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Abstract

Continual Learning (CL) aims to train neural networks on a dynamic task stream
without forgetting previously learned knowledge. With the rise of pre-training
techniques, strong model generalization has become essential for stable learning.
C-Flat is a powerful and general CL training regime that promotes generaliza-
tion by seeking flatter optima across sequential tasks. However, it requires three
additional gradient computations per step, resulting in up to 4× computational
overhead. In this work, we propose C-Flat Turbo, a faster yet stronger optimizer
with a relaxed scheduler, to substantially reduce training cost. We disclose that
gradients toward first-order flatness contain direction-invariant components with
respect to the proxy model at 𝜃 + 𝜖∗1 , which allows us to skip redundant gra-
dient computations in the perturbed ascent steps. Furthermore, a stage-wise step
scheduler and adaptive triggering of the regularization mechanism enable dynamic
control of C-Flat behavior throughout training. Experiments demonstrate that our
optimizer accelerates most CL methods by at least 1× (up to 1.25×) over C-Flat,
while achieving comparable performance. Code will be released upon acceptance.

1 Introduction

In the open world, learning systems are requested to absorb new knowledge incrementally, a process
known as continual learning (CL) Zhou et al. (2023b); Wang et al. (2023a); Masana et al. (2022). A
major obstacle to CL is catastrophic forgetting. To tackle this issue, various approaches have been
proposed Zhou et al. (2024a); Wang et al. (2022b); Smith et al. (2023), including memory-based,
regularization-based, expansion-based, pre-trained model (PTM)-based methods, etc Wang et al.
(2023a); Hadsell et al. (2020); Wang et al. (2023a). Among them, PTM-based methods Jung et al.
(2023); Tang et al. (2023); Khan et al. (2023) have shown a more positive effect in overcoming
forgetting due to their superior generalization capabilities.

Apart from the methods mentioned above, generalization in the CL optimization process Jia et al.
(2022); Tang et al. (2023); Khan et al. (2023); Khattak et al. (2023); Khan et al. (2023) has gradually
attracted the attention of the CL community. A series of works demonstrated that sharpness-aware
minimization is a powerful training mechanism for maintaining generalization in CL He et al. (2019);
Foret et al. (2020); Zhong et al. (2022); Zhuang et al. (2022). These methods focus on flat minima
of the CL process, thereby effectively reducing forgetting. For example, an investigation Mehta et al.
(2023) proves that sharpness optimization can help overcome forgetting in CL. Recently, C-Flat Bian
et al. (2024) is proposed as a promising CL-friendly optimizer to strengthen learning stability on
joint knowledge space of new and old tasks Deng et al. (2021); Shi et al. (2021). C-Flat seeks minima
lying in a flat neighborhood, which are more likely to be global optima, thereby mitigating forgetting
caused by the knowledge gap between different tasks Shi et al. (2021); Kong et al. (2023); Zhuang
et al. (2022).

However, flat minima alignment requires calculating a gradient perturbation, which significantly
increases computational complexity and overhead He et al. (2019); Foret et al. (2020). For in-
stance, (i) the zeroth-order sharpness Foret et al. (2020) perturbation of C-Flat approximated by the
scaled empirical loss requires another backward propagation, which doubles the computational over-
head Zhong et al. (2022); Zhang et al. (2023b); Liu et al. (2022). (ii) the first-order flatness in C-Flat,
which encourages training to converge to global flat minima Bian et al. (2024), requires calculating a
Hessian matrix-related perturbation according to Gradient Norm Aware Minimization (GAM) Zhang
et al. (2023b). While this computation can be simplified using the Hessian-vector product or further
zeroth-order-based approximations, it still requires two more backpropagation Zhuang et al. (2022).
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Moreover, the two-step gradient alignment of C-Flat may enlarge the minima search range, adding
extra burden to the fine-tuning phase when learning is nearly converged Hadsell et al. (2020); Bian
et al. (2024).

Fortunately, C-Flat features a robust convergence that can converge within far fewer iterations or
epochs than SGD Bian et al. (2024). This ensures that C-Flat potentially finishes the CL process
faster than SGD Bian et al. (2024) (L3 level of C-Flat). But essentially, the C-Flat optimizer is still
inherently plagued by computational overhead. Thus, a natural question arises,

(Q) Could we find a faster optimization path that guarantees the strong performance of C-Flat while
featuring significantly lower computational overhead?

Through a series of observations and empirical analyses, we find that the gradients of first-order
flatness, when projected orthogonally to the gradients of a proxy model at 𝜌+ 𝜖∗1 , exhibit more stable
changes than even the gradients associated with zeroth-order sharpness during optimization. These
insights potentially enable faster paths to continual learning. Therefore, in this work, we decompose
the C-Flat gradients into components parallel and orthogonal to the empirical gradient direction, and
periodically take shortcuts along the orthogonal directions to more efficiently explore flatter regions
of the loss landscape.

Moreover, we observe that the sharpness and flatness gradients not only decrease along with the
training loss within each task, but also gradually diminish across tasks, indicating a trend toward
increased stability. Based on this, we introduce a stage-wise turbo step scheduler that flexibly adjusts
the shortcut frequency. In addition, an adaptive policy is proposed to combine C-Flat with SGD for
further efficiency improvements.

Our technical contributions are three-fold:

(i) We identify the invariant flat-driven branches in the first-order regime and propose an efficient
variant, C-Flat Turbo, which selectively shortcuts along stable directions toward flatter regions.

(ii) We uncover the stabilization of sharpness-aware gradients in continual learning and propose a
stage-wise linear scheduler combined with an adaptive triggering mechanism to dynamically regulate
the behavior of C-Flat during training.

(iii) Extensive experiments show that C-Flat Turbo outperforms state-of-the-art methods and achieves
more than 1× speedup (up to 1.25×), while maintaining performance.

2 Related work

Continual learning. Along this line, continual learning can be taxonomized into three groups Wang
et al. (2023a); Hadsell et al. (2020) as follows, (i) Memory-based methods base a limited budget in a
memory to resist forgetting Rebuffi et al. (2017); Rolnick et al. (2019); Jeeveswaran et al. (2023); Sun
et al. (2023b). Many efforts selectively store a few representative exemplars for rehearsal during CL.
Apart from direct replay, some other efforts Deng et al. (2021); Lin et al. (2022); Saha et al. (2020); Lin
et al. (2023); Sun et al. (2023a) resort to proxy of former knowledge as memory to overcome forgetting,
e.g., bases of gradient space, representative prototype, etc. (ii) Regularization-based methods are
characterized by introducing favorable regularization terms to trade off new and old knowledge Li
& Hoiem (2018); Kirkpatrick et al. (2017); Cha et al. (2021). Trivially, consensus practices include
weight Rudner et al. (2022); Kim et al. (2022); Akyürek et al. (2022), function Li & Hoiem (2018);
Oh et al. (2022), or feature regularization Bhat et al. (2023); Gao et al. (2022), which encourage these
spaces to remain close to their original states. Like natural cognitive systems, this consolidation
helps to limit the renewal of important terms. (iii) Expansion-based methods aim to dynamically
modularize network structures towards each task to tackle forgetting Zhou et al. (2023c). Methods
in this group construct task-specific parameters or architecture (e.g., parameter allocation Liu et al.
(2021); Abati et al. (2020), model decomposition/mixture, and modular network Yan et al. (2021);
Zhu et al. (2022)) to explicitly reduce inter-task interferenceSerrà et al. (2018); Hu et al. (2023);
Yoon et al. (2020). In other words, these efforts shift the burden of storing raw data to the retention
architecture Zhou et al. (2023c).

Continual learning using generalization. The strong generalizability of PTMs further advances
the CL Zhou et al. (2024a). Adhere to Zhou et al. (2024a), we taxonomize these studies into three
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groups as follows, (i) Prompt-based methods leverage prompt learning to enable lightweight updates
to PTM Jia et al. (2022). Many efforts Wang et al. (2022b); Smith et al. (2023); Jung et al. (2023);
Tang et al. (2023); Khan et al. (2023) resort to various prompt selections, e.g., the way of prompt
retrieval, task-special prompts, and prompt generation. Moreover, some work extends the concept
of prompts to broader scenes Gan et al. (2023); Khattak et al. (2023); Khan et al. (2023), i.e., visual
prompts, pre-trained vision-language model prompts, etc. Overall, these efforts strike a balance
between the generalizability of PTM and the encoding of information from downstream tasks. (ii)
Representation-based methodsfocus on building classifiers by leveraging the generalization capability
of PTM Zhou et al. (2023d). Briefly, this line of work mainly dedicates the calibration of classifiers
and optimize their internal relationships Zhou et al. (2024b); McDonnell et al. (2024); Zhang et al.
(2023a); Zhu et al. (2021). Like, concatenating the backbone to improve classifier representation,
using random projection to remove class-wise correlations, and replaying features to calibrate the
classifier. (iii) Model mixture-based methods. introduce a set of models and utilize various model
mixture approaches (model ensemble, model merge, etc.) to generate final outputs Wang et al.
(2023b); Gao et al. (2023); Zhou et al. (2023e); Chen et al. (2023); Wang et al. (2022a). Trivially,
the method in this category integrates several PTM with strong generalization capabilities to produce
more robust results Zhou et al. (2024a). Yet, some of the drawbacks that arise are associated with
these efforts, e.g. extra computational overhead and memory buffer.

Better and efficient generalization in continual learning. In CL, research into how flat minima He
et al. (2019); Foret et al. (2020); Baldassi et al. (2020) affect catastrophic forgetting is still at a nascent
stage Chaudhry et al. (2018); Lopez-Paz & Ranzato (2017). A few works are done to examine flatness
evaluation during CL in some special instances Deng et al. (2021); Shi et al. (2021), e.g., tuning
parameters within the flatness minima regions. Promisingly, C-Flat Bian et al. (2024), a CL-tailored
optimizer that first introduces the concept of continual flatness to overcome forgetting, which lifts
off a new line for CL. The above efforts scrutinize the mechanism of flat minima in CL, yet they
suffer from reduced optimization efficiency due to entrapment in many random perturbations Liu
et al. (2022); Du et al.; 2021), especially involving successive tasks. In this paper, we advance an
efficient version of C-Flat to boost CL.

3 Method

3.1 Rethinking the mechanism of C-Flat

g

(a) SGD

gs

(b) SAM

gf

g0
g1

gc

(c) C-Flat

Figure 1: Brief illustration of C-FlatBian et al.
(2024). (a) SGD optimizes along the negative di-
rection of the gradients, 𝑔 = ∇𝐿 ( 𝑓 (𝜃𝑇 )). (b) SAM
Foret et al. (2020) computes the gradients 𝑔𝑠 at
an adversarially perturbed position 𝜃 + 𝜌 · 𝑔/∥𝑔∥,
and then updates the original model parameters.
(c) C-Flat Bian et al. (2024) further calculates the
first-order flatness gradient 𝑔 𝑓 , based on the per-
turbed parameters 𝜃 + 𝜌 · (𝑔𝑠 − 𝑔)/∥(𝑔𝑠 − 𝑔)∥.

Let S𝑡 = {(x𝑡
𝑖
, y𝑡

𝑖
)}𝑛𝑡

𝑖=1 denote the training set
with 𝑛𝑡 samples for task 𝑡, and let ℓ( 𝑓 (x;θ), y)
be the per-sample loss of the neural network 𝑓

with parameters θ on a data point (x, y). Con-
tinual Learning (CL) aims to learn a model 𝑓

with parameters θ ∈ R𝑑 that minimizes the
statistical risk across all tasks seen up to the
current task 𝑇 , under the constraint of limited
or no access to previous data S𝑡 for 𝑡 < 𝑇 .
Specifically, CL methods optimize the model
parameters θ𝑇 during training on task 𝑇 by
minimizing the empirical loss over the avail-
able data: θ𝑇 = arg minθ L(θ,S𝑇 ), where
L(θ,S𝑇 ) = 1

𝑛𝑇

∑𝑛𝑇

𝑖=1 ℓ( 𝑓 (x𝑇𝑖 ;θ), y𝑇
𝑖
). Depend-

ing on the specific CL methods, the training data
may include a mixture of current task data S𝑇

and additional data, such as stored exemplars or
reconstructed samples from previous tasks. For simplicity, we omit S𝑇 and denote θ as θ𝑇 later.

As shown in Figure 1, recent C-Flat methods Bian et al. (2024) mitigate catastrophic forgetting by
jointly optimizing for zeroth-order sharpness R0

𝜌 (θ) and first-order flatness R1
𝜌 (θ), encouraging the

model to find a parameter region with uniformly low loss and curvatures. The optimization objective
on task 𝑇 can be formulated as:

min
θ

L(θ) + R0
𝜌 (θ) + 𝜆 · R1

𝜌 (θ), (1)
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where 𝜆 > 0 is a balancing hyperparameter, and 𝜌 > 0 defines the neighborhood radius around the
current parameter θ. Specifically, the zeroth-order term is defined as:

R0
𝜌 (θ) = max

∥ϵ0 ∥≤𝜌
L(θ + ϵ0) − L(θ) (2)

which seeks uniformly low loss within a local neighborhood of θ. The first-order flatness term is:

R1
𝜌 (θ) = 𝜌 · max

∥ϵ1 ∥≤𝜌




∇L(θ + ϵ1)



, (3)

which encourages low curvature of the loss landscape. Here, ∥ · ∥ denotes the ℓ2 norm.

Propagation flow. Assuming that the loss function L is differentiable and bounded, and following
the derivation of ∇𝑅0

𝜌 (𝜃) in Foret et al. (2020); Singh & Alistarh (2020); Zhang et al. (2023b), we
can approximate ∇𝑅1

𝜌 (𝜃) as follows. More notations are provided in Appendix A.2.

∇R0
𝜌 (θ) = ∇L(θ + ϵ∗0) − ∇L(𝜃), ϵ∗0 ≈ 𝜌 · ∇L(θ)

∇L(θ)



 . (4)

∇R1
𝜌 (θ) ≈ 𝜌 · ∇



∇L (
θ + ϵ∗1

)

 ≈ ∇L
(
θ + ϵ∗1 + 𝜌 ·

∇L(θ + ϵ∗1)

∇L(θ + ϵ∗1)



)
− ∇L

(
θ + ϵ∗1

)
,

ϵ∗1 ≈ 𝜌 · (gs − g)/(∥gs − g∥). (5)
Notations. Here, we define several variations and terminology that will frequently be used later.
Detailed descriptions can be found in Appendix A.1.

i) the empirical loss term: g = ∇L(θ) as the original gradients derived from the vanilla optimizer.
ii) the zeroth-order sharpness term: g𝑠 = ∇L(θ + ϵ∗0) as the perturbed SAM gradients, where
g𝑠 − g = ∇R0

𝜌 (θ) measures the sharpness of the loss landscape.1

iii) the first-order flatness term: g 𝑓 = ∇R1
𝜌 (θ) = g1 − g0 as the regularization gradients, which

quantifies the flatness of the loss landscape. Here, the intermediate gradients are given by g0 =

∇L(θ + ϵ∗1) and g1 = ∇L
(
θ + ϵ∗1 + 𝜌 · ∇L(θ+ϵ∗1 )

∥∇L(θ+ϵ∗1 )∥
)
.

As shown above, optimizing the gradients of the C-Flat objective can be divided into three compo-
nents: the empirical loss term g, the sharpness term gs − g, and the flatness term gf . Among
them, g is required in every update step to reduce the empirical risk, whereas gs and gf incur one
and two additional backward passes, respectively, using perturbed models θ𝑇 + ϵ∗0 and θ𝑇 + ϵ∗1.
Both regularization terms contribute to identifying flatter regions. Despite the performance benefits,
searching for such regions is computationally expensive and can impose a heavy burden on CL
systems. Therefore, extracting time-efficient solutions is imperative.

3.2 C-Flat Turbo

In this section, we introduce C-Flat Turbo, an enhanced variant of C-Flat designed to accelerate
training in continual learning scenarios. C-Flat Turbo primarily explores the invariant direction of
flatness promotion and skips redundant computations required for first-order flatness gradients. In
addition, we propose an adaptive mechanism that monitors sharpness online for selectively using
C-Flat with vanilla optimizers. The following experiments mainly start from pretrained models,
providing better initialization and reducing the impact of lossy approximations in C-Flat Turbo.

3.2.1 Taking shortcuts toward flatness

Base optimizers like SGD and Adam reduce the loss function along gradient directions. However,
the resulting model parameters are often sensitive to small perturbations or noise, which can lead to

1We use g𝑠−g rather than g𝑣𝑠 to measure sharpness, for better alignment with the flatness term g 𝑓 = g1−g0
used later. Though it is not fully orthogonal to the gradient direction g, it still captures the direction that promotes
zeroth-order sharpness, and has been widely used in Zhao et al. (2022a); Zhang et al. (2023b) when combined
with the vanilla gradient g to form a sharpness-aware update direction.
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Step 1 Step k Step k+1

… …

g gs

LookSAM

gs

… …

C-Flat Turbo

gc

Step 1 Step k Step k+1

g0 g1 gc
gs

gvs gvf

toward zeroth-order sharpness toward first-order flatness

gs - g gf

Figure 2: Schematic illustration of C-Flat Turbo. Left: LookSAMLiu et al. (2022) decomposes
the SAM gradients into two components: one parallel to g that reduces the loss, and an orthogonal
component g𝒗𝒔 that guides convergence to a common low-loss region. Empirical results show that
g𝒗𝒔 exhibits significantly slower variation compared to g. Right: C-Flat Turbo investigates the latent
invariance of g𝒗 𝒇 , the flatness component orthogonal to the gradients at the perturbed model θ + ϵ∗1,
which exhibits even slower variation than g𝒗𝒔 in LookSAM.
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(a) Gradient correction ratio.
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(b) Training with PTM.

Figure 3: Left: Gradient correction ratio distributions for g𝑠 − g and g 𝑓 across training epochs.
With more data distributed around the sides, the difference becomes more pronounced. Right: We
visualize the L2-norm distances between gradients and those from five steps ago during training.
Changes in sharpness (g𝑣𝑠) and flatness (g𝑣 𝑓 ) related directions vary more slowly than those along
the base gradient directions (g and g0).

degradation of previously learned parameters when adapting to new tasks. Seeking a unified low-loss
landscape within a local region around the global minima has proven effective for continual learning.
C-Flat builds upon this idea by promoting flatter regions via first-order flatness, in conjunction with
zeroth-order sharpness.

In the context of zeroth-order sharpness g𝑠 − g, the component g𝑣𝑠, defined as g𝑣𝑠 = g𝑠 sin(𝜙𝑠)
where 𝜙𝑠 denotes the angle between g and g𝑠 , is orthogonal to the primary gradient direction g. It
has been shown to facilitate the exploration of flatter regions while changing more slowly than g,
thereby guiding the search for low loss regions, as illustrated in Figure 2. This observation further
motivates us to investigate whether similar direction invariant components exist in the optimization
of the first-order flatness term.

To visualize the optimization dynamics of g𝑠 − g and g 𝑓 relative to their reference directions, g for
SAM and g𝑠 for C-Flat, we define the gradient correction ratio as ratio(𝑚, 𝑛) = log

(�� 𝑚
𝑛+𝜖

��) , 𝜖 =

10−12, and then conduct experiments in EASE over 5 epochs. Figure 3a illustrates the distributions
of (g𝑠 − g, g) and (g 𝑓 , g𝑠) in Task 1. It can be observed that g𝑠 − g exhibits heavier tails than
g 𝑓 in the early stages, indicating stronger adjustment introduced by zeroth-order sharpness. As the
optimization converges to a local minimum, sharpness and flatness collaborate in the search for flatter
regions, with sharpness still playing a dominant role. This phenomenon suggests that g 𝑓 serves as a
smaller rectification upon SAM, even subtler than the correction g𝑠 − g induced by SAM itself.

5
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(a) sharpness (b) flatness (c) ∥g∥2 (d) ∥g0∥2

Figure 4: Left: Gradient variation across tasks during CL. Sharpness and flatness vary significantly
in the first stage, then stabilize. Right: Q-Q plots of ∥g∥2 and ∥g0∥2, both gradually approximate a
normal distribution during learning.

In approximating R1
𝜌 (θ) in Equation 5, ϵ∗1 naturally emerges as a small perturbation direction aligned

with the sharpness term. Consequently, the point θ𝑇 + ϵ∗1 serves as a proxy model for computing
the flatness term. As illustrated in Figure 1, g 𝑓 fulfills a role similar to SAM, but is defined in
the perturbed model θ𝑇 + ϵ∗1 located in a region of high curvature. In this sense, g 𝑓 embodies an
invariant direction toward flatness, denoted as g𝑣 𝑓 , analogous to the gradient g0 in its proxy model.
Here, g𝑣 𝑓 is defined as g𝑣 𝑓 = g1 sin(𝜙 𝑓 ), where 𝜙 𝑓 denotes the angle between g0 and g1.

Figure 3b illustrates the gradient differences across iterations, measured by the L2-norm distance
from those in the previous five iterations. As observed, g𝑣𝑠 fluctuates more slowly than g, consistent
with the findings in Liu et al. (2022). Furthermore, g0 appears more unstable than g, reflecting its
high-curvature nature and sensitivity to parameter changes. Interestingly, despite the considerable
variation in g0, the flatness oriented g 𝑓 remains substantially more stable, even exceeding the
stability of g𝑣𝑠 , in line with the observations in Figure 3a. These insights support extracting the
vertical component from g 𝑓 with respect to g0, which serves as a direction promoting flatness, as
illustrated in Figure 2. Consequently, for the subsequent 𝑘 − 1 steps, the cached g𝑣 𝑓 can be reused
to efficiently guide the search for low curvature directions based on the proxy model at θ + ϵ∗1. In
other words, we can add g𝑣 𝑓 to g0 with a coefficient 𝛽. This strategy avoids recomputing g1 when
evaluating flatness in the proxy model, thereby reducing computational cost.

3.2.2 Dynamic control for C-Flat

Stage-wise turbo step scheduling. As continual learning progresses, the model’s parameter space
becomes increasingly flatter, with earlier classes becoming more distinctly separated. Figures 4a
and 4b depict the evolution of the sharpness and flatness terms over time. Both gradients fluctuate
considerably during the initial incremental stage but stabilize in later stages, with this effect being
particularly pronounced for flatness. This observation motivates assigning smaller turbo steps to
earlier tasks and larger steps to later ones. To this end, we introduce a linear scheduler that adaptively
adjusts the step size for computing sharpness and flatness aware gradients throughout training. It
is simply formulated as Turbo-𝑘0 with 𝑘𝑡 = 𝑘0 + 10 · 𝑛/𝑁 , where 𝑘0 and 𝑘𝑡 denote the initial and
task-𝑛 step sizes, respectively, with a total of 𝑁 tasks. Empirically, C-Flat Turbo equipped with this
scheduler achieves substantial speedup while maintaining competitive performance.

Adaptive triggering of regularization. Existing research on zeroth-order sharpness has proposed
reducing computational overhead by combining SAM updates with standard ERM. For example,
SS-SAM Zhao et al. (2022b) employs a Bernoulli trial to determine whether to apply SAM, while
AE-SAM Jiang et al. (2023) applies SAM adaptively only when the sharpness measure falls below a
dynamically updated threshold. However, first-order flatness has received relatively little attention.
Figures 4c and 4d visualize the distributional properties of ∥g∥2 and ∥g0∥2 using quantile-quantile
(Q-Q) plots. Points that lie closer to the reference line indicate that the corresponding variable is
closer to following a normal distribution. Based on this observation, we can use exponential moving
average (EMA) updates to estimate the mean and variance of ∥g0∥2, following Jiang et al. (2023):

𝜇 𝑓 , 𝑗 = 𝛿𝜇 𝑓 , 𝑗−1 + (1 − 𝛿)∥g0 𝑗 ∥2, 𝜎2
𝑓 , 𝑗 = 𝛿𝜎2

𝑓 , 𝑗−1 + (1 − 𝛿) (∥g0 𝑗 ∥2 − 𝜇 𝑓 , 𝑗 )2, (6)

where 𝑗 denotes the current iteration and 𝛿 = 0.9 is the decay factor used to discount outdated
gradient values. The flatness regularization is triggered only when ∥g0 𝑗 ∥2 > 𝜇 𝑓 , 𝑗 +𝜎 𝑓 , 𝑗 . A detailed
description of the overall optimization procedure is provided in Algorithm 1 in the Appendix.
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Table 1: Accuracy and training speeds using five state-of-the-art methods, with a pretrained ViT-
B/16-IN1K backbone. Red and green denote the baseline and the efficient optimizer. Bolded
indicates best performance.

Model Method CIFAR100 B0 Inc10 CUB B0 Inc10 IN-R B0 Inc20 ObjNet B0 Inc10 Img/s↑Avg↑ Last↑ Avg↑ Last↑ Avg↑ Last↑ Avg↑ Last↑

Ty
pi

ca
l

iCaRL Rebuffi et al. (2017) 77.83 66.64 82.91 74.00 72.13 61.62 48.06 28.20 73.35 (100%)
+C-Flat Bian et al. (2024) 79.72 67.15 83.47 74.81 72.92 62.35 49.59 29.03 19.72 (26.9%)
+C-Flat Turbo 79.82 68.54 84.00 75.12 73.11 62.38 50.49 29.30 45.89 (62.6%)
MEMO Zhou et al. (2023c) 82.26 73.89 86.66 79.90 70.96 61.05 56.22 38.32 135.14 (100%)
+C-Flat Bian et al. (2024) 82.61 75.49 87.03 80.73 71.69 62.93 56.50 39.45 46.11 (34.1%)
+C-Flat Turbo 83.02 75.76 87.15 80.92 72.38 63.55 57.52 40.62 91.91 (68.0%)

PT
M

-b
as

ed

L2P Wang et al. (2022b) 89.36 83.94 73.04 59.14 78.05 72.60 64.18 52.10 110.29 (100%)
+C-Flat Bian et al. (2024) 89.56 84.35 74.36 62.11 78.67 73.78 64.53 52.47 28.63 (30.0%)
+C-Flat Turbo 89.78 84.69 74.12 61.97 78.86 73.82 64.64 52.55 65.50 (59.4%)
Ranpac McDonnell et al. (2024) 94.32 90.72 92.61 88.68 82.07 76.80 71.66 60.17 154.64 (100%)
+C-Flat Bian et al. (2024) 94.41 90.70 92.67 88.76 82.66 77.25 72.15 60.33 42.98 (27.8%)
+C-Flat Turbo 94.45 90.74 93.12 89.02 83.13 77.83 72.16 60.33 94.34 (61.0%)
EASE Zhou et al. (2024b) 91.91 87.30 89.16 83.96 80.49 75.05 64.38 52.02 166.67 (100%)
+C-Flat Bian et al. (2024) 92.05 87.91 89.37 84.05 80.97 75.64 64.89 52.47 44.25 (26.5%)
+C-Flat Turbo 92.36 87.96 89.56 84.18 81.18 75.76 64.96 52.61 102.74 (61.6%)

4 Experiments

4.1 Experiment setup

Datasets. Following Zhou et al. (2024a), we perform the evaluation on CIFAR100 Krizhevsky et al.
(2009), CUB200 Wah et al. (2011), ImageNet-R Hendrycks et al. (2021) (IN-R), and ObjectNet Barbu
et al. (2019) (ObjNet). These datasets contain 100 classes in CIFAR100, 200 classes in CUB200, and
cover ImageNet-R and ObjectNet, which exhibit large domain gaps relative to the pre-trained datasets
(ImageNet Deng et al. (2009)). Following Zhou et al. (2024a; 2023b), we denote the data split as
‘B-𝑚 Inc-𝑛’, meaning that the initial task contains 𝑚 classes, and each subsequent task contains 𝑛

classes. The random seed for class-order shuffling is fixed at 1993 Zhou et al. (2023a; 2024a).

Baselines. Typical CL and pre-trained model (PTM)-based CL methods Zhou et al. (2024a) are
used to assess C-Flat Turbo. For the former, we cover the classical iCaRL Rebuffi et al. (2017) and
MEMO Zhou et al. (2023c) methods. For the latter, we compare against L2P Wang et al. (2022b),
Ranpac McDonnell et al. (2024), and EASE Zhou et al. (2024b), spanning common CL categories.

Implementation details. All experiments and compared methods are implemented and reproduced
using PyTorch and PILOT Zhou et al. (2024a; 2023a); Bian et al. (2024). If not specialized,
all hyperparameters or configurations remain unchanged in the open-source repositoryZhou et al.
(2024a). To ensure a fair comparison, we evaluate all methods with the same model and vanilla SGD
optimizer (Adam for L2P) and adopt ViT-B/16-IN1K as the representative pre-trained models Wang
et al. (2022b); Zhou et al. (2023d). Implementation details can be found in section A.4. For
evaluation, we primarily present the results in terms of average accuracy (Avg), final task accuracy
(Last), and the average running speed (Img/s) across all tasks.

4.2 Faster and stronger performance

We thoroughly evaluate the performance of C-Flat Turbo. As shown in Table 1, although pre-trained
models exhibit strong generalization capabilities, their feature spaces remain susceptible to contam-
ination during continual adaptation to evolving data distributions, thereby exacerbating catastrophic
forgetting. While C-Flat mitigates this degradation through flat region search mechanisms, it incurs
significant computational overhead. On the one hand, C-Flat Turbo addresses this limitation by freely
taking shortcuts toward flatness, extracted from earlier steps, without repeated computation. On the
other hand, it flexibly combines C-Flat with base optimizers through a stage-wise step schedule and
an adaptive trigger for regularization, further accelerating the training process. A more detailed
per-task accuracy progression and ablation studies are provided in the Appendix A.6. Experimen-
tal results demonstrate that C-Flat Turbo achieves better accuracy than C-Flat, while significantly
reducing training time. Notably, we find that C-Flat Turbo remains stable even in PTM scenarios
with larger generalization gaps (e.g., CUB200, ImageNet-R, and ObjectNet). C-Flat Turbo trains CL
models at about 2× the speed of C-Flat, and 0.6× that of SGD. Overall, whether applied to typical
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Table 2: Accuracy trained from scratch with ResNet-18 and ResNet-34. Bolded indicates best result.

Method ResNet-18 ResNet-34
Avg↑ Last↑ Img/s↑ Avg↑ Last↑ Img/s↑

iCaRL Rebuffi et al. (2017) 59.13±0.30 41.23±0.91 2333.3(100%) 58.80±1.04 41.26±0.99 1250.4(100%)
+C-Flat Bian et al. (2024) 59.45±0.18 42.47±0.06 686.3(29.4%) 59.55±0.93 42.09±0.61 359.8(28.8%)
+C-Flat Turbo 59.84±0.05 42.84±0.18 1750.1(75.0%) 59.75±0.55 42.34±0.54 960.6(76.8%)

MEMO Zhou et al. (2023c) 48.63±0.78 29.19±0.89 2413.8(100%) 68.49±1.74 57.05±1.46 1873.2(100%)
+C-Flat Bian et al. (2024) 49.98±0.61 30.76±0.57 886.1(36.7%) 69.00±1.39 59.29±0.73 569.1(30.4%)
+C-Flat Turbo 50.51±0.55 32.24±0.27 1891.9(78.4%) 69.48±1.25 59.33±0.65 1372.5(73.3%)

CL benchmarks or to scenarios with large domain gaps in PTM, C-Flat Turbo maintains strong
performance while offering superior training efficiency compared to the baseline C-Flat optimizer.

4.3 Training from scratch

Table 2 presents the accuracy results of iCaRL and MEMO, using ResNet-18 and ResNet-34 trained
without pre-trained models. Notably, iCaRL benefits significantly from C-Flat Turbo, achieving an
increase of 1.61% in last accuracy on ResNet-18 and 1.08% on ResNet-34. Similarly, MEMO exhibits
substantial gains, particularly in final stage accuracy, where C-Flat Turbo improves performance by
3.05% on ResNet-18 and 2.28% on ResNet-34. Besides, it is noted that C-Flat Turbo forgets less than
C-Flat across training due to its soft constraint on sharpness around local minima. The consistent
improvements across different backbone architectures highlight the robustness of C-Flat Turbo in
mitigating catastrophic forgetting while maintaining computational efficiency. Furthermore, the
larger performance gains observed in MEMO suggest that C-Flat Turbo is particularly beneficial for
expansion-based approaches, which involve multiple module updates and often struggle with stability
and adaptability. These findings validate C-Flat Turbo as a highly effective strategy for continual
learning, offering substantial accuracy improvements while enabling flexible training strategies.

4.4 Comparison to other optimizers

In Table 3, we report the average accuracy, last accuracy, and training speeds on the CIFAR100
B0 Inc10 setting compared to various zeroth-order optimizers. In special, the step of all sharpness
in LookSAM and flatness in C-Flat Turbo is fixed to 5.

For the performance, as shown in Table 3, we first observe that SAM and LookSAM do not offer
obvious benefits over the vanilla optimizer, but C-Flat series shows significant improvement. The
reason is that the parameters of backbones loaded from the pre-trained model already possess strong
generalization, resulting in uniformly low losses around local minima across various parameter
perturbations. Nevertheless, C-Flat Turbo further surgeries the strong generalization of the pre-
trained model by the horizontal and vertical components of the oracle gradient, thus boost CL.

For the training speeds, as concluded in Table 3, although LookSAM significantly accelerates training
compared to SAM by reusing historical gradients, it degrades performance on EASE due to its single
zeroth-order regularization and the simplistic use of past iteration gradients. C-Flat Turbo differs
from LookSAM in that it progressively updates sharpness gradients to vanilla components and
imposes more strict constraints to encourage convergence to a flatter region. Compared to C-Flat,
our efficient method achieves a speedup of approximately 1x (from 30.0% to 59.4% and from 26.5%
to 61.6%) on L2P and EASE, which is even faster than the SAM.

4.5 Ablation studies

Parameter Sensitivity. In Figure 5a, we empirically investigate the sensitivity of the scale factor 𝛽
and the sampling step 𝑘 in EASE, trained under the CIFAR-100 B0 Inc10 setting. Here, 𝑘 denotes
the frequency of leveraging the sharpness and flatness properties in C-Flat Turbo. For fairness,
the sharpness and flatness steps are kept equal, meaning that C-Flat Turbo-𝑘 indicates the cached
sharpness and flatness gradients are updated every 𝑘 iterations. The hyperparameters 𝜌 and 𝜆 are
fixed at 0.05 and 0.2, respectively. Figure 5a demonstrates that 𝛽 = 0.8 is the optimal choice in most
cases. Moreover, when 𝑘 = 2 and 𝑘 = 5, the performance exhibits similar accuracy fluctuations as
long as 𝛽 lies within the range [0.4, 1.0].
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(a) Sensitivity analysis (b) Variation on loss (c) Variation on sharpness (d) Variation on flatness

Figure 5: Evolution of sharpness and flatness on EASE w/ and w/o C-Flat Turbo.
Table 3: Accuracy and training speeds of L2P and EASE across various optimizers. Task orders are
shuffled for evaluation on dynamic sequences. Red and green denote the baseline and the efficient
optimizer. Bolded indicates best performance.

Method L2P Wang et al. (2022b) EASE Zhou et al. (2024b)
Avg↑ Last↑ Img/s↑ Avg↑ Last↑ Img/s↑

Vanilla 87.92±1.30 83.66±1.49 110.29 (100%) 91.16±0.71 87.49±0.32 166.67(100%)
+SAM Foret et al. (2020) 88.18±1.39 83.84±1.39 56.60 (51.3%) 91.36±0.82 87.61±0.27 86.71(52.0%)
+LookSAM Liu et al. (2022) 88.35±1.39 83.80±1.20 88.76 (80.5%) 90.89±0.86 86.99±0.28 132.74(79.6%)
+C-Flat Bian et al. (2024) 88.62±0.88 84.04±0.60 28.63 (30.0%) 91.60±1.18 87.69±0.50 44.25 (26.5%)
+C-Flat Turbo 89.57±0.36 84.48±0.09 65.50 (59.4%) 91.75±0.80 87.74±0.20 102.74 (61.6%)

Evolution of Sharpness and Flatness. We approximate the sharpness and flatness gradients using
cached branches and current SGD directions, following the same optimization procedure as C-Flat.
This efficient approach does not slow convergence. As shown in Figure 5b, C-Flat Turbo converges
as fast as other optimizers. Figure 5c illustrates that all optimizers start with low sharpness initially,
owing to the pretrained backbone’s generalization, and then sharpness declines alongside the loss
L(θ𝜌). Notably, the sharpness and flatness gradients in C-Flat Turbo converge to lower values than
in C-Flat, due to the intermediate gradient descent steps being free of regularization constraints.

4.6 Discussion on Scheduler Choices

(a) Influence on MEMO (b) Influence on EASE

Figure 6: Accuracy and training speed of scheduling or not.

Figure 6 compares the accuracy and
training speed of MEMO and EASE.
For the linear scheduler, we increase
the step size 𝑘 with the task num-
ber 𝑛, formulated as 𝑘 = 5 + 10 ·
𝑛/𝑁 , whereas for the version with-
out a scheduler, we keep 𝑘 fixed at
5. MEMO expands its architecture for
each new task, increasing both param-
eters and computational cost, which
prolongs training. As shown in Fig-
ure 6, C-Flat Turbo with or without the scheduler, consistently outperforms vanilla C-Flat in accuracy.
In terms of speed, both variants are faster, with the scheduler achieving approximately 15% addi-
tional speedup. In contrast, EASE reuses frozen adapters, keeping training costs stable. Figure 6
demonstrates that the scheduler provides roughly 30% speedup over C-Flat as 𝑘 increases, while
maintaining comparable accuracy.

5 Conclusion

This paper proposes C-Flat Turbo, which selectively takes shortcuts along stable directions toward
flatness for more efficient optimization. Building upon the observation that flatness gradients diminish
across tasks, we additionally introduce a linear scheduler that adaptively adjusts the turbo steps, as
well as an adaptive trigger for selectively applying C-Flat regularization. In summary, this work
reveals that adaptively modifying the oracle gradient can yield tangible efficiency gains during
continual learning. Moreover, C-Flat Turbo can be seamlessly integrated into any CL method,
offering at least a 1× speedup.
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Ethics Statement
Our work introduces C-Flat Turbo, a faster yet stronger optimizer with a relaxed scheduler, to
substantially reduce training cost. We do not foresee any direct ethical risks associated with this
work, as it focuses purely on optimization techniques rather than data generation or manipulation.
Nevertheless, we firmly state that C-Flat Turbo is currently a research-oriented project.

Reproducibility Statement
We are committed to ensuring the reproducibility of our work. All essential details for reproducing
our results are provided within the paper and the appendix. The details of architectures and their
training details are presented in section 4 and section A. Our technical contribution, C-Flat Turbo,
are described with comprehensive details in section 3. The evaluation protocols are detailed in sec-
tion 4.1. We will ensure the release of our source code, pre-trained model weights, and evaluation
scripts upon publication of this work. We can also provide any source code if any reviewer asks for
a detailed implementation.
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