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Abstract
The problem of hallucination and omission, a001
long-standing problem in machine translation002
(MT), is more pronounced when a large lan-003
guage model (LLM) is used in MT because an004
LLM itself is susceptible to these phenomena.005
In this work, we mitigate the problem in an006
LLM-based MT model by guiding it to better007
word alignment. We first study the correlation008
between word alignment and the phenomena009
of hallucination and omission in MT. Then we010
propose to utilize word alignment as preference011
to optimize the LLM-based MT model. The012
preference data are constructed by selecting013
chosen and rejected translations from multiple014
MT tools. Subsequently, direct preference op-015
timization is used to optimize the LLM-based016
model towards the preference signal. Given the017
absence of evaluators specifically designed for018
hallucination and omission in MT, we further019
propose selecting hard instances and utilizing020
GPT-4 to directly evaluate the performance of021
the models in mitigating these issues. We ver-022
ify the rationality of these designed evaluation023
methods by experiments, followed by exten-024
sive results demonstrating the effectiveness of025
word alignment-based preference optimization026
to mitigate hallucination and omission.027

1 Introduction028

Large language models (LLMs) have been evolv-029

ing rapidly and showing predominant perfor-030

mance in many natural language processing (NLP)031

tasks (Brown et al., 2020; Achiam et al., 2023; Tou-032

vron et al., 2023). However, in machine translation033

(MT), the use of a decoder-only LLM is still lim-034

ited due to issues such as model size (Xu et al.,035

2024a) and low-resource languages (Hendy et al.,036

2023). Conventional encoder-decoder MT models037

trained on parallel corpora still dominate in prac-038

tice (Costa-jussà et al., 2022). One of the primary039

concerns of applying an LLM to MT is reliability.040

Although it does not happen frequently, an LLM041

is known to hallucinate (Dhuliawala et al., 2023;042

Zhang et al., 2023a; Bang et al., 2023) as it is pre- 043

trained to predict the next token in very large-scale 044

raw texts. Specifically in MT, LLM-based transla- 045

tion systems therefore could have the phenomena 046

of hallucination and omission, which is also a long- 047

term challenge in the field of MT (Yang et al., 2019; 048

Vamvas and Sennrich, 2022), known as over- and 049

under-translation. In this work, we attempt to miti- 050

gate the hallucination and omission in LLM-based 051

MT to improve its practicality. 052

Hallucination in MT occurs when information 053

not present in the source text is generated in the 054

translation, and omission occurs when some of the 055

information in the source text is missed in the trans- 056

lation. As a related tool that explicitly aligns the 057

source text and translation at the word level, word 058

alignment is potentially positive for MT due to 059

the nature of align and translate (Bahdanau et al., 060

2015). The degree of coverage of the source text 061

in translation could be a direct signal to identify 062

the hallucination and omission in MT (Tu et al., 063

2016). Figure 1 shows the normalized frequency 064

of the coverage scores predicted by a word aligner. 065

The examples that are annotated as “no hallucina- 066

tion or omission” tend to have a higher coverage 067

score, while those in “full hallucination or omis- 068

sion” are more likely to have an extremely low 069

coverage score. “small hallucination or omission” 070

and “partial hallucination or omission” distribute in 071

the middle. As the annotations are carefully made 072

by humans and highly correlates to the coverage 073

scores from the word aligner, this indicates that 074

word alignment is a simple but promising direction 075

to mitigate these phenomena. 076

Consequently, we propose Word Alignment Pref- 077

erence (WAP) that utilizes word alignment as a 078

signal to optimize LLM-based MT models. WAP 079

consists of three steps: diverse translation collec- 080

tion, preference data construction, and preference 081

optimization. Specifically, we collect diverse trans- 082

lations with multiple existing translation tools, se- 083
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(a) Coverage distribution of different hallucination degree.
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(b) Coverage distribution of different omission degree.

Figure 1: A preliminary experiment shows that higher
coverage scores correlates to less hallucination and
omission. The coverage scores are predicted by a
word aligner (Wu et al., 2023). The human annotation
of hallucination and omission is from HalOmi bench-
mark (Dale et al., 2023b). Details about the dataset and
word alignment model can be found in §3.1.

lect chosen and rejected examples with the word084

aligner (Wu et al., 2023), and optimize the model085

on preference data using direct preference optimiza-086

tion (DPO) (Rafailov et al., 2024).087

Furthermore, the evaluation of hallucination and088

omission is challenging, and there is no existing089

evaluator specifically designed for this. Improv-090

ing the BLEU and COMET score does not neces-091

sarily mean reducing hallucination and omission092

because there are other factors such as mistrans-093

lation and fluency. In addition, hallucination is094

relatively infrequent, although very severe once095

happens. Hence, to effectively evaluate it, we de-096

sign extensive experiments that include testing on097

instances that potentially have the problem of hal-098

lucination and omission, and using GPT-4 as the099

evaluator with comprehensive analysis. Experimen-100

tal analysis demonstrates the effectiveness of WAP 101

in mitigating hallucination and omission in MT. 102

In summary, the contributions of this work in- 103

clude the following: 104

• We studied the correlation between the cov- 105

erage score by word alignment and the phe- 106

nomena of hallucination and omission in MT. 107

From the preliminary experiments in Figure 1 108

we found that word alignment is a promising 109

signal to mitigate it. 110

• In §2 we propose a novel approach, namely 111

WAP, to construct a word alignment-based 112

preference dataset, and use DPO to optimize 113

the LLM-based MT model. The validity of 114

the preference dataset is also demonstrated by 115

direct fine-tuning on preferred and rejected 116

translations in §4.4. 117

• As there is no benchmark particularly for eval- 118

uating the performance of MT models on 119

hallucination and omission. We design var- 120

ious experiments, including selecting hard in- 121

stances and utilizing GPT-4 as the evaluator in 122

§3.2. The effectiveness of the evaluation, as 123

well as the proposed WAP has been validated 124

through experiments and analysis in §4 125

2 Proposed approach 126

2.1 Gathering translation candidates 127

To steer the MT model to avoid hallucination and 128

omission using preference optimization, we first 129

need comparable but different translations. Start- 130

ing with a source text x, we utilize K methods to 131

produce translations, notated as π1, ..., πK . Then 132

we can get a set of translations Y , in which yk ∈ Y 133

is obtained by yk = πk(x) and |Y | = K. 134

Details of gathered translations We start with 135

the parallel training data in ALMA (Xu et al., 136

2024a). This parallel data encompasses five lan- 137

guage pairs with human translations in both direc- 138

tions: cs ↔ en, de ↔ en, is ↔ en, zh ↔ en and 139

ru ↔ en. We employ ISO 639 language codes1 to 140

denote languages. Specifically, “cs” corresponds 141

to Czech, “de” to German, “is” to Icelandic, “zh” 142

to Chinese and “ru” and “en” to Russian and En- 143

glish, respectively. To generate the translations we 144

require, this dataset is translated in both directions 145

1https://en.wikipedia.org/wiki/List_
of_ISO_639_language_codes
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Figure 2: An illustration of WAP framework. The source is first translated by multiple MT tools, including human
translation. An external word aligner is then utilized to predict the coverage score for each translation. Finally,
translation with the highest and lowest coverage score are selected as preference pairs for preference optimization.

using two well-known MT tools, including DeepL2146

and ChatGPT (gpt-3.5-turbo-0613)3. The147

prompt for ChatGPT that we utilize to translate sen-148

tences is shown in Figure 6. The original human-149

written translation in the training set is also utilized.150

In particular, Icelandic (is) is not supported by the151

DeepL API, therefore, we use the Google Translate152

API4 as an alternative.153

2.2 Selecting chosen and rejected translation154

After obtaining the translation candidates155

(y1, ..., yK), we use a state-of-the-art public word156

aligner, namely WSPAlign5, to automatically an-157

notate the degree of coverage for each translation.158

We follow the usage setting in the original paper159

of WSPAlign (Wu et al., 2023). In particular,160

WSPAlign performs a bidirectional alignment161

and uses a threshold to filter out low-confident162

alignment of word pairs. Then, the ratio of the163

source words, that are aligned with at least one164

word, in the translation is taken as the coverage165

score, which will be used for the following166

preference annotation. The whole process pre-167

dicting the coverage score is notated as C(·, ·).168

Formally, the coverage score for a translation169

yk can be calculated by C(x, yk) ∈ [0.0, 100.0].170

Subsequently, the preferred translation and the171

rejected translation are selected as follows:172

2https://www.deepl.com/en/translator
3https://platform.openai.com/docs/

models/gpt-3-5-turbo
4https://cloud.google.com/translate/

docs/basic/translate-text-basic
5https://github.com/qiyuw/WSPAlign

yw = argmax
yk∈Y

C(x, yk)

yl = argmin
yk∈Y

C(x, yk)
(1) 173

where yw is the chosen translation and yl is 174

the rejected one. Then a triplet (x, yw, yl) is con- 175

structed for the following preference optimization. 176

2.3 Filtering 177

Note that the whole pipeline of constructing the 178

preference data is automatic, and existing MT and 179

word alignment models are not perfect. Even for 180

human-annotated translation, the quality of it is 181

also an issue that cannot be ignored (Xu et al., 182

2024b), and may affect the performance of the 183

model trained on it. Hence, noises are inevitable in 184

both the translated texts and the preference choices. 185

On the other hand, the MT tools we choose gener- 186

ally have good performance, it could happen that 187

the generated translations are not diverse enough, 188

leading to the preference signal being disrupted. To 189

improve the quality of the constructed preference 190

datasets as much as possible, multiple strategies are 191

applied to filter out potential bad training instances: 192

• Remove the instance when the chosen and 193

rejected translations only have a marginal dif- 194

ference in coverage score. The difference 195

threshold is empirically set as 5.0, that is, 196

(x, yw, yl) is excluded from the dataset if 197

C(x, yw)− C(x, yl) < 5.0. 198

• Remove the instance when the chosen and re- 199

jected translations are too semantically similar. 200

3
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Sentence embedding is a widely used tech-201

nique for sentence similarity with low compu-202

tation cost (Gao et al., 2021; Wu et al., 2022;203

Zhao et al., 2024). LaBSE (Feng et al., 2022)6204

is used in our experiments. We notate it as205

LB(·). The similarity threshold is empirically206

set as 0.9, i.e. (x, yw, yl) is excluded from207

the dataset if sim(LB(yw),LB(yw)) > 0.9.208

sim(·, ·) ∈ [0.0, 1.0] is cosine similarity.209

• One possible failure case for word alignment210

is when the MT models directly copy the orig-211

inal texts, which is bad translation, but gets a212

high alignment score because the wrong trans-213

lation is partially the same with the original214

texts. To remove this part of the noise, we cal-215

culate the BLEU score (Papineni et al., 2002)7216

for the chosen translation and exclude it if the217

BLEU score > 20.0.218

The details and analysis of the fianl preference219

dataset after filtering is introduced in §3.1.220

2.4 Optimization LLM-based MT model221

The final step is to optimize the LLM-based MT222

model on our preference data. Direct preference223

optimization (DPO) (Rafailov et al., 2024) is a sim-224

ple but effective approach that directly optimizes225

the preference model on a pre-constructed static226

dataset. DPO has been applied to optimize LLM227

in preference data (Tunstall et al., 2023; Xu et al.,228

2024b) recently. We also utilize DPO as an opti-229

mization approach. Formally, the training objective230

is as follows,231

l = − log σ(β log
π(yw|x)

πref (yw|x)
−β log

π(yl|x)
πref (yl|x)

)

(2)232

where σ is the sigmoid function, π is the model233

to optimize and πref is the reference model. We use234

ALMA-13B8 as our base model, i.e., the starting235

point of π, in the experiments. ALMA-13B is also236

used as a reference model πref , but note that πref237

will not be updated during training.238

3 Evaluation239

The experimental setup is introduced in §A.240

6https://huggingface.co/
sentence-transformers/LaBSE

7https://github.com/mjpost/sacrebleu
8https://github.com/fe1ixxu/ALMA

3.1 Baselines and evaluation datasets 241

We choose ALMA-13B9 as the baseline for all ex- 242

periments in this paper, as well as the starting 243

point of optimization. ALMA (Xu et al., 2024a) 244

was trained from Llama (Touvron et al., 2023) in 245

two steps: initial fine-tuning on monolingual data 246

and subsequent fine-tuning on a small set of high- 247

quality parallel data. 248

For fairly studying the effect of word alignment 249

preference, we use the data used in the supervised 250

fine-tuning in ALMA as the source dataset to con- 251

struct our preference data in §2. Specifically, the 252

source data was collected from WMT’17 (Bojar 253

et al., 2017) to WMT’20 (Barrault et al., 2020), in 254

addition to the development and text dataset from 255

Flores-200 (Costa-jussà et al., 2022). After filter- 256

ing, we finally make 20,074 and 2,226 preference 257

triplets for training and development, respectively. 258

For evaluation, the test set is from WMT22, except 259

that is ↔ en is from WMT21. The remaining 260

data from WMT21 (except is ↔ en) is used as the 261

development set. Specifically, 3485, 4021, 2000, 262

3912, 4053 examples are included in the test set 263

for cs ↔ en, de ↔ en, is ↔ en, zh ↔ en, and 264

ru ↔ en, respectively. 265

HalOmi In particular, we want to validate 266

whether our proposed method is capable of mitigat- 267

ing hallucination and omission in MT. Hence, we 268

also utilize HalOmi (Dale et al., 2023b) in the ex- 269

periments. HalOmi is an evaluation benchmark for 270

the detection of hallucination and omission in MT. 271

It contains fine-grained sentence-level and token- 272

level annotations of full and partial hallucinations 273

and omissions that cover 18 language directions. 274

Each instance in the data set was annotated in “No 275

hallucination and omission”, “Small hallucination 276

and omission”, “Partial hallucination and omission” 277

or “Full hallucination and omission” by humans. 278

In this paper, we use it to test the performance of 279

GPT-4 as an evaluator. Details are in §3.2. 280

3.2 The design of evaluation 281

We focus on optimizing LLM-based MT models to 282

avoid hallucination and omission. However, to our 283

best knowledge, there is no benchmark measuring 284

MT models specifically for this issue, making the 285

evaluation very challenging. Improving the BLEU 286

or COMET score does not necessarily mean reduc- 287

ing hallucination and omission because there are 288

9https://huggingface.co/haoranxu/
ALMA-13B
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Figure 3: Comparison of WAP and baseline in hard and easy instances. N instances with the lowest COMET score
by the baseline are selected from the test set as hard instances, and the remaining are easy instances. Results when
N = 100, 200 and 500 are presented. Refer to §D for the full numeric results of the entire test.

other factors such as mistranslation and fluency.289

In addition, hallucination is relatively infrequent,290

although very severe once happens. To intuitively291

validate whether our approach is capable of mitigat-292

ing hallucination and omission in MT, we design293

several evaluation strategies in this section.294

Select hard instances. We first select instances295

that the baseline model does not perform well on.296

This subset of instances is labeled as hard instances297

in this paper. The subset of the remaining examples298

is labeled as easy instances. Specifically, N in-299

stances with the lowest COMET score are selected300

from the test set for each translation direction. As301

hard examples tend to include more hallucination302

and omission, we report the comparison of models303

on hard examples and remaining examples, respec-304

tively. In the experiment, we sample three subsets305

where N = 100, N = 200 and N = 500. The ex-306

perimental analysis can be found in §4.1. Note that307

the hard instances are only selected for evaluation.308

We do not differentiate hard or easy instances in the309

training set. Only word alignment signal is used to310

select preferred dataset for a fair comparison. 311

Hallucination Omission
No Partial Full No Partial Full

# of examples 817 42 65 627 237 60
Avg. score 84.19 45.95 3.84 87.97 66.28 1.66

Pearson Corr. 0.5969 0.5686

Table 1: Average coverage score calculated by GPT-4
for different level of hallucination or omission. The
Pearson Correlation between the annotated labels and
GPT-4 coverage scores is also reported. Ideally, higher
score should correlate to less hallucination and omis-
sion.

Utilize LLM as the evaluator for hallucination 312

and omission. Besides the BLEU and COMET 313

in hard instances, a direct estimate of the degree 314

of hallucination and omission in translation is still 315

needed. As we mentioned earlier that improving 316

the BLEU and COMET score does not necessarily 317

mean reducing hallucination and omission because 318

there are other factors such as mistranslation and 319

fluency, we utilize the generalization and reason- 320

ing ability of LLM (Kojima et al., 2022; Mitchell 321
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et al., 2023; Wei et al., 2023) to achieve this di-322

rect evaluation. We use one of the most powerful323

LLM, gpt-4-061310, as the evaluator. LLM is324

prompted to check whether the given translation325

has hallucination or omission referring to the given326

source texts. A coverage score between 0 and 100327

is output as the degree metric. The prompt used is328

shown in Figure 7.329

Is LLM really capable of evaluating halluci-330

nation and omission in MT? Despite the fact331

that LLMs have shown impressive zero-shot per-332

formance in various tasks (Kojima et al., 2022;333

Mitchell et al., 2023; Wei et al., 2023), the assess-334

ment of LLM in the evaluation of hallucination335

and omission is still important because it has not336

been widely used on this task. We use HalOmi337

datasets introduced in §3.1 to assess this ability338

of GPT-4. The examples in de ↔ en, zh ↔ en,339

and ru ↔ en are selected, then GPT-4 is used to340

predict the coverage score for these examples.341

Table 1 shows the average score of the degree of342

coverage predicted by GPT-4. The examples from343

HalOmi are split into three subsets based on the344

labels. We merged the “Partial hallucination and345

omission” and “Small hallucination and omission”346

in the original because the number of examples in347

these two categories is small. It clearly demon-348

strates that examples annotated as “No hallucina-349

tion and omission” have a higher coverage score350

predicted by GPT-4 and those in “Full hallucina-351

tion and omission” have an extremely low coverage352

score. As a result, using GPT-4 is an effective way353

to assess whether a translation has the problem of354

hallucination or omission.355

4 Experimental results356

4.1 Evaluation on hard instances357

In §3.2 we introduce how to select hard instances358

from the test set and explain why hard instances are359

suitable to assess hallucination and omission. In360

this section, we evaluate our model on these hard361

instances and the remaining examples, respectively.362

Figure 3 demonstrates the results when the number363

of hard instances N = 100, 200, and 500, respec-364

tively. The following findings can be concluded:365

• WAP consistently outperforms the baseline in366

hard instances in most translation directions,367

for both BLEU and COMET metrics.368

10https://platform.openai.com/docs/
models/gpt-4-turbo-and-gpt-4

• WAP generally reaches competitive perfor- 369

mance compared to the baseline for both 370

BLEU and COMET. 371

• With increasing the number of hard instances, 372

the improvement gained by WAP gets smaller. 373

These results indicate that WAP mitigates halluci- 374

nation and omission to a certain extent, because 375

these issues are more likely to occur in hard in- 376

stances. In addition, with the improvement in the 377

hard instances, our model remains competitive to 378

the baseline in the remaining easy instances. It is 379

reasonable that there is no significant difference in 380

the easy instances because the compared models 381

are generally good. The challenging part should be 382

in the hard ones. Moreover, it is also observed that 383

with increasing N , the improvement gets narrower. 384

The reason is that more relatively easy instances 385

are included in the subset. This is another evidence 386

that WAP provides gains particularly for halluci- 387

nation and omission in MT. The specific numeric 388

results and the overall results for the entire test set 389

are shown in §D. 390

4.2 Direct evaluation of hallucination and 391

omission by GPT-4 392

In addition to improving hard examples, which is 393

more likely to have hallucination and omission, di- 394

rect evaluations of them are also needed to confirm 395

the effectiveness of the proposed WAP. In §3.2 we 396

have verified the usefulness of GPT-4 as an evalu- 397

ator with experiments. In this section, we prompt 398

GPT-4 to directly predict a coverage score as the 399

metric of hallucination and omission. The results 400

are demonstrated in Table 2. The reported num- 401

ber is the average of the coverage scores in hard 402

examples. The results show that our model out- 403

performs the baseline in all translation directions 404

except en ↔ is. Specifically in the average score 405

of all translation directions, WAP outperforms the 406

baseline model by 4.96, 1.63 and 1.24 when N=100, 407

200 and 500, respectively. The trend is similar to 408

that of §4.1, which directly indicates that the LLM- 409

based MT model is steered to avoid generating hal- 410

lucination and omission in MT with the preference 411

dataset we constructed. 412

4.3 Human evaluation 413

Although the validity of GPT-4 as evaluator for 414

hallucination and omission has been demonstrated 415

in §3.2 and Table 1, we conduct a human evalua- 416

tion to further verify our findings, as LLM could 417
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de-en cs-en is-en zh-en ru-en en-de en-cs en-is en-zh en-ru Avg.
N=100

Baseline 94.30 92.95 94.90 63.08 89.85 92.85 82.75 97.05 84.65 90.53 88.29
+WAP 95.85 94.65 96.05 80.23 91.75 96.25 91.85 96.10 92.90 96.87 93.25(+4.96)

N=200
Baseline 95.71 95.05 95.45 74.83 92.83 94.20 89.95 97.70 89.19 94.25 91.92

+WAP 97.10 96.55 97.48 85.63 95.53 95.18 91.84 96.73 92.81 96.66 94.55(+2.63)
N=500

Baseline 97.18 96.74 97.29 87.85 96.16 97.35 94.46 98.21 91.64 96.10 95.30
+WAP 98.10 97.79 98.12 90.76 97.82 97.36 96.05 98.22 94.07 97.13 96.54(+1.24)

Table 2: Coverage score output by GPT-4. The range of the score is [0.0, 100.0]. The average score is reported for
each translation direction. Higher scores are highlighted in bold.

Translation Quality
Hallucination Omission

No Small Partial Full No Small Partial Full
Baseline 11.33% 64.00% 21.00% 11.33% 3.66% 56.00% 25.33% 13.66% 4.33%

+WAP 39.66% 75.66% 17.33% 7.00% 0.00% 80.00% 16.66% 5.33% 0.00%

Table 3: Human evaluation on “zh-en” when N=100. Translation quality is the measured by ratio of examples where
WAP beats the baseline. The remaining columns present the ratio of examples in which the corresponding degree of
hallucination or omission occurs. Better model is highlighted with bold fonts.

still be unreliable. The subset of “N=100” on “zh-418

en” is selected. Three volunteers who speak Chi-419

nese and English are asked to assess the quality420

of the translation and the degree of hallucination421

and omission for the baseline and our model, with-422

out knowing which model generates the transla-423

tions. Table 3 demonstrates the results. In general,424

our model generates better translation in 39.66%425

of the examples, while the percentage for ALMA426

is 11.33%. Furthermore, it is observed that with427

DPO on word-alignment preferred data fine-tuning,428

the degree of both hallucination and omission de-429

creases. Specifically, the percentage of “no hallu-430

cination” increases from 64% to 75.66%, and that431

of “small, partial, and full hallucination” decreases432

accordingly. The decrease in omission is more433

distinct, in which the percentage of “no omission”434

increase by 24%. Notably, for both hallucination435

and omission, the percentage of “full hallucination436

and omission” has decreased to 0 for our model.437

These results indicate that omission is more fre-438

quent than hallucination, and WAP can mitigate439

them in LLM-based MT model.440

4.4 Ablation study441

In this section, we conduct in-depth investigation442

for our word alignment preference, as we use the443

same training data as our baseline ALMA, i.e., hu-444

man translation, but extra translations from DeepL445

and ChatGPT are included to conduct our prefer-446

ence data. To investigate where the improvement 447

comes from, we introduce two variants without 448

preference tuning to compare with WAP. 449

• FT_reject: directly fine-tuning ALMA with 450

the rejected translations in the dataset. 451

• FT_prefer: directly fine-tuning ALMA with 452

the preferred translations in the dataset. 453

The comparison is demonstrated in Figure 4. 454

Does the preferred data really better contribute 455

to the training? It is observed that FT_prefer sig- 456

nificantly outperforms FT_reject in both hard and 457

easy instances. This indicates that our proposed 458

pipeline ensures that the samples are selected, lead- 459

ing to better translation quality. 460

Is the DPO preference tuning necessary? Par- 461

ticularly, the filled area demonstrates the necessity 462

of preference tuning using DPO. In hard instances 463

FT_prefer can reach a competitive performance 464

with a small gap. However, in easy instances, 465

FT_prefer largely underperforms WAP and ALMA, 466

which limits the practicality of it. The possible rea- 467

son for the different performance in the hard and 468

easy instances is the direct fine-tuning. Directly 469

fine-tuning on the preferred data without the com- 470

parison with rejected examples could cause a hard 471

fitting to the word-aligned preference but ignore 472

the general translation quality. 473
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N=100 N=200 N=500

15.0

17.5

20.0

22.5
BL

EU
ALMA
FT_reject
FT_prefer

Ours
Ours > FT_prefer

(a) Hard instances

N=100 N=200 N=500

27.5

30.0

32.5

35.0

BL
EU

ALMA
FT_reject
FT_prefer

Ours
Ours > FT_prefer

(b) Easy instances

Figure 4: Ablation study. Results in BLEU is demon-
strated. Higher BLEU is better. For fair comparison the
range of y-axis are the same for hard instances and easy
instances. The result in COMET is in the same trend,
which can be found in Figure 8 in the Appendix.

5 Related work474

Hallucination and omission in MT. Hallucina-475

tions are cases in which the model generates out-476

put that is partially or completely unrelated to the477

source sentence, while omissions are translations478

that do not include some of the input informa-479

tion (Dale et al., 2023b). Dale et al. (2023a) ex-480

plore methods that leverage the internal workings481

of models and external tools, such as cross-lingual482

sentence similarity and natural language inference483

models, to detect and mitigate hallucinations in484

MT. HalOmi (Dale et al., 2023b) introduces an485

annotated dataset specifically designed to detect486

hallucinations and omissions. In Figure 1 and §3.2487

we use HalOmi as a reference to assess how these488

two phenomena correlate to the coverage output of489

the GPT-4 evaluator and the word aligner, respec-490

tively. In particular, Yang et al. (2019) introduce491

using word alignment to reduce omission in MT,492

which partially inspires our idea.493

Preference tuning for LLMs. LLMs are capa-494

ble of completing tasks in the zero-shot or few-495

shot manner (Radford et al., 2019; Brown et al.,496

2020). In addition, performance in downstream497

tasks can also be enhanced by fine-tuning them498

with instruction datasets (Wei et al., 2022; Chung499

et al., 2024; Ouyang et al., 2022). However, acquir- 500

ing instruction datasets is costly, while obtaining 501

preferences for LLM responses is relatively eas- 502

ier (Rafailov et al., 2024). DPO (Rafailov et al., 503

2024) directly optimize LLM with preference data 504

by removing an extra reward model. We utilize 505

DPO in this work due to the ease of use and effec- 506

tiveness. A contemporaneous preference-based MT 507

model ALMA-R (Xu et al., 2024b), introduces con- 508

trastive preference optimization to fine-tune LLMs 509

specifically using reference-free MT metrics and 510

human annotation as preference. ALMA-R focuses 511

on improving general LLM-based MT but we at- 512

tempt to mitigate the hallucination and omission in 513

MT. In addition, our preference data are entirely 514

made automatically, which also draws the differ- 515

ence between ALMA-R and our work. 516

Word alignment. Word-level information is use- 517

ful in many NLP tasks such as language pre- 518

training (Chi et al., 2021; Wu et al., 2021), cross- 519

lingual sentence embedding (Zhang et al., 2023b; 520

Li et al., 2023; Miao et al., 2024), and particu- 521

larly for MT (Bahdanau et al., 2015; Tu et al., 522

2016). Word aligners based on pre-trained lan- 523

guage models (Jalili Sabet et al., 2020; Dou and 524

Neubig, 2021; Nagata et al., 2020; Chousa et al., 525

2020) have outperformed previous ones based on 526

statistical MT (Och and Ney, 2003; Dyer et al., 527

2013). WSPAlign (Wu et al., 2023) is a pre-trained 528

word aligner outperforming most previous ones, 529

hence we use it in the experiments. 530

6 Conclusion 531

The problem of hallucination and omission, a long- 532

standing problem in MT, could become more se- 533

vere when an LLM is used because an LLM itself 534

could hallucinate or omit in nature. In this paper, 535

our aim is to mitigate this problem in LLM-based 536

MT by optimizing the model toward a preference 537

for better word alignment. We construct preference 538

datasets by collecting translations using multiple 539

MT tools and selecting the preference pair with 540

a higher coverage score output by a word aligner. 541

DPO is then utilized to optimize the model towards 542

the word-aligned preference. As evaluation of hal- 543

lucination and omission is challenging, we design 544

experiments that include selecting hard instances 545

and using GPT-4 to directly predict coverage score, 546

ensuring an effective evaluation, which indicates 547

that the proposed WAP mitigates hallucination and 548

omission, especially in hard instances. 549
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Limitation550

The primary limitation of our method stems from551

the imperfections of the word alignment model.552

Within our approach, it is inevitable to encounter553

some alignment errors, which we address through a554

filtering method. However, this solution adds com-555

plexity and clutter to the method. Additionally, the556

effectiveness of our method is diminished for low-557

resource language translations due to the limited558

number of parallel sentences available. Lastly, our559

reliance on the GPT-4 API to evaluate the results560

introduces a significant cost factor. We aim to find561

a cost-free alternative for this evaluation process in562

future work.563

Ethical Statement564

All datasets and checkpoints used in this paper565

are copyright-free for research purposes. Previous566

studies are properly cited and discussed. This re-567

search aims to improve LLM-based machine trans-568

lation models with word alignment preference data,569

and the preference is made by an automatic word570

aligner. We do not introduce additional bias to par-571

ticular communities. We have obtained the consent572

of the annotation volunteers for this study.573
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A Experimental setup872

The implementation from alignment-handbook11873

is used for the training of DPO. The learning rate874

is searched based on performance on development875

set and set to 5e-6. LoRA (Hu et al., 2021) is used.876

r is set as 16 and β is set as 0.1. We train the model877

for 1 epoch and fix the random seed to 42. The878

model is trained on 4 × Nvidia A100 80G and the879

total batch size is 64. For evaluation, we use the880

implementation of ALMA12 to calculate the BLEU881

and COMET scores.882

B Details of dataset883

Figure 5 presents the varying proportions of “cho-884

sen” and “rejected” preference pairs from three885

sources: ChatGPT, DeepL, and Human. The figure886

indicates that the majority of the “chosen” trans-887

lations originate from ChatGPT, while a signifi-888

cant portion of human-written translations are “re-889

jected”. This observation supports the conclusion890

that human-written translations can also exhibit891

quality issues, as discussed in ALMA-R (Xu et al.,892

2024b). Examples in our constructed preference893

dataset are presented in §C.1.894

all cs en de en is en ru en zh en0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

# 
of

 e
xa

m
pl

es

×104

ChatGPT (Chosen)
ChatGPT (Rejected)
DeepL (Chosen)
DeepL (Rejected)
Human (Chosen)
Human (Rejected)

Figure 5: This figure illustrates the proportions of “cho-
sen” and “rejected” preference pairs derived from three
sources: ChatGPT, DeepL and Human. “all” repre-
sents the overall proportion for the aggregated dataset.
xx ↔ en is the subset pair of English and another
language. Particularly, Google Translate is used for
is ↔ en as an alternative to DeepL.

Prompt for Translation 

You are a helpful assistant that translates 
{SOURCE_LANG} sentences to {TARGET_LANG} 
sentences. 

{TEXT}

Figure 6: The prompt of ChatGPT that we use to trans-
late sentences.

Prompt of Coverage Calculation  

Given a source sentence {SOURCE_TEXT} in {
SOURCE_LANGUAGE} and a translation 
{TRANSLATION} in {TARGET_LANGUAGE}, does 
the translation has hallucination or 
omission to the source contents?

***You MUST answer with only a coverage
percentage score***.

Figure 7: Prompt to calculate the coverage score.
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Figure 8: Ablation study. Results in COMET is demon-
strated. Higher COMET is better. For fair comparison
the range of y-axis are the same for hard instances and
easy instances. Refer to §4.4 for discussion.
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Example 1 (Chinese-English) Coverage Score
source “我想，在考虑重播时，可以解决这个问题”，Coker 说

道。
–

chosen (gpt-3.5) "I think, when considering replay, this issue can be resolved,"
Coker said.

94.03

rejected (human) "<<<I think that when I think about>>> the replay, <<<I think
that>>> we can probably work it out," Coker said.

79.87

Example 2 (Chinese-English) Coverage Score
source <<<富勒>>>在政变图谋失败后 –
chosen (deepl) <<<Fuller>>> after the failed coup attempt 83.76
rejected (human) After the failure of the attempted coup, 59.59
Example 3 (English-Chinese) Coverage Score
source <<<Originally a one-bedroom property with a convoluted lay-

out - you had to walk through the kitchen to get to the bed-
room>>> - Joanne wanted to add storage space and a mezzanine
to make the most of the generous ceiling height.’

–

chosen (gpt-3.5) <<<最初是一个一居室的房产，布局错综复杂-你必须穿
过厨房才能到达卧室>>> -然而乔安妮想要增加存储空间
和一个夹层，以充分利用宽敞的天花板高度。

83.76

rejected (deepl) 乔安妮希望增加储藏空间和一个夹层，充分利用宽敞的
天花板高度。

69.97

Table 4: Examples in the preference dataset. The hallucination in rejected examples and omission in the source
sentence are highlighted with <<< >>>. The corresponding contents that are omitted in the rejected example are
highlighted with <<< >>> in the chosen example. The coverage is calculated by word aligner, refer to §2 for
details.

C Example analysis895

C.1 Examples of the preference dataset896

Table 4 includes three examples in our dataset, in897

which the source sentence, the chosen and rejected898

translations are shown. Refer to §B for a detailed899

construction of the dataset. Example 1: the re-900

jected translation is from human annotation, in901

which it repeats the term of “I think” unnaturally.902

The possible reason could be the resource of the903

parallel data, e.g., direct collection from transcrip-904

tions. Example 2: “Fuller” is omitted by human905

annotation while translated by DeepL. Example906

3: the chosen translation is from gpt-3.5-turbo that907

completely translates the source sentence. In con-908

trast, the translation by DeepL omits the first half.909

C.2 Translation examples910

Table 5 shows illustrative comparison between911

translations from the baseline and our model. Ex-912

ample 1: “in HBO’s ’The Gilded Age’" in the913

source sentence is omitted by the baseline. In914

11https://github.com/huggingface/
alignment-handbook

12https://github.com/fe1ixxu/ALMA

contrast, our model successfully translate the cor- 915

responding part into Chinese. Example 2: the 916

baseline generates “卡扣 (fastening)” infinitely in 917

translation. This type of hallucination also occurs 918

in other LLM applications, which emphasizes the 919

need to address the hallucination issue in LLM- 920

based MT models. Example 3: “等到什么时候 921

(when to wait)” is omitted by the baseline model 922

while our model translate that into “how long I 923

have to wait” properly. 924

D Specific results 925

Table 6 shows the numeric results in Figure 3, in 926

which boxes on a blue background highlight the 927

cases where our model outperforms the baseline by 928

a margin > 1.0, and the boxes in red are the oppo- 929

site. Boxes without background indicate the cases 930

when our model and the baseline have competitive 931

performance where the margin < 1.0. 932

In addition to the main findings in §4.1 that our 933

model generally performs better in harder instances, 934

from the results it can also be observed that our 935

model particularly performs worse on “en-is” than 936

in other translation directions. The reason could be 937
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Example 1 (English-Chinese) Coverage Score
Source Sunday Best: Enter 1880s New York <<<in HBO’s "The

Gilded Age">>>
–

Translation (Baseline) 周日最佳：进入1880年代的纽约 70.0
Translation (Ours) 周日最佳：进入1880 年代的纽约<<<，在HBO 的

《金碧辉煌时代》>>>
100.0

Example 2 (English-Chinese) Coverage Score
Source Liner Fastening and Hanging Tabs Inner tabs are provided

to keep a loose liner in position, corresponding in position
with the tabs we provide on our liners.

–

Translation (Baseline) 粘贴和悬挂<<<卡扣的内部卡扣用于保持卡扣卡扣
卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣
卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣
卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣
卡扣卡扣>>>

0.0

Translation (Ours) 内固定和悬挂标签内固定和悬挂标签用于保持薄膜
在位，与我们提供的标签对应。

60.0

Example 3 (Chinese-English) Coverage Score
Source 不知道要<<<等到什么时候>>> –
Translation (Baseline) I don’t know when 90.0
Translation (Ours) I don’t know <<<how long I have to wait>>> 100.0

Table 5: Translation Examples. The hallucination in translation by the baseline and the omission in the source
sentence are highlighted with <<< >>>. The corresponding contents that are omitted from the baseline are
highlighted with <<< >>> in our translation. The coverage is calculated by GPT-4, refer to §3.2 for details.

that Icelandic is a low-resource language and we938

used external tools such as WSPAlign and Google939

Translate to build the training data. Hence, the940

relatively unreliable performance of external tools941

on low-resource languages can induce noises in our942

training data. This could be a future direction for943

building more reliable word alignment signals and944

particular research on low-resource languages.945

In addition, Table 6 reports the overall perfor-946

mance when we do not split the dataset into the947

hard and easy subset. The results show that our948

model and ALMA have generally competitive per-949

formance. Specifically, if we only consider the mar-950

gin larger than 1.0, our model outperforms ALMA951

on de-en and is-en in BLEU while ALMA per-952

forms better on en-is in both BLEU and COMET.953

In particular, a significance test is conducted to in-954

vestigate numeric degradation when all instances955

are included. We utilize bootstrap sampling from956

example-wise COMET scores with 100,000 iter-957

ations and calculate the p-value. Based on the958

results of the significance test, there is no statis-959

tical significance when the margin is greater than960

0.25, indicated by a p-value larger than 0.05. This961

suggests that our approach does not degrade the962

general performance by a margin of 0.25 or more, 963

while improving that on hard instances by a large 964

margin of 3.47. Note that the focus of this work 965

is the problem of hallucination and omission, gen- 966

eral metrics for MT are only partially related to our 967

evaluation. The evaluation by LLM and humans is 968

also important, as we discussed in §3.2. 969
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Model-Metric de-en cs-en is-en zh-en ru-en en-de en-cs en-is en-zh en-ru Avg.
N=100

Easy instances
ALMA-BLEU 31.38 45.79 38.14 25.64 41.25 32.09 31.95 27.57 40.05 29.37 31.39
Ours-BLEU 32.50 46.32 40.13 25.23 40.80 31.22 31.55 26.00 39.55 29.01 31.33

ALMA-COMET 85.57 87.71 87.82 81.38 86.26 86.84 90.90 87.61 87.14 88.80 78.12
Ours-COMET 85.50 87.67 87.71 81.24 86.17 86.02 89.84 85.80 86.39 87.89 77.63

Hard instances
ALMA-BLEU 12.25 29.49 21.72 1.95 15.73 15.71 12.79 17.51 14.59 15.45 14.17
Ours-BLEU 15.56 35.93 27.72 4.62 19.77 16.15 16.67 17.13 19.49 15.54 17.30

ALMA-COMET 62.73 67.08 72.62 49.94 62.64 58.50 60.80 70.02 59.07 62.31 56.34
Ours-COMET 65.98 71.16 75.12 58.99 67.19 60.90 67.90 71.57 62.03 65.16 60.08

N=200
Easy instances

ALMA-BLEU 31.96 47.11 39.94 26.22 42.13 32.50 32.75 28.54 41.08 30.22 32.22
Ours-BLEU 33.10 47.41 41.60 25.79 41.43 31.52 32.20 26.91 40.48 29.79 32.04

ALMA-COMET 86.34 88.61 88.72 82.31 87.02 87.76 91.85 88.67 87.97 89.67 78.92
Ours-COMET 86.16 88.40 88.43 81.98 86.89 86.75 90.77 86.94 87.12 88.73 78.34

Hard instances
ALMA-BLEU 17.46 30.39 24.17 6.00 20.03 19.11 14.83 19.02 18.61 15.43 16.96
Ours-BLEU 19.31 35.04 29.25 7.55 23.70 19.96 18.16 18.29 21.52 15.95 19.28

ALMA-COMET 67.24 71.82 76.62 57.84 67.59 64.30 67.13 74.56 65.46 67.59 61.26
Ours-COMET 69.85 74.82 78.52 63.87 70.22 66.77 70.37 74.13 67.50 68.78 63.60

N=500
Easy instances

ALMA-BLEU 34.36 50.81 46.92 28.50 45.16 34.61 35.28 31.79 43.91 32.13 35.13
Ours-BLEU 35.33 50.59 47.25 27.82 44.16 33.25 34.07 30.00 42.92 31.67 34.54

ALMA-COMET 88.08 90.54 91.04 84.29 88.62 89.59 93.66 91.08 89.79 91.47 80.67
Ours-COMET 87.80 90.10 90.50 83.86 88.40 88.55 92.48 89.57 88.79 90.61 80.00

Hard instances
ALMA-BLEU 21.31 35.46 28.66 13.08 25.4 22.53 19.82 22.52 24.81 19.78 21.36
Ours-BLEU 23.09 37.91 32.66 14.04 27.32 22.89 22.38 21.32 26.58 19.78 22.82

ALMA-COMET 73.56 78.24 81.55 67.07 74.39 72.74 76.38 80.61 73.38 75.29 67.79
Ours-COMET 74.77 79.75 82.41 69.56 75.63 73.24 77.34 79.19 74.12 74.97 68.60

Overall performance, i.e., N=infinite when all instances are included.
ALMA-BLEU 30.73 44.68 36.46 24.15 40.37 31.37 31.12 26.67 39.05 28.76 30.46
Ours-BLEU 31.93 45.60 38.85 23.94 40.09 30.64 30.91 25.22 38.76 28.43 30.59

ALMA-COMET 84.42 86.29 86.30 79.70 85.09 85.45 89.42 85.85 85.76 87.50 76.83
Ours-COMET 84.50 86.53 86.45 80.05 85.22 84.78 88.75 84.38 85.19 86.77 76.59

Table 6: Specific results on 10 translation directions. The size of models are 13B. BLEU and COMET are reported.
Cells where the difference is larger than 1.0 are highlighted with colored background. Blue indicates ours model
outperforms ALMA and red indicates the opposite.
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