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Abstract

The problem of hallucination and omission, a
long-standing problem in machine translation
(MT), is more pronounced when a large lan-
guage model (LLM) is used in MT because an
LLM itself is susceptible to these phenomena.
In this work, we mitigate the problem in an
LLM-based MT model by guiding it to better
word alignment. We first study the correlation
between word alignment and the phenomena
of hallucination and omission in MT. Then we
propose to utilize word alignment as preference
to optimize the LLM-based MT model. The
preference data are constructed by selecting
chosen and rejected translations from multiple
MT tools. Subsequently, direct preference op-
timization is used to optimize the LLM-based
model towards the preference signal. Given the
absence of evaluators specifically designed for
hallucination and omission in MT, we further
propose selecting hard instances and utilizing
GPT-4 to directly evaluate the performance of
the models in mitigating these issues. We ver-
ify the rationality of these designed evaluation
methods by experiments, followed by exten-
sive results demonstrating the effectiveness of
word alignment-based preference optimization
to mitigate hallucination and omission.

1 Introduction

Large language models (LLMs) have been evolv-
ing rapidly and showing predominant perfor-
mance in many natural language processing (NLP)
tasks (Brown et al., 2020; Achiam et al., 2023; Tou-
vron et al., 2023). However, in machine translation
(MT), the use of a decoder-only LLM is still lim-
ited due to issues such as model size (Xu et al.,
2024a) and low-resource languages (Hendy et al.,
2023). Conventional encoder-decoder MT models
trained on parallel corpora still dominate in prac-
tice (Costa-jussa et al., 2022). One of the primary
concerns of applying an LLLM to MT is reliability.
Although it does not happen frequently, an LLM
is known to hallucinate (Dhuliawala et al., 2023;

Zhang et al., 2023a; Bang et al., 2023) as it is pre-
trained to predict the next token in very large-scale
raw texts. Specifically in MT, LLM-based transla-
tion systems therefore could have the phenomena
of hallucination and omission, which is also a long-
term challenge in the field of MT (Yang et al., 2019;
Vamvas and Sennrich, 2022), known as over- and
under-translation. In this work, we attempt to miti-
gate the hallucination and omission in LLM-based
MT to improve its practicality.

Hallucination in MT occurs when information
not present in the source text is generated in the
translation, and omission occurs when some of the
information in the source text is missed in the trans-
lation. As a related tool that explicitly aligns the
source text and translation at the word level, word
alignment is potentially positive for MT due to
the nature of align and translate (Bahdanau et al.,
2015). The degree of coverage of the source text
in translation could be a direct signal to identify
the hallucination and omission in MT (Tu et al.,
2016). Figure 1 shows the normalized frequency
of the coverage scores predicted by a word aligner.
The examples that are annotated as “no hallucina-
tion or omission” tend to have a higher coverage
score, while those in “full hallucination or omis-
sion” are more likely to have an extremely low
coverage score. “‘small hallucination or omission”
and “partial hallucination or omission” distribute in
the middle. As the annotations are carefully made
by humans and highly correlates to the coverage
scores from the word aligner, this indicates that
word alignment is a simple but promising direction
to mitigate these phenomena.

Consequently, we propose Word Alignment Pref-
erence (WAP) that utilizes word alignment as a
signal to optimize LLM-based MT models. WAP
consists of three steps: diverse translation collec-
tion, preference data construction, and preference
optimization. Specifically, we collect diverse trans-
lations with multiple existing translation tools, se-
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Figure 1: A preliminary experiment shows that higher
coverage scores correlates to less hallucination and
omission. The coverage scores are predicted by a
word aligner (Wu et al., 2023). The human annotation
of hallucination and omission is from HalOmi bench-
mark (Dale et al., 2023b). Details about the dataset and
word alignment model can be found in §3.1.

lect chosen and rejected examples with the word
aligner (Wu et al., 2023), and optimize the model
on preference data using direct preference optimiza-
tion (DPO) (Rafailov et al., 2024).

Furthermore, the evaluation of hallucination and
omission is challenging, and there is no existing
evaluator specifically designed for this. Improv-
ing the BLEU and COMET score does not neces-
sarily mean reducing hallucination and omission
because there are other factors such as mistrans-
lation and fluency. In addition, hallucination is
relatively infrequent, although very severe once
happens. Hence, to effectively evaluate it, we de-
sign extensive experiments that include testing on
instances that potentially have the problem of hal-
lucination and omission, and using GPT-4 as the
evaluator with comprehensive analysis. Experimen-

tal analysis demonstrates the effectiveness of WAP
in mitigating hallucination and omission in MT.

In summary, the contributions of this work in-
clude the following:

* We studied the correlation between the cov-
erage score by word alignment and the phe-
nomena of hallucination and omission in MT.
From the preliminary experiments in Figure 1
we found that word alignment is a promising
signal to mitigate it.

* In §2 we propose a novel approach, namely
WAP, to construct a word alignment-based
preference dataset, and use DPO to optimize
the LLM-based MT model. The validity of
the preference dataset is also demonstrated by
direct fine-tuning on preferred and rejected
translations in §4.4.

* As there is no benchmark particularly for eval-
uating the performance of MT models on
hallucination and omission. We design var-
ious experiments, including selecting hard in-
stances and utilizing GPT-4 as the evaluator in
§3.2. The effectiveness of the evaluation, as
well as the proposed WAP has been validated
through experiments and analysis in §4

2  Proposed approach

2.1 Gathering translation candidates

To steer the MT model to avoid hallucination and
omission using preference optimization, we first
need comparable but different translations. Start-
ing with a source text z, we utilize K methods to
produce translations, notated as 7', ..., 7. Then
we can get a set of translations Y, in which y* € Y
is obtained by y* = 7¥(x) and [Y| = K.

Details of gathered translations We start with
the parallel training data in ALMA (Xu et al,,
2024a). This parallel data encompasses five lan-
guage pairs with human translations in both direc-
tions: ¢s < en, de <> en, is <> en, zh <> en and
ru < en. We employ ISO 639 language codes! to
denote languages. Specifically, “cs” corresponds
to Czech, “de” to German, “is” to Icelandic, “zh”
to Chinese and “ru” and “en’” to Russian and En-
glish, respectively. To generate the translations we
require, this dataset is translated in both directions

"https://en.wikipedia.org/wiki/List_
of_IS0_639_language_codes
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Figure 2: An illustration of WAP framework. The source is first translated by multiple MT tools, including human
translation. An external word aligner is then utilized to predict the coverage score for each translation. Finally,
translation with the highest and lowest coverage score are selected as preference pairs for preference optimization.

using two well-known MT tools, including DeepL?
and ChatGPT (gpt-3.5-turbo-0613)3. The
prompt for ChatGPT that we utilize to translate sen-
tences is shown in Figure 6. The original human-
written translation in the training set is also utilized.
In particular, Icelandic (¢s) is not supported by the
DeepL API, therefore, we use the Google Translate
API* as an alternative.

2.2 Selecting chosen and rejected translation

After obtaining the translation candidates
(v, ...,y™), we use a state-of-the-art public word
aligner, namely WSPAlign®, to automatically an-
notate the degree of coverage for each translation.
We follow the usage setting in the original paper
of WSPAlign (Wu et al., 2023). In particular,
WSPAlign performs a bidirectional alignment
and uses a threshold to filter out low-confident
alignment of word pairs. Then, the ratio of the
source words, that are aligned with at least one
word, in the translation is taken as the coverage
score, which will be used for the following
preference annotation. The whole process pre-
dicting the coverage score is notated as C(-,-).
Formally, the coverage score for a translation
y"* can be calculated by C(x,y*) € [0.0,100.0].
Subsequently, the preferred translation and the
rejected translation are selected as follows:

https://www.deepl.com/en/translator
*https://platform.openai.com/docs/
models/gpt-3-5-turbo
*nttps://cloud.google.com/translate/
docs/basic/translate-text-basic
Shttps://github.com/qgiyuw/WSPAlign

y* = arg max C(z, y*)
ykey

ey

—

y' = arg min C(z, y¥)
ykey

where 4% is the chosen translation and v/ is
the rejected one. Then a triplet (z, 4", ') is con-
structed for the following preference optimization.

2.3 Filtering

Note that the whole pipeline of constructing the
preference data is automatic, and existing MT and
word alignment models are not perfect. Even for
human-annotated translation, the quality of it is
also an issue that cannot be ignored (Xu et al.,
2024b), and may affect the performance of the
model trained on it. Hence, noises are inevitable in
both the translated texts and the preference choices.
On the other hand, the MT tools we choose gener-
ally have good performance, it could happen that
the generated translations are not diverse enough,
leading to the preference signal being disrupted. To
improve the quality of the constructed preference
datasets as much as possible, multiple strategies are
applied to filter out potential bad training instances:

* Remove the instance when the chosen and
rejected translations only have a marginal dif-
ference in coverage score. The difference
threshold is empirically set as 5.0, that is,
(z,y",y') is excluded from the dataset if
C(z,y") — C(x,y') < 5.0.

* Remove the instance when the chosen and re-
jected translations are too semantically similar.
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Sentence embedding is a widely used tech-
nique for sentence similarity with low compu-
tation cost (Gao et al., 2021; Wu et al., 2022;
Zhao et al., 2024). LaBSE (Feng et al., 2022)°
is used in our experiments. We notate it as
LB(-). The similarity threshold is empirically
set as 0.9, i.e. (z,y",y) is excluded from
the dataset if sim(LB(y"),LB(y"*)) > 0.9.
sim(-, -) € 0.0, 1.0] is cosine similarity.

* One possible failure case for word alignment
is when the MT models directly copy the orig-
inal texts, which is bad translation, but gets a
high alignment score because the wrong trans-
lation is partially the same with the original
texts. To remove this part of the noise, we cal-
culate the BLEU score (Papineni et al., 2002)’
for the chosen translation and exclude it if the
BLEU score > 20.0.

The details and analysis of the fianl preference
dataset after filtering is introduced in §3.1.

2.4 Optimization LLM-based MT model

The final step is to optimize the LLM-based MT
model on our preference data. Direct preference
optimization (DPO) (Rafailov et al., 2024) is a sim-
ple but effective approach that directly optimizes
the preference model on a pre-constructed static
dataset. DPO has been applied to optimize LLM
in preference data (Tunstall et al., 2023; Xu et al.,
2024b) recently. We also utilize DPO as an opti-
mization approach. Formally, the training objective
is as follows,

m(y“|z) m(y'|x)

P los Bl iy s (la)
(2)

where o is the sigmoid function, 7 is the model
to optimize and 7.  is the reference model. We use
ALMA-13B® as our base model, i.e., the starting
point of 7, in the experiments. ALMA-13B is also
used as a reference model 7. ¢, but note that 7.

will not be updated during training.

3 Evaluation
The experimental setup is introduced in §A.

®https://huggingface.co/
sentence-transformers/LaBSE

"https://github.com/mjpost/sacrebleu

$https://github.com/felixxu/ALMA

3.1 Baselines and evaluation datasets

We choose ALMA-13B? as the baseline for all ex-
periments in this paper, as well as the starting
point of optimization. ALMA (Xu et al., 2024a)
was trained from Llama (Touvron et al., 2023) in
two steps: initial fine-tuning on monolingual data
and subsequent fine-tuning on a small set of high-
quality parallel data.

For fairly studying the effect of word alignment
preference, we use the data used in the supervised
fine-tuning in ALMA as the source dataset to con-
struct our preference data in §2. Specifically, the
source data was collected from WMT’17 (Bojar
et al., 2017) to WMT’20 (Barrault et al., 2020), in
addition to the development and text dataset from
Flores-200 (Costa-jussa et al., 2022). After filter-
ing, we finally make 20,074 and 2,226 preference
triplets for training and development, respectively.
For evaluation, the test set is from WMT22, except
that is <> en is from WMT21. The remaining
data from WMT21 (except is <+ en) is used as the
development set. Specifically, 3485, 4021, 2000,
3912, 4053 examples are included in the test set
for cs <+ en, de ++ en, is < en, zh < en, and
ru <> en, respectively.

HalOmi In particular, we want to validate
whether our proposed method is capable of mitigat-
ing hallucination and omission in MT. Hence, we
also utilize HalOmi (Dale et al., 2023b) in the ex-
periments. HalOmi is an evaluation benchmark for
the detection of hallucination and omission in MT.
It contains fine-grained sentence-level and token-
level annotations of full and partial hallucinations
and omissions that cover 18 language directions.
Each instance in the data set was annotated in “No
hallucination and omission”, “Small hallucination
and omission”, “Partial hallucination and omission’
or “Full hallucination and omission” by humans.
In this paper, we use it to test the performance of
GPT-4 as an evaluator. Details are in §3.2.

’

3.2 The design of evaluation

We focus on optimizing LLM-based MT models to
avoid hallucination and omission. However, to our
best knowledge, there is no benchmark measuring
MT models specifically for this issue, making the
evaluation very challenging. Improving the BLEU
or COMET score does not necessarily mean reduc-
ing hallucination and omission because there are

‘https://huggingface.co/haoranxu/
ALMA-13B
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Figure 3: Comparison of WAP and baseline in hard and easy instances. IV instances with the lowest COMET score
by the baseline are selected from the test set as hard instances, and the remaining are easy instances. Results when
N =100, 200 and 500 are presented. Refer to §D for the full numeric results of the entire test.

other factors such as mistranslation and fluency.
In addition, hallucination is relatively infrequent,
although very severe once happens. To intuitively
validate whether our approach is capable of mitigat-
ing hallucination and omission in MT, we design
several evaluation strategies in this section.

Select hard instances. We first select instances
that the baseline model does not perform well on.
This subset of instances is labeled as hard instances
in this paper. The subset of the remaining examples
is labeled as easy instances. Specifically, N in-
stances with the lowest COMET score are selected
from the test set for each translation direction. As
hard examples tend to include more hallucination
and omission, we report the comparison of models
on hard examples and remaining examples, respec-
tively. In the experiment, we sample three subsets
where N = 100, N = 200 and N = 500. The ex-
perimental analysis can be found in §4.1. Note that
the hard instances are only selected for evaluation.
We do not differentiate hard or easy instances in the
training set. Only word alignment signal is used to

select preferred dataset for a fair comparison.

Hallucination Omission
No  Partial Full No  Partial Full
# of examples | 817 42 65 627 237 60
Avg. score 84.19 4595 3.84 | 8797 6628 1.66
Pearson Corr. 0.5969 0.5686

Table 1: Average coverage score calculated by GPT-4
for different level of hallucination or omission. The
Pearson Correlation between the annotated labels and
GPT-4 coverage scores is also reported. Ideally, higher
score should correlate to less hallucination and omis-
sion.

Utilize LLM as the evaluator for hallucination
and omission. Besides the BLEU and COMET
in hard instances, a direct estimate of the degree
of hallucination and omission in translation is still
needed. As we mentioned earlier that improving
the BLEU and COMET score does not necessarily
mean reducing hallucination and omission because
there are other factors such as mistranslation and
fluency, we utilize the generalization and reason-
ing ability of LLM (Kojima et al., 2022; Mitchell



et al., 2023; Wei et al., 2023) to achieve this di-
rect evaluation. We use one of the most powerful
LLM, gpt-4-0613'9 as the evaluator. LLM is
prompted to check whether the given translation
has hallucination or omission referring to the given
source texts. A coverage score between 0 and 100
is output as the degree metric. The prompt used is
shown in Figure 7.

Is LLM really capable of evaluating halluci-
nation and omission in MT? Despite the fact
that LLMs have shown impressive zero-shot per-
formance in various tasks (Kojima et al., 2022;
Mitchell et al., 2023; Wei et al., 2023), the assess-
ment of LLM in the evaluation of hallucination
and omission is still important because it has not
been widely used on this task. We use HalOmi
datasets introduced in §3.1 to assess this ability
of GPT-4. The examples in de <> en, zh <> en,
and ru <> en are selected, then GPT-4 is used to
predict the coverage score for these examples.

Table 1 shows the average score of the degree of
coverage predicted by GPT-4. The examples from
HalOmi are split into three subsets based on the
labels. We merged the “Partial hallucination and
omission” and “Small hallucination and omission”
in the original because the number of examples in
these two categories is small. It clearly demon-
strates that examples annotated as “No hallucina-
tion and omission” have a higher coverage score
predicted by GPT-4 and those in “Full hallucina-
tion and omission” have an extremely low coverage
score. As a result, using GPT-4 is an effective way
to assess whether a translation has the problem of
hallucination or omission.

4 Experimental results

4.1 Evaluation on hard instances

In §3.2 we introduce how to select hard instances
from the test set and explain why hard instances are
suitable to assess hallucination and omission. In
this section, we evaluate our model on these hard
instances and the remaining examples, respectively.
Figure 3 demonstrates the results when the number
of hard instances N = 100, 200, and 500, respec-
tively. The following findings can be concluded:

* WAP consistently outperforms the baseline in
hard instances in most translation directions,
for both BLEU and COMET metrics.

Yhttps://platform.openai.com/docs/
models/gpt-4-turbo-and-gpt-4

* WAP generally reaches competitive perfor-
mance compared to the baseline for both
BLEU and COMET.

* With increasing the number of hard instances,
the improvement gained by WAP gets smaller.

These results indicate that WAP mitigates halluci-
nation and omission to a certain extent, because
these issues are more likely to occur in hard in-
stances. In addition, with the improvement in the
hard instances, our model remains competitive to
the baseline in the remaining easy instances. It is
reasonable that there is no significant difference in
the easy instances because the compared models
are generally good. The challenging part should be
in the hard ones. Moreover, it is also observed that
with increasing N, the improvement gets narrower.
The reason is that more relatively easy instances
are included in the subset. This is another evidence
that WAP provides gains particularly for halluci-
nation and omission in MT. The specific numeric
results and the overall results for the entire test set
are shown in §D.

4.2 Direct evaluation of hallucination and
omission by GPT-4

In addition to improving hard examples, which is
more likely to have hallucination and omission, di-
rect evaluations of them are also needed to confirm
the effectiveness of the proposed WAP. In §3.2 we
have verified the usefulness of GPT-4 as an evalu-
ator with experiments. In this section, we prompt
GPT-4 to directly predict a coverage score as the
metric of hallucination and omission. The results
are demonstrated in Table 2. The reported num-
ber is the average of the coverage scores in hard
examples. The results show that our model out-
performs the baseline in all translation directions
except en <> is. Specifically in the average score
of all translation directions, WAP outperforms the
baseline model by 4.96, 1.63 and 1.24 when N=100,
200 and 500, respectively. The trend is similar to
that of §4.1, which directly indicates that the LLM-
based MT model is steered to avoid generating hal-
lucination and omission in MT with the preference
dataset we constructed.

4.3 Human evaluation

Although the validity of GPT-4 as evaluator for
hallucination and omission has been demonstrated
in §3.2 and Table 1, we conduct a human evalua-
tion to further verify our findings, as LLM could
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de-en cs-en is-en zh-en ru-en en-de en-cs en-is en-zh en-ru Avg.
N=100
Baseline | 94.30 9295 9490 63.08 89.85 92.85 8275 97.05 84.65 90.53 88.29
+WAP | 9585 94.65 96.05 80.23 91.75 96.25 91.85 96.10 92.90 96.87 | 93.25(+4.96)
N=200
Baseline | 95.71 95.05 9545 74.83 92.83 9420 8995 97.70 89.19 94.25 91.92
+WAP | 97.10 96.55 97.48 85.63 95.53 95.18 91.84 96.73 92.81 96.66 | 94.55(+2.63)
N=500
Baseline | 97.18 96.74 9729 87.85 96.16 97.35 9446 9821 91.64 96.10 95.30
+WAP | 98.10 97.79 98.12 90.76 97.82 97.36 96.05 98.22 94.07 97.13 | 96.54(+1.24)

Table 2: Coverage score output by GPT-4. The range of the score is [0.0, 100.0]. The average score is reported for
each translation direction. Higher scores are highlighted in bold.

Translation Quality Hallucination. Omission .
No Small Partial Full No Small Partial Full
Baseline 11.33% 64.00% 21.00% 11.33% 3.66% | 56.00% 25.33% 13.66% 4.33%
+WAP 39.66 % 75.66% 17.33% 7.00% 0.00% | 80.00% 16.66% 5.33% 0.00%

Table 3: Human evaluation on “zh-en” when N=100. Translation quality is the measured by ratio of examples where
WAP beats the baseline. The remaining columns present the ratio of examples in which the corresponding degree of
hallucination or omission occurs. Better model is highlighted with bold fonts.

still be unreliable. The subset of “N=100" on “zh-
en” is selected. Three volunteers who speak Chi-
nese and English are asked to assess the quality
of the translation and the degree of hallucination
and omission for the baseline and our model, with-
out knowing which model generates the transla-
tions. Table 3 demonstrates the results. In general,
our model generates better translation in 39.66%
of the examples, while the percentage for ALMA
is 11.33%. Furthermore, it is observed that with
DPO on word-alignment preferred data fine-tuning,
the degree of both hallucination and omission de-
creases. Specifically, the percentage of “no hallu-
cination” increases from 64% to 75.66%, and that
of “small, partial, and full hallucination” decreases
accordingly. The decrease in omission is more
distinct, in which the percentage of “no omission”
increase by 24%. Notably, for both hallucination
and omission, the percentage of “full hallucination
and omission” has decreased to O for our model.
These results indicate that omission is more fre-
quent than hallucination, and WAP can mitigate
them in LLM-based MT model.

4.4 Ablation study

In this section, we conduct in-depth investigation
for our word alignment preference, as we use the
same training data as our baseline ALMA, i.e., hu-
man translation, but extra translations from DeepL
and ChatGPT are included to conduct our prefer-

ence data. To investigate where the improvement
comes from, we introduce two variants without
preference tuning to compare with WAP.

* FT_reject: directly fine-tuning ALMA with
the rejected translations in the dataset.

* FT_prefer: directly fine-tuning ALMA with
the preferred translations in the dataset.

The comparison is demonstrated in Figure 4.

Does the preferred data really better contribute
to the training? It is observed that FT_prefer sig-
nificantly outperforms FT_reject in both hard and
easy instances. This indicates that our proposed
pipeline ensures that the samples are selected, lead-
ing to better translation quality.

Is the DPO preference tuning necessary? Par-
ticularly, the filled area demonstrates the necessity
of preference tuning using DPO. In hard instances
FT_prefer can reach a competitive performance
with a small gap. However, in easy instances,
FT_prefer largely underperforms WAP and ALMA,
which limits the practicality of it. The possible rea-
son for the different performance in the hard and
easy instances is the direct fine-tuning. Directly
fine-tuning on the preferred data without the com-
parison with rejected examples could cause a hard
fitting to the word-aligned preference but ignore
the general translation quality.
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Figure 4: Ablation study. Results in BLEU is demon-
strated. Higher BLEU is better. For fair comparison the
range of y-axis are the same for hard instances and easy
instances. The result in COMET is in the same trend,
which can be found in Figure 8 in the Appendix.

5 Related work

Hallucination and omission in MT. Hallucina-
tions are cases in which the model generates out-
put that is partially or completely unrelated to the
source sentence, while omissions are translations
that do not include some of the input informa-
tion (Dale et al., 2023b). Dale et al. (2023a) ex-
plore methods that leverage the internal workings
of models and external tools, such as cross-lingual
sentence similarity and natural language inference
models, to detect and mitigate hallucinations in
MT. HalOmi (Dale et al., 2023b) introduces an
annotated dataset specifically designed to detect
hallucinations and omissions. In Figure 1 and §3.2
we use HalOmi as a reference to assess how these
two phenomena correlate to the coverage output of
the GPT-4 evaluator and the word aligner, respec-
tively. In particular, Yang et al. (2019) introduce
using word alignment to reduce omission in MT,
which partially inspires our idea.

Preference tuning for LLMs. LLMs are capa-
ble of completing tasks in the zero-shot or few-
shot manner (Radford et al., 2019; Brown et al.,
2020). In addition, performance in downstream
tasks can also be enhanced by fine-tuning them
with instruction datasets (Wei et al., 2022; Chung

et al., 2024; Ouyang et al., 2022). However, acquir-
ing instruction datasets is costly, while obtaining
preferences for LLM responses is relatively eas-
ier (Rafailov et al., 2024). DPO (Rafailov et al.,
2024) directly optimize LLM with preference data
by removing an extra reward model. We utilize
DPO in this work due to the ease of use and effec-
tiveness. A contemporaneous preference-based MT
model ALMA-R (Xu et al., 2024b), introduces con-
trastive preference optimization to fine-tune LLMs
specifically using reference-free MT metrics and
human annotation as preference. ALMA-R focuses
on improving general LLM-based MT but we at-
tempt to mitigate the hallucination and omission in
MT. In addition, our preference data are entirely
made automatically, which also draws the differ-
ence between ALMA-R and our work.

Word alignment. Word-level information is use-
ful in many NLP tasks such as language pre-
training (Chi et al., 2021; Wu et al., 2021), cross-
lingual sentence embedding (Zhang et al., 2023b;
Li et al., 2023; Miao et al., 2024), and particu-
larly for MT (Bahdanau et al., 2015; Tu et al.,
2016). Word aligners based on pre-trained lan-
guage models (Jalili Sabet et al., 2020; Dou and
Neubig, 2021; Nagata et al., 2020; Chousa et al.,
2020) have outperformed previous ones based on
statistical MT (Och and Ney, 2003; Dyer et al.,
2013). WSPAlign (Wu et al., 2023) is a pre-trained
word aligner outperforming most previous ones,
hence we use it in the experiments.

6 Conclusion

The problem of hallucination and omission, a long-
standing problem in MT, could become more se-
vere when an LLM is used because an LLM itself
could hallucinate or omit in nature. In this paper,
our aim is to mitigate this problem in LLM-based
MT by optimizing the model toward a preference
for better word alignment. We construct preference
datasets by collecting translations using multiple
MT tools and selecting the preference pair with
a higher coverage score output by a word aligner.
DPO is then utilized to optimize the model towards
the word-aligned preference. As evaluation of hal-
lucination and omission is challenging, we design
experiments that include selecting hard instances
and using GPT-4 to directly predict coverage score,
ensuring an effective evaluation, which indicates
that the proposed WAP mitigates hallucination and
omission, especially in hard instances.



Limitation

The primary limitation of our method stems from
the imperfections of the word alignment model.
Within our approach, it is inevitable to encounter
some alignment errors, which we address through a
filtering method. However, this solution adds com-
plexity and clutter to the method. Additionally, the
effectiveness of our method is diminished for low-
resource language translations due to the limited
number of parallel sentences available. Lastly, our
reliance on the GPT-4 API to evaluate the results
introduces a significant cost factor. We aim to find
a cost-free alternative for this evaluation process in
future work.

Ethical Statement

All datasets and checkpoints used in this paper
are copyright-free for research purposes. Previous
studies are properly cited and discussed. This re-
search aims to improve LLM-based machine trans-
lation models with word alignment preference data,
and the preference is made by an automatic word
aligner. We do not introduce additional bias to par-
ticular communities. We have obtained the consent
of the annotation volunteers for this study.
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A Experimental setup

The implementation from alignment-handbook!!
is used for the training of DPO. The learning rate
is searched based on performance on development
set and set to 5e-6. LoRA (Hu et al., 2021) is used.
rissetas 16 and 3 is set as 0.1. We train the model
for 1 epoch and fix the random seed to 42. The
model is trained on 4 x Nvidia A100 80G and the
total batch size is 64. For evaluation, we use the
implementation of ALMA'? to calculate the BLEU
and COMET scores.

B Details of dataset

Figure 5 presents the varying proportions of “cho-
sen” and “rejected” preference pairs from three
sources: ChatGPT, DeepL, and Human. The figure
indicates that the majority of the “chosen” trans-
lations originate from ChatGPT, while a signifi-
cant portion of human-written translations are “re-
jected”. This observation supports the conclusion
that human-written translations can also exhibit
quality issues, as discussed in ALMA-R (Xu et al.,
2024b). Examples in our constructed preference
dataset are presented in §C.1.

x10%
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Figure 5: This figure illustrates the proportions of “cho-
sen” and “rejected” preference pairs derived from three
sources: ChatGPT, DeepL and Human. “all” repre-
sents the overall proportion for the aggregated dataset.
zx <> en is the subset pair of English and another
language. Particularly, Google Translate is used for
is <> en as an alternative to DeepL.
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Prompt for Translation

You are a helpful assistant that translates
sentences to
sentences.

Figure 6: The prompt of ChatGPT that we use to trans-
late sentences.

Prompt of Coverage Calculation

_[

Given a source sentence in
and a translation
in , does
the translation has hallucination or
omission to the source contents?

***You MUST answer with only a coverage
percentage score***,

Figure 7: Prompt to calculate the coverage score.
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(a) Hard instances
—e— ALMA —=— Ours
861 —— FT_reject Ours > FT_prefer
—<— FT_prefer

5 82
=
8 //
O

74 T T T

N=100 N=200 N=500

(b) Easy instances

Figure 8: Ablation study. Results in COMET is demon-
strated. Higher COMET is better. For fair comparison
the range of y-axis are the same for hard instances and
easy instances. Refer to §4.4 for discussion.



Example 1 (Chinese-English)

Coverage Score

“PAl, AEFREABE, TR RIX A R, Coker Ui

source -
JH -

chosen (gpt-3.5) | "I think, when considering replay, this issue can be resolved," 94.03
Coker said.

rejected (human) | "<<<I think that when I think about>>> the replay, <<<I think 79.87

that>>> we can probably work it out," Coker said.

Example 2 (Chinese-English)

Coverage Score

source <<<& W>>>TEBUE BFUE RS -
chosen (deepl) <<<Fuller>>> after the failed coup attempt 83.76
rejected (human) | After the failure of the attempted coup, 59.59

Example 3 (Engli

sh-Chinese)

Coverage Score

source

<<<Originally a one-bedroom property with a convoluted lay-
out - you had to walk through the kitchen to get to the bed-
room>>> - Joanne wanted to add storage space and a mezzanine
to make the most of the generous ceiling height.’

chosen (gpt-3.5)

<<mUlE— N —RENFET, MREFEER- RUIEF
5 55 A RERIA RN >>> - IR T+ LR AR ZE AN A7 i =S [F)
M—RIE, DFEH A RMEI R = -

83.76

Tr 22 A IR =S (Rl F — D3RR, e A H B A

69.97

rejected (deepl)

KA -

Table 4: Examples in the preference dataset. The hallucination in rejected examples and omission in the source
sentence are highlighted with <<< >>>. The corresponding contents that are omitted in the rejected example are
highlighted with <<< >>> in the chosen example. The coverage is calculated by word aligner, refer to §2 for

details.

C Example analysis

C.1 Examples of the preference dataset

Table 4 includes three examples in our dataset, in
which the source sentence, the chosen and rejected
translations are shown. Refer to §B for a detailed
construction of the dataset. Example 1: the re-
jected translation is from human annotation, in
which it repeats the term of “I think” unnaturally.
The possible reason could be the resource of the
parallel data, e.g., direct collection from transcrip-
tions. Example 2: “Fuller” is omitted by human
annotation while translated by DeepL. Example
3: the chosen translation is from gpt-3.5-turbo that
completely translates the source sentence. In con-
trast, the translation by DeepL omits the first half.

C.2 Translation examples

Table 5 shows illustrative comparison between
translations from the baseline and our model. Ex-
ample 1: “in HBO’s 'The Gilded Age’" in the
source sentence is omitted by the baseline. In
"https://github.com/huggingface/

alignment-handbook
Phttps://github.com/felixxu/ALMA
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contrast, our model successfully translate the cor-
responding part into Chinese. Example 2: the
baseline generates “~ 1 (fastening)” infinitely in
translation. This type of hallucination also occurs
in other LLM applications, which emphasizes the
need to address the hallucination issue in LLM-
based MT models. Example 3: “5& £ {1 4 B i
(when to wait)” is omitted by the baseline model
while our model translate that into “how long I
have to wait” properly.

D Specific results

Table 6 shows the numeric results in Figure 3, in
which boxes on a blue background highlight the
cases where our model outperforms the baseline by
a margin > 1.0, and the boxes in red are the oppo-
site. Boxes without background indicate the cases
when our model and the baseline have competitive
performance where the margin < 1.0.

In addition to the main findings in §4.1 that our
model generally performs better in harder instances,
from the results it can also be observed that our
model particularly performs worse on “en-is” than
in other translation directions. The reason could be


https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/fe1ixxu/ALMA

Example 1 (English-Chinese)

Coverage Score

Source Sunday Best: Enter 1880s New York <<<in HBO’s "The -
Gilded Age">>>

Translation (Baseline) | J& H e f: #EA1880 FEUHIAILY 70.0

Translation (Ours) JAH st E A1880 FUHIA £<<<, 7EHBO HJ 100.0

(GEFIERAL) >>>

Example 2 (English-Chinese)

Coverage Score

Source

Liner Fastening and Hanging Tabs Inner tabs are provided
to keep a loose liner in position, corresponding in position
with the tabs we provide on our liners.

Translation (Baseline)

FEMEFN B <<< RN EE R FIH TR 7 R0 R340
FARAFIRA IR RAFIOR ORI
R (i 1 1 o 1 o 1 o8 o8l 8y Bl o Rl 1
FARAFIRARIRAARA IR ORI
FHRIA>>>

0.0

Translation (Ours)

AT T 7 AR Ao P 2 A ] S R B A P 25 FH T PR o
L, FHATFEERIPRZEN B -

60.0

Example 3 (Chinese-English)

Coverage Score

Source ANFNE B <<<F 2T AN >>> -
Translation (Baseline) | I don’t know when 90.0
Translation (Ours) I don’t know <<<how long I have to wait>>> 100.0

Table 5: Translation Examples. The hallucination in translation by the baseline and the omission in the source
sentence are highlighted with <<< >>>. The corresponding contents that are omitted from the baseline are
highlighted with <<< >>> in our translation. The coverage is calculated by GPT-4, refer to §3.2 for details.

that Icelandic is a low-resource language and we
used external tools such as WSPAlign and Google
Translate to build the training data. Hence, the
relatively unreliable performance of external tools
on low-resource languages can induce noises in our
training data. This could be a future direction for
building more reliable word alignment signals and
particular research on low-resource languages.

In addition, Table 6 reports the overall perfor-
mance when we do not split the dataset into the
hard and easy subset. The results show that our
model and ALMA have generally competitive per-
formance. Specifically, if we only consider the mar-
gin larger than 1.0, our model outperforms ALMA
on de-en and is-en in BLEU while ALMA per-
forms better on en-is in both BLEU and COMET.
In particular, a significance test is conducted to in-
vestigate numeric degradation when all instances
are included. We utilize bootstrap sampling from
example-wise COMET scores with 100,000 iter-
ations and calculate the p-value. Based on the
results of the significance test, there is no statis-
tical significance when the margin is greater than
0.25, indicated by a p-value larger than 0.05. This
suggests that our approach does not degrade the
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general performance by a margin of 0.25 or more,
while improving that on hard instances by a large
margin of 3.47. Note that the focus of this work
is the problem of hallucination and omission, gen-
eral metrics for MT are only partially related to our
evaluation. The evaluation by LLM and humans is
also important, as we discussed in §3.2.



Model-Metric  de-en  cs-en  is-en zh-en ru-en en-de en-cs en-is en-zh en-ru  Avg.
N=100
Easy instances
ALMA-sLev | 31.38  45.79 | 38.14 25.64 41.25 32.09 3195 | 27.57 40.05 29.37 31.39
Ours-BLEU 32.50 46.32  40.13 25.23 40.80 31.22 31.55 | 26.00 39.55 29.01 31.33
ALMA-comer 85.57 87.71 87.82 81.38 86.26 86.84 [ 9090 87.61 §87.14 88.80 78.12
Ours-comer  85.50 87.67 87.71 81.24 86.17 86.02 | 89.84 85.80 86.39 87.89 77.63
Hard instances
ALMA-sieu | 1225 2949 21.72 195 15.73 1571 1279 17.51 | 14.59 1545  14.17
Ours-BLEU 1556 3593 27.72 462 19.77 16.15 16.67 17.13 1949 1554 17.30
ALMA-comer  62.73 67.08 72.62 49.94 62.64 58.50 60.80 70.02 59.07 62.31 56.34
Ours-comer 6598 71.16 75.12 5899 67.19 6090 6790 71.57 62.03 65.16 60.08
N=200
Easy instances
ALMA-siev | 31.96 47.11 3994 2622 4213 3250 3275 2854 41.08 30.22 32.22
Ours-BLEU 33.10 47.41 41.60 2579 4143 31.52 3220 2691 4048 29.79 32.04
ALMA-comer  86.34 88.61 88.72 8231 87.02 [ 87.76 91.85 88.67 @ 87.97 89.67 7892
Ours-comer  86.16 88.40 88.43 81.98 86.89 | 86.75 90.77 86.94 87.12 88.73 78.34
Hard instances
ALMA-sLev | 1746 30.39 24.17 6.00 20.03 19.11 1483 19.02 | 18.61 15.43 @ 16.96
Ours-BLEU 19.31 35.04 29.25 7.55 2370 19.96  18.16 18.29 21.52 15.95 | 19.28
ALMA-comer | 67.24 71.82 76.62 57.84 6759 6430 67.13 74.56 6546 | 67.59 61.26
Ours-comer | 69.85 74.82 78.52 63.87 7022 66.77 70.37 74.13 67.50  68.78 63.60
N=500
Easy instances
ALMA-sLev 3436 50.81 4692 2850 45.16 | 34.61 3528 31.79 4391 32.13 35.13
Ours-BLEU 35.33 50.59 47.25 27.82 44.16 | 33.25 34.07 30.00 42.92 31.67 34.54
ALMA-comer  88.08 90.54 91.04 8429 88.62 | 89.59 93.66 91.08 89.79 91.47 80.67
Ours-comer  87.80 90.10 90.50 83.86 88.40 | 88.55 9248 89.57 88.79 90.61 80.00
Hard instances
ALMA-sLev | 2131 3546 28.66 13.08 254 2253  19.82 2252 2481 19.78 @ 21.36
Ours-BLEU 23.09 3791 32.66 14.04 2732 2289 2238 2132 26.58 19.78  22.82
ALMA-comer | 73.56 78.24 81.55 67.07 7439 72.74 76.38 | 80.61 73.38 75.29 67.79
Ours-comer | 74.77 79.75 82.41  69.56 75.63 73.24 77.34 [ 79.19 74.12 7497 68.60
Overall performance, i.e., N=infinite when all instances are included.
ALMA-sev | 30.73  44.68  36.46 24.15 40.37 31.37 31.12 | 26.67  39.05 28.76 30.46
Ours-BLEU 31.93 45.60 38.85 23.94 40.09 30.64 3091 | 25.22 38.76 28.43 30.59
ALMA-comer 84.42 86.29 8630 79.70 85.09 8545 89.42 | 85.85 85.76 87.50 76.83
Ours-comer  84.50 86.53 86.45 80.05 8522 84.78 88.75 | 84.38 85.19 86.77 76.59

Table 6: Specific results on 10 translation directions. The size of models are 13B. BLEU and COMET are reported.
Cells where the difference is larger than 1.0 are highlighted with colored background. Blue indicates ours model
outperforms ALMA and red indicates the opposite.
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