines experience
a steep performance degradation as the privacy level increases, DPZV consistently maintains high
accuracy across all tasks, underscoring an elevated tradeoff between privacy and utility (section 6).

2 BACKGROUND AND MOTIVATION

System Model for VFL. We consider a VFL framework with one server and M clients. In VFL,
data is vertically partitioned between clients, with each client holding different features of the data.
Suppose we have a dataset D with D samples: D = {ξi|i = 1, 2, . . . , D}. Each data sample
ξi can be partitioned into M portions distributed throughout all clients, where the data sample on
machine m with ID i is denoted as ξm,i, hence ξi = [ξ1,i, ξ2,i, . . . , ξM,i]

⊤. The server is numbered
as machine 0 and holds the label data Y = {yi|i = 1, 2, . . . , D}.
The clients and the server aim to jointly train a machine learning model parameterized by w. The
global model comprises local models on each party parameterized by wm, with m = 0, 1, . . . ,M
being the ID of the machine. To protect privacy, clients do not communicate with each other regard-
ing data or model parameters. Instead, all clients communicate directly with the server regarding
their local model’s outputs, which we term as local embeddings. If we denote the local embedding
of client m as hm,i := h(wm; ξm,i), the objective of the VFL framework can be seen as minimizing
the following function:

F (w;D,Y ) := 1
D

∑
i∈[D] L(w0, h1,i, h2,i, . . . , hM,i; yi) (1)

where L is the loss function for a datum ξi and its corresponding label yi. For the simplicity of
notation, we define the loss function w.r.t a specific model parameter and datum as

f(w; ξi) := L(w0, h1,i, h2,i, . . . , hM,i; yi) (2)
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Figure 1: Overview of the training procedure in DPZV. Each client perturbs its local model parameters in
two random directions to generate a pair of embeddings, which are then transmitted to the server. The server
computes the corresponding function evaluations and applies an elementwise difference to approximate the
zeroth-order (ZO) gradient. To ensure differential privacy, scalar-valued Gaussian noise is injected into the
aggregated ZO estimate. Unlike traditional vector-valued noise in standard DP algorithms, scalar noise is
significantly smaller in norm, thereby preserving model utility even under stringent privacy budgets.

Memory-Efficient Zeroth-Order Optimizer. We introduce the two-point gradient estima-
tor (Shamir, 2017), which will serve as our zeroth-order gradient estimator throughout this paper.
Let u be uniformly sampled from the Euclidean sphere

√
dSd−1 and λ > 0 be the smoothing factor.

For a single datum ξ sampled from the whole dataset D, the two-point gradient estimator is defined
as

g(x; ξ) = f(x+λu;ξ)−f(x−λu;ξ)
2λ u (3)

To further reduce the memory overhead on client, we adopt the MeZO methodology (Malladi et al.,
2023) for our ZO Optimization, which requires only the same memory as the model itself for train-
ing. We investigate the memory reduction of this estimator in Appendix G.

Differential Privacy and DP-SGD. DP provides a principled framework for protecting individual
data in statistical analysis and machine learning. Formally, we adopt the standard (ϵ, δ)-DP defini-
tion:

Definition 2.1 ((ϵ, δ)-Differential Privacy). A randomized algorithm M : Xn → Θ is said to
satisfy (ϵ, δ)-differential privacy if for any neighboring datasets X,X ′ ∈ Xn that differ by only one
individual’s data, and for any subset of outputs E ⊆ Θ, we have

P[M(X) ∈ E] ≤ eϵP[M(X ′) ∈ E] + δ. (4)

One of the most widely adopted private training algorithms is Differentially Private Stochastic Gra-
dient Descent (DP-SGD), which operates by clipping an intermediate result and injecting Gaussian
noise during each model update. Specifically, given a minibatch Bt at iteration t, DP-SGD performs
the following steps: 1) Clip individual gradients: ḡi = ∇ℓ(θt, xi), g̃i = ḡi/max

(
1, ∥ḡi∥2

C

)
. 2)

Add Gaussian noise: g̃t = 1
|Bt|

(∑
i∈Bt

g̃i +N (0, σ2C2I)
)
. 3) Update model: θt+1 = θt − ηtg̃t.

Challenges and Motivation. Existing approaches (Chen et al., 2020a; Xie et al., 2024) integrate
DP with FO-VFL by injecting DP noise in the forward embedding. In centralized or horizontally
federated learning, DP-SGD achieves privacy by adding noise to the backward gradients. However,
extending these strategies to ZO optimization introduces new challenges. First, due to the distributed
nature of VFL, DP guarantees must be enforced before the server communicates with clients, so
as to prevent malicious clients from mounting label inference attacks. In both cases, the noise

3
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must match the dimensionality of the protected vector (embedding or gradient), often resulting in
high-dimensional noise. This situation is further exacerbated by the second factor: in ZO methods,
gradients are approximated through multiple forward evaluations, making them inherently noisy.
Adding a high-dimensional noise vector as in standard DP-SGD further amplifies this inaccuracy.

A key advantage of adopting ZO optimization, however, lies in its communication efficiency in the
backward pass: only a scalar value, rather than a full gradient vector, needs to be exchanged. This
observation enables a more efficient privacy mechanism—injecting scalar noise rather than high-
dimensional noise. Building on this insight, we propose Differentially Private Zeroth-Order Vertical
Federated Learning (DPZV), a framework that achieves tunable differential privacy through cali-
brated scalar noise injection. This design allows for a favorable privacy-utility trade-off in ZO-based
VFL, particularly under tight privacy budgets. Unlike first-order VFL methods, which typically add
noise to forward embeddings, DPZV introduces noise in the backward pass, targeting the most ex-
ploited leakage pathway in VFL: label inference from gradients. A broader discussion of privacy
implications is provided in Section 5 and Appendix F.

3 METHODOLOGY

In this section, we describe the overall training procedure of DPZV. Based on equation 1, the objec-
tive is to collaboratively minimize the global objective function across all clients. The clients hold
disjoint features of the same data records, and the server holds the label data. The training procedure
proceeds in two iterative steps.

3.1 CLIENT UPDATE AND FORWARD COMMUNICATION

The sampled clients compute local information and transmit it to the server. We define the client-
server communication as forward communication.

Training Procedure. Each client m maintaining its own local communication round tm, while the
server tracks a global round t. Whenever the server receives information from a client, it increments
t. Upon receiving an update from the server, the client synchronizes by setting tm = t, capturing the
latest state. This asynchronous mechanism allows clients to progress without waiting for stragglers,
improving throughput and minimizing idle time. The server maintains a copy of the latest local
embeddings h̃t

m,i for all clients m ∈ [M ] and data samples ξi ∈ D. Due to the asynchronous nature
of the algorithm, these copies may be stale, as they do not always reflect the most up-to-date model
parameters of the clients. Let t̃m,i denote the client time when the server last updated h̃t

m,i. The
delay at server communication round t can then be expressed as τ tm = tm− t̃m,i, where the delayed
model parameters are defined as:

χ̃t = {wt1−τt
1

1 , . . . , w
tM−τt

M

M }, w̃t = {wt
0, χ̃

t}. (5)

Local Embedding Finite Differences. For each global iteration t, a client m is activated, and it
samples a mini-batch Btmm ∈ D and the corresponding IDs Itmm . To approximate gradients via
zeroth-order finite differences, client m computes two perturbed local embeddings for the mini-
batch,

{htm+
m,i }i∈Itm

m
= {h(wtm

m + λmutm
m ; ξm,i)}i∈Itm

m
,

{htm−
m,i }i∈Itm

m
= {h(wtm

m − λmutm
m ; ξm,i)}i∈Itm

m
(6)

where utm
m is sampled uniformly at random from the Euclidean sphere

√
dmSdm−1, and λm is a

smoothing parameter that controls the step size of perturbation. These two perturbed embeddings
serve as “positive” and “negative” perturbations of its local parameters, which are forwarded to the
server for further computation.

3.2 SERVER UPDATE AND BACKWARD COMMUNICATION

The server updates the global model and transmit global updates to the client. We define the server-
client communication as backward communication.

Server Side ZO Computation. After the server receives the local embeddings htm
m,i from client

m, it updates its embeddings copy and do computation. For each embedding pair {htm+
m,i , h

tm−
m,i }, it

computes the difference in loss function L caused by perturbation, divided by the smooth parameter

4
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Algorithm 1: DPZV: Differentially Private Zeroth-Order Vertical Federated Learning
Input : Data D, batch size B, learning rate ηm, total iteration T , smoothing parameter

λm > 0, clipping threshold C > 0, privacy parameter σdp

Output: Parameter w0, wm for all parties m ∈ [M ]
1 Initialize w0, wm and set t, tm = 0 for all parties
2 for t = 1, . . . , T do
3 Sample ready-to-update client m ∈ {1, . . . ,M}.
4 Client m samples a mini-batch Btmm with corresponding IDs Itmm .
5 Client m computes perturbed local embeddings {htm+

m,i , h
tm−
m,i }i∈Itm

m
according to

equation 6.
6 (Forward) Client transmits embeddings to server.
7 Server computes ∆t

m according to equation 7 and equation 8, and updates via ZO
Optimization.

8 (Backward) Client receives ∆t
m.

9 Client performs local update using equation 9.
10 Client update local time stamp tm = t.

λm. Specifically, we define1:

δt,tmm,i =
f̃(w0,h

tm+
m,i ;yi)−f̃(w0,h

tm−
m,i ;yi)

λm
, (7)

Scalar DP Noise Injection. To ensure controllable privacy, the server then clips each δtm,i by a
threshold C to bound sensitivity: clipC(δ

t,tm
m,i ) = min{δt,tmm,i , C}. It then samples noise ztmm from a

Gaussian distributionN (0, σ2
dp). This noise is added to the mean of the per-sample-clipped updates,

yielding a differentially private gradient-like quantity:

∆t
m = 1

B

∑
i∈Itm

m
clipC(δ

t,tm
m,i ) + ztm. (8)

The server then performs a backward communication and sends ∆t
m to client m. The server then up-

dates its global model through two possible operations: i) ZO Optimization, w0 ← w0−η0g(w0; ξi)
(defined in equation 3); or ii) stochastic gradient descent (SGD), w0 ← w0 − η0∇w0F (w; ξi),

depending on the constraints on computation resources. The adopted ZO update methodology is
explained in section 2.

On the client side, upon receiving ∆t
m, client m updates its local parameter wm with learning rate

ηm:
wm ← wm − ηm∆t

mutm
m , (9)

where utm
m is the same vector used for local perturbation. Our method is well-suited for resource-

constrained environments, such as edge devices with limited VRAM or computation power, while
still maintaining robust performance and scalability in VFL settings. We summarize the pipeline
above in Algorithm 1.

4 CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis for DPZV. The detailed proofs can be found in
Appendix B. For brevity, we define the following notations: F t = F (wt) := F (wt;D,Y ), and
f(w; ξi) as defined in equation 2. We make the following standard assumptions 2:

1We slightly abuse the notation, and define f̃(w0, h
tm±
m,i ; yi) = L(w0, h̃

t
1,i, . . . , h

tm±
m,i , . . . , h̃t

M,i; yi).
where we treat f̃ as a function of the server parameter w0 and the perturbed local embeddings.

2We claim that assumption 4.1 and 4.2 are standard in VFL and ZO literature (Wang et al., 2024; Castiglia
et al., 2023). We follow (Zhang et al., 2024) to make the ℓ-Lipschitz assumption in order to bound the probabil-
ity of clipping. Assumption 4.3 is common when dealing with asynchronous participation (Chen et al., 2020a),
and can be satisfied when the activations of clients follow independent Poisson processes.

5
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Assumption 4.1 (Properties of loss function). The VFL objective function F is bounded from be-
low, the function f(w; ξi) is ℓ-Lipschitz continuous and L-Smooth for every ξi ∈ D.
Assumption 4.2 (System boundedness). The following system dynamics are bounded: 1) Stochas-
tic Noise: The variance of the stochastic first order gradient is upper bounded in expectation:
E
[
∥∇wf(w; ξ)−∇wF (w)∥2

]
≤ σ2

s . 2) Time Delay: The parameter delay τ tm is upper bounded

by a constant τ : τ t ≤ τ, ∀m, t.

Assumption 4.3 (Independent Participation). Under an asynchronous update system, the probability
of one client participating in one communication round is independent of other clients and satisfies:
P(client m uploading) = qm.

We now present the main theorem that provides convergence guarantee for DPZV:
Theorem 4.4. Under assumption 4.1-4.3. Define F = E[F 0 − FT ]. If we denote q∗ = minm qm,
d∗ = maxm dm where dm represent the dimension of model parameters on device m, and let all step
sizes satisfy: η0 = ηm = η ≤ min{ 1√

Td∗
, B
4L(B+8d0)+8γ1(2dm+B)}, let the smoothing parameter λ

satisfy: λ ≤ 1
Ld

√
T

, and let the clipping level C satisfy: C ≥ max{0, 1
2Lλd− ℓ

√
8 log(2

√
2π)},

then for any given global iteration T ≥ 1, we have the following upper bound on the gradient norm:

1
T

∑T−1
t=0 E

[
∥∇wF (wt)∥2

]
≤ O

(
F
√
d∗√
T

+ d∗
T +

(σ2
s/B+σ2

dp)
√
d∗√

T
+ C2√d∗

(exp(C2)−1)B
√
T

)
, (10)

Discussion. The first term is influenced by the model’s initialization, F 0. This term also enjoys
the same rate as ZO optimization in the centralized case (Ghadimi & Lan, 2013). The second term
O(d∗

T ) is a standard term for ZOO methods based on the usage of ZO estimator updates. The third
term captures the impact of various noise sources in the learning system. Here, σ2

s/B represents
the noise introduced by stochastic gradients, and σ2

dp corresponds to the variance of the injected DP
noise. While reducing σ2

dp improves utility, it comes at the cost of weakening privacy guarantees.
Consequently, this term encapsulates the fundamental trade-off between model performance, com-
putational cost, and privacy budget. The fourth term, quantifies the impact of the gradient clipping
operation on convergence. As C increases, increases, this term diminishes, effectively recovering
the non-private case in the limit. However, the noise variance σ2

dp also scales linearly with C , which
can impede overall convergence. This trade-off underscores the importance of carefully tuning the
sensitivity level to balance privacy preservation and learning efficiency.

Based on the privacy analysis in section 5, we further substitute the level of DP variance σdp =
2C

√
T

Dµ into this convergence rate. By selecting T = O
(

D2µ2
√
d

C2

(
F + σ2

B + C2

eC2−1

))
, the over-

all convergence upper bound becomes O
(√

d
Dµ

)
, which matches the known rate of DP-SGD for

first-order methods (Chen et al., 2020b). This result underscores a key insight of our analysis: al-
though zeroth-order optimization typically converges more slowly than its first-order counterpart in
non-private settings, it can achieve the same convergence rate when subject to differential privacy
constraints.

5 PRIVACY ANALYSIS

While data are kept local in the VFL framework, the communication of backward gradient during
the training process, as well as the exposure of model weights, can pose threat to sensitive informa-
tion (Papernot et al., 2018). In this section, we talk about how our algorithm protects privacy under
these threats. We consider the honest-but-curious threat model, where participants adhere strictly to
the protocols of VFL without deviating from agreed procedures. However, they may attempt to infer
private information from intermediate results exchanged during training.

Theorem 5.1. Under assumption 4.1-4.3, suppose the privacy parameter σdp is σdp = 2C
√
T

Dµ , where
D denotes the volume of the dataset, T defines total iterations, and µ > 0 controls the privacy level.
The training process of Algorithm 1 is seen to be (ϵ, δ(ϵ))-differential private for ∀ϵ > 0, where

δ(ϵ) = Φ(− ϵ
µ + µ

2 )− eϵΦ(− ϵ
µ −

µ
2 ) (11)

6
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(a) Test Accuracy of VFL Methods on image classification tasks under DP constraints. δ is set to 1 × 10−3.
DPZV outperforms first-order VFL methods on two datasets and surpasses all other ZO-based methods across
all three datasets, showing both a higher accuracy and a faster convergence rate.

(b) Privacy-Accuracy tradeoff across different datasets and algorithms. We use a constant level of δ = 1×10−3

and vary ϵ to simulate different privacy levels. Our algorithm consistently outperforms baselines under tight
privacy budget, showing a slower decay in performance than baselines as ϵ decreases.

Discussion. The theorem provides privacy guarantee under the “honest-but-curious” threat model,
where one or a few malicious clients try to do inference attacks by collecting information of the
system. By providing only the differentially private ZO information ∆t

m, the algorithm protects for
labels (Fu et al., 2022) and per-record influence, because the attacker cannot differentiate a single
datum in the dataset D and label set Y . The differential privacy parameter µ is related to (ϵ, δ)
through the relationship defined in equation 11. Given any two of these parameters, the third can be
determined by solving equation 11, allowing full flexibility in controlling the privacy level.

Although the forward embeddings hm,i are not protected by differential privacy, we note that label
information is only exposed in the backward pass. The following corollary formalizes
Corollary 5.2. Under the same condition of Theorem 5.1, at any time t of the training process and
any client m, the forward embedding ht

m,i is differentially private w.r.t. the labels.

A detailed discussion of our framework’s robustness against more threat models is provided in ap-
pendix F, and the detailed proofs can be found in appendix C.

6 EXPERIMENTS

Dataset and Baselines. We consider four datasets: image dataset MNIST (Deng, 2012), CIFAR-
10 (Krizhevsky et al., 2009), semantic dataset Amazon Review Polarity (McAuley & Leskovec,
2013), and multi-view dataset ModelNet40 (Wu et al., 2015). For each dataset, we conduct a grid
search on learning rates and other hyperparameters. We run 100 epochs on each method and select
the best validation model. We run each algorithm under three random seeds and compute the sample
variance for the generosity of our result. Additional information on the selection of dataset, data
processing and model architecture can be found in Appendix E.

We compare our algorithm against several SotA VFL methods: 1) VAFL (Chen et al., 2020a) 2)
ZOO-VFL (Zhang et al., 2021), 3) VFL-CZOFO (Wang et al., 2024). All methods assume that the
server holds the labels, and concatenates the embeddings of clients as the input of the server. VAFL
updates its model through first-order optimization in an asynchronous manner, and achieves DP by
adding random noise to the output of each local embedding. We use VAFL as a first-order baseline of
VFL method. Contrary to VAFL, ZOO-VFL and ZOFO both adopt ZO optimization in their training
procedure. ZOO-VFL substitutes the first order optimization by ZO optimization in common VFL
methods. VFL-CZOFO uses a cascade hybrid optimization method that computes the intermediate
gradient via ZOO, while keeping the back propagation on both server and client. To enforce DP and
compare all methods fairly, we follow the approach in VAFL (Chen et al., 2020a), applying the same
DP mechanism to both VFL-CZOFO and ZOO-VFL, which involves clipping the embeddings and
adding calibrated vector noise. In this paper, we only focus on the same update behavior as VAFL
which updates server and client once for every communication round. In addition, model delay has

7
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Figure 3: Effect of gradient clipping on DPZV under
non-private settings. We compare models trained with
and without clipping of the ZO information. Across
both MNIST and CIFAR-10, clipping accelerates con-
vergence and stabilizes training.

Figure 4: Effect of clipping threshold on DPZV un-
der differential privacy constraint ϵ = 1. While all
clipping levels perform similarly on MNIST, smaller
thresholds (C = 10) significantly improve accuracy
and convergence on CIFAR-10.

been manually adjusted for all methods based on the per-batch computation time on a single client
to simulate client heterogeneity and ensure a fair comparison.

Accelerated convergence of DPZV with privacy guarantees. Figure 2a presents the performance
evaluation of DPZV against all baselines on image classification tasks under certain DP levels. The
results show that DPZV consistently outperforms all baselines on MNIST and CIFAR-10 under
strict privacy budget (ϵ = 1, δ = 1 × 10−3). On ModelNet40, where training is more challenging
due to larger models and a greater number of clients, we slightly relax the DP constraint (ϵ =
10), and observe that DPZV maintains a competitive advantage over other ZO-based methods while
achieving accuracy comparable to the first-order baseline VAFL. The scalar noise injected in DPZV
effectively constrains the noise magnitude, mitigating the instability typically introduced by noisy
zeroth-order gradient estimators. This leads to more stable training dynamics than other ZO based
methods. Moreover, in contrast to the high-dimensional vector noise used in first-order baseline
VAFL, scalar noise incurs significantly less loss, resulting in superior performance under stringent
privacy budgets.

DPZV elevates privacy-utility tradeoff. Figure 2b presents the accuracy-privacy tradeoff across
four benchmark datasets: MNIST, CIFAR-10, ModelNet40, and Amazon Reviews. We evaluate the
robustness of our proposed method DPZV under various privacy budgets ϵ, while fixing the failure
probability δ = 1× 10−3. Across all tasks, DPZV consistently achieves the highest accuracy under
tight privacy regimes (ϵ ≤ 1), indicating its ability to maintain model utility even with stringent
differential privacy constraints. Notably, on MNIST and ModelNet40, DPZV shows only a marginal
drop in accuracy as ϵ decreases, while the competing methods suffer substantial degradation. For in-
stance, on CIFAR-10 at ϵ = 0.1, DPZV maintains over 90% accuracy, whereas ZOFO and ZOO-VFL
fall below 30%. Similar trends are observed on Amazon Reviews, where DPZV consistently out-
performs baselines under strict privacy, especially at ϵ = 1 and ϵ = 5. These results validate the
effectiveness of our scalar-noise-based DP mechanism in balancing utility and privacy, and highlight
its advantage in real-world privacy-sensitive federated learning scenarios.

Clipping benefits convergence. We observe in Figure 2b that even under no privacy constraints
(ϵ = ∞), DPZV outperforms other ZO based algorithms. A key distinction lies in DPZV’s use of
scalar clipping on ZO information, while originally introduced for differential privacy, also acts as a
form of gradient regularization. This regularization effect has been shown to improve convergence
in prior work (Zhang et al., 2019), and we observe similar benefits here. Figure 3 verifies our insight
by comparing the convergence behavior of DPZV with and without gradient clipping under a non-
private setting. The plots show test loss versus communication rounds. In both datasets, applying
clipping to the ZO information significantly improves convergence speed. For MNIST, clipped
DPZV reaches low test loss much faster and stabilizes more smoothly. On CIFAR-10, the clipped
version also demonstrates consistently lower loss throughout training. These results suggest that
clipping not only stabilizes training but also enhances convergence efficiency, even when privacy is
not enforced.

Impact of Sensitivity Level. Figure 4 presents the performance of DPZV under different sensitivity
levels, which is controlled by the clipping threshold C. We apply a fixed privacy budget of ϵ =
1, δ = 1 × 10−3 on both MNIST and CIFAR-10. In the MNIST setting, all clipping levels achieve
similar convergence and final accuracy, suggesting the model is robust to the choice of C in simple
tasks. In contrast, the CIFAR-10 results highlight a pronounced impact: smaller clipping values

8
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(e.g., C = 10) yield better accuracy and stability over training. Larger thresholds, such as C = 500
degrade performance, likely due to the excessive noise required to satisfy DP constraints. These
results emphasize the importance of careful clipping calibration in more complex settings to ensure
a good privacy-utility tradeoff.

7 RELATED WORK

We now discuss related work along two dimensions: (i) vertical federated learning and its privacy-
preserving variants, and (ii) zeroth-order optimization.

Vertical Federated Learning. Vertical Federated Learning (VFL) enables collaborative training
across organizations with vertically partitioned features. Early VFL frameworks focused on simple
client-side models such as logistic regression and linear models (Hardy et al., 2017). These methods
prioritized simplicity, but lacked expressiveness for complex tasks. To address this limitation, larger
client-side models like deep neural networks (DNNs) were adopted (Chen et al., 2020a; Castiglia
et al., 2023; Xie et al., 2024).

A key challenge in VFL is the communication overhead incurred during training. One popular mech-
anism for reducing communication overhead is by allowing for multiple local updates in-between
aggregations. In this respect, (Liu et al., 2022) introduced FedBCD, which allows clients to perform
multiple gradient iterations before synchronization. Similarly, Flex-VFL (Castiglia et al., 2023)
proposed a flexible strategy offering varying local update counts per party, constrained by a commu-
nication timeout. VIMADMM (Xie et al., 2024) adopted an ADMM-based approach to enable multiple
local updates in VFL. On the other hand, Asynchronous VFL methods (e.g., FDML (Hu et al., 2019),
VAFL (Chen et al., 2020a)) decouple coordination, allowing clients to update models independently,
thus improving scalability. However, in FO methods, the backward pass through neural networks
typically imposes communication overhead, while our ZO-based approach significantly reduces the
cost associated with backward propagation.

Privacy guarantee is another critical challenge for VFL adoption. Some VFL architectures use
crypto-based privacy-preserving techniques such as Homomorphic Encryption (HE) (Cheng et al.,
2021), but lack formal assurances. In contrast, DP provides rigorous mathematical protection. Key
DP-based methods include VAFL (Chen et al., 2020a), which injects Gaussian noise into client em-
beddings during forward propagation to achieve Gaussian DP, and VIMADMM (Xie et al., 2024),
which perturbs linear model parameters with bounded sensitivity, ensuring DP guarantees for con-
vex settings. Our work overcomes challenges in developing such methods for the ZO setting.

Zeroth-Order Optimization. Recent research has explored Zeroth-Order (ZO) optimization within
VFL to accommodate resource-constrained clients with non-differentiable models and to reduce gra-
dient leakage. Early work like ZOO-VFL (Zhang et al., 2021) adopted a naive ZO approach through-
out VFL training but provided no DP guarantees. VFL-CZOFO (Wang et al., 2024) introduced a
cascaded hybrid optimization method, combining zeroth-order and first-order updates, which lever-
aged intrinsic noise from ZO for limited privacy. However, its DP level was not adjustable, resulting
in insufficient protection.

More recently, MeZO (Malladi et al., 2023) proposed a memory-efficient ZO algorithm. Building
upon these ideas, DPZero (Zhang et al., 2024) and DPZO (Tang et al., 2024) introduced private
ZO variants offering baseline privacy features. However, these methods are designed for centralized
settings and cannot be directly extended to the VFL paradigm. Extending beyond previous efforts to
combine ZO optimization with VFL, we further integrate a controllable differential privacy mecha-
nism, achieving an elevated trade-off between privacy and model performance.

8 CONCLUSION

In this work, we propose DPZV, the first zero-order VFL framework that achieves robust and control-
lable privacy guarantees against inference attacks while maintaining strong model utility. Through
rigorous theoretical analysis, we establish the strong convergence properties of our algorithm. Ex-
tensive experiments demonstrate that DPZV outperforms all baselines across various privacy levels
and cost evaluations. These results provide valuable insights for future advancements in VFL and
distributed ZO optimization methods.
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Reproducibility Statement All resources required to replicate our main experimental findings are
provided. The datasets employed are publicly accessible, while details on the model architecture,
training procedure, and hyperparameter choices can be found in Sec. 6 and Appendix E. In addition,
the implementation code is supplied in the supplementary material.
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A PRELIMINARIES AND OUTLINE

We first define the following notation table to facilitate the proof:

Notation Description
w = [w0, w1, w2, . . . , wM ] All learnable parameters
d0, d1, . . . , dM Dimension of parameters on server (machine 0)

and client 1, . . . ,M
d =

∑M
m=0 dm Dimension of all parameters

f(w; ξi) := L(w0, h1,i, h2,i, . . . , hM,i; yi) Loss function with regard to datum with ID i
F (w) := F (w;D,Y ) Global loss function
χt = [wt1

1 , . . . , wtM
M ] Latest learnable parameters of all clients at server

time t

χ̃t = [w
t1−τt

1
1 , . . . , w

tM−τt
M

M ] Delayed learnable parameters of all clients at
server time t

wt = [wt
0, w

t1
1 , . . . , wtM

M ] Latest learnable parameters of all clients and the
server at server time t

w̃t = [w
t−τt

1
0 , w

t1−τt
1

1 , . . . , w
tM−τt

M

M ] Delayed learnable parameters of all clients and the
server at server time t

htm±
m,i = hm(wtm

m ± λmutm
m ; ξm,i) Local embeddings of client m for data sample i at

client time tm under the perturbed parameters
δt,tmm,i as defined in equation 7 zeroth-order difference information from client m

and data sample i at server time t and client time
tm

gtm,i(w̃
t) = δt,tmm,i u

tm
m zeroth-order gradient estimator from client m and

data sample i at server time t (with delay)
ğtm,i(w̃

t) = clipC
(
δt,tmm,i

)
utm
m Clipped zeroth-order gradient estimator from

client m and data sample i at server time t (with
delay)

Ğt
m(w̃t) = (1/B)

∑
i∈Itm

m
ğtm,i(w̃

t) +

ztmm utm
m

Clipped differential private zeroth-order gradient
estimator from client m at server time t (with de-
lay)

Gt
m(w̃t) = (1/B)

∑
i∈Itm

m
gtm,i(w̃

t) +

ztmm utm
m

Non-clipped differential private zeroth-order gra-
dient estimator from client m at server time t
(with delay)

Table 1: Table of Notations

Note that in the notation table, we use “˘” to define clipped gradient estimators, and we use “˜” to
denote delayed model parameters. In the rest of the proof, we also use gradient estimators parame-
terized by the no delaying parameters w instead of w̃ to assume that we update the model without
delay. To begin with, we restate the assumptions required for establishing the convergence analysis.
Assumption A.1 (ℓ-Lipschitz). The function f(w; ξ) is ℓ-Lipschitz continuous for every ξ.
Assumption A.2 (L-Smooth). The function f(w; ξ) is L-Smooth for every ξ. Specifically, there
exists an L > 0 for all m = 0, . . . ,M such that ∥∇wm

f(w)−∇wm
f(w′)∥ ≤ L∥w −w′∥.

Assumption A.3 (Bounded gradient variance). The variance of the stochastic first order gradient is
upper bounded in expectation:

E
[
∥∇wf(w; ξ)−∇wF (w)∥2

]
≤ σ2

s

Assumption A.4 (Independent Participation). The probability of one client participating in one
communication round is independent of other clients and satisfies

P(client m uploading) = qm

Specially, we set q0 = 1 as the server always participates in the update.
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One of the important parts in the proof of Theorem 4.4 is to bound the zeroth-order gradient estima-
tor. We first introduce the formal definition of zeroth-order two-point gradient estimator that is used
in our algorithm, and prove some technical lemmas that reveal some important properties.

Definition A.5. Let u be uniformly sampled from the Euclidean sphere
√
dSd−1. For any function

f(x) : Rd → R and λ > 0, we define its zeroth-order gradient estimator as

g(w) =
(f(w + λu)− f(w − λu))

2λ
u (12)

Lemma A.6. Let g(w) be the zeroth-order gradient estimator defined as in equation 12, with f(w)
being the loss function. We define the smoothed function fλ(w) = Eu[f(w + λu)], where v is
uniformly sampled from the Euclidean ball

√
dBd = {w ∈ Rd | ∥w∥ ≤

√
d}. The following

properties hold:

(i) fλ(w) is differentiable and Eu[g(w)] = ∇fλ(w).

(ii) If f(w) is L-smooth, we have that

∥∇f(w)−∇fλ(w)∥ ≤ L

2
λd3/2, (13)

|f(w)− fλ(w)| ≤ L

2
λ2d, (14)

and

Eu[∥gλ(w)∥2] ≤ 2d · ∥∇f(w)∥2 + L2

2
λ2d3. (15)

Based on equation 14, we can further show:

∥∇fλ(w)∥2 ≤ 2∥∇f(w)∥2 + L2

2
λ2d3 (16)

∥∇f(w)∥2 ≤ 2∥∇fλ(w)∥2 + L2

2
λ2d3 (17)

This is the standard result of zeroth-order optimization. The proof of the Lemma is given by (Nes-
terov & Spokoiny, 2017) We also find the following lemmas useful in the proof:

Lemma A.7. Let u be uniformly sampled from the Euclidean sphere
√
dSd−1, and a be any vector

of constant value. We have that E[u] = 0 and

P(|u⊤a| ≥ C) ≤ 2
√
2π exp

(
− C2

8∥a∥2

)
.

Proof. This lemma follows exactly from Lemma C.1. in (Zhang et al., 2024).

Lemma A.8. Let Q be the event that clipping happened for a sample ξ, d be the model dimension,
and L, ℓ be the Lipschitz and smooth constant as defined in assumption A.1 and assumption A.2. For
∀C0 > 0, if the clipping threshold C follows C ≥ C0 +Lλd/2, we have the following upper bound
for the probability of clipping:

P = P(Q) ≤ 2
√
2π exp(−C2

0

8ℓ2
) = Ξ (18)

Proof. Since f(u; ξ) is L-Smooth for every ξ, we have

|f(w + λu; ξ)− f(w − λu; ξ)|
2λ

≤ |u⊤∇f(u; ξ)|+ |f(w + λu; ξ)− f(w; ξ)− λu⊤∇f(w; ξ)|
2λ

+
|f(w − λu; ξ)− f(w; ξ) + λu⊤∇f(w; ξ)|

2λ

14
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≤ |u⊤∇f(w; ξ)|+ L

2
λ.

Therefore, by Lemma A.7 and Assumption A.1, we obtain

P(Q) = P(
|f(w + λu; ξi)− f(w − λu; ξi)|

2λ
≥ C0 +

L

2
λ)

≤P(|u⊤∇f(w; ξi)| ≥ C0)

≤2
√
2π exp(− C2

0

8∥∇f(w; ξi)∥2
)

≤2
√
2π exp(−C2

0

8ℓ2
).

Lemma A.9 (Expectation and Variance of Clipped Zeroth-order Gradient Estimator). Recall that
ğtm,i(w

t) is defined as the clipped zeroth-order gradient estimator assuming no communication
delay, random perturbation u is defined in Lemma A.7, and event Q is defined in Lemma A.8. We
have the following properties:

(i) When taking expectation w.r.t u and Q, the clipped zeroth-order gradient estimator follows

Eu[ğ
t
m,i(w

t)] = (1− P )∇wm
Fλ(w

t) (19)

(ii) The variance of ğtm,i(w
t) follows

Var(ğtm,i(w
t)) ≤(1− P )(2dm∥∇wmF (wt)∥2 + 2dmσ2

s +
L2

2
λ2d3m) + PC2dm − (1− P )2∥∇wmFλ(w

t)∥2

(20)

Proof. For (i), we have

E
[
ğtm,i(w

t)
]
=E

[
ğtm,i(w

t)|Q̄
]
P(Q̄) + E

[
ğtm,i(w

t)|Q
]
P(Q)

=E
[
g̃tm,i(w

t)
]
(1− P(Q)) + E

[
Cut

m

]
P(Q)

=(1− P )∇wm
Fλ(w

t)

where in the first step we applied the Law of Total Expectation, and in the last step we used the
property (i) in Lemma A.6 and (i) in Lemma A.7.
By equation 19, we can further bound the variance of ğtm,i

Var(ğtm,i(w
t))

=E
[∥∥ğtm,i(w

t)− (1− P )∇wm
Fλ(w

t)
∥∥2]

=E
[∥∥ğtm,i(w

t)
∥∥2]− (1− P )2∥∇wm

Fλ(w
t)∥2

=E
[∥∥g̃tm,i(w

t)
∥∥2|Q̄]P(Q̄) + E

[
C2∥ut

m∥
2|Q
]
P(Q)− (1− P )2∥∇wm

Fλ(w
t)∥2

1)

≤(1− P )(2dm∥∇wm
f(wt; ξm,t)∥

2
+

L2

2
λ2d3m)

+PC2dm − (1− P )2∥∇wm
Fλ(w

t)∥2

2)

≤(1− P )(2dm∥∇wmF (wt)∥2 + 2dmσ2
s +

L2

2
λ2d3m)

+PC2dm − (1− P )2∥∇wm
Fλ(w

t)∥2

where 1) is by the property of zeroth-order gradient estimator equation 15 and 2) follows from the
bounded gradient assumption(Assumption A.3).
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Lemma A.10 (Bounds on the variance of DP Zeroth-order Gradient Estimator). Let Ğt
m(wt) be

the Differential Private Zeroth-order Gradient without delay. Under the same condition as Lemma
A.6, we can bound the variance of Ğt

m(wt) in expectation, with the expectation taken on random
direction u, DP noise z, and clipping event Q:

Var(Ğt
m(wt)) ≤1− P

B
(2dmE

[
∥∇wm

F (wt)∥2
]
+ 2dmσ2

s +
L2

2
λ2d3m) +

P

B
C2dm

− (1− P )2

B
E
[
∥∇wmFλ(w

t)∥2
]
+ σ2

dpdm (21)

Proof. First we show that the expectation on Ğt
m(wt) can be written as:

Eu[Ğ
t
m(wt)] =

1

B

∑
i∈Itm

m

E
[
ğtm,i(w

t)
]
+ E

[
ztmut

m

]
= (1− P )∇wm

Fλ(w
t)

Thus, the variance can be bounded by:

Var(Ğt
m(wt))

=E
[∥∥∥Ğt

m(wt)− (1− P )∇wm
Fλ(w

t)
∥∥∥2]

=E
[∥∥ 1

B

∑
i∈Itm

m

(
ğtm,i(w

t)− (1− P )∇wmF t
λ(w

t)
)
+ ztmut

m

∥∥2]
=

1

B2

∑
i∈Itm

m

E
[∥∥ğtm,i(w

t)− (1− P )∇wm
F t
λ(w

t)
∥∥2]+ E

[
∥ztmut

m∥
2
]

(a)

≤ 1− P

B
(2dmE

[
∥∇wm

F (wt)∥2
]
+ 2dmσ2

s +
L2

2
λ2d3m) +

P

B
C2dm −

(1− P )2

B
E
[
∥∇wm

Fλ(w
t)∥2

]
+ σ2

dpdm,

where (a) follows from equation 20.

Finally, for analyzing the delayed information in model parameter, we define the following Lya-
punov function:

V t = F (wt) +

τ∑
i=1

γi
∥∥χt+1−i − χt−i

∥∥2 (22)

with γi to be determined later.

B PROOF OF CONVERGENCE(THEOREM 4.4)

We first state the full version of the main convergence theorem 4.4.

Theorem B.1. Under Assumption A.1 to A.4, and assume the client delay τm is uniformly up-
per bounded by τ . If we denote q∗ = minm qm, d∗ = maxm dm, and let η0 = ηm = η ≤
min{ 1√

Td∗
, B
4L(B+8d0)+8γ1(2dm+B)}, λ ≤

1
Ld

√
T

, we have the following theorem:

1

T

T−1∑
t=0

E
[
∥∇wF (wt)∥2

]
≤ 1

1− Ξ

{
8
√
d∗

q∗T 1/2
E
[
F 0 − FT

]
+

2d∗
q∗T

+
8
√
d∗

q∗LdT 1/2
+

16(4L+ 2γ1)
√
d∗σ

2
s

q∗BT 1/2

+
4 ((4−B)L+ (B + 2)γ1)

√
d∗

q∗BT 1/2
+

16(2L+ γ1)ΞC
2
√
d∗

q∗BT 1/2
+

16(2L+ γ1)σ
2
dpdm

q∗T 1/2
√
d∗

}
,

(23)

where Ξ = 2
√
2π exp(− C2

0

8ℓ2 ).
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Proof. We start from the result of an intermediate Lemma D.2, which quantifies the descent of the
Lyapunov function, and we relegate the proof to Appendix D.

E
[
V t+1 − V t

]
≤ −1− P

8
min
m
{qmηm}E

[
∥∇wF (wt)∥2

]
+A1 +A2 (24)

Note that A1 and A2 are constant terms defined in equation 35 and equation 39.

We first re-arranging the terms in equation 24, and take average over 0, 1, . . . , T − 1:

1− P

8T
min
m
{qmηm}

T−1∑
t=0

E
[
∥∇wF (wt)∥2

]
≤ 1

T
E
[
V 0 − V T

]
+A1 +A2

≤ 1

T
E
[
F 0 − FT

]
+A1 +A2,

where the second inequality follows from the definition of V t in equation 22.

Dividing α = 1
8 minm{qmηm} from both sides, and plugging in A1 and A2, we have:

1− P

T

T−1∑
t=0

E
[
∥∇wF (wt)∥2

]
≤ 1

αT
E
[
F 0 − FT

]
+

1

α

M∑
m=0

qmηm
L2

8
λ2d3m

+
1

α

M∑
m=0

qmη2mL

(
4

B
dmσ2

s +
(4−B)L2

4B
λ2d3m +

2P

B
C2dm + 2σ2

dpdm

)

+
1

α
Lλ2d+

1

α

M∑
m=1

qmη2mγ1

(
L2

4
λ2d3m +

2

B
dmσ2

s +
L2

2B
λ2d3m +

P

B
C2dm + σ2

dpdm

)
For the simplicity of analysis, we let η0 = ηm = η, q∗ = minm qm, then α = η

8 q∗. Let d∗ =

maxm dc, and λ ≤ 1
Ld

√
T

. Thus,

1− P

T

T−1∑
t=0

E
[
∥∇wF (wt)∥2

]
≤ 8

q∗ηT
E
[
F 0 − FT

]
+

2d3∗/d
2

q∗T
+

16ηL

q∗

(
4

B
d∗σ

2
s +

(4−B)d3∗/d
2

4BT
+

2P

B
C2d∗ + 2σ2

dpd∗

)
+

8

q∗LdηT
+

16ηγ1
q∗

(
2

B
d∗σ

2
s +

(B + 2)d3∗/d
2

4BT
+

P

B
C2d∗ + σ2

dpdm

)
≤ 8

q∗ηT
E
[
F 0 − FT

]
+

2d∗
q∗T

+
8

q∗LdηT
+

16η(4L+ 2γ1)d∗σ
2
s

q∗B
+

4η ((4−B)L+ (B + 2)γ1) d∗
q∗BT

+
16η(2L+ γ1)PC2d∗

q∗B
+

16η(2L+ γ1)σ
2
dpd∗

q∗

where in the last step, we use the fact that d > d∗.
If we choose η = 1√

Td∗
, we can get the convergence rate:

1

T

T−1∑
t=0

E
[
∥∇wF (wt)∥2

]
≤ 1

1− P

{
8
√
d∗

q∗T 1/2
E
[
F 0 − FT

]
+

2d∗
q∗T

+
8
√
d∗

q∗LdT 1/2
+

16(4L+ 2γ1)
√
d∗σ

2
s

q∗BT 1/2

+
4 ((4−B)L+ (B + 2)γ1)

√
d∗

q∗BT 1/2
+

16(2L+ γ1)PC2
√
d∗

q∗BT 1/2
+

16(2L+ γ1)σ
2
dp

√
d∗

q∗T 1/2

}
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≤ 1

1− Ξ

{
8
√
d∗

q∗T 1/2
E
[
F 0 − FT

]
+

2d∗
q∗T

+
8
√
d∗

q∗LdT 1/2
+

16(4L+ 2γ1)
√
d∗σ

2
s

q∗BT 1/2

+
4 ((4−B)L+ (B + 2)γ1)

√
d∗

q∗BT 1/2
+

16(2L+ γ1)ΞC
2
√
d∗

q∗BT 1/2
+

16(2L+ γ1)σ
2
dp

√
d∗

q∗T 1/2

}
where the last step follows by Lemma A.8.

We thus conclude that the convergence rate is

O(
d
1/2
∗ E

[
F 0 − FT

]
+ d

1/2
∗ σ2

s + d
1/2
∗ σ2

dp

T 1/2
),

where constants before terms have been omitted for simplicity. We note that our convergence rate is
of the same order compared to centralized ZO optimization under the same smoothness assumption,
up to an error term σdp introduced by Differential Privacy.

C PROOF OF DIFFERENTIAL PRIVACY(THEOREM 5.1)

In this section, we give rigorous proof for the differential privacy guarantee in theorem 5.1.

We first introduce the definition of Gaussian differential privacy (GDP) (Dong et al., 2022) which
will be useful in the proof for theorem 5.1. Compared with traditional DP defined in equation 4, this
notion of privacy provides a much tighter composition theorem.

Definition C.1 (Gaussian Differential Privacy). Let Gµ := T (N (0, 1),N (µ, 1)) for µ ≥ 0, where
the trade-off function T (P,Q) : [0, 1] → [0, 1] is defined as T (P,Q)(α) = inf(βϕ : αϕ < α). A
mechanism M is said to satisfy µ-Gaussian Differential Privacy if it satisfies

T (M(X),M(X ′)) ≥ Gµ

For all neighboring dataset X,X ′ ∈ Xn.

We construct our DP algorithm based on the Gaussian Mechanism. The Gaussian Mechanism of
GDP is given by the following theorem.

Theorem C.2 (Gaussian Mechanism for Gaussian Differential Privacy). Define the Gaussian mech-
anism that operates on a statistic θ as M(θ) = θ(X) + σ, where σ ∼ N (0, r2C2

θ/µ
2), r is the

sample rate for a single datum, and Cθ is the L2 sensitivity of X . Then, M is µ-GDP.

The iterative nature of gradient-like algorithms calls for the composition theorem.

Theorem C.3 (Composition of Gaussian Differential Privacy). The T -fold composition of µ-GDP
mechanisms is

√
Tµ-GDP

For the ease of comparison, we convert GDP to the common (ϵ, δ)-DP based on the following
lossless conversion:

Theorem C.4 (Conversion from Gaussian Differential Privacy to (ϵ, δ)-Differential Privacy). A
mechanism is µ-GDP iff it is (ϵ, δ(ϵ))-DP for all ϵ ≥ 0, where

δ(ϵ) = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
)

The proof of Theorem C.2-C.4 is given in (Dong et al., 2022).

We are now ready to present the proof for Theorem 5.1.

Proof of Theorem 5.1

Proof. First recall the definition of ∆t
m defined in equation 8:

∆t
m =

1

B

∑
i∈Itm

m

clipC(δ
t,tm
m,i ) + ztm
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For a pair of neighboring dataset X,X ′ differing in only one entry of data, the L2 sensitivity CL of
1
B

∑
i∈Itm

m
clipC(δ

t,tm
m,i ) follows by

CL =
∥∥ 1
B

∑
i∈Itm

m
clipC(δ

t,tm
m,i )

∥∥
2
≤ 1

B

∥∥clipC(δt,tmm,i )
∥∥
2
≤ 2C

B

The sample rate r of a single data is seen to be the batch size B divided by the size of the dataset D:

r =
B

D

Note that in theorem 5.1, the standard variance of ztm is given by

σdp =
2C
√
T

Dµ
=

(B/D)(2C/B)
√
T

µ
=

rCL

(µ/
√
T )

By theorem C.2, the mechanism conducted in equation 8 satisfies (µ/
√
T )-Gaussian Differ-

ential Privacy. Further applying the composition of GDP in theorem C.3, and by the post-
processing (Dwork et al., 2014) of differential privacy, we have that the whole training process
of Algorithm 1 is µ-GDP. We complete the proof by converting µ-GDP to (ϵ, δ)-DP according to
theorem C.4.

Justification for Corollory 5.2 Based on Theorem 5.1, at time t, the model parameter on client m
is differentially private w.r.t. label information. Additionally, the input data ξi does not contain any
label information. Thus, the forward embedding is DP w.r.t labels.

D INTERMEDIATE LEMMAS

Lemma D.1 (Model Update With Delay). Under Assumption A.1 to A.4, we have the following
lemma:

E
[
F (wt+1)− F (wt)

]
≤−

M∑
m=0

qmηm(1− P )

(
1

4
− ηmL(B + 8dm)

2B

)
E
[
∥∇wm

F (wt)∥2
]

+

M∑
m=0

qmηmL

(
1

2
+ 2ηmL2

)
E
[
∥χ̃t − χt∥2

]
+A1 (25)

Proof. By assumption A.2:

Fλ(w
t+1) ≤Fλ(w

t) + ⟨∇wFλ(w
t),wt+1 −wt⟩+ L

2

∥∥wt+1 −wt
∥∥2

=Fλ(w
t)− η0⟨∇w0

Fλ(w
t), Ğt

0(w̃
t)⟩+ Lη20

2

∥∥∥Ğt
0(w̃

t)
∥∥∥2

− ηm⟨∇wmFλ(w
t), Ğt

m(w̃t)⟩+ Lη2m
2

∥∥∥Ğt
m(w̃t)

∥∥∥2
E
[
Fλ(w

t+1)
]
≤E

[
Fλ(w

t)
]
−η0E⟨∇w0

Fλ(w
t), Ğt

0(w̃
t)⟩︸ ︷︷ ︸

E1

+
Lη20
2

E
[∥∥∥Ğt

0(w̃
t)
∥∥∥2]︸ ︷︷ ︸

E2

−ηmk
E⟨∇wmk

Fλ(w
t), Ğt

mk
(w̃t)⟩︸ ︷︷ ︸

E3

+
Lη2mk

2
E
[∥∥∥Ğt

mk
(w̃t)

∥∥∥2]︸ ︷︷ ︸
E4

(26)

where in the second step we take expectation on both sides, first w.r.t. the random direction u, DP
noise z, and the clipping event Q, then w.r.t the client mk. We bound E1 as the following:

− η0E⟨∇w0Fλ(w
t), Ğt

0(w̃
t)⟩
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=− η0E⟨∇w0
Fλ(w

t), Ğt
0(w̃

t)− (1− P )∇w0
Fλ(w̃

t) + (1− P )∇w0
Fλ(w̃

t)⟩
=− η0E⟨∇w0

Fλ(w
t), Ğt

0(w̃
t)− (1− P )∇w0

Fλ(w̃
t)⟩

−η0E⟨∇w0Fλ(w
t), (1− P )∇w0Fλ(w̃

t)− (1− P )∇w0Fλ(w
t) + (1− P )∇w0Fλ(w

t)⟩
1)
=− (1− P )η0E⟨∇w0Fλ(w

t),∇w0Fλ(w̃
t)−∇w0Fλ(w

t)⟩
−η0E⟨∇w0

Fλ(w
t), (1− P )∇w0

Fλ(w
t)⟩

2)

≤ (1− P )η0
2

E
[
∥∇w0

Fλ(w
t)∥2

]
+

(1− P )η0
2

E
[
∥∇w0

Fλ(w̃
t)−∇w0

Fλ(w
t)∥2

]
− (1− P )η0E

[
∥∇w0

Fλ(w
t)∥2

]
3)

≤− (1− P )η0
2

E
[
∥∇w0

Fλ(w
t)∥2

]
+

η0L

2
E
[
∥χ̃t − χt∥2

]
(27)

where in 1) we use the fact that E
[
Ğt

0(w̃
t)− (1− P )∇x0

Fλ(w̃
t)
]
= 0, in 2) we applied the

Cauchy–Schwarz inequality, and 3) follows by the smoothness of Fλ and the fact that 1− P ≤ 1

For E2, we can further bound it based on Assumption A.2:

1

2
E
[∥∥∥Ğt

0(w̃
t)
∥∥∥2]

=
1

2
E
[∥∥∥Ğt

0(w̃
t)− (1− P )∇x0Fλ(w

t) + (1− P )∇x0Fλ(w
t)
∥∥∥2]

1)

≤E
[∥∥∥Ğt

0(w̃
t)− (1− P )∇x0

Fλ(w
t)
∥∥∥2]+ (1− P )2E

[
∥∇x0

Fλ(w
t)∥2

]
=E

[∥∥∥Ğt
0(w̃

t)− (1− P )∇x0
Fλ(w̃

t) + (1− P )∇x0
Fλ(w̃

t)− (1− P )∇x0
Fλ(w

t)
∥∥∥2]

+ (1− P )2E
[
∥∇x0Fλ(w

t)∥2
]

2)

≤2E
[∥∥∥Ğt

0(w̃
t)− (1− P )∇x0Fλ(w̃

t)
∥∥∥2]+ 2(1− P )2E

[
∥∇x0Fλ(w̃

t)−∇x0Fλ(w
t)∥2

]
+ (1− P )2E

[
∥∇x0Fλ(w

t)∥2
]

3)

≤2(1− P )

B
(2d0E

[
∥∇x0

F (wt)∥2
]
+ 2d0σ

2
s +

L2

2
λ2d30) +

2P

B
C2d0

− 2(1− P )2

B
E
[
∥∇x0Fλ(w

t)∥2
]
+ 2σ2

dpd0 + 2(1− P )2L2E
[
∥χ̃t − χt∥2

]
+ (1− P )2E

[
∥∇x0

Fλ(w
t)∥2

]
4)

≤4(1− P )d0
B

E
[
∥∇x0F (wt)∥2

]
+ (1− P )E

[
∥∇x0Fλ(w

t)∥2
]
+ 2L2E

[
∥χ̃t − χt∥2

]
+ G0

(28)

where in 1) and 2) we applied the Cauchy–Schwarz inequality, and in 3) we substitute equation 21
in and use the L-smoothness of Fλ, and in (iv) we use the fact that 1− P ≤ 1 and let

G0 =
4

B
d0σ

2
s +

L2

B
λ2d30 +

2P

B
C2d0 + 2σ2

dpd0

Similarly, For E3:

−ηmk
E⟨∇wmk

Fλ(w
t), Ğt

m(w̃t)⟩ ≤ − (1− P )ηmk

2
E
[∥∥∥∇wmk

Fλ(w
t)
∥∥∥2]+ ηmk

L

2
E
[
∥χ̃t − χt∥2

]
(29)

And for E4:

1

2
E
[∥∥∥Ğt

mk
(w̃t)

∥∥∥2] ≤4(1− P )dm
B

E
[∥∥∥∇wmk

F (wt)
∥∥∥2]+ (1− P )E

[∥∥∥∇wmk
Fλ(w

t)
∥∥∥2] (30)

+ 2L2E
[
∥χ̃t − χt∥2

]
+ Gm (31)
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where we let

Gm =
4

B
dmσ2

s +
L2

B
λ2d3m +

2P

B
C2dm + 2σ2

dpdm (32)

Substituting equation 27, equation 28, equation 29, and equation 31 into equation 26, we have
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where in the last inequality we further take expectation w.r.t. client M and combine similar terms.

From equation 33, we utilize the properties of the smooth function equation 14 and equation 17 to
turn all the smooth function Fλ into the true loss function F :
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where 1) and 2) follows from equation equation 14 and equation 17 in Lemma A.6 respectively. In
3), we let q0 = 1 and combine similar terms. In 4), we substitute in equation 32. Lastly, in 5), we
denote
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for the convenience of notation.

We thus complete the proof.

Now, recall the definition of the Lyapunov function V t:

V t = F (wt) +

τ∑
i=1

γi
∥∥χt+1−i − χt−i

∥∥2
We utilize the Lyapunov function to prove the following lemma for eliminating model delay.
Lemma D.2. Under Assumption A.1-A.4, and assume the client delay τm is uniformly upper
bounded by τ , we have the following lemma:

E
[
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]
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8
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∥∇wF (wt)∥2

]
+A1 +A2

Proof. Before we give the proof of Lemma D.2, we first provide some useful facts that reveal prop-
erties of the delayed parameters.

Recall that χ̃t denote the delayed parameters on all clients, and χt denote the non-delayed version.
Let F1 = E
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For F2, under uniformly bounded delay, we have
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where the last inequality follows by Cauchy-Schwarz Inequality.
By the definition of V t:

E
[
V t+1 − V t

]
=E

[
F (wt+1) +

τ∑
i=1

γi
∥∥χt+2−i − χt+1−i

∥∥2]− E

[
F (wt) +

τ∑
i=1

γi
∥∥χt+1−i − χt−i

∥∥2]

=E
[
F (wt+1)− F (wt)

]
+

τ∑
i=1

γiE
[∥∥χt+2−i − χt+1−i

∥∥2]− τ∑
i=1

γiE
[∥∥χt+1−i − χt−i

∥∥2]
1)

≤−
M∑

m=0

qmηm(1− P )

(
1

4
− ηmL(B + 8dm)

2B

)
E
[
∥∇wmF (wt)∥2

]
+

M∑
m=0

qmηmL

(
1

2
+ 2ηmL2

)
E
[
∥χ̃t − χt∥2

]
+A1

+γ1 E
[∥∥χt+1 − χt

∥∥2]︸ ︷︷ ︸
F1

+

τ−1∑
i=1

(γi+1 − γi)E
[∥∥χt+1−i − χt−i

∥∥2]− γτE
[∥∥χt+1−τ − χt−τ

∥∥2]
2)

≤−
M∑

m=0

qmηm(1− P )

(
1

4
− ηmL(B + 8dm)

2B

)
E
[
∥∇wm

F (wt)∥2
]

+

M∑
m=0

qmηmL

(
1

2
+ 2ηmL2

)
E
[
∥χ̃t − χt∥2

]
+A1

+

M∑
m=1

qmη2mγ1
(1− P )(2dm +B)

B
E
[∥∥∥∇wmk

F (wt)
∥∥∥2]+ M∑

m=1

qmη2mγ1

(
L2

4
λ2d3m + L2E

[
∥χ̃t − χt∥2

]
+

1

2
Gm
)

+

τ−1∑
i=1

(γi+1 − γi)E
[∥∥χt+1−i − χt−i

∥∥2]− γτE
[∥∥χt+1−τ − χt−τ

∥∥2]
3)
=− η0(1− P )

(
1

4
− η0L(B + 8d0)

2B

)
E
[
∥∇x0

F (wt)∥2
]

−
M∑

m=1

qmηm(1− P )

(
1

4
− ηmL(B + 8dm)

2B
− ηmγ1(2dm +B)

B

)
E
[
∥∇wm

F (wt)∥2
]

+

{
η0L

(
1

2
+ 2η0L

2

)
+

M∑
m=1

qmηmL

(
1

2
+ 2ηmL2 + ηmγ1L

)}
E
[
∥χ̃t − χt∥2

]
︸ ︷︷ ︸

F2

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026
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Above, we used Lemma D.1 in step (1), substituted in equation 36 for F1 in step (2), substituted in
equation 37 for F2 in step (3), and defined
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From equation 38, we choose the following relationship for γ1, γ2, . . . , γm:
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and we finally have
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which completes the proof.

E ADDITIONAL DETAILS ON EXPERIMENT

In this section, we would like to give a brief introduction of the datasets and model structures and
further justify the choice of the experimental designs below. We follow the experimental settings of
existing works(Chen et al., 2020a; Xie et al., 2024; Castiglia et al., 2023) for a fair comparison.

Dataset The choices of datasets cover a large range of tasks, including:
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• MNIST and CIFAR-10: standard image benchmarks in machine learning.

• ModelNet40: multi-view 3D object classification dataset; each object has 12 views from
different angles, which naturally lends itself to feature partitioning across clients in VFL.

• Amazon Reviews: sentiment analysis task, which we include to evaluate our algorithm in
the NLP domain.

Data partition and model selection For MNIST, we use a two-layer CNN model, for VFL’s data
partitioning, we split the images by row evenly into 7 sub-images and assign them to 7 clients. For
CIFAR-10 we use a four-layer CNN model, and partition each image into 2×2, 4 patches of the same
size for 4 clients. For ModelNet40, we use a ResNet-18 model, and partition each object into 12
different camera views and allocate them to 12 clients. For Amazon Reviews, we use a pre-trained
BERT (Devlin, 2018) model, and split the tokenized data input into 3 paragraphs of the same number
of tokens and distributed them across 3 clients. For all four datasets, we use a fully connected model
of two linear layers with ReLU activations as the server model.

F DISCUSSION OF DIFFERENTIAL PRIVACY UNDER VARIOUS SETTINGS

Overview of DPZV’s Privacy Mechanisms. DPZV protects privacy through two main mecha-
nisms: 1) Zeroth-Order (ZO) Optimization. By eliminating the need to transmit backward gradients,
DPZV mitigates conventional gradient-based leakage (He et al., 2019). Specifically, no unperturbed
gradients are ever exchanged among participants. 2) Controllable Differential Privacy (DP). Each
participant interacts only through black-box queries and responses augmented with DP-based noise.
This randomized protocol further shields sensitive information from reconstruction or inference at-
tacks.

F.1 PROTECTION AGAINST AN HONEST-BUT-CURIOUS THREAT MODEL

In an honest-but-curious scenario, adversaries seek private insights into labels without deviating
from the protocol. In this scenario, the most common attack is the Label Inference Attack. Such
attacks typically exploit exact gradient signs or rely on known model architectures to backtrack label
information (Fu et al., 2022; Li et al., 2021). Under DPZV, unbiased gradients are never shared,
and the server model remains inaccessible to other participants. Clients observe only stochastic ZO
outputs with added noise, preventing them from reverse-engineering labels via gradient signals.

Moreover, label inference methods often assume knowledge of the dataset domain or direct model
access, which is not given in DPZV’s design. Task details (e.g., label distributions, model layers)
are held privately by each party, limiting the adversary’s capacity to launch sophisticated inversion
or inference attacks.

F.2 PROTECTION AGAINST POST-TRAINING ATTACKS

Post-training adversaries typically aim to infer sensitive data from a final, trained model (Ateniese
et al., 2015). Since DPZV applies differential privacy throughout training, the final model parame-
ters satisfy rigorous (ϵ, δ)-DP guarantees. Hence, even if the trained model is released or accessed,
the level of noise injected ensures that the adversary cannot reliably distinguish any single individ-
ual’s data—reducing vulnerability to membership inference or model-inversion attacks (Jiang et al.,
2022). This formal DP framework remains robust regardless of downstream usage or queries on the
finalized model.

In summary, by combining ZO optimization with DP noise injection, DPZV provides comprehen-
sive protection against both honest-but-curious and post-training adversaries across diverse privacy
threat scenarios.

G MEMORY COST

Figure 5 compares the GPU memory consumption, with memory values normalized for readability.
We compare the memory cost on larger models, where we use ResNet for image classification and
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Figure 5: Normalized memory cost in training for each method. DPZV requires the smallest memory allocation
in both datasets, almost the same as model memory itself. This shows the memory efficiency of DPZV, allowing
superior performance on large-scale neural networks.

BERT for sequence classification. We record the highest memory peak to show the total required
memory for each method on training large models. We observe that DPZV requires memory approx-
imately equal to the model size, whereas the first-order method VAFL demands more than twice the
model size. Compared to ZOO-VFL, DPZV achieves further memory savings by leveraging MeZO.
These results highlight the scalability of DPZV, making it well-suited for deploying large pretrained
language models in VFL scenarios.

H CHOICE OF ALL HYPERPARAMETERS

In this section, we show all the chosen Hyperparameters, including learning rate for the four datasets
and ZO and DP parameters in Sec. 6:

Table 2: All learning rate choices

DATASET VAFL ZOO-VFL VFL-CZOFO DPZV (OURS)

MNIST η0 0.005 0.005 0.005 0.005

ηm 0.001 5× 10−5 1× 10−7 5× 10−4

CIFAR-10 η0 0.005 0.005 0.005 0.005

ηm 0.001 5× 10−5 5× 10−8 1× 10−4

MODELNET40 η0 1× 10−4 1× 10−5 5× 10−7 1× 10−5

ηm 1× 10−5 1× 10−5 5× 10−7 1× 10−5

AMAZON
REVIEW

η0 1× 10−5 5× 10−7 1× 10−6 5× 10−7

ηm 1× 10−5 5× 10−7 1× 10−6 5× 10−7

Table 3: Other Hyperparameters

PARAMETER VALUE EXPLANATION

C 10 DP clipping threshold
λ 0.001 Scale of perturbation for ZOO
m 0.9 Momentum parameter
δ 1× 10−5 DP error level
n 5 Number of perturbation for VFL-CZOFO
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I LLM USAGE

An LLM was used solely for grammar refinement and stylistic editing. No part of the technical
content, experimental design, or analysis was generated by the model.
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