

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

C-FLAT TURBO: A FASTER PATH TO CONTINUAL LEARNING

003 **Anonymous authors**

004 Paper under double-blind review

ABSTRACT

009 Continual Learning (CL) aims to train neural networks on a dynamic task stream
010 without forgetting previously learned knowledge. With the rise of pre-training
011 techniques, strong model generalization has become essential for stable learning.
012 C-Flat is a powerful and general CL training regime that promotes generaliza-
013 tion by seeking flatter optima across sequential tasks. However, it requires three
014 additional gradient computations per step, resulting in up to 4 \times computational
015 overhead. In this work, we propose C-Flat Turbo, a faster yet stronger optimizer
016 with a relaxed scheduler, to substantially reduce training cost. We disclose that
017 gradients toward first-order flatness contain direction-invariant components with
018 respect to the proxy model at $\theta + \epsilon_1^*$, which allows us to skip redundant gra-
019 dient computations in the perturbed ascent steps. Furthermore, a stage-wise step
020 scheduler and adaptive triggering of the regularization mechanism enable dynamic
021 control of C-Flat behavior throughout training. Experiments demonstrate that our
022 optimizer accelerates most CL methods by at least 1 \times (up to 1.25 \times) over C-Flat,
023 while achieving comparable performance. Code will be released upon acceptance.

1 INTRODUCTION

027 In the open world, learning systems are requested to absorb new knowledge incrementally, a process
028 known as continual learning (CL) Zhou et al. (2023b); Wang et al. (2023a); Masana et al. (2022). A
029 major obstacle to CL is catastrophic forgetting. To tackle this issue, various approaches have been
030 proposed Zhou et al. (2024a); Wang et al. (2022b); Smith et al. (2023), including memory-based,
031 regularization-based, expansion-based, pre-trained model (PTM)-based methods, etc Wang et al.
032 (2023a); Hadsell et al. (2020); Wang et al. (2023a). Among them, PTM-based methods Jung et al.
033 (2023); Tang et al. (2023); Khan et al. (2023) have shown a more positive effect in overcoming
034 forgetting due to their superior generalization capabilities.

035 Apart from the methods mentioned above, generalization in the CL optimization process Jia et al.
036 (2022); Tang et al. (2023); Khan et al. (2023); Khattak et al. (2023); Khan et al. (2023) has gradually
037 attracted the attention of the CL community. A series of works demonstrated that sharpness-aware
038 minimization is a powerful training mechanism for maintaining generalization in CL He et al. (2019);
039 Foret et al. (2020); Zhong et al. (2022); Zhuang et al. (2022). These methods focus on flat minima
040 of the CL process, thereby effectively reducing forgetting. For example, an investigation Mehta et al.
041 (2023) proves that sharpness optimization can help overcome forgetting in CL. Recently, C-Flat Bian
042 et al. (2024) is proposed as a promising CL-friendly optimizer to strengthen learning stability on
043 joint knowledge space of new and old tasks Deng et al. (2021); Shi et al. (2021). C-Flat seeks minima
044 lying in a flat neighborhood, which are more likely to be global optima, thereby mitigating forgetting
045 caused by the knowledge gap between different tasks Shi et al. (2021); Kong et al. (2023); Zhuang
et al. (2022).

046 However, flat minima alignment requires calculating a gradient perturbation, which significantly
047 increases computational complexity and overhead He et al. (2019); Foret et al. (2020). For in-
048 stance, (i) the zeroth-order sharpness Foret et al. (2020) perturbation of C-Flat approximated by the
049 scaled empirical loss requires another backward propagation, which doubles the computational over-
050 head Zhong et al. (2022); Zhang et al. (2023b); Liu et al. (2022). (ii) the first-order flatness in C-Flat,
051 which encourages training to converge to global flat minima Bian et al. (2024), requires calculating a
052 Hessian matrix-related perturbation according to Gradient Norm Aware Minimization (GAM) Zhang
053 et al. (2023b). While this computation can be simplified using the Hessian-vector product or further
zeroth-order-based approximations, it still requires two more backpropagation Zhuang et al. (2022).

054 Moreover, the two-step gradient alignment of C-Flat may enlarge the minima search range, adding
 055 extra burden to the fine-tuning phase when learning is nearly converged Hadsell et al. (2020); Bian
 056 et al. (2024).

057 Fortunately, C-Flat features a robust convergence that can converge within far fewer iterations or
 058 epochs than SGD Bian et al. (2024). This ensures that C-Flat potentially finishes the CL process
 059 faster than SGD Bian et al. (2024) (L3 level of C-Flat). But essentially, the C-Flat optimizer is still
 060 inherently plagued by computational overhead. Thus, a natural question arises,
 061

062 *(Q) Could we find a faster optimization path that guarantees the strong performance of C-Flat while
 063 featuring significantly lower computational overhead?*

064 Through a series of observations and empirical analyses, we find that the gradients of first-order
 065 flatness, when projected orthogonally to the gradients of a proxy model at $\rho + \epsilon_1^*$, exhibit more stable
 066 changes than even the gradients associated with zeroth-order sharpness during optimization. These
 067 insights potentially enable faster paths to continual learning. Therefore, in this work, we decompose
 068 the C-Flat gradients into components parallel and orthogonal to the empirical gradient direction, and
 069 periodically take shortcuts along the orthogonal directions to more efficiently explore flatter regions
 070 of the loss landscape.

071 Moreover, we observe that the sharpness and flatness gradients not only decrease along with the
 072 training loss within each task, but also gradually diminish across tasks, indicating a trend toward
 073 increased stability. Based on this, we introduce a stage-wise turbo step scheduler that flexibly adjusts
 074 the shortcut frequency. In addition, an adaptive policy is proposed to combine C-Flat with SGD for
 075 further efficiency improvements.

076 Our technical contributions are three-fold:

- 077 (i) We identify the invariant flat-driven branches in the first-order regime and propose an efficient
 078 variant, C-Flat Turbo, which selectively shortcuts along stable directions toward flatter regions.
- 079 (ii) We uncover the stabilization of sharpness-aware gradients in continual learning and propose a
 080 stage-wise linear scheduler combined with an adaptive triggering mechanism to dynamically regulate
 081 the behavior of C-Flat during training.
- 083 (iii) Extensive experiments show that C-Flat Turbo outperforms state-of-the-art methods and achieves
 084 more than 1 \times speedup (up to 1.25 \times), while maintaining performance.

086 2 RELATED WORK

088 **Continual learning.** Along this line, continual learning can be taxonomized into three groups Wang
 089 et al. (2023a); Hadsell et al. (2020) as follows, (i) *Memory-based methods* base a limited budget in a
 090 memory to resist forgetting Rebuffi et al. (2017); Rolnick et al. (2019); Jeeveswaran et al. (2023); Sun
 091 et al. (2023b). Many efforts selectively store a few representative exemplars for rehearsal during CL.
 092 Apart from direct replay, some other efforts Deng et al. (2021); Lin et al. (2022); Saha et al. (2020); Lin
 093 et al. (2023); Sun et al. (2023a) resort to proxy of former knowledge as memory to overcome forgetting,
 094 e.g., bases of gradient space, representative prototype, etc. (ii) *Regularization-based methods* are
 095 characterized by introducing favorable regularization terms to trade off new and old knowledge Li
 096 & Hoiem (2018); Kirkpatrick et al. (2017); Cha et al. (2021). Trivially, consensus practices include
 097 weight Rudner et al. (2022); Kim et al. (2022); Akyurek et al. (2022), function Li & Hoiem (2018);
 098 Oh et al. (2022), or feature regularization Bhat et al. (2023); Gao et al. (2022), which encourage these
 099 spaces to remain close to their original states. Like natural cognitive systems, this consolidation
 100 helps to limit the renewal of important terms. (iii) *Expansion-based methods* aim to dynamically
 101 modularize network structures towards each task to tackle forgetting Zhou et al. (2023c). Methods
 102 in this group construct task-specific parameters or architecture (e.g., parameter allocation Liu et al.
 103 (2021); Abati et al. (2020), model decomposition/mixture, and modular network Yan et al. (2021);
 104 Zhu et al. (2022)) to explicitly reduce inter-task interference Serrà et al. (2018); Hu et al. (2023);
 105 Yoon et al. (2020). In other words, these efforts shift the burden of storing raw data to the retention
 106 architecture Zhou et al. (2023c).

107 **Continual learning using generalization.** The strong generalizability of PTMs further advances
 the CL Zhou et al. (2024a). Adhere to Zhou et al. (2024a), we taxonomize these studies into three

groups as follows, (i) *Prompt-based methods* leverage prompt learning to enable lightweight updates to PTM Jia et al. (2022). Many efforts Wang et al. (2022b); Smith et al. (2023); Jung et al. (2023); Tang et al. (2023); Khan et al. (2023) resort to various prompt selections, e.g., the way of prompt retrieval, task-special prompts, and prompt generation. Moreover, some work extends the concept of prompts to broader scenes Gan et al. (2023); Khattak et al. (2023); Khan et al. (2023), i.e., visual prompts, pre-trained vision-language model prompts, etc. Overall, these efforts strike a balance between the generalizability of PTM and the encoding of information from downstream tasks. (ii) *Representation-based methods* focus on building classifiers by leveraging the generalization capability of PTM Zhou et al. (2023d). Briefly, this line of work mainly dedicates the calibration of classifiers and optimize their internal relationships Zhou et al. (2024b); McDonnell et al. (2024); Zhang et al. (2023a); Zhu et al. (2021). Like, concatenating the backbone to improve classifier representation, using random projection to remove class-wise correlations, and replaying features to calibrate the classifier. (iii) *Model mixture-based methods*. introduce a set of models and utilize various model mixture approaches (model ensemble, model merge, etc.) to generate final outputs Wang et al. (2023b); Gao et al. (2023); Zhou et al. (2023e); Chen et al. (2023); Wang et al. (2022a). Trivially, the method in this category integrates several PTM with strong generalization capabilities to produce more robust results Zhou et al. (2024a). Yet, some of the drawbacks that arise are associated with these efforts, e.g. extra computational overhead and memory buffer.

Better and efficient generalization in continual learning. In CL, research into how flat minima He et al. (2019); Foret et al. (2020); Baldassi et al. (2020) affect catastrophic forgetting is still at a nascent stage Chaudhry et al. (2018); Lopez-Paz & Ranzato (2017). A few works are done to examine flatness evaluation during CL in some special instances Deng et al. (2021); Shi et al. (2021), e.g., tuning parameters within the flatness minima regions. Promisingly, C-Flat Bian et al. (2024), a CL-tailored optimizer that first introduces the concept of continual flatness to overcome forgetting, which lifts off a new line for CL. The above efforts scrutinize the mechanism of flat minima in CL, yet they suffer from reduced optimization efficiency due to entrapment in many random perturbations Liu et al. (2022); Du et al.; 2021), especially involving successive tasks. In this paper, we advance an efficient version of C-Flat to boost CL.

3 METHOD

3.1 RETHINKING THE MECHANISM OF C-FLAT

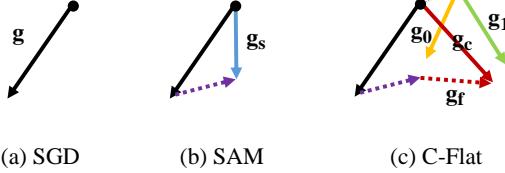


Figure 1: Brief illustration of C-Flat Bian et al. (2024). (a) SGD optimizes along the negative direction of the gradients, $g = \nabla L(f(\theta^T))$. (b) SAM Foret et al. (2020) computes the gradients g_s at an adversarially perturbed position $\theta + \rho \cdot g / \|g\|$, and then updates the original model parameters. (c) C-Flat Bian et al. (2024) further calculates the first-order flatness gradient g_f , based on the perturbed parameters $\theta + \rho \cdot (g_s - g) / \|g_s - g\|$.

reconstructed samples from previous tasks. For simplicity, we omit \mathcal{S}^T and denote θ as θ^T later.

As shown in Figure 1, recent C-Flat methods Bian et al. (2024) mitigate catastrophic forgetting by jointly optimizing for zeroth-order sharpness $\mathcal{R}_\rho^0(\theta)$ and first-order flatness $\mathcal{R}_\rho^1(\theta)$, encouraging the model to find a parameter region with uniformly low loss and curvatures. The optimization objective on task T can be formulated as:

$$\min_{\theta} \mathcal{L}(\theta) + \mathcal{R}_\rho^0(\theta) + \lambda \cdot \mathcal{R}_\rho^1(\theta), \quad (1)$$

162 where $\lambda > 0$ is a balancing hyperparameter, and $\rho > 0$ defines the neighborhood radius around the
 163 current parameter θ . Specifically, the zeroth-order term is defined as:

$$164 \quad 165 \quad \mathcal{R}_\rho^0(\theta) = \max_{\|\epsilon_0\| \leq \rho} \mathcal{L}(\theta + \epsilon_0) - \mathcal{L}(\theta) \quad (2)$$

166 which seeks uniformly low loss within a local neighborhood of θ . The first-order flatness term is:

$$168 \quad \mathcal{R}_\rho^1(\theta) = \rho \cdot \max_{\|\epsilon_1\| \leq \rho} \|\nabla \mathcal{L}(\theta + \epsilon_1)\|, \quad (3)$$

170 which encourages low curvature of the loss landscape. Here, $\|\cdot\|$ denotes the ℓ_2 norm.

171 **Propagation flow.** Assuming that the loss function \mathcal{L} is differentiable and bounded, and following
 172 the derivation of $\nabla \mathcal{R}_\rho^0(\theta)$ in Foret et al. (2020); Singh & Alistarh (2020); Zhang et al. (2023b), we
 173 can approximate $\nabla \mathcal{R}_\rho^1(\theta)$ as follows. More notations are provided in Appendix A.2.

$$175 \quad 176 \quad \nabla \mathcal{R}_\rho^0(\theta) = \nabla \mathcal{L}(\theta + \epsilon_0^*) - \nabla \mathcal{L}(\theta), \quad \epsilon_0^* \approx \rho \cdot \frac{\nabla \mathcal{L}(\theta)}{\|\nabla \mathcal{L}(\theta)\|}. \quad (4)$$

$$178 \quad 179 \quad \nabla \mathcal{R}_\rho^1(\theta) \approx \rho \cdot \nabla \|\nabla \mathcal{L}(\theta + \epsilon_1^*)\| \approx \nabla \mathcal{L}\left(\theta + \epsilon_1^* + \rho \cdot \frac{\nabla \mathcal{L}(\theta + \epsilon_1^*)}{\|\nabla \mathcal{L}(\theta + \epsilon_1^*)\|}\right) - \nabla \mathcal{L}(\theta + \epsilon_1^*),$$

$$182 \quad \epsilon_1^* \approx \rho \cdot (g_s - g) / (\|g_s - g\|). \quad (5)$$

183 **Notations.** Here, we define several variations and terminology that will frequently be used later.
 184 Detailed descriptions can be found in Appendix A.1.

185 i) **the empirical loss term:** $g = \nabla \mathcal{L}(\theta)$ as the original gradients derived from the vanilla optimizer.

186 ii) **the zeroth-order sharpness term:** $g_s = \nabla \mathcal{L}(\theta + \epsilon_0^*)$ as the perturbed SAM gradients, where
 187 $g_s - g = \nabla \mathcal{R}_\rho^0(\theta)$ measures the sharpness of the loss landscape.¹

188 iii) **the first-order flatness term:** $g_f = \nabla \mathcal{R}_\rho^1(\theta) = g_1 - g_0$ as the regularization gradients, which
 189 quantifies the flatness of the loss landscape. Here, the intermediate gradients are given by $g_0 =$
 190 $\nabla \mathcal{L}(\theta + \epsilon_1^*)$ and $g_1 = \nabla \mathcal{L}\left(\theta + \epsilon_1^* + \rho \cdot \frac{\nabla \mathcal{L}(\theta + \epsilon_1^*)}{\|\nabla \mathcal{L}(\theta + \epsilon_1^*)\|}\right)$.

191 As shown above, optimizing the gradients of the C-Flat objective can be divided into three components: **the empirical loss term g , the sharpness term $g_s - g$, and the flatness term g_f** . Among
 192 them, g is required in every update step to reduce the empirical risk, whereas g_s and g_f incur one
 193 and two additional backward passes, respectively, using perturbed models $\theta^T + \epsilon_0^*$ and $\theta^T + \epsilon_1^*$.
 194 Both regularization terms contribute to identifying flatter regions. Despite the performance benefits,
 195 searching for such regions is computationally expensive and can impose a heavy burden on CL
 196 systems. Therefore, extracting time-efficient solutions is imperative.

201 3.2 C-FLAT TURBO

202 In this section, we introduce C-Flat Turbo, an enhanced variant of C-Flat designed to accelerate
 203 training in continual learning scenarios. C-Flat Turbo primarily explores the invariant direction of
 204 flatness promotion and skips redundant computations required for first-order flatness gradients. In
 205 addition, we propose an adaptive mechanism that monitors sharpness online for selectively using
 206 C-Flat with vanilla optimizers. The following experiments mainly start from pretrained models,
 207 providing better initialization and reducing the impact of lossy approximations in C-Flat Turbo.

209 3.2.1 TAKING SHORTCUTS TOWARD FLATNESS

211 Base optimizers like SGD and Adam reduce the loss function along gradient directions. However,
 212 the resulting model parameters are often sensitive to small perturbations or noise, which can lead to

213 ¹We use $g_s - g$ rather than g_{vs} to measure sharpness, for better alignment with the flatness term $g_f = g_1 - g_0$
 214 used later. Though it is not fully orthogonal to the gradient direction g , it still captures the direction that promotes
 215 zeroth-order sharpness, and has been widely used in Zhao et al. (2022a); Zhang et al. (2023b) when combined
 with the vanilla gradient g to form a sharpness-aware update direction.

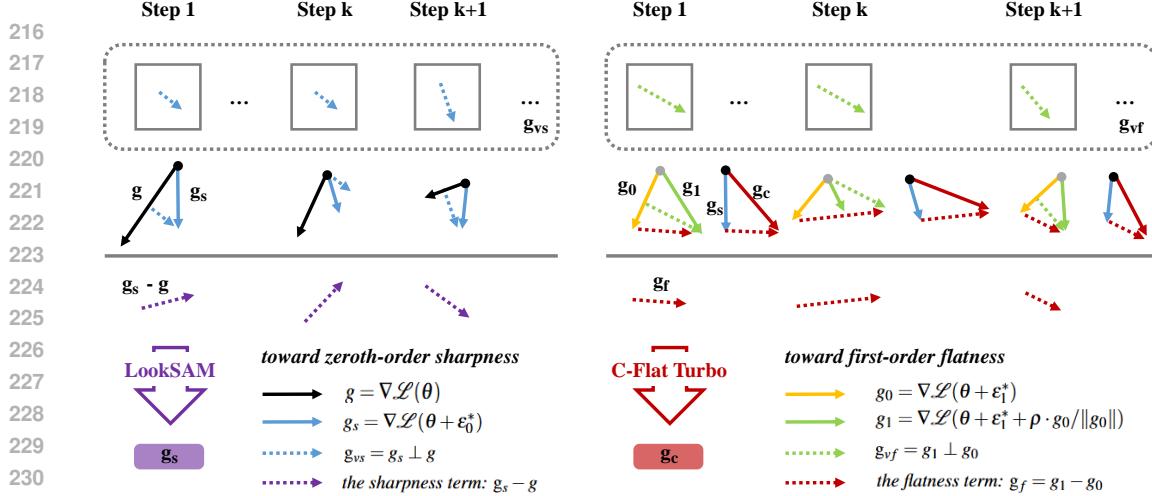


Figure 2: Schematic illustration of C-Flat Turbo. **Left:** LookSAM Liu et al. (2022) decomposes the SAM gradients into two components: one parallel to \mathbf{g} that reduces the loss, and an orthogonal component \mathbf{g}_{vs} that guides convergence to a common low-loss region. Empirical results show that \mathbf{g}_{vs} exhibits significantly slower variation compared to \mathbf{g} . **Right:** C-Flat Turbo investigates the latent invariance of \mathbf{g}_{vf} , the flatness component orthogonal to the gradients at the perturbed model $\theta + \epsilon_1^*$, which exhibits even slower variation than \mathbf{g}_{vs} in LookSAM.

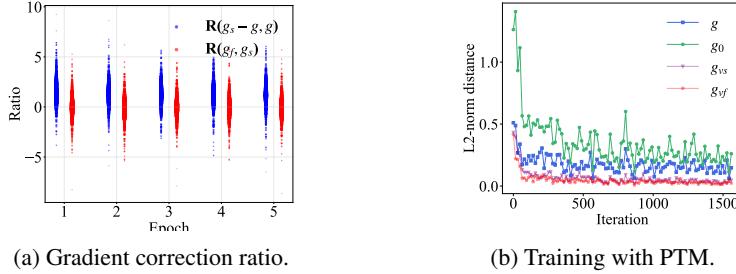


Figure 3: **Left:** Gradient correction ratio distributions for $\mathbf{g}_s - \mathbf{g}$ and \mathbf{g}_f across training epochs. With more data distributed around the sides, the difference becomes more pronounced. **Right:** We visualize the L2-norm distances between gradients and those from five steps ago during training. Changes in sharpness (\mathbf{g}_{vs}) and flatness (\mathbf{g}_{vf}) related directions vary more slowly than those along the base gradient directions (\mathbf{g} and \mathbf{g}_0).

degradation of previously learned parameters when adapting to new tasks. Seeking a unified low-loss landscape within a local region around the global minima has proven effective for continual learning. C-Flat builds upon this idea by promoting flatter regions via first-order flatness, in conjunction with zeroth-order sharpness.

In the context of zeroth-order sharpness $\mathbf{g}_s - \mathbf{g}$, the component \mathbf{g}_{vs} , defined as $\mathbf{g}_{vs} = \mathbf{g}_s \sin(\phi_s)$ where ϕ_s denotes the angle between \mathbf{g} and \mathbf{g}_s , is orthogonal to the primary gradient direction \mathbf{g} . It has been shown to facilitate the exploration of flatter regions while changing more slowly than \mathbf{g} , thereby guiding the search for low loss regions, as illustrated in Figure 2. This observation further motivates us to investigate whether similar direction invariant components exist in the optimization of the first-order flatness term.

To visualize the optimization dynamics of $\mathbf{g}_s - \mathbf{g}$ and \mathbf{g}_f relative to their reference directions, \mathbf{g} for SAM and \mathbf{g}_s for C-Flat, we define the gradient correction ratio as $\text{ratio}(m, n) = \log \left(\left| \frac{m}{n + \epsilon} \right| \right)$, $\epsilon = 10^{-12}$, and then conduct experiments in EASE over 5 epochs. Figure 3a illustrates the distributions of $(\mathbf{g}_s - \mathbf{g}, \mathbf{g})$ and $(\mathbf{g}_f, \mathbf{g}_s)$ in Task 1. It can be observed that $\mathbf{g}_s - \mathbf{g}$ exhibits heavier tails than \mathbf{g}_f in the early stages, indicating stronger adjustment introduced by zeroth-order sharpness. As the optimization converges to a local minimum, sharpness and flatness collaborate in the search for flatter regions, with sharpness still playing a dominant role. This phenomenon suggests that \mathbf{g}_f serves as a smaller rectification upon SAM, even subtler than the correction $\mathbf{g}_s - \mathbf{g}$ induced by SAM itself.

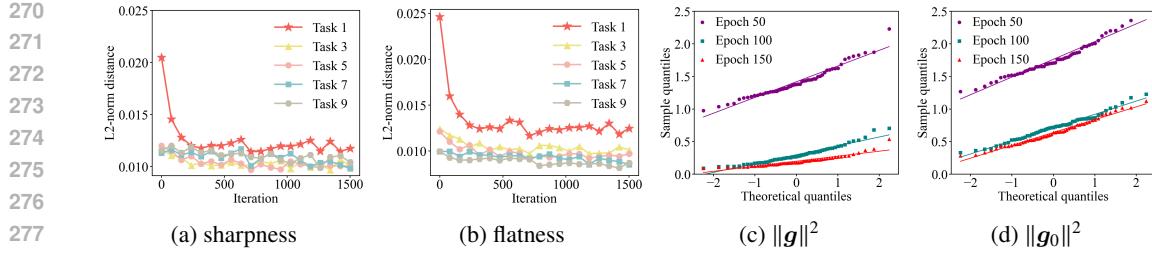


Figure 4: **Left:** Gradient variation across tasks during CL. Sharpness and flatness vary significantly in the first stage, then stabilize. **Right:** Q-Q plots of $\|g\|^2$ and $\|g_0\|^2$, both gradually approximate a normal distribution during learning.

In approximating $\mathcal{R}_\rho^1(\theta)$ in Equation 5, ϵ_1^* naturally emerges as a small perturbation direction aligned with the sharpness term. Consequently, the point $\theta^T + \epsilon_1^*$ serves as a proxy model for computing the flatness term. As illustrated in Figure 1, g_f fulfills a role similar to SAM, but is defined in the perturbed model $\theta^T + \epsilon_1^*$ located in a region of high curvature. In this sense, g_f embodies an invariant direction toward flatness, denoted as g_{vf} , analogous to the gradient g_0 in its proxy model. Here, g_{vf} is defined as $g_{vf} = g_1 \sin(\phi_f)$, where ϕ_f denotes the angle between g_0 and g_1 .

Figure 3b illustrates the gradient differences across iterations, measured by the L2-norm distance from those in the previous five iterations. As observed, g_{vs} fluctuates more slowly than g , consistent with the findings in Liu et al. (2022). Furthermore, g_0 appears more unstable than g , reflecting its high-curvature nature and sensitivity to parameter changes. Interestingly, despite the considerable variation in g_0 , the flatness oriented g_f remains substantially more stable, even exceeding the stability of g_{vs} , in line with the observations in Figure 3a. These insights support extracting the vertical component from g_f with respect to g_0 , which serves as a direction promoting flatness, as illustrated in Figure 2. Consequently, for the subsequent $k - 1$ steps, the cached g_{vf} can be reused to efficiently guide the search for low curvature directions based on the proxy model at $\theta + \epsilon_1^*$. In other words, we can add g_{vf} to g_0 with a coefficient β . This strategy avoids recomputing g_1 when evaluating flatness in the proxy model, thereby reducing computational cost.

3.2.2 DYNAMIC CONTROL FOR C-FLAT

Stage-wise turbo step scheduling. As continual learning progresses, the model’s parameter space becomes increasingly flatter, with earlier classes becoming more distinctly separated. Figures 4a and 4b depict the evolution of the sharpness and flatness terms over time. Both gradients fluctuate considerably during the initial incremental stage but stabilize in later stages, with this effect being particularly pronounced for flatness. This observation motivates assigning smaller turbo steps to earlier tasks and larger steps to later ones. To this end, we introduce a linear scheduler that adaptively adjusts the step size for computing sharpness and flatness aware gradients throughout training. It is simply formulated as Turbo- k_0 with $k_t = k_0 + 10 \cdot n/N$, where k_0 and k_t denote the initial and task- n step sizes, respectively, with a total of N tasks. Empirically, C-Flat Turbo equipped with this scheduler achieves substantial speedup while maintaining competitive performance.

Adaptive triggering of regularization. Existing research on zeroth-order sharpness has proposed reducing computational overhead by combining SAM updates with standard ERM. For example, SS-SAM Zhao et al. (2022b) employs a Bernoulli trial to determine whether to apply SAM, while AE-SAM Jiang et al. (2023) applies SAM adaptively only when the sharpness measure falls below a dynamically updated threshold. However, first-order flatness has received relatively little attention. Figures 4c and 4d visualize the distributional properties of $\|g\|^2$ and $\|g_0\|^2$ using quantile-quantile (Q-Q) plots. Points that lie closer to the reference line indicate that the corresponding variable is closer to following a normal distribution. Based on this observation, we can use exponential moving average (EMA) updates to estimate the mean and variance of $\|g_0\|^2$, following Jiang et al. (2023):

$$\mu_{f,j} = \delta \mu_{f,j-1} + (1 - \delta) \|g_{0j}\|^2, \quad \sigma_{f,j}^2 = \delta \sigma_{f,j-1}^2 + (1 - \delta) (\|g_{0j}\|^2 - \mu_{f,j})^2, \quad (6)$$

where j denotes the current iteration and $\delta = 0.9$ is the decay factor used to discount outdated gradient values. The flatness regularization is triggered only when $\|g_{0j}\|^2 > \mu_{f,j} + \sigma_{f,j}$. A detailed description of the overall optimization procedure is provided in Algorithm 1 in the Appendix.

324
 325 Table 1: Accuracy and training speeds using five state-of-the-art methods, with a pretrained ViT-
 326 B/16-IN1K backbone. **Red** and **green** denote the baseline and the efficient optimizer. **Bolded**
 327 indicates best performance.

328 Model	329 Method	330 CIFAR100 B0.Inc10 Avg↑	331 CUB B0.Inc10 Avg↑	332 IN-R B0.Inc20 Avg↑	333 ObjNet B0.Inc10 Avg↑	334 Last↑	335 Img/s↑			
336 <i>Typical</i>	iCaRL Rebuffi et al. (2017)	77.83	66.64	82.91	74.00	72.13	61.62	48.06	28.20	73.35 (100%)
	+C-Flat Bian et al. (2024)	79.72	67.15	83.47	74.81	72.92	62.35	49.59	29.03	19.72 (26.9%)
	+C-Flat Turbo	79.82	68.54	84.00	75.12	73.11	62.38	50.49	29.30	45.89 (62.6%)
	MEMO Zhou et al. (2023c)	82.26	73.89	86.66	79.90	70.96	61.05	56.22	38.32	135.14 (100%)
	+C-Flat Bian et al. (2024)	82.61	75.49	87.03	80.73	71.69	62.93	56.50	39.45	46.11 (34.1%)
	+C-Flat Turbo	83.02	75.76	87.15	80.92	72.38	63.55	57.52	40.62	91.91 (68.0%)
337 <i>PTM-based</i>	L2P Wang et al. (2022b)	89.36	83.94	73.04	59.14	78.05	72.60	64.18	52.10	110.29 (100%)
	+C-Flat Bian et al. (2024)	89.56	84.35	74.36	62.11	78.67	73.78	64.53	52.47	28.63 (30.0%)
	+C-Flat Turbo	89.78	84.69	74.12	61.97	78.86	73.82	64.64	52.55	65.50 (59.4%)
	Ranpac McDonnell et al. (2024)	94.32	90.72	92.61	88.68	82.07	76.80	71.66	60.17	154.64 (100%)
	+C-Flat Bian et al. (2024)	94.41	90.70	92.67	88.76	82.66	77.25	72.15	60.33	42.98 (27.8%)
	+C-Flat Turbo	94.45	90.74	93.12	89.02	83.13	77.83	72.16	60.33	94.34 (61.0%)
338 <i>EASE</i>	EASE Zhou et al. (2024b)	91.91	87.30	89.16	83.96	80.49	75.05	64.38	52.02	166.67 (100%)
	+C-Flat Bian et al. (2024)	92.05	87.91	89.37	84.05	80.97	75.64	64.89	52.47	44.25 (26.5%)
	+C-Flat Turbo	92.36	87.96	89.56	84.18	81.18	75.76	64.96	52.61	102.74 (61.6%)

340 4 EXPERIMENTS

341 4.1 EXPERIMENT SETUP

342 **Datasets.** Following Zhou et al. (2024a), we perform the evaluation on CIFAR100 Krizhevsky et al.
 343 (2009), CUB200 Wah et al. (2011), ImageNet-R Hendrycks et al. (2021) (IN-R), and ObjectNet Barbu
 344 et al. (2019) (ObjNet). These datasets contain 100 classes in CIFAR100, 200 classes in CUB200, and
 345 cover ImageNet-R and ObjectNet, which exhibit large domain gaps relative to the pre-trained datasets
 346 (ImageNet Deng et al. (2009)). Following Zhou et al. (2024a; 2023b), we denote the data split as
 347 ‘B- m Inc- n ’, meaning that the initial task contains m classes, and each subsequent task contains n
 348 classes. The random seed for class-order shuffling is fixed at 1993 Zhou et al. (2023a; 2024a).

349 **Baselines.** Typical CL and pre-trained model (PTM)-based CL methods Zhou et al. (2024a) are
 350 used to assess C-Flat Turbo. For the former, we cover the classical iCaRL Rebuffi et al. (2017) and
 351 MEMO Zhou et al. (2023c) methods. For the latter, we compare against L2P Wang et al. (2022b),
 352 Ranpac McDonnell et al. (2024), and EASE Zhou et al. (2024b), spanning common CL categories.

353 **Implementation details.** All experiments and compared methods are implemented and reproduced
 354 using PyTorch and PILOT Zhou et al. (2024a; 2023a); Bian et al. (2024). If not specialized,
 355 all hyperparameters or configurations remain unchanged in the open-source repository Zhou et al.
 356 (2024a). To ensure a fair comparison, we evaluate all methods with the same model and vanilla SGD
 357 optimizer (Adam for L2P) and adopt ViT-B/16-IN1K as the representative pre-trained models Wang
 358 et al. (2022b); Zhou et al. (2023d). Implementation details can be found in section A.4. For
 359 evaluation, we primarily present the results in terms of average accuracy (Avg), final task accuracy
 360 (Last), and the average running speed (Img/s) across all tasks.

361 4.2 FASTER AND STRONGER PERFORMANCE

362 We thoroughly evaluate the performance of C-Flat Turbo. As shown in Table 1, although pre-trained
 363 models exhibit strong generalization capabilities, their feature spaces remain susceptible to contam-
 364 ination during continual adaptation to evolving data distributions, thereby exacerbating catastrophic
 365 forgetting. While C-Flat mitigates this degradation through flat region search mechanisms, it incurs
 366 significant computational overhead. On the one hand, C-Flat Turbo addresses this limitation by freely
 367 taking shortcuts toward flatness, extracted from earlier steps, without repeated computation. On the
 368 other hand, it flexibly combines C-Flat with base optimizers through a stage-wise step schedule and
 369 an adaptive trigger for regularization, further accelerating the training process. A more detailed
 370 per-task accuracy progression and ablation studies are provided in the Appendix A.6. Experi-
 371 mental results demonstrate that C-Flat Turbo achieves better accuracy than C-Flat, while significantly
 372 reducing training time. Notably, we find that C-Flat Turbo remains stable even in PTM scenarios
 373 with larger generalization gaps (e.g., CUB200, ImageNet-R, and ObjectNet). C-Flat Turbo trains CL
 374 models at about 2 \times the speed of C-Flat, and 0.6 \times that of SGD. Overall, whether applied to typical
 375

378 Table 2: Accuracy trained from scratch with ResNet-18 and ResNet-34. **Bolded** indicates best result.
379

380 Method	381 Avg↑	382 ResNet-18		383 Avg↑	384 ResNet-34	
		385 Last↑	386 Img/s↑		387 Last↑	388 Img/s↑
iCaRL Rebuffi et al. (2017)	59.13 \pm 0.30	41.23 \pm 0.91	2333.3(100%)	58.80 \pm 1.04	41.26 \pm 0.99	1250.4(100%)
+C-Flat Bian et al. (2024)	59.45 \pm 0.18	42.47 \pm 0.06	686.3(29.4%)	59.55 \pm 0.93	42.09 \pm 0.61	359.8(28.8%)
+C-Flat Turbo	59.84\pm0.05	42.84\pm0.18	1750.1(75.0%)	59.75\pm0.55	42.34\pm0.54	960.6(76.8%)
MEMO Zhou et al. (2023c)	48.63 \pm 0.78	29.19 \pm 0.89	2413.8(100%)	68.49 \pm 1.74	57.05 \pm 1.46	1873.2(100%)
+C-Flat Bian et al. (2024)	49.98 \pm 0.61	30.76 \pm 0.57	886.1(36.7%)	69.00 \pm 1.39	59.29 \pm 0.73	569.1(30.4%)
+C-Flat Turbo	50.51\pm0.55	32.24\pm0.27	1891.9(78.4%)	69.48\pm1.25	59.33\pm0.65	1372.5(73.3%)

386
387 CL benchmarks or to scenarios with large domain gaps in PTM, C-Flat Turbo maintains strong
388 performance while offering superior training efficiency compared to the baseline C-Flat optimizer.
389

390 4.3 TRAINING FROM SCRATCH

391 Table 2 presents the accuracy results of iCaRL and MEMO, using ResNet-18 and ResNet-34 trained
392 without pre-trained models. Notably, iCaRL benefits significantly from C-Flat Turbo, achieving an
393 increase of 1.61% in last accuracy on ResNet-18 and 1.08% on ResNet-34. Similarly, MEMO exhibits
394 substantial gains, particularly in final stage accuracy, where C-Flat Turbo improves performance by
395 3.05% on ResNet-18 and 2.28% on ResNet-34. Besides, it is noted that C-Flat Turbo forgets less than
396 C-Flat across training due to its soft constraint on sharpness around local minima. The consistent
397 improvements across different backbone architectures highlight the robustness of C-Flat Turbo in
398 mitigating catastrophic forgetting while maintaining computational efficiency. Furthermore, the
399 larger performance gains observed in MEMO suggest that C-Flat Turbo is particularly beneficial for
400 expansion-based approaches, which involve multiple module updates and often struggle with stability
401 and adaptability. These findings validate C-Flat Turbo as a highly effective strategy for continual
402 learning, offering substantial accuracy improvements while enabling flexible training strategies.
403

404 4.4 COMPARISON TO OTHER OPTIMIZERS

405 In Table 3, we report the average accuracy, last accuracy, and training speeds on the CIFAR100
406 B0_Inc10 setting compared to various zeroth-order optimizers. In special, the step of all sharpness
407 in LookSAM and flatness in C-Flat Turbo is fixed to 5.

408 For the performance, as shown in Table 3, we first observe that SAM and LookSAM do not offer
409 obvious benefits over the vanilla optimizer, but C-Flat series shows significant improvement. The
410 reason is that the parameters of backbones loaded from the pre-trained model already possess strong
411 generalization, resulting in uniformly low losses around local minima across various parameter
412 perturbations. Nevertheless, C-Flat Turbo further surgeries the strong generalization of the pre-
413 trained model by the horizontal and vertical components of the oracle gradient, thus boost CL.
414

415 For the training speeds, as concluded in Table 3, although LookSAM significantly accelerates training
416 compared to SAM by reusing historical gradients, it degrades performance on EASE due to its single
417 zeroth-order regularization and the simplistic use of past iteration gradients. C-Flat Turbo differs
418 from LookSAM in that it progressively updates sharpness gradients to vanilla components and
419 imposes more strict constraints to encourage convergence to a flatter region. Compared to C-Flat,
420 our efficient method achieves a speedup of approximately 1x (from 30.0% to 59.4% and from 26.5%
421 to 61.6%) on L2P and EASE, which is even faster than the SAM.
422

423 4.5 ABLATION STUDIES

424 **Parameter Sensitivity.** In Figure 5a, we empirically investigate the sensitivity of the scale factor β
425 and the sampling step k in EASE, trained under the CIFAR-100 B0_Inc10 setting. Here, k denotes
426 the frequency of leveraging the sharpness and flatness properties in C-Flat Turbo. For fairness,
427 the sharpness and flatness steps are kept equal, meaning that C-Flat Turbo- k indicates the cached
428 sharpness and flatness gradients are updated every k iterations. The hyperparameters ρ and λ are
429 fixed at 0.05 and 0.2, respectively. Figure 5a demonstrates that $\beta = 0.8$ is the optimal choice in most
430 cases. Moreover, when $k = 2$ and $k = 5$, the performance exhibits similar accuracy fluctuations as
431 long as β lies within the range [0.4, 1.0].

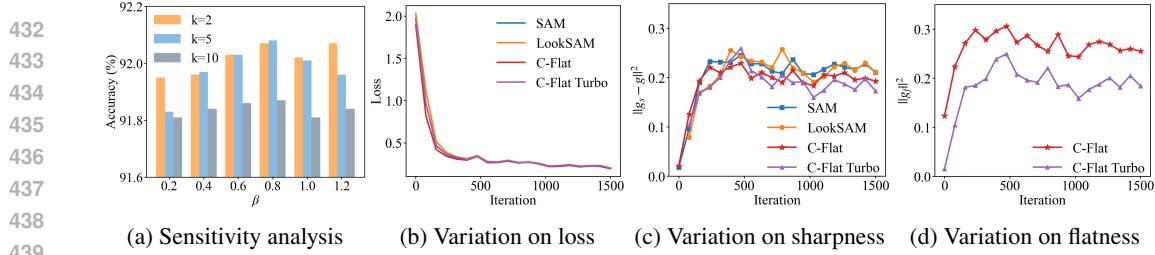


Figure 5: Evolution of sharpness and flatness on EASE w/ and w/o C-Flat Turbo.

Table 3: Accuracy and training speeds of L2P and EASE across various optimizers. Task orders are shuffled for evaluation on dynamic sequences. Red and green denote the baseline and the efficient optimizer. **Bolded** indicates best performance.

Method	L2P Wang et al. (2022b)			EASE Zhou et al. (2024b)		
	Avg↑	Last↑	Img/s↑	Avg↑	Last↑	Img/s↑
Vanilla	87.92 _{±1.30}	83.66 _{±1.49}	110.29 (100%)	91.16 _{±0.71}	87.49 _{±0.32}	166.67(100%)
+SAM Foret et al. (2020)	88.18 _{±1.39}	83.84 _{±1.39}	56.60 (51.3%)	91.36 _{±0.82}	87.61 _{±0.27}	86.71(52.0%)
+LookSAM Liu et al. (2022)	88.35 _{±1.39}	83.80 _{±1.20}	88.76 (80.5%)	90.89 _{±0.86}	86.99 _{±0.28}	132.74(79.6%)
+C-Flat Bian et al. (2024)	88.62 _{±0.88}	84.04 _{±0.60}	28.63 (30.0%)	91.60 _{±1.18}	87.69 _{±0.50}	44.25 (26.5%)
+C-Flat Turbo	89.57_{±0.36}	84.48_{±0.09}	65.50 (59.4%)	91.75_{±0.80}	87.74_{±0.20}	102.74 (61.6%)

Evolution of Sharpness and Flatness. We approximate the sharpness and flatness gradients using cached branches and current SGD directions, following the same optimization procedure as C-Flat. This efficient approach does not slow convergence. As shown in Figure 5b, C-Flat Turbo converges as fast as other optimizers. Figure 5c illustrates that all optimizers start with low sharpness initially, owing to the pretrained backbone’s generalization, and then sharpness declines alongside the loss $\mathcal{L}(\theta_p)$. Notably, the sharpness and flatness gradients in C-Flat Turbo converge to lower values than in C-Flat, due to the intermediate gradient descent steps being free of regularization constraints.

4.6 DISCUSSION ON SCHEDULER CHOICES

Figure 6 compares the accuracy and training speed of MEMO and EASE. For the linear scheduler, we increase the step size k with the task number n , formulated as $k = 5 + 10 \cdot n/N$, whereas for the version without a scheduler, we keep k fixed at 5. MEMO expands its architecture for each new task, increasing both parameters and computational cost, which prolongs training. As shown in Figure 6, C-Flat Turbo with or without the scheduler, consistently outperforms vanilla C-Flat in accuracy. In terms of speed, both variants are faster, with the scheduler achieving approximately 15% additional speedup. In contrast, EASE reuses frozen adapters, keeping training costs stable. Figure 6 demonstrates that the scheduler provides roughly 30% speedup over C-Flat as k increases, while maintaining comparable accuracy.

5 CONCLUSION

This paper proposes C-Flat Turbo, which selectively takes shortcuts along stable directions toward flatness for more efficient optimization. Building upon the observation that flatness gradients diminish across tasks, we additionally introduce a linear scheduler that adaptively adjusts the turbo steps, as well as an adaptive trigger for selectively applying C-Flat regularization. In summary, this work reveals that adaptively modifying the oracle gradient can yield tangible efficiency gains during continual learning. Moreover, C-Flat Turbo can be seamlessly integrated into any CL method, offering at least a 1× speedup.

486 ETHICS STATEMENT
487488 Our work introduces C-Flat Turbo, a faster yet stronger optimizer with a relaxed scheduler, to
489 substantially reduce training cost. We do not foresee any direct ethical risks associated with this
490 work, as it focuses purely on optimization techniques rather than data generation or manipulation.
491 Nevertheless, we firmly state that C-Flat Turbo is currently a research-oriented project.492
493 REPRODUCIBILITY STATEMENT494 We are committed to ensuring the reproducibility of our work. All essential details for reproducing
495 our results are provided within the paper and the appendix. The details of architectures and their
496 training details are presented in section 4 and section A. Our technical contribution, C-Flat Turbo,
497 are described with comprehensive details in section 3. The evaluation protocols are detailed in sec-
498 tion 4.1. We will ensure the release of our source code, pre-trained model weights, and evaluation
499 scripts upon publication of this work. We can also provide any source code if any reviewer asks for
500 a detailed implementation.501
502 REFERENCES
503504 Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and
505 Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware continual learning.
506 In *CVPR*, 2020.507 Afra Feyza Akyürek, Ekin Akyürek, Derry Tanti Wijaya, and Jacob Andreas. Subspace regularizers
508 for few-shot class incremental learning. *ICLR*, 2022.509 Carlo Baldassi, Fabrizio Pittorino, and Riccardo Zecchina. Shaping the learning landscape in neural
510 networks around wide flat minima. *Proceedings of the National Academy of Sciences*, 117(1):
511 161–170, 2020.512 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
513 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
514 limits of object recognition models. *Advances in neural information processing systems*, 2019.515 Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common
516 representation space in lifelong learning. *ICLR*, 2023.517 Ang Bian, Wei Li, Hangjie Yuan, Chengrong Yu, Zixiang Zhao, Mang Wang, Aojun Lu, and Tao
518 Feng. Make continual learning stronger via c-flat. *arXiv preprint arXiv:2404.00986*, 2024.519 Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P Calmon, and Taesup Moon. Cpr: classifier-
520 projection regularization for continual learning. *ICLR*, 2021.521 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
522 lifelong learning with a-gem. *arXiv preprint arXiv:1812.00420*, 2018.523 Haoran Chen, Zuxuan Wu, Xintong Han, Menglin Jia, and Yu-Gang Jiang. Promptfusion: Decou-
524 pling stability and plasticity for continual learning. *arXiv preprint arXiv:2303.07223*, 2023.525 Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening
526 sharpness for dynamic gradient projection memory benefits continual learning. *NeurIPS*, 34,
527 2021.528 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
529 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
530 2009.531 Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
532 for free. *NeurIPS*.533 Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
534 Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural networks.
535 *arXiv preprint arXiv:2110.03141*, 2021.

540 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 541 for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.
 542

543 Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui Zhang, Nian Shi, and Lin Luo. Decorate
 544 the newcomers: Visual domain prompt for continual test time adaptation. In *Proceedings of the*
 545 *AAAI Conference on Artificial Intelligence*, volume 37, pp. 7595–7603, 2023.

546 Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang. R-dfcil: Relation-guided representation
 547 learning for data-free class incremental learning. In *ECCV*, 2022.
 548

549 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
 550 unified continual learning framework with general parameter-efficient tuning. In *Proceedings of*
 551 *the IEEE/CVF International Conference on Computer Vision*, pp. 11483–11493, 2023.

552 Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
 553 learning in deep neural networks. *Trends in cognitive sciences*, 24(12):1028–1040, 2020.
 554

555 Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local minima.
 556 *NeurIPS*, 32, 2019.

557 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 558 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 559 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
 560 *conference on computer vision*, 2021.

561

562 Zhiyuan Hu, Yunsheng Li, Jiancheng Lyu, Dashan Gao, and Nuno Vasconcelos. Dense network
 563 expansion for class incremental learning. In *CVPR*, 2023.

564 Kishaan Jeeveswaran, Prashant Bhat, Bahram Zonooz, and Elahe Arani. Birt: Bio-inspired replay
 565 in vision transformers for continual learning. *ICML*, 2023.

566

567 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 568 Ser-Nam Lim. Visual prompt tuning. In *European Conference on Computer Vision*, pp. 709–727.
 569 Springer, 2022.

570

571 Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to employ sharpness-
 572 aware minimization. *arXiv preprint arXiv:2304.14647*, 2023.

573

574 Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
 575 for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF International Conference*
 576 *on Computer Vision*, pp. 11847–11857, 2023.

577

578 Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Didier Stricker, Federico
 579 Tombari, and Muhammad Zeshan Afzal. Introducing language guidance in prompt-based continual
 580 learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 11463–11473, 2023.

581

582 Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
 583 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
 584 forgetting. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 15190–15200, 2023.

585

586 Do-Yeon Kim, Dong-Jun Han, Jun Seo, and Jaekyun Moon. Warping the space: Weight space
 587 rotation for class-incremental few-shot learning. In *ICLR*, 2022.

588

589 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 590 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 591 ing catastrophic forgetting in neural networks. *PNAS*, 2017.

592

593 Yajing Kong, Liu Liu, Huanhuan Chen, Janusz Kacprzyk, and Dacheng Tao. Overcoming catas-
 594 troptic forgetting in continual learning by exploring eigenvalues of hessian matrix. *IEEE Trans-
 595 actions on Neural Networks and Learning Systems*, 2023.

594 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 595 *Technical report*, 2009.
 596

597 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE Trans. Pattern Anal. Mach. Intell.*,
 598 40(12):2935–2947, 2018.

599 Huiwei Lin, Baoquan Zhang, Shanshan Feng, Xutao Li, and Yunming Ye. Pcr: Proxy-based
 600 contrastive replay for online class-incremental continual learning. In *CVPR*, 2023.
 601

602 Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
 603 continual learning. *arXiv preprint arXiv:2202.02931*, 2022.

604 Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-incremental
 605 learning. In *CVPR*, 2021.
 606

607 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
 608 sharpness-aware minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 609 and *Pattern Recognition*, pp. 12360–12370, 2022.

610 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
 611 *NeurIPS*, 2017.
 612

613 Marc Masana, Xialei Liu, Bart lomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
 614 De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
 615 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2022.

616 Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.
 617 Ranpac: Random projections and pre-trained models for continual learning. *Advances in Neural*
 618 *Information Processing Systems*, 36, 2024.
 619

620 Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investiga-
 621 tion of the role of pre-training in lifelong learning. *J. Mach. Learn. Res.*, 2023.

622 Youngmin Oh, Donghyeon Baek, and Bumsub Ham. Alife: Adaptive logit regularizer and feature
 623 replay for incremental semantic segmentation. *NeurIPS*, 2022.

625 Sylvestre-Alvise Rebiffé, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 626 Incremental classifier and representation learning. In *CVPR*, 2017.
 627

628 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 629 replay for continual learning. In *NeurIPS*, volume 32, 2019.

630 Tim GJ Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Continual
 631 learning via sequential function-space variational inference. In *International Conference on*
 632 *Machine Learning*, pp. 18871–18887. PMLR, 2022.

633 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
 634 *International Conference on Learning Representations*, 2020.

636 Joan Serrà, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 637 forgetting with hard attention to the task. In *ICML*, pp. 4555–4564, 2018.

639 Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming
 640 catastrophic forgetting in incremental few-shot learning by finding flat minima. *NeurIPS*, 2021.

641 Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
 642 network compression. *Advances in Neural Information Processing Systems*, 33:18098–18109,
 643 2020.

645 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
 646 Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
 647 composed attention-based prompting for rehearsal-free continual learning. In *Proceedings of the*
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

648 Wenju Sun, Qingyong Li, Jing Zhang, Wen Wang, and Yangli-ao Geng. Decoupling learning
 649 and remembering: A bilevel memory framework with knowledge projection for task-incremental
 650 learning. In *CVPR*, 2023a.

651

652 Zhicheng Sun, Yadong Mu, and Gang Hua. Regularizing second-order influences for continual
 653 learning. In *CVPR*, 2023b.

654

655 Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning
 656 does not meet strong pretraining. In *Proceedings of the IEEE/CVF International Conference on*
 657 *Computer Vision*, pp. 1706–1716, 2023.

658 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 659 birds-200-2011 dataset. 2011.

660 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 661 learning: Theory, method and application. *arXiv preprint arXiv:2302.00487*, 2023a.

662

663 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 664 An occam’s razor for domain incremental learning. *Advances in Neural Information Processing*
 665 *Systems*, 35:5682–5695, 2022a.

666 Yabin Wang, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su, and Xiaopeng Hong. Isolation and
 667 impartial aggregation: A paradigm of incremental learning without interference. In *Proceedings*
 668 *of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 10209–10217, 2023b.

669

670 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 671 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings*
 672 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 139–149, 2022b.

673 Shipeng Yan, Jiangwei Xie, and Xuming He. DER: dynamically expandable representation for class
 674 incremental learning. In *CVPR*, pp. 3014–3023, 2021.

675

676 Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
 677 learning with additive parameter decomposition. In *International Conference on Learning*
 678 *Representations*, 2020.

679

680 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
 681 with classifier alignment for continual learning on a pre-trained model. In *Proceedings of the*
 682 *IEEE/CVF International Conference on Computer Vision*, pp. 19148–19158, 2023a.

683

684 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
 685 seeks first-order flatness and improves generalization. In *Proceedings of the IEEE/CVF Conference*
 686 *on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023b.

687

688 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
 689 generalization in deep learning. In *International Conference on Machine Learning*, pp. 26982–
 690 26992. PMLR, 2022a.

691

692 Yang Zhao, Hao Zhang, and Xiuyuan Hu Ss-sam. Stochastic scheduled sharpness-aware mini-
 693 mization for efficiently training deep neural networks. *arXiv preprint arXiv:2203.09962*, 8:18,
 694 2022b.

695

696 Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua Liu, Bo Du, and Dacheng Tao. Improving
 697 sharpness-aware minimization with fisher mask for better generalization on language models.
 698 *arXiv preprint arXiv:2210.05497*, 2022.

699

700 Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: A python toolbox for class-
 701 incremental learning, 2023a.

702

703 Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep
 704 class-incremental learning: A survey. *arXiv preprint arXiv:2302.03648*, 2023b.

705

706 Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
 707 memory-efficient class-incremental learning. *ICLR*, 2023c.

702 Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
703 ing with pre-trained models: Generalizability and adaptivity are all you need. *arXiv preprint*
704 *arXiv:2303.07338*, 2023d.

705 Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Learning
706 without forgetting for vision-language models. *arXiv preprint arXiv:2305.19270*, 2023e.

708 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
709 with pre-trained models: A survey. *arXiv preprint arXiv:2401.16386*, 2024a.

710 Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
711 pre-trained model-based class-incremental learning. *arXiv preprint arXiv:2403.12030*, 2024b.

713 Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and
714 self-supervision for incremental learning. In *CVPR*, pp. 5871–5880, 2021.

716 Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation
717 expansion for non-exemplar class-incremental learning. In *CVPR*, 2022.

718 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
719 Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
720 training. *arXiv preprint arXiv:2203.08065*, 2022.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755