Under review as a conference paper at ICLR 2024

EFFICIENT TRAINING OF MULTI-TASK COMBINARO-
TIAL NEURAL SOLVER WITH MULTI-ARMED BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently training a multi-task neural solver for various combinatorial optimiza-
tion problems (COPs) has been less studied so far. In this paper, we propose a
general and efficient training paradigm based on multi-armed bandits to deliver a
unified combinarotial multi-task neural solver. To this end, we resort to the theoret-
ical loss decomposition for multiple tasks under an encoder-decoder framework,
which enables more efficient training via proper bandit task-sampling algorithms
through an intra-task influence matrix. Our method achieves much higher overall
performance with either limited training budgets or the same training epochs, com-
pared to standard training schedules, which can be promising for advising efficient
training of other multi-task large models. Additionally, the influence matrix can
provide empirical evidence of some common practices in the area of learning to
optimize, which in turn supports the validity of our approach.

1 INTRODUCTION

Although a generic neural solver for multiple combinatorial optimization problems (COPs) is appeal-
ing, this problem is less studied in the literature, and training such a neural solver can be prohibitively
expensive, especially in the era of large models. To relieve the training burden and better balance
the resource allocation, in this paper, we propose a novel training paradigm via multi-armed ban-
dits (MAB) from a multi-task learning (MTL) perspective, which can efficiently train a multi-task
combinarotial neural solver under limited training budgets.

To this end, we treat each COP with a specific problem scale as a task and manage to deliver a
generic solver handling a set of tasks simultaneously. Different from a standard joint training in MTL,
we employ MAB algorithms to select/sample one task in each training round, hence avoiding the
complex balancing of losses from multiple tasks. To better guide the MAB algorithms, we employ
a reasonable reward design derived from the theoretical loss decomposition for the widely adopted
encoder-decoder architecture in MTL. This loss decomposition also brings about an influence matrix
revealing the mutual impacts between tasks, which provides rich evidence to explain some common
practices in the scope of COPs.

To emphasize, our method is the first to consider training a generic neural solver for different kinds
of COPs. This greatly differs from existing works focusing on either solution construction (Vinyals
et al., 2015; Bello et al., 2017} |[Kool et al.| 2019; Kwon et al.,|2020) or heuristic improvement (Lu
et al.| 2020; (Wu et al.|[2021b}; |Agostinelli et al., 2021} |Fu et al., 2021}, |Kool et al., 2022). Some recent
works seek to generalize neural solvers to different scales (Hou et al.; L1 et al., [2021; |Cheng et al.,
2023; [Wang et al., |2023)) or varying distributions (Wang et al.l 2021}; Bi et al., 2022} Geisler et al.|
2022)), but with no ability to handle multiple types of COPs simultaneously.

Experiments are conducted for 12 tasks: Four types of COPs, the Travelling Salesman Problem
(TSP), the Capacitated Vehicle Routing Problem (CVRP), the Orienteering Problem (OP) and the
Knapsack Problem (KP), and each of them with three problem scales. We compare our approach with
single-task training (STL) and extensive MTL baselines (Mao et al., 2021} [Yu et al., [2020}; Navon
et al., 2022} [Kendall et al.| 2018 Liu et al.l 2021a3b)) under the cases of the same training budgets
and same training epochs. Compared with STL, our approach needs no prior knowledge about tasks
and can automatically focus on harder tasks so as to maximally utilize the training budget. What’s
more, when comparing with STL under the same training epoch, our approach not only enjoys the
cheaper training cost which is strictly smaller than that of the most expensive task, but also shows the

Under review as a conference paper at ICLR 2024

generalization ability by providing a universal model to cover different types of COPs. Compared
with the MTL methods, our method only picks the most impacting task to train at each time which
improves the training efficiency without explicitly balancing the losses.

In summary, our contributions can be concluded as follows: (1) We propose a novel framework
for efficiently training a combinatorial neural solver for multiple COPs via MAB, which achieves
prominent performance against standard training paradigms with limited training resources and can
further advise efficient training of other large models; (2) We study the theoretical loss decomposition
for the encoder-decoder architecture, leading to the influence matrix reflecting the inherent task
relations and reasonable reward guiding the update of MAB algorithms.; (3) We verify several
empirical observations for neural solvers from previous works (Kool et al.,[2019; |Joshi et al., 2021)
by the influence matrix, demonstrating the validity and reasonableness of our approach.

2 RELATED WORK

Neural solvers for COPs. Pointer Networks (Vinyals et al.,2015)) pioneered the application of deep
neural networks for solving combinatorial optimization problems. Subsequently, numerous neural
solvers have been developed to address various COPs, such as routing problems (Bello et al.| 2017
Kool et al.,2019;|Lu et al., [2020; /Wu et al., [2021bjb), knapsack problem (Bello et al.,|2017; Kwon
et al.| 2020)), job shop scheduling problem (Zhang et al.,[2020), and others. There are two prevalent
approaches to constructing neural solvers: solution construction (Vinyals et al., 2015} Bello et al.,
2017; Kool et al., [2019; | Kwon et al., 2020), which sequentially constructs a feasible solution, and
heuristic improvement (Lu et al.,2020; [Wu et al.| 2021b} |Agostinelli et al., [2021} [Fu et al., 2021}
Kool et al.l2022), which provides meaningful information to guide downstream classical heuristic
methods. In addition to developing novel techniques, several works (Wang et al., 2021} |Geisler et al.,
2022} Bi et al.l [2022; |Wang et al.| 2023)) have been proposed to address generalization issues inherent
in COPs. For a comprehensive review of the existing challenges in this area, we refer to the survey
(Bengio et al., [2020).

Multi-task learning. Multi-Task Learning (MTL) aims to enhance the performance of multiple tasks
by jointly training a single model to extract shared knowledge among them. Numerous works have
emerged to address MTL from various perspectives, such as exploring the balance on the losses
from different tasks (Mao et al.| [2021;|Yu et al., 2020; Navon et al., 2022; Kendall et al., 2018}, [Liu
et al.| 2021ajjb) designing module-sharing mechanisms (Misra et al.,[2016; |Sun et al.| [2020; |Hu &
Singh| |2021)), improving MTL through multi-objective optimization (Sener & Koltun, 2018} [Lin
et al.,2019; Momma et al.,|2022)), and meta-learning (Song et al.l|2022). To optimize MTL efficiency
and mitigate the impact of negative transfer, some research focuses on task-grouping (Kumar & III,
2012; Zamir et al.| [2018} [Standley et al., [2020; [Fifty et al.,|2021), with the goal of identifying task
relationships and learning within groups to alleviate negative transfer effects in conflicting tasks. On
the application level, MTL has been extensively employed in various domains, including natural
language processing (Collobert & Weston, 2008} |Luong et al.l 2016), computer vision (Zamir et al.,
2018} |Seong et al., [2019), bioinformatics Xu et al.| (2017, and many others. However, there are
limited works on solving COPs using MTL. In this work, we highlight research on MTL for COPs
and propose a learning framework to concurrently address various types of COPs.

Multi-armed bandits. Multi-armed bandit (MAB) is a classical problem in decision theory and
machine learning that addresses the exploration-exploitation trade-off. Several algorithms and
strategies have been suggested to solve the MAB problem, such as the e-greedy, Upper Confidence
Bound (UCB) family of algorithms (Lai et al.,|1985 |Auer et al., 2002), the Exp3 family (Littlestone
& Warmuth, (1994} |Auer et al., [1995; |Gur et al., [2014), and the Thompson sampling (Thompson,
1933; |Agrawal & Goyall 2012 [Chapelle & Lil |2011). These methods differ in their balance of
exploration and exploitation, and their resilience under distinct types of uncertainty. The MAB has
been extensively studied in both theoretical and practical contexts, and comprehensive details can be
found in Slivkins et al.[(2019)); Lattimore & Szepesvari| (2020).

3 METHOD

We consider K types of COPs, denoted as T (i = 1,2, ..., K), with n; different problem scales
for each COP. Thus, the overall task set is 7 = Ufil T = A{Tjlj = 1,2,...,n4,1 = 1,2,..., K}.

Under review as a conference paper at ICLR 2024

Loss Decomposition (Section 3.1)

/— Reward Construction (Section 3.2)
/TsP Decoded, /CVRP ecoder, /0P Decoder \ / KP Decoder \ MAB Algorithm) Section 3.3
1 t h T

Reward

] : %
O
[Encoder]

$
: 1 i 1
\TSP Heade/ \ CVRP Header/\ OP Header / \KP Header /

Select one to train _

Figure 1: Pipeline of MAB for Solving COPs in view of MTL. We consider four types of COPs: TSP,
CVRP, OP and KP, each with a corresponding header and decoder. The encoder, which is common to
all COPs, is also included. For each time step, we utilize the MAB algorithm to select a specific task
for training, such as CVRP-100 depicted in the figure. We then obtain the loss for the selected task,
perform loss decomposition as detailed in Section[3.T} and construct a reward using the methodology
outlined in Section Finally, we utilize the reward to update the MAB algorithm.

Algorithm 1 MAB for Solving COPs in view of MTL

Require: Combinatorial neural solver Se with parameters O, task set 7, MAB algorithm .A(7"), loss function
L(©), number of training loops L, update frequency for MAB algorithm freq.
1: fort =1to L do) _
2: Train Sy on task T} selected by A(7T) and store the gradient information VL (©(t))
3 if t mod freq = 0 then _)
4 Obtaining reward 7 for each task 7} using stored gradients { VL’ (©(t))};2,, following Section
5: Update A(7") with reward 7} for each task 77
6:
7
8:
9:

Clear the record of the gradient information
end if
end for
return Well-trained neural solver Se

For each type of COP T*, we consider a neural solver Soi (I;) : T; — y;, where O are the
parameters for COP T, 7} and }); are the input instance the output space for COP T with the
problem scale of n; (termed as task T’ ; in the sequel). The parameter vector ©% = (¥, §%) contains
the shared and task-specific parameters for the COP 7", and the complete set of parameters is denoted
by © = UI; ©°. This parameter notation corresponds to the commonly used Encoder-Decoder
framework |'|in multi-task learning in Fig. |1, where #*"* represents the encoder - shared across all
tasks, and 0" represents the decoder - task-specific for each task. Given the task loss functions L7 (©*)

for COP T" with the problem scale of n;, we investigate the widely used objective function:

K Uz

min L () = > > Lie). (1)

i=1 j=1

We propose a general framework based on Multi-Armed Bandits (MAB) to dynamically select tasks
during training rounds and a reasonable reward is constructed to guide the selection process. In
particular, our approach establishes a comprehensive task relation by the obtained influence matrix,
which has the potential to empirically validate several common deep learning practices while solving
COPs.

Overview. We aim to solve Eq. using the MAB approach. Given the set of tasks 7 = {T]Z l7 =
1,2,...,m,4 = 1,2,..., K}, we select an arm (i.e., task being trained) a; € T following an MAB
algorithm, which yields a random reward signal r, that reflects the effect of the selection. The
approximated expected reward is updated based on the received rewards. Essentially, our proposed

! According to the Encoder-Decoder framework, encoder commonly refers to shared models, whereas decoder
concerns task-specific modules. In this study, the decoder component comprises two modules: "Header" and
"Decoder"” as illustrated in FigureE}

Under review as a conference paper at ICLR 2024

method is applicable to any MAB algorithm. The general framework of MAB for solving COPs
within the context of Multi-Task Learning (MTL) is outlined in Algorithm [T} and the overall pipeline
is illustrated in Figure[l]

3.1 Loss DECOMPOSITION

In the framework of MAB for solving COPs in view of MTL described in Algorithm 1} the way
to design a reasonable reward to guide its update is crucial. In this part, we analytically drive a
reasonable reward by decomposing the loss function for the Encoder-Decoder framework in Fig. [1]
Following the previous notation, © = U1K:1 0! = {phae} | J{0;,i = 1,2,..., K} are all trainable
parameters.

We suppose that a meaningful reward should satisfy the following two properties: (1) It can benefit
our objective and reveal the intrinsic training signal; (2) When a task is selected, there always has
positive effects on it in expectation.

The difference on loss function is an ideal choice and previous work has used it to measure the task
relationship (Fifty et al.l 2021). However, such measurement is invalid in our context because there
are no significant differences among tasks (see Appendix [F), so using such information may mislead
the bandit selection. What’s more, the computation cost of the "lookahead loss" in [Fifty et al.|(2021)
is considerably expensive when frequent reward signals are needed. We instead propose a more
fundamental way based on gradients to measure the impacts of training one task upon the others.

To simplify the analysis, in Proposition[I| we assume the standard gradient descent (GD) is used to
optimize Eq. [T|by training one task at each step ¢, and then derive the loss decomposition under the
encoder-decoder framework. Any other optimization method, e.g., Adam (Kingma & Bal [2015)), can
also be used here with small modifications. We leave the detailed proofs for GD and Adam optimizer
in Appendix
Proposition 1 (Loss decomposition for GD). Using encoder-decoder framework with parameters
O = Ufil 0! = {#*hre} | J{6;,i = 1,2, ..., K} and updating parameters with standard gradient
descent: O(t + 1) = O(t) — n:VL(O(t)), where 1 is the step size. Then the difference of the loss of
;ask T} from training step ty to ta: ALj(t1 — t2) = L5(©'(t2)) — Lj(©'(t1)) can be decomposed
o:

AL; (t1 — tz)

to n;
= (VILi (¥ (1)) > 1(ar = T))mVL;(O'(t)) + VI L (U (t1)) > | Z ar = T))mVL:(©'(1))

t=tq g=1t=t;
q#]

(a) effects of training task T;: ej. (t1—t2) o i . . .
(b) effects of training task {Tq ,q# {e;((il —t2)),q#5 }

K np to

+ VGshan t1 Z Z Z 2)ne Vesfum 2 (OF(1))),

p=1g=1t=ty
pFi

(c) effects of training task {Tg’, p# 'L}:{e;g(tl —t9),q=1,2,..., np,pF#i}
)
where V L(0©) means taking gradient w.r.t. © and V Ly(©) means taking gradient w.r.t. § C O,
W' (t1) is some vector between ©'(t1) and ©*(t2) and 1(a; = T}) is the indicator function.

The idea behind Eq. |2means the improvement on the loss for task T; from ¢; to to can be decomposed
into three parts: (a) effects of training 77 itself w.r.t. ©; (b) effects of training same kind of COP
{T},q # j} wrt. ©'; and (c) effects of training other COPs {T?,p # i} w.rt. °. Indeed, we

quantify the impact of different tasks on Tj through this decomposition, which provides the intrinsic
training signals for designing reasonable rewards.

3.2 REWARD DESIGN AND INFLUENCE MATRIX CONSTRUCTION

In this part, we design the reward and construct the intra-task relations based on the loss decomposition
introduced in Section Though Eq. [2]reveals the signal during training, the inner products of

Under review as a conference paper at ICLR 2024

gradients from different tasks can significantly differ at scale (see Appendix [F)). This will mislead
the bandit’s update seriously since improvements may come from large gradient values even when
they are almost orthogonal. To address this, we propose to use cosine metric to measure the influence
between task pairs. Formally, for task Tj from ¢; to to, the influence from training the same type of

COP T} to Tj is:

VTLI (W (1)) 202, ml(ay = TE)VLL(O1(t))

mZ(tl — tg) TTi ; . . ; 3)
VL) - || 2252y, melar = THVLL(OU())]]]
and the influence from training other types of COPs T}’ to T; is:
Ve LE (W (1 ;2 ay = TP)V gowe LE(OP (t
it 1 = —TB B) T e = TV EO0)
IV foe L (WO - [3072, meL(ar = T§) Vgare L (OP(1))|
Given Eq. we denote the influence vector to Tji as:
influence from itself
mé-(tl — tz) = (...,mi(tl — t2),...,’ﬂl§-(t1 — tg),...,m;i(tl — tz), ...,mg(tl — tz),)T (5)

influence from the same kind of COP influence from other kinds of COPs

Based on Eq. 5| an influence matrix M (t; — t3) = (..., m}(t1 — t2),...)7 € RE k=1 7 X Eiey
can be constructed to reveal the relationship between tasks from time step ¢1 to £2. There are several
properties about influence matrix M (¢, — t2): (1) M(t; — t2) has blocks M*(t; — t3) € R™
in the diagonal position which is the sub-influence matrix of a same kind of COP with different
problem scales; (2) M (t; — t2) is asymmetry which is consistent with the general understanding in
multi-task learning; (3) The row-sum of M (t; — t3) are the total influences obtained from all tasks
fo one task; (4) The column-sum of M (¢; — t3) are the total influences from one task 7o all tasks.

According to the implication of the elements in M (t; — t2), the column-sum of M (t; — t3):

r(ty = to) =17 - M(t; — to) € R Ziza e (6)

actually provides a meaningful reward signal for selecting tasks ,which we can use to update the
bandit algorithm. Moreover, we denote the update frequency of computing the influence matrix as
AT and the overall training time is nAT, then an average influence matrix ¥ can be constructed
based on influence matrices { M (kAT — (k + 1)AT),k = 0,2,...,n — 1} collected during the
training process:

n—1
= ﬁ > M (EAT — (k +1)AT), (7
k=1

revealing the overall task relations across the training process.

When computing the bandit rewards, there remains an issue regarding the approximation of
VTLz-(\I'i(tl)) in equations and Moreover, there is a lack of theoretical works discussing
this issue within the context of neural networks. We propose a heuristic method that relies on the
widely accepted assumption in multi-task learning:

Assumption 1. When using cosine metric on the gradients to measure the similarity between tasks,
one task should have the similarity of 1 with itself (Wang et al.| 2020; |Yu et al.| |2020).

The training influences determined by Eq. [3] and [f] can be seen as the similarity between tasks
measured by cosine metric, therefore we can determine:

VTLH (W (t1)) an a; = T;)VL;(©'(t)) ®)

t=tq

for Eq. when q = 7 in order to ensure that the self-task similarity mz- (t; — t3) equals 1.

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

In this section, we conduct a comparative analysis between our proposed method and both single-task
training (STL) and extensive multi-task learning (MTL) methods to demonstrate the efficacy of our
approach in addressing various COPs under different evaluation criteria. Specifically, we examine
two distinct scenarios: (1) Under identical training budgets, we aim to showcase the convenience of
our method in automatically obtaining a universal combinatorial neural solver for multiple COPs,
circumventing the challenges of balancing loss in MTL and allocating time for each task in STL;
(2) Given the same number of training epochs, we seek to illustrate that our method can derive a
potent neural solver with excellent generalization capability. Furthermore, we employ the influence
matrix to analyze the relationship between different COP types and the same COP type with varying
problem scales.

Experimental settings. We explore four types of COPs: the Travelling Salesman Problem (TSP), the
Capacitated Vehicle Routing Problem (CVRP), the Orienteering Problem (OP), and the Knapsack
Problem (KP). Detailed descriptions can be found in Appendix[A] Three problem scales are considered
for each COP: 20, 50, and 100 for TSP, CVRP, and OP; and 50, 100, and 200 for KP. We employ
the notation “COP-scale”, such as TSP-20, to denote a particular task, resulting in a total of 12
tasks. We emphasize that the derivation presented in Section [3.1] applies to a wide range of loss
functions encompassing both supervised learning-based and reinforcement learning-based methods.
In this study, we opt for reinforcement learning-based neural solvers, primarily because they do not
necessitate manual labeling of high-quality solutions. As a representative method in this domain, we
utilize the Attention Model (AM) (Kool et al., 2019) as the backbone and employ POMO (Kwon
et al.,|2020) to optimize its parameters. Concerning the bandit algorithm, we select Exp3 and the
update frequency is set to 12 training batches. We discuss the selection of the MAB algorithms and
update frequency in Appendix [C] with details on training and configuration in Appendix [E]

4.1 COMPARISON WITH SINGLE TASK TRAINING AND MULTI TASK LEARNING

In this part, we explore the differences in performance between our method, MTL, and STL across
various comparison criteria, highlighting our method’s superior efficiency and generalization ability.

Comparison under same training budgets. We now Table 1: Training time per epoch, repre-
consider a practical scenario with limited training re- sented in minutes. The COPs are classified
sources available for neural solvers for all tasks. Our jnto three scales: small, median, and large,
method addresses this challenge by concurrently train- which correspond to the sizes of 20, 50, and
ing all tasks using an appropriate task sampling strategy. 100, respectively (50, 100, and 200 for KP).
However, establishing a schedule for STL is difficult

due to the lack of information regarding resource allo- COP Small Median
cation for each task, and MTL methods are hindered
by efficiency issues arising from joint task training. TSP 0.19 0.39 0.75
In this section, we compare our method with naive CVRP 0.27 0.50 0.90
STL and MTL methods in terms of the optimality gap: OP 0.20 041 0.60

gap% = |% — 1] x 100, averaged over 10,000 in- KP 0.34 0.61 1.10

stances for each task under an identical training time budget.

Large

The total training time budget is designated as B, with each type of COP receiving resources
equitably for % within the STL framework. Two schedules are considered for the allocation of
time across varying problem scales for the same category of COP: (1) Average allocation, denoted
as STL,ye., indicating a uniform distribution of resources for each task; (2) Balanced allocation,
denoted as STLy,;, signifying a size-dependent resource assignment with a 1:2:3 ratio from small to
large problem scales,categorizing tasks into easy-median-hard levels. The first schedule is suitable
for realistic scenarios where information regarding the tasks is unavailable, while the second is
advantageous when prior knowledge is introduced.

To mitigate the impact of extraneous computations, we calculate the time necessary to complete one
epoch for each task and convert the training duration into the number of training epochs for STL.
Utilizing the same device, the training time for for each task with STL and MTL methods can be
found in Table[T]and Table[3] We assess three distinct training budgets: (1) Small budget: the time
required to complete 500 training epochs using our method, approximately 1.59 days in GPU hours;

Under review as a conference paper at ICLR 2024

Table 2: Comparison among our proposed method, multi-task learning (MTL), and single task training
(STL) utilizing the same training budget. Specifically, STLavg. and STLbal. denote the allocation of
resources, with an even distribution and a balanced allocation ratio of 1 : 2 : 3, respectively, among
tasks with varying scales from small to large. The reported results depict the optimality gap ({) in the
main aspects.

Method | TSP20 TSP50 TSP100| CVRP20 CVRP50 CVRP100 | OP20 OP50 OP100| KP50 KP100 KP200| Avg. Gap
STLavg 0.009% 0.346% 3.934%| 0.465% 2.292% 5.899% | —1.075% 1.291% 5.674%| 0.029% 0.015% 0.017% 1.575%
STLpal. 0.019% 0.346% 2.967% | 0.599% 2.292% 4.774%| —0.973% 1.291% 4.771%| 0.033% 0.015% 0.016% 1.346%
8, Naive-MTL 0.029% 0.725% 3.427%| 0.676% 2.455% 4.396%| —0.464% 2.607% 5.564% | 0.036% 0.014% 0.016% 1.623%
S Bandit-MTL| 0.023% 0.804% 3.601%| 0.717% 2.523% 4.460% | —0.715% 1.148% 2.903% | 0.047% 0.016% 0.021% 1.296%
A PCGrad 0.230% 1.762% 5.476% 1.337% 4.025% 6.858% 0.323% 4.421% 7.773% |64.504% 0.018% 0.036% | 8.064%
3 UW 0.036% 0.394% 1.905% | 0.451% 1.667% 3.291%| —0.562% 1.776% 3.989% | 0.039% 0.016% 0.022% 1.085%
E CAGrad 0.634% 3.209% 8.433% 1.417% 4.631% 7.668% 0.536% 4.516% 8.232% | 0.048% 0.024% 0.063% | 3.284%
IMTL 27.539% 53.406% 77.085% |175.989% 345.701% 560.506% 8.620% 31.643% 52.342% |46.968% 53.615% 71.868% |125.440%
Nash-MTL | 0.274% 1.315% 4.286% | 0.858% 3.166% 5.852% | —0.171% 3.494% 7.312%| 0.045% 0.016% 0.021%| 2.206%
Random 0.041% 0.402% 1.975% | 0.489% 1.797% 3.298% | —0.998% 0.794% 2.488% | 0.032% 0.014% 0.015% | 0.862%
Ours 0.030% 0.297% 1.687% | 0.422% 1.554% 2.861%|—-1.081% 0.533% 2.153% | 0.031% 0.014% 0.014%| 0.710%
STLave. 0.005% 0.183% 2.237%| 0.379% 1.667% 4.137% | —-1.156% 0.674% 3.670% | 0.025% 0.013% 0.015%| 0.988%
_ STLa. 0.008% 0.183% 1.656% | 0.447% 1.667% 3.460% | —1.118% 0.674% 2.563% | 0.027% 0.013% 0.013% | 0.800%
& Naive-MTL | 0.023% 0.376% 2.058%| 0.507% 1.987% 3.576%| —0.831% 1.277% 3.416% | 0.032% 0.012% 0.013% 1.037%
2 BanditMTL| 0.015% 0.424% 2.072%| 0.586% 1.857% 3.483%| —1.137% 0.805% 2.577%| 0.047% 0.016% 0.021%| 0.897%
ﬁ PCGrad 0.097% 1.070% 3.941%| 0.897% 3.003% 5.016% | —0.100% 3.142% 5.782% | 64.504% 0.019% 0.018% | 7.282%
-_g uw 0.036% 0.231% 1.426%| 0.373% 1.540% 3.032%| —0.855% 0.802% 3.108% » 0.013% 0.022%| 0.813%
ﬁ CAGrad 0.507% 2.069% 6.112% 1.353% 3.489% 6.113% | —0.176% 3.800% 6.957% . 0.024% 0.063% | 2.530%
IMTL 27.539% 53.406% 77.085% | 20.549% 57.972% 117.359% 5.431% 24.835% 38.553% | 3.700% 3.986% 1.973% | 36.032%
Nash-MTL | 0.157% 0.854% 3.104%| 0.617% 2.415% 4.561% | —0.677% .679% 0.045% 0.016% 0.021% 1.616%
Random 0.025% 0.252% 1.310%| 0.371% 1.438% 2.608% | —1.099% 0.029% 0.013% 0.014%| 0.574%
Ours 0.019% 0.202% 1.086% | 0.348% 1.284% 2.362% | —1.114% 0.224% 1.277%| 0.030% 0.012% 0.012%| 0.478%
STLayve 0.002% 0.114% 1.296%| 0.282% 1.276% 3.071% | —1.223% 0.253% 2.087%| 0.018% 0.011% 0.014%| 0.600%
STLbal 0.005% 0.114% 1.024%| 0.367% 1.276% 2.601% | —1.175% 0.253% 1.609% | 0.024% 0.011% 0.012%| 0.510%
a Naive-MTL | 0.015% 0.236% 1.343%| 0.393% 1.589% 2.920% | —0.971% 0.504% 1.919%| 0.026% 0.012% 0.012% | 0.667%
2 Bandit-MTL | 0.012% 0.261% 1.479%| 0.450% 1.529% 2.927% | —1.166% 0.419% 1.928% | 0.036% 0.013% 0.017%| 0.659%
A PCGrad 0.036% 0.674% 2.948% | 0.589% 2.311% 3.945%| —0.764% 1.836% 4.056% | 0.039% 0.015% 0.018% 1.309%
gn uw 0.026% 0.195% 1.230%| 0.347% 1.399% 2.718% | —0.855% 0.588% 2.022% | 0.028% 0.013% 0.015% | 0.644%
5 CAGrad 0.347% 1.955% 5.822% 1.353% 2.723% 4.810% | —0.588% 2.501% 5.782% | 0.056% 0.024% 0.026% | 2.067%
IMTL 27.539% 53.406% T77.085% | 10.597% 23.232% 33.583% 3.953% 25.055% 39.207% | 0.059% 0.030% 0.031% | 24.481%
Nash-MTL | 0.079% 0.513% 2.331%| 0.517% 2.191% 3.589% | —0.948% 1.437% 3.996% | 0.045% 0.018% 0.021% 1.149%
Random 0.019% 0.207% 1.069% | 0.336% 1.274% 2.322%| —1.104% 0.219% 1.188%| 0.027% 0.012% 0.012%| 0.465%
Ours 0.017% 0.169% 0.960% | 0.335% 1.218% 2.236% | —1.139% 0.149% 1.129%| 0.026% 0.011% 0.011%| 0.427%

(2) Medium budget: 1000 training epochs, consuming 3.28 days in GPU hours; and (3) Large budget:
2000 training epochs, spanning 6.64 days in GPU hours.

Extensive MTL baselines are considered here: Bandit-MTL (Mao et al.,|2021)), PCGrad (Yu et al.,
2020), Nash-MTL (Navon et al., 2022)), Uncertainty-Weighting (UW) (Kendall et al., 2018), CAGrad
(Liu et al.} 2021a)) and IMTL (Liu et al.,|2021b)). We also involve the random policy which samples
the task uniformly at each training slot, and the results are presented in Table 2] In general, our
method outperforms MTL and STL methods in terms of averge gap across all the budgets used.
Specifically, our method yields consistent improvements for 10 out of 12 tasks under the small budget,
8 and 7 out of 12 tasks under the medium and large budget. Moreover, our approach demonstrates a
stronger focus on more challenging problems, as it attains greater improvements for larger problem
scales compared to smaller ones. What’s more, when comparing with all MTL methods, our method
demonstrates two superior advantages:

* Better performance on the solution quality and efficiency: In Table 2] typical MTL methods
fail to obtain a powerful neural solver efficiently, and some of them even work worse than
naive MTL and STL in limited budgets;

* More resources-friendly: The computation complexity of typical MTL methods grows
linearly w.r.t. the number of tasks|‘} conducting these training methods still needs heavy
training resources (High-performance GPU with quite large memories). The exact training
time for one epoch w.r.t. GPU hour are listed in Table[3] Under the same training setting,
intermediate termination of prolonged training epoch for typical MTL methods incurs wasted
computation resources. However, our method trains only one task at each time slot, resulting
in rapid epoch-wise training that facilitates flexible experimentation and iteration.

Table 3: Time consumption for MTL methods w.r.t. the GPU hours for training one epoch in average.

Bandit-MTL PCGrad Nash-MTL UW IMTL CAGrad Ours
GPU Hours 1.04 6.02 5.87 1.00 5.61 5.24 0.07

It’s also interesting to see that the random policy outperforms STL and the best-performing MTL
baselines in our context, underscoring the positive effects of changing the training paradigm. Fur-

?Detailed analysis about the computation complexity of each MTL method is in Appendix@

Under review as a conference paper at ICLR 2024

TSP20 11 TSPSO TSP100 Mean Results on TSP 11 CVRP20 CVRP50 CVRP100 Mean Results on CVRP
-)

TTTRRELL!

=
Eympiguss®s . 3
N 6 30

0P50

Optimality Gap (%)
S

ffffffffffffffffff

L]
= 2SS SNV FE IR
20 a0 00 800 1000

Epochs

Figure 2: A comparison between single task training (STL) and our method is showcased in this
figure, with both methods utilizing the same number of training epochs (1000 in this case). While STL
achieves superior performance, our method is capable of effectively tackling all tasks simultaneously,
as evidenced by the strong mean results it produces.

thermore, our proposed method surpasses the random policy, providing evidence of the additional
improvements achieved through the integration of the bandit algorithm.

As the training budgets increase, STL’s advantages become evident in easier tasks such as TSP,
CVRP-20, OP-20, and KP-50. However, our method continues to deliver robust results for more
difficult tasks like CVRP-100 and OP-100. Simultaneously, we observe a decrease in gain as the
budget expands, aligning with our understanding that negative transfer exists among different tasks.

In addition to performance gains, the most notable advantage of our approach is that it does not require
prior knowledge of the tasks and is capable of dynamically allocating resources for each task, which
is crucial in real-world scenarios. When implementing STL, biases are inevitably introduced with
equal allocation. As demonstrated in Table 2} the performance of two distinct allocation schedules can
differ significantly: STLy,. consistently outperforms STL,, due to the introduction of appropriate
priors for STL.

Table 4: The comparison results are obtained by training our model for 1000 epochs and STL models
for 100 epochs each, amounting to a total of 1200 epochs.

| TSP20 TSP50 TSP100|CVRP20 CVRP50 CVRPI100| OP20 OP50 OP100| KP50 KP100 KP200 | Avg. Gap

STL |0.011% 0.244% 1.578% | 0.465% 1.706% 3.194%|-1.133% 0.781% 2.898% |0.026% 0.013% 0.01237% | 0.816%
Ours | 0.019% 0.202% 1.086% | 0.348% 1.284% 2.362% | -1.114% 0.224% 1.277% | 0.030% 0.012% 0.01236% | 0.478%

Comparison under same training epochs. We conduct a comparison under the same number of
training epochs by training our method on 12 tasks mentioned before for 1000 epochs in total, and
comparing them with corresponding Single Task Learning (STL) neural solvers that are trained
for 1000 epochs on each of their respective tasks. This is, by no means, a fair comparison, as our
method dynamically chooses a task to train for 1000 epochs, resulting in a much smaller sample
size than each task when using STL. Despite this, we choose this comparison as an intuitive way to
demonstrate the superior generalization ability of our method under such extreme conditions. We
present the results in Figure 2] and Table] Compared to individual tasks, shown in Table i our
method (trained 1000 epochs) consistently outperforms STL (trained 100 x 12 = 1200 epochs)
across most tasks, with exceptions noted in TSP20, OP20, and KP50. In most cases, our method’s
performance is equivalent to that of using 100 to 300 epochs of STL. However, STL can only obtain
one model in this context and lacks the ability to handle different types of COPs or to generalize well
when presented with the same type of COP but with varying problem scales. As a result, our method
demonstrates unparalleled superiority in three ways: (1) when considering the average performance
on all problem scales for each type of COP, our method obtains the best results in CVRP, OP, and
KP, and is equivalent to the results achieved by training TSP for about 500 epochs. This showcases
our method’s excellent generalization ability for problem scales; (2) Our method can handle various
types of COPs under the same number of training epochs, which is impossible for STL due to the
existence of task-specific modules; (3) Our method’s training time is strictly shorter than the longest
time-consuming task.

4.2 STUDY OF THE INFLUENCE MATRIX

Our approach has an additional advantage as it facilitates the identification of the task relationship
through the influence matrix developed in Section[3.2] The influence matrix allows us to capture the
inherent relationship among tasks. Additionally, we provide empirical evidence pertaining to the
experience and observation in the learning to optimize community. We present a detailed view of
the influence matrix in Figure 3] revealing significant observations: (1) Figure [3a| highlights that the

Under review as a conference paper at ICLR 2024

- Influence of Training Each Task on Other Tasks
Influence Matrix TSP-20 9 TSP-50 TSP-100

0.0012 00013 00001 00012 00024 00008 0.0008 -0.0004 -0.0001 R e RS R G aklewe cH B . .-

00013 0.0009 0.0040 -0.0001 0.0021 00042 -0.0014 00011 0.0003

CVRP-20 CVRP-50 CVRP-100

A} L | ; :
SURPR o ooois oomsl over osoor coves i g e i g e r e l i o —
E' - 02 ERITTN 0.0005 0.0022 0.0028 -0.0001 0.0001 0.0002 j 5 5 i ’1.
¢ OP-20 OP-50

0.0006 0.0006 -0.0005 0.0003 0.0001 00001 [ERIITH 00562 00195 0.0000 -0.0000 -0.0000

§-cone 00018 0000 00006 -D0o0s 00001 oooir o000 [ERETY 0001

(a) Influence matrix for 12 tasks. (b) Influence distribution for 12 tasks.

Figure 3: This figure provides a visual representation of the mutual influence between tasks. The left-
hand side displays the average influence matrix, as defined in Eq. [7) which reveals significant mutual
influences existing among the COPs of the same type. Meanwhile, the right-hand side illustrates the
influence value, as defined in Eqgs. [3] @] throughout the training process, further demonstrating the
extensive mutual impacts among the COPs of the same type and the less pronounced interactions
between COPs of different types.

influence matrix computed using Eq. [7] possesses a diagonal-like block structure. This phenomenon
suggests a strong correlation between the same type of COP with different problem scales, which
is not present within different types of COPs due to the corresponding elements being insignificant.
Furthermore, within the same type of COP, we observe that the effect of training a task on other
tasks lessens with the increase in the difference of problem scales. Hence, training combinarotial
neural solvers on one problem scale leads to higher benefits on similar problem scales than on those
that are further away. For instance, the influence of training TSP-20 on TSP-50 is 0.1007, which is
higher than the influence on TSP-100, which is —0.1196. Similarly, training TSP-100 on TSP-50 has
a larger influence than that on TSP-20, as can be observed from influences of —0.0354 and —0.0978,
respectively; (2) Figure [3b] presents a visualization of the influence resulting from Eq. [3] [over
the course of the training process. Each point in the chart represents the influence of a particular
task on another task at a specific time step. Notably, tasks belonging to the same type of COP are
highly influential towards each other due to the large variance of their influence values. Conversely,
influences between different types of COPs are negligible, evident from the influence values being
concentrated around 0. This striking observation showcases that the employed combinatorial neural
solver and algorithm, AM (Kool et al.,|2019) and POMO (Kwon et al.,2020), segregate the gradient
space into distinct orthogonal subspaces, and each of these subspaces corresponds to a particular type
of COP. Furthermore, this implies that the gradient of training each variant of COP is situated on a
low-dimensional manifold. As a result, we are motivated to develop more parameter-efficient neural
solver backbones and algorithms.

5 CONCLUSIONS

In the era of large models, training a unified neural solver for multiple combinatorial tasks is in
increasing demand, whereas such a training process can be prohibitively expensive. In this paper,
given limited training budgets or resources, we propose an efficient training framework to boost the
training of unified multi-task combinatorial neural solvers with a multi-armed bandit sampler. To
achieve this, we perform the theoretical loss decomposition, resulting in the meaningful influence
matrix that can reveal the intrinsic task relations among different COP tasks, providing evidence for
several empirical observations in the area of learning to optimize. We believe that this framework can
be powerful for multi-task learning in a broader sense, especially in scenarios where resources are
limited, and generalization is crucial. It can also help analyze task relations in the absence of priors.
Furthermore, the proposed framework is model-agnostic, which makes it applicable to any existing
neural solvers. Different neural solvers may produce varying results on the influence matrix, and a
perfect neural solver may gain mutual improvements even from different types of COPs. Therefore,
there is an urgent need to study the unified backbone and representation method for solving COPs.

Under review as a conference paper at ICLR 2024

REFERENCES

Forest Agostinelli, Alexander Shmakov, Stephen McAleer, Roy Fox, and Pierre Baldi. A*
search without expansions: Learning heuristic functions with deep q-networks. arXiv preprint
arXiv:2102.04518, 2021.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
In Shie Mannor, Nathan Srebro, and Robert C. Williamson (eds.), COLT 2012 - The 25th Annual
Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland, volume 23 of JMLR
Proceedings, pp. 39.1-39.26. IMLR.org, 2012. URL http://proceedings.mlr.press/
v23/agrawall2/agrawall2.pdfl

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th annual foundations of
computer science, pp. 322-331. IEEE, 1995.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235-256, 2002.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=BkImx1SFx.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 2020.

Lilian Besson. SMPyBandits: an Open-Source Research Framework for Single and Multi-
Players Multi-Arms Bandits (MAB) Algorithms in Python. Online at: |github.com/
SMPyBandits/SMPyBandits, 2018. URL https://github.com/SMPyBandits/
SMPyBandits/. Code at https://github.com/SMPyBandits/SMPyBandits/, documentation at
https://smpybandits.github.io/.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. arXiv
preprint arXiv:2210.07686, 2022.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural
information processing systems, 24, 2011.

Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning
to aolve large-scale tsp instances. In International Conference on Artificial Intelligence and
Statistics, pp. 1219-1231. PMLR, 2023.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In William W. Cohen, Andrew McCallum, and Sam T.
Roweis (eds.), Machine Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008, volume 307 of ACM International Conference
Proceeding Series, pp. 160-167. ACM, 2008. doi: 10.1145/1390156.1390177. URL https:
//doi.org/10.1145/1390156.1390177.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. Advances in Neural Information Processing Systems, 34:
27503-27516, 2021.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pp. 7474-7482. AAAI Press, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16916.

10

http://proceedings.mlr.press/v23/agrawal12/agrawal12.pdf
http://proceedings.mlr.press/v23/agrawal12/agrawal12.pdf
https://openreview.net/forum?id=Bk9mxlSFx
github.com/SMPyBandits/SMPyBandits
github.com/SMPyBandits/SMPyBandits
https://github.com/SMPyBandits/SMPyBandits/
https://github.com/SMPyBandits/SMPyBandits/
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://ojs.aaai.org/index.php/AAAI/article/view/16916

Under review as a conference paper at ICLR 2024

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Glinnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL |https://openreview.net/forum?id=
vJZT7dPIjip3l

Yonatan Gur, Assaf Zeevi, and Omar Besbes. Stochastic multi-armed-bandit problem with non-
stationary rewards. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and
Kilian Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pp. 199-207, 2014. URL |https://proceedings.neurips.cc/paper/2014/
hash/903ce9225fca3e988c2af215d4e544d3-Abstract.htmll

Qingchun Hou, Jingwei Yang, Yigiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations.

Ronghang Hu and Amanpreet Singh. Unit: Multimodal multitask learning with a unified transformer.
In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pp. 1419-1429. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00147.
URLhttps://doi.org/10.1109/ICCV48922.2021.00147.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning tsp
requires rethinking generalization. In 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2021.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482-7491, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http
//arxiv.org/abs/1412.6980.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ByxBEsRgYm.

Wouter Kool, Herke van Hoof, Joaquim A. S. Gromicho, and Max Welling. Deep policy dynamic
programming for vehicle routing problems. In Pierre Schaus (ed.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 19th International Conference,
CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022, Proceedings, volume 13292 of Lecture
Notes in Computer Science, pp. 190-213. Springer, 2022. doi: 10.1007/978-3-031-08011-1_14.
URL https://doi.org/10.1007/978-3-031-08011-1_14.

Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task learning. In
Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress, 2012. URL http://icml.cc/
2012 /papers/690.pdfl

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4-22, 1985.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.
Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances

in Neural Information Processing Systems, 34:26198-26211, 2021.

11

https://openreview.net/forum?id=vJZ7dPIjip3
https://openreview.net/forum?id=vJZ7dPIjip3
https://proceedings.neurips.cc/paper/2014/hash/903ce9225fca3e988c2af215d4e544d3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/903ce9225fca3e988c2af215d4e544d3-Abstract.html
https://doi.org/10.1109/ICCV48922.2021.00147
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1007/978-3-031-08011-1_14
http://icml.cc/2012/papers/690.pdf
http://icml.cc/2012/papers/690.pdf

Under review as a conference paper at ICLR 2024

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and Sam Kwong. Pareto multi-task learning. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pp. 12037-12047, 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/685bfde03eb646c27ed565881917c71c—-Abstract.html.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212-261, 1994.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information Processing Systems, 34:18878-18890, 2021a.

Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne
Zhang. Towards impartial multi-task learning. iclr, 2021b.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview,
net/forum?id=BJel334YDH.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task
sequence to sequence learning. In Yoshua Bengio and Yann LeCun (eds.), 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.06114.

Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin, and Wenbin Hu. Banditmtl: Bandit-based multi-
task learning for text classification. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 1 1th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 5506-5516, 2021.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 3994-4003. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.433. URL https://doi.org/10.1109/CVPR.2016.433.

Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective / multi-task learning frame-
work induced by pareto stationarity. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvdri, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 15895-15907. PMLR, 2022. URL https://proceedings.mlr.
press/v162/momma22a.htmll

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp- 525-536, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
432aca3ale345e339f35a30c8fbbedce—Abstract.html,

Hongje Seong, Junhyuk Hyun, and Euntai Kim. Video multitask transformer network. In 2019
IEEE/CVF International Conference on Computer Vision Workshops, ICCV Workshops 2019,
Seoul, Korea (South), October 27-28, 2019, pp. 1553-1561. IEEE, 2019. doi: 10.1109/ICCVW.
2019.00194. URL https://doi.org/10.1109/ICCVW.2019.00194.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1-286, 2019.

Xiaozhuang Song, Shun Zheng, Wei Cao, James Yu, and Jiang Bian. Efficient and effective multi-task
grouping via meta learning on task combinations. In Advances in Neural Information Processing
Systems, 2022.

12

https://proceedings.neurips.cc/paper/2019/hash/685bfde03eb646c27ed565881917c71c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/685bfde03eb646c27ed565881917c71c-Abstract.html
https://openreview.net/forum?id=BJe1334YDH
https://openreview.net/forum?id=BJe1334YDH
http://arxiv.org/abs/1511.06114
https://doi.org/10.1109/CVPR.2016.433
https://proceedings.mlr.press/v162/momma22a.html
https://proceedings.mlr.press/v162/momma22a.html
https://proceedings.neurips.cc/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html
https://doi.org/10.1109/ICCVW.2019.00194

Under review as a conference paper at ICLR 2024

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 9120-9132. PMLR, 2020. URL
http://proceedings.mlr.press/v119/standley20a.htmll

Ximeng Sun, Rameswar Panda, Rogério Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/634841a6831464b64c072c8510c7£f35c-Abstract.htmll

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285-294, 1933.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053clc4a84baa—Abstract.html.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.
2692-2700, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
29921001f2f04bd3baee84al2e98098f-Abstract.html.

Chenguang Wang, Yaodong Yang, Oliver Slumbers, Congying Han, Tiande Guo, Haifeng Zhang, and
Jun Wang. A game-theoretic approach for improving generalization ability of tsp solvers. arXiv
preprint arXiv:2110.15105, 2021.

Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
universal neural solver! arXiv preprint arXiv:2303.00466, 2023.

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov. On negative interference in multilingual models:
Findings and a meta-learning treatment. arXiv preprint arXiv:2010.03017, 2020.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419-22430, 2021a.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems.. IEEE Transactions on Neural Networks and Learning Systems,
2021b.

Jianpeng Xu, Pang-Ning Tan, Jiayu Zhou, and Lifeng Luo. Online multi-task learning framework
for ensemble forecasting. IEEE Trans. Knowl. Data Eng., 29(6):1268-1280, 2017. doi: 10.1109/
TKDE.2017.2662006. URL https://doi.org/10.1109/TKDE.2017.2662006.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:
5824-5836, 2020.

Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pp. 3712-3722. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.

13

http://proceedings.mlr.press/v119/standley20a.html
https://proceedings.neurips.cc/paper/2020/hash/634841a6831464b64c072c8510c7f35c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/634841a6831464b64c072c8510c7f35c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.1109/TKDE.2017.2662006

Under review as a conference paper at ICLR 2024

2018.00391. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Zamir_Taskonomy_Disentangling_Task_ CVPR_2018_paper.htmll

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi Xu. Learn-
ing to dispatch for job shop scheduling via deep reinforcement learning. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
11958dfee29b6709£f48a9bal0387a2431-Abstract.html,

14

http://openaccess.thecvf.com/content_cvpr_2018/html/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.html
https://proceedings.neurips.cc/paper/2020/hash/11958dfee29b6709f48a9ba0387a2431-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/11958dfee29b6709f48a9ba0387a2431-Abstract.html

Under review as a conference paper at ICLR 2024

A PROBLEM DESCRIPTION

Traveling Salesman Problem (TSP) - The objective is to determine the shortest possible route that
visits each location once and returns to the original location. In this study, we limit our consideration
to the two-dimensional euclidean case, where the information for each location is presented as
(wi,y;) € R? sampled from the unit square.

Vehicle Routing Problem (VRP) - The Capacitated VRP (CVRP) (Toth & Vigol|[2014) consists of a
depot node and several demand nodes. The vehicle begins and ends at the depot node, travels through
multiple routes to satisfy all the demand nodes, and the total demand for each route must not exceed
the vehicle capacity. The goal of the CVRP is to minimize the total cost of the routes while adhering
to all constraints.

Orienteering Problem (OP) - The Orienteering Problem (OP) is a variant of the Traveling Salesman
Problem (TSP). Instead of visiting all the nodes, the objective is to maximize the total prize of visited
nodes within a total distance constraint. Unlike the TSP and the Vehicle Routing Problem (VRP), the
OP does not require selecting all nodes.

Knapsack Problem (KP) - The Knapsack Problem strives to decide which items with various
weights and values to be placed into a knapsack with limited capacity fully. The objective is to attain
the maximum total value of the selected items while not surpassing the knapsack’s limit.

B LoSsS DECOMPOSITION

Proofs of proposition[I; We consider the loss L}(©°) for task T’ at time ¢ based on mean value
theorem and take the first order Taylor expansion for ¢ < ts:
Lj(©'(t2)) = Lj(O(t2)) = L;(O(t1)) + VI Li(¥'(t1))(O(t2) — O(t1))

= IO (1) - VILE W) S Ve L(O(1) ©

t=t,

where W'(t;) is some vector lying between ©(¢;) and ©%(t5). Suppose task T* is selected for ¢’
times between time step ¢, and ¢5, we then study the term in the case of all tasks are selected at time
step ¢:

Ve L(O(t) = (Viue L(O(t)), V5 L(O(1))

K 7np i
= (30 Vi LE©F(0). Y VAL O(1)”
p=1qg=1 j=1
= (Vi L5 (O7(1)), VE.L Z S ACH Z Ve Li(©
(a) gradients of training task Tl q;ﬁj 4753
(b) gradients of training task {T;, q#i}
K np
(DD Ve LE(©7(1)),0)"
p=1qg=1
pFi
(c) gradients of training task {777, p # i}
K np
= VLi(©'(t)) + Z VL O (1) + (O] Ve LE(O7(¢)),0).
q=1 p=1qg=1
q#J pFi

4 (10)
The terms (a), (b) and (c) in Eq. mean the gradients leading by the training of task 77/, the same
kind of COP {T}, q # j} and other kinds of COPs {T%, p # i}, respectively. After combining Eq. EI

15

Under review as a conference paper at ICLR 2024

and[10] we obtain
L5(©'(t2)) — L5(0'(t1))
— (VLI (1)) Y Lay = T} VLE(O (1)) + VI Ly (U'(t Z Z (ar = THmVLL(O'(t))
t=t1 q=1t=ty

q#j

(a) effects of training task Tj'.i: el (ti—tz) -
(b) effects of training task {T,;, ¢ # j}: {ef((t1—t2)),q7#J}

K np

+V9\mi “(t1)) ZZZ (ar = ﬁtvgmm 2(©F(1))),

p=1q=1t=t,
pF#i

(c) effects of training task {77, p # i}:{eq (t1—1t2),q=1,2,...,np,p#i}

. (11)
where 1(a; = T}) is the indicator function which is introduced here because we only select one task
at each time step, taking 1 if selecting task T]? at time step ¢, O otherwise. O

Adam optimizer (Kingma & Bal 2015) is more widely used and popular in practice than standard
gradient descent . Accordingly, we derive the loss decomposition for Adam optimizer in a manner
consistent with the previous method. We first summarize the update rule of Adam as follows:

t—1 Ht—i
Lim Bt Vi B
=1 pt— =
2=t B S B a2 + e

t
=O(t—1)+n Y B g
=1

t—1 pt—1
where g; = V.J(©;_1) and go = 0,7, = Y2z P2 L ,mi,1 = 1,2 are exponen-
gi (i 1) 90 Nt 23:11 B; 3 \/22:1 ﬁé_zHgiHLFE i p

tial average parameters for the first and second order gradients. Our assumption is that sharing the
second moment term correction for all tasks can be easily implemented by using a single optimizer
during training.

Ot)=0(t-1)+

Given that the update is predicated on the optimization trajectory’s history, we can use comparable
calculations in gradient descent to infer Adam’s contribution breakdown. Starting at the same point:

Ly(6'(t2)) = L5(0'(t1)) + VI Lj(¥' (11))(©' (t2) — ©'(t1))

to t
= L@ (1) — VLW () S e S AV LO (k- 1)),
t=t1 k=1

then taking Eq. [10]into VL(©(k — 1)), we have

LE(©(12)) — L (0 (1))

ta ¢
— (VILy(W (1) > Lar = T))me Y By *VLi(©'(k — 1))
t=t) k=1

(a) effects of training task T;: e; (t1—t2)

n; t
+VILE(W (1)) Z (ar =Ti)m > _ B FVLL(O'(k - 1))
q=1t=t1 k=1 (12)
q7#J

(b) effects of training task {T;, q # 5} {ei (ti—t2)),q#5}

K np t

+ Ve L5 (T (1) Y Z ar =T Y B1 "Vou L7 (O (k — 1)),
pil_q 1t=ty k=1
pPFL

(c) effects of training task {77, p # i}:{eq(t1—1t2),q=1,2,...,np,p#i}

16

Under review as a conference paper at ICLR 2024

Three similar parts are obtained finally.

C DISCUSSION ON THE BANDIT ALGORITHM AND UPDATE FREQUENCY

As shown in Equation |2} the effect of the training task 77" on T]’ can be computed as
VILL(W (1)L (ar = TP) - VLR (OP(1)).

This is subject to the indicator function 1(a; = T7), which determines whether the task 77 is selected
at time step ¢. In this bandit setting, there are several observations to note: (1) If 5 — ¢; = 1, only
one selected task exists, and thus only one column vector in M (t; — t2) can be non-zero; (2) If task
TP is not selected for training, the gradient information V* L?(©P(t)) cannot be obtained. Further
details regarding gradient approximation configuration can be found in Appendix [E] (3) Stochastic
gradient-based methods are commonly used to optimize parameters. However, frequent updates can
lead to inaccurate or even incorrect influence estimation (refer to Fig. [5a]for the loss during training).
Based on these observations, the following tips are highlighted: (1) For the stability and accuracy of
the gradients, it is recommended to involve more than one step in the process of collecting gradient
information. However, having an overly slow update frequency may yield incorrect results due to
the lazy update of the bandit algorithm; (2) When the update frequency is larger than 1, UCB family
algorithms are unsuitable as they tend to greedily select the same task in the absence of updates.
Therefore, the update frequency is a crucial hyper-parameter to specify, and Thompson Sampling and
adversary bandit algorithms are suitable in this framework due to their higher level of randomness.

Based on above discussions, we present empirical

evidence and elaborate on the details. We performed Performance w.r.t. Bandit Algorithm and Update Frequency
experiments for the 12 tasks under small budgets, =
with five repetitions each. Five update frequencies * = 58

were considered: 6, 12, 24, 36, and 48. The perfor- :
mances w.r.t. optimality gap are presented in Figure
M) and furthere results are in Appendix [H]

Opt. Gap (%)

Effects of bandit algorithms. The four algorithms
considered are: Exp3, Thompson Sampling (TS), -
Exp3R, and Discounted Thompson Sampling (DTS). .,
They have more exploration characteristics than
UCB family algorithms with update delays. More-
over, Exp3R and DTS have the capability to handle
changing environments. According to Fig. @ TS
performs the worst among these four algorithms, as
it fails to handle potential adversaries and changing
environments. DTS performs more robustly than
TS since it involves a discounted factor. Exp3 and
Exp3R provide good results because they are able to handle adversaries and detect environmental
changes. However, Exp3R does not perform significantly better than Exp3 due to the neural solver’s
gradual and slow improvement, resulting no abrupt changes for Exp3R to detect. Based on the
observed performance, it appears that simple procedures such as introducing a discounted factor in
DTS and basic adversary bandit algorithms such as Exp3 are sufficient for handling our case.

TS Exp3 Exp3R
Bandit Algorithm

Figure 4: This figure presents the comparison
results of various bandit algorithms and update
frequencies in terms of optimality gap (%).

Effects of update frequency. The update frequency affects the accuracy of influence information
approximation and the tension in the bandit algorithm. Appropriate selections must balance these
two factors. Figure [shows that the frequency of 12 generally yields the best results across different
bandit algorithms. DTS and Exp3 exhibit deteriorating performance with higher frequencies, resulting
from numerous lazy updates. By contrast, Exp3R does not have this property because increasing the
frequency helps detect changing points more quickly. As a consequence, the number of tasks (12 in
our case) appears to be an appropriate empirical choice to balance these two factors.

D CoOMPUTATION COMPLEXITY OF MTL METHODS

In this part, we will make a detailed comparison on the computation complexity between our method
and other typical MTL methods. We first define some notations for the time complexity:

17

Under review as a conference paper at ICLR 2024

Table 5: Computation complexity of basic operators.

Task Num Dim. Param. Complexity of FF Complexity of BP
N D; F; B,

where D;, F; and B; are the dimension of parameters, the computation cost of feed-forward and back-
ward for task ¢, and we denote D = max{D,,i =1,2,..., N}, F = max{F;,i = 1,2,...,N}, B =
max{B;,i = 1,2,..., N}. We analyse the computation complexity for Bandit-MTL, PCGrad, Nash-
MTL, Uncertainty-Weighting (UW) and our method, results are shown as follows:

Table 6: Computation complexity of different MTL methods for one training time slot. "Basic"
measures the computation for the feed-forward and backward process, "Extra" measures the extra
computations used for guiding MTL, and "All" is the sum of them.

‘ Naive-MTL Bandit-MTL PCGrad Nash-MTL uw IMTL CAGrad cOurs
Basic| O (N(F + B)) O(N(F + B)) O(N(F + B)) O(N(F+ B)) O(N(F+ B)) O(N(F+ B)) O(N(F+ B)) O(F+ B)
Extra 0 O(N) O(ND) O (N*D) O (1) O(ND+N* - O(ND)
All |O(N(F+B)) O(N(F+B+1)) O(N(F+B+D)) O(N(F+B+ND)) O(N(F+B)) O(N(F+B+ N*D) - O(F+B+ND)

where "Basic" measures the computation for the feed-forward and backward process, "Extra" mea-
sures the extra computations used for guiding MTL, and "All" is the sum of them.

We ignore the complexity of sampling from a discrete distribution with N elements, e.g. sampling
an arm in MAB algorithm. What’s more, we also ignore the optimization process in Nash-MTL
and UW because they are quite efficient to compute. From the results in the Table 6] our method
has moderate extra computation costs comparing with other methods, however, when considering
the overall computation cost, our method achieves the lowest complexity because we only need to
perform one feedforward-backward process which is the most time-consuming part during training.

E EXPERIMENTAL SETTINGS

Model structure - We adopt the same model structures as in POMO (Kwon et al., |2020) to build our
model. To train various COPs in a unified model, we use a separate MLP on top of the model for each
problem, which we call Header. This header facilitates correlation of input features with different
dimensions. For TSP, we use two-dimensional coordinates, {(x;,y;),? = 1,2, ...,n}, as input, while
CVRP and OP have additional constraints on customer demand and vehicle capacity, in addition to
two-dimensional coordinates. Hence, their input dimensions are 3 and 3, respectively. Moreover, in
OP, the prize is assigned based on the distance between the node and the depot node, following the
setting in AM (Kool et al.,[2019). The KP takes two-dimensional inputs, {(w;, v;),i = 1,2, ...,n},
with w; and v; representing the weight and value of each item, respectively. As such, we introduce
four kinds of Header to embed features with different dimensions to 128. The embeddings obtained
from the Header are then passed through a shared Encoder, composed of six encoder layers based
on the Transformer (Vaswani et al.,[2017). Finally, we employ four type-specific Decoders, one for
each COP, to make decisions in a sequential manner. The shared Encoder has the bulk of the model’s
capacity because the Header and Decoder are lightweight 1-layer MLPs. Furthermore, when solving
a specific COP, we only need to use the relevant Encoder, Header, and Decoder for evaluation. Since
the model size is precisely the same, the inference time required is similar to that of single-task
learning.

Hyperparameters - In each epoch, we process a total of 100x1000 instances with a batch size
of 512. The POMO size is equal to the problem scale, except for KP-200, where it is 100. We
optimize the model using Adam (Kingma & Bal [2015)) with a learning rate of 1e-4 and weight decay
of le-6. The training of the model involves 1000 epochs in the standard setting. The learning rate is
decreased by le-1 at the 900th epoch. During the first epoch, we use the bandit algorithm to explore
at the beginning of the training process. We then collect gradient information by updating the bandit
algorithm with every 12 batches of data. The model is trained using 8 Nvidia Tesla A100 GPUs in
parallel, and the evaluations are done on a single NVIDIA GeForce RTX 3090.

18

Under review as a conference paper at ICLR 2024

Approximation of gradients - Another issue is the approximation of VL@(@i(t)) in Eq. 3| and

Vg LE(OP (1)) in Eq. Elwhen tasks T, and T are not selected during the update interval. To obtain
an approximation, we use the most recent gradient information collected from the last time they were
selected to train. This approximation is necessary because training task 77 can change the values

of ©% and 6*"%, which can affect other training tasks. Considering all these changes is necessary to
accurately measure the influences of training 77; on other tasks.

Bandit settings - We utilized the open-source repository 2018) for implementing the bandit
algorithms in this study with default settings.

F Lo0SS AND GRADIENT NORM OF EACH TASK

Training Loss For Each Task Gradient Norm For Each Task

(a) Training loss for each task. (b) Gradient norm for each task.

Figure 5: Training loss and gradient norm for each task in the log-scale.

One intuitive method of measuring the effect of training is to calculate the ratio of losses between
adjacent training sessions. These ratios can be used to calculate training rewards for each correspond-
ing task. However, as shown in Figure[5a] this method of calculating rewards is not effective because
they are not sufficiently distinct to guide the training process properly.

Computing the inner products of corresponding gradients to analyze how training one task affects
the others can lead to a misleading calculation of rewards and training process. Figure [5b| visualizes
gradient norms for each task in the logarithmic scale. We observe that the gradient norms are not in
the same scale, which becomes problematic when jointly training different COP types. In such cases,
the rewards of certain COP types (such as CVRP in our experiments) may dominate the rewards of
other types.

G DEMONSTRATION OF THE BANDIT ALGORITHMS

This section presents detailed information on various bandit algorithms, as shown in Fig. [6] including
the selection count and average return for each task. It is evident that TS algorithm dominates in all
12 tasks, leading to poor performance on tasks where training is limited. In contrast, other bandit
algorithms maintain balance across all tasks, resulting in better average results.

H FURTHER RESULTS ON THE BANDIT ALGORITHM SELECTION AND
UPDATE FREQUENCY

In Appendix [C] we examine the impact of bandit algorithms and update frequency on 12 tasks,
specifically on the average optimality gap. We also analyze the effect of these two factors on the
influence matrix, which is presented in this section. For ease of understanding, a visual aid is included
in Figure[7] By combining the results from Figure[3]and Figure[7] we can infer that influence matrices
derived from DTS, Exp3, and Exp3R with an update frequency of 6 and 12 comply with the rule
specified in Section4.2] However, the TS algorithm disregards this rule due to its inability to handle

19

Under review as a conference paper at ICLR 2024

(h) Exp3R-12

+

3

i

(i) TS-24

-36

(q) TS-48 (r) DTS-48 (s) Exp3-48 (t) Exp3R-48

Figure 6: Further results of the bandit information. The caption of each subfigure "A-B" means the
influence matrix obtained by algorithm A with update frequency B.

20

Under review as a conference paper at ICLR 2024

adversaries and changing environments. Moreover, when the update frequency is increased, the
approximation of the influence matrix is impaired due to the lazy update of bandit algorithms. As a
result, utilizing the number of tasks as the update frequency appears to be a sound decision, as it not
only improves performance but also enhances interpretability.

I ADDITIONAL EXPERIMENTS ON OTHER DOMAINS

We select the challenge domain on Time Series to evaluate the performance of our method. Following
the common practice in this domain, there are multiple series in one piece of data and the prediction
on each series is seen as a task. E]We consider Long-term Forecasting tasks comprising ETT (4
subsets), Weather, Exchange and ILI datasets, and Imputation task comprising ETT and Weather. The
backbone is AutoFormer (Wu et al.||2021a) and all the experimental settings keep the same as the
original paper.

Table 7: For Long-term Forecasting tasks, all the results are averaged from 4 different prediction
lengths, that is {24, 36, 48,60} for ILI and {96, 192, 336, 720} for the others. "Baseline" provides
the the results in the original paper. Results in bold mean achieving the best performance among all
methods.

ETT-hl ETT-h2 ETT-ml ETT-m2 Whether Exchange ILI
Method MSE MAE | MSE MAE| MSE MAE| MSE MAE| MSE MAE | MSE MAE | MSE MAE
MTL |0.496 0.487|0.450 0.459]0.588 0.517]0.327 0.371]0.338 0.382]0.613 0.539|3.006 1.161
Bandit-MTL | 0.438 0.420|0.398 0.363|0.533 0.643|0.304 0.220|0.327 0.254|0.319 0.181 |1.424 3.955
uw 0.420 0.385{0.400 0.359|0.502 0.557(0.325 0.236|0.308 0.231|0.287 0.153 | 1.425 3.942

CAGrad 0.468 0.466|0.390 0.351|0.477 0.488|0.304 0.220|0.312 0.241|0.310 0.174 |1.411 3.856
IMTL-G 0.445 0.423]0.392 0.352|0.465 0.462|0.303 0.219|0.319 0.245|0.286 0.153 |1.399 3.776
Nash-MTL |0.468 0.472|0.409 0.370|0.468 0.483|0.310 0.225|0.315 0.240|0.302 0.165|1.376 3.806
Ours 0.418 0.385|0.383 0.343|0.506 0.547(0.299 0.215|0.360 0.277|0.333 0.193 | 1.689 5.189

Results show that there are no consisting best methods for all datasets, however, our method can
achieve the best performance consistently on 3 out of 7 datasets.

Table 8: For Imputation tasks, time series are randomly masked {12.5%, 25%, 37.5%, 50%} time
points in length-96. The results are averaged from 4 different mask ratios. Results with underline
mean achieving the best performance among all methods and those in bold mean achieving the best
among all MTL methods.

ETT-h1 ETT-h2 ETT-ml ETT-m2 Weather
Method MSE MAE | MSE MAE| MSE MAE | MSE MAE | MSE MAE

Baseline |0.103 0.214]0.055 0.156]0.051 0.150|0.029 0.1050.031 0.057
Bandit-MTL | 0.324 0.201 |0.437 0.414|0.579 0.576|0.603 0.792|0.255 0.154

uw 0.268 0.143 | 0.354 0.280|0.669 0.767|0.774 1.124|0.391 0.324
CAGrad 0.269 0.144|0.354 0.267|0.593 0.605|0.640 0.747|0.347 0.257
IMTL 0.270 0.145|0.353 0.266|0.594 0.605|0.681 0.854|0.388 0.337
Nash-MTL |0.268 0.143|0.347 0.255|0.637 0.694|0.693 0.866|0.489 0.494
Ours 0.300 0.174|0.411 0.366 |0.473 0.384|0.609 0.734|0.283 0.174

From these results, our method performs well in some cases, but generally speaking, there is no one
universal approach which can handle all tasks or even on all datasets in a task .

J STABILITY OF EACH METHOD

We demonstrate the stability of each model obtained by the specific methods on 10000 test instances
from each COP and the corresponding error bar plot is shown in Fig. 8] It is generally accepted that
longer training epochs lead to reduced standard variance for each method. Additionally, our method

3For forecasting and imputation tasks, we ignore the Electricity and Traffic dataset because all MTL methods
meet out of memory errors because there are too many tasks.

21

Under review as a conference paper at ICLR 2024

Influence Matrix Influence Matrix

- oo oo s om0 amn s amer | voon oo s aoms oamr o

Influence Matrix Influence Matrix

oot oo o aoms remn s coms aser aou wsn a0 wsm
from oo o o v e ot o s oo

FIPVSIPRRPRT T ——

AN AR AR
a0 A0 a6 ¢F

B

(b) DTS-6 (c) Exp3-6 (d) Exp3R-6

Influence Matrix

TSP - | o L [

Influence Matrix

(e) TS-12 (f) DTS-12 (g) Exp3-12 (h) Exp3R-12
n Influence Matrix X Influence Matrix Influence Matrix Influence Matrix

- -
(i) TS-24 (k) Exp3-24

Influence Matrix Influence Matrix Influence Matrix

Influence Matrix

o s s o sao oo s s ;..._. [- ;..... s s aons oaes ssom one con o s '..,.,. oo conm s s conn s s
o ooms oo asm aemr oowe ooow s e HC aoms somn . oomr “ 0 ooeer aones s " o - e o ooms scous ases wemr eowes

i (HHE
N E

(m) TS-36 (o) Exp3-36 (p) Exp3R-36

Influence Matrix Influence Influence Matrix

(q) TS-48 (r) DTS-48

(s) Exp3-48 (t) Exp3R-48

Figure 7: Further results of the influence matrix on the selection of bandit algorithms and update
frequency. The caption of each subfigure "A-B" means the influence matrix obtained by algorithm A
with update frequency B.

22

Under review as a conference paper at ICLR 2024

et TSP20 TSP50 TSP100

4
5 i i 75 |
2 5.0
m] N m
mEEEE Nl gl “gy-teEE, A

CVRP20 CVRP50 CVRP100
2 i |
4
IIITTS TN LT PRt FPELCTY P
2
0] iu [| [1™
=
Y
8 0P20 OP50 OP100
z, 10
£ s] R
g EE $Ivs hgatfy, il
QE 4 EETER Cag LN T
KP50 le—2 KP100 te-1 KP200
1.0
' ° 0.5 E
° LIS EN TTTTEITT
0.0
S ESTFEFS FIEFSFSES FIFFI G685
IO F 5 56 & F F 5 &5 6 ¢ F S 58
L F & Eas & ey &

(a) Small budget
teot TSP20 TSP50 TSP100
;] 2] n
i ! E 25 .
AmEEE THE guifyg “gpEpiEy Ty,

CVRP20 CVRP50 CVRP100

:Eiiiiﬁiﬁﬁziiiiiiii;fiiii: T

£
a
8 OP20 OP50 OP100
>
s E i
EE EENEE if s "a¥EE
0
KP50 KP100 Tez KP200
%E 5 E
TITTIEETT
AD’Q'E&V/\\'Q,?& & ﬁ,g?/t//:f S & &L P@x\\//:fg*q?/:f@\,&
u’;v’?Ves&;\ L‘?;qgo ifefsﬁ 4‘,’6;50 5‘5;\%5\ J@gﬁ’o
B &£ B &£ e 5 &£

(b) Median budget
et TSP20 TSP50 TSP100

: S Ny :
mmiEd 5§55 gopns "Eg “spnm "as

CVRP20 CVRP50 CVRP100
2 N i
T T TTI T T T .
L I I TT I TR TN T LT IR T"
H 0P20 0P50 0P100
2
E 0 E % E % E) E E 5.0 i E
&
25
ﬁﬁ ® wEkEd Ygs cEaEEE g
0.0
KP50 teos KP100 es KP200
1 5 5
FSELETFESS ST T FESS FFFETF &5
&5 6 ¢ F S 5 56 9§ S §5E 56 ¢ F F 58
B & B & S &

(c) Large budget

Figure 8: Stability of the model obtained by different methods on 10000 instances from each COP

with different budget allocations.
23

Under review as a conference paper at ICLR 2024

produces a model with the most stable performance in most scenarios when compared to other MTL
methods across almost all cases.

24

	Introduction
	Related Work
	Method
	Loss Decomposition
	Reward Design and Influence Matrix Construction

	Experiments
	Comparison with Single Task Training and Multi Task Learning
	Study of the Influence Matrix

	Conclusions
	Problem Description
	Loss Decomposition
	Discussion on The Bandit Algorithm and Update Frequency
	Computation Complexity of MTL Methods
	Experimental Settings
	Loss and Gradient Norm of Each Task
	Demonstration of the Bandit Algorithms
	Further Results on The Bandit Algorithm Selection and Update Frequency
	Additional Experiments on Other Domains
	Stability of Each Method

