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Figure 1. Comparison of partial sequence generation: Raster-scan 2D-grid tokenizer vs. FlexTok. FlexTok resamples images
into a 1D sequence of discrete tokens of flexible length, describing images in a coarse-to-fine manner. When training autoregressive (AR)
models on FlexTok token sequences, the class conditioning (here “golden retriever”) can be satisfied by generating as few as 8 tokens,
whereas AR models trained on 2D tokenizer grids (here, LlamaGen (Sun et al., 2024)) need to always generate all tokens, no matter the
complexity of the condition or image.

Abstract

We introduce FlexTok, a tokenizer that projects
2D images into variable-length, ordered 1D token
sequences. For example, a 256×256 image can be
resampled into anywhere from 1 to 256 discrete
tokens, hierarchically and semantically compress-
ing its information. By training a rectified flow
model as the decoder and using nested dropout,
FlexTok produces plausible reconstructions re-
gardless of the chosen token sequence length. We
evaluate our approach in an autoregressive gen-
eration setting using a simple GPT-style Trans-
former. On ImageNet, this approach achieves an
FID < 2 across 8 to 128 tokens, outperforming
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TiTok and matching state-of-the-art methods with
far fewer tokens. We further extend the model
to support to text-conditioned image generation
and examine how FlexTok relates to traditional
2D tokenization. A key finding is that FlexTok
enables next-token prediction to describe images
in a coarse-to-fine “visual vocabulary”, and that
the number of tokens to generate depends on the
complexity of the generation task.

1. Introduction
Image generation has advanced significantly in both quality
and inference speed. Tokenization plays a crucial role in
reducing the computational cost of training generative mod-
els (Van Den Oord et al., 2017; Esser et al., 2021). Recently,
autoregressive (AR) image generation has shown competi-
tive performance when scaled to billions of parameters (Sun
et al., 2024).

Generative models such as diffusion (Rombach et al., 2022;
Peebles & Xie, 2023), masked (Chang et al., 2022; 2023),
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Figure 2. Reconstruction examples using FlexTok d18-d28 trained on DFN. Notice how most of the images’ semantic and
geometric content is captured by fewer than 16 tokens. The first tokens already capture the high-level semantic concepts (e.g., gray bird,
people in colorful garments, mountain scene, yellow flower), while more tokens are required to reconstruct more intricate scene details
(e.g., position and clothing of every person, brushstroke placement, etc.). To showcase out-of-distribution reconstruction, we generated
the original images using Midjourney v6.1 (Midjourney, 2024).

and autoregressive (Chen et al., 2020; Yu et al., 2022) mod-
els traditionally operate on 2D grids of continuous or dis-
crete tokens. These representations maintain strong spatial
alignment with the original pixel patches (Esser et al., 2021;
Mentzer et al., 2023), but this means that the representation
size is proportional to the image size, rather than depen-
dent on the complexity of the image. Recent work (Yu
et al., 2024a) has demonstrated the benefits of 1D tokeniza-
tion schemes for improving computational efficiency while
maintaining competitive quality. Similar to existing 2D grid
tokenization schemes, these 1D token sequences are fixed-
length, regardless of the underlying image complexity. In
other words, no matter whether an image simply depicts
a single object or a busy scene with intricate details, it is
encoded into the same number of tokens. In turn, a condi-
tional image generator trained to predict these tokens must
always produce the full set of tokens, no matter the semantic
complexity of the condition.

In this paper, we present FlexTok, a novel variable-length
1D tokenizer that is able to encode images into an ordered
and content-dependent sequence of tokens. As visualized in
Figure 2, earlier tokens capture the most high-level semantic
and geometric information, while additional tokens progres-
sively add finer details. The variable-length sequences, i.e.
truncated subsequences of length 1, 2, 4, ..., 256, can be
decoded into plausible images using an end-to-end trained
rectified flow decoder. Figure 1 contrasts the rigid raster-
scan ordering of traditional 2D tokenizers (top) with our
hierarchical 1D approach that enables coarse-to-fine genera-
tion (bottom).

Our contributions are as follows:

Flexible-length tokenization: We present a 1D tokeniza-
tion approach that can compress images into anywhere from
1 to 256 tokens. Through a combination of nested dropout
and causal attention masking, our tokens are naturally or-
dered from coarse to fine details, enabling high-quality re-
construction even with very few tokens while providing
progressively more detailed representations as more tokens
are used.

A new “visual vocabulary” to describe images: Unlike
classical 2D tokenizers which describe image content at
each x,y location, FlexTok uses a hierarchical approach
in which high-level aspects such as semantic and geometric
concepts naturally emerge to be ordered first, while subse-
quent tokens add finer details. This allows a coarse condi-
tioning to be fulfilled with relatively few predicted tokens,
while a more detailed condition requires generating a larger
number of tokens. For example, as shown in Figure 7,
ImageNet-1k classes can be generated with as few as 8 to-
kens. In contrast, text conditions, which may involve more
complex and varied prompts, can benefit from predicting up
to 256 tokens.

End-to-end trained rectified flow decoder: To enable
high-quality image reconstruction across varying token
lengths, we incorporate a rectified flow objective into our
tokenizer decoder. This proves essential for maintaining
reconstruction quality even at extreme compression rates.
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2. Related Work and Background
The primary role of an image tokenizer in generation tasks is
to create compressed latent representations of images. Gen-
erative models need to learn a distribution over their outputs,
but doing so directly in continuous, high-dimensional spaces
(e.g., raw image pixels) is challenging. Compression helps
by mapping images to a more compact latent space that
removes imperceptible details (Rombach et al., 2022), while
discretization enables the generative model to output per-
token categorical distributions that can be sampled from.

Vector-quantized autoencoders (VQ-VAEs) (Van Den Oord
et al., 2017; Razavi et al., 2019; Esser et al., 2021) have
become a standard framework for learning these discrete
representations. VQ-VAE models operate through three
core components: (1) an encoder Enc that maps input
images X ∈ RH×W×3 to D-channel latent embeddings
Z = Enc(X) ∈ Rh×w×D (usually h ≪ H and w ≪ W ),
(2) a quantizer Quant that maps these continuous latents to
discrete codes from a learned codebook, and (3) a decoder
Dec that reconstructs the image X̂ = Dec(Quant(Z)).
This approach has proven versatile, finding applications
in image (Chang et al., 2022; 2023; Li et al., 2022), au-
dio (Baevski et al., 2019), and video generation (Villegas
et al., 2022; Hu et al., 2023; Kondratyuk et al., 2023), novel
view synthesis (Yan et al., 2021), and large-scale multimodal
pretraining (Lu et al., 2022; 2023; Mizrahi et al., 2023; Bach-
mann et al., 2024; Chameleon, 2024; Wang et al., 2024a).

Various improvements to this framework have been pro-
posed, exploring different architectures (Yu et al., 2021),
objective functions (Esser et al., 2021; Hu et al., 2023),
codebook structures (Zhang et al., 2023; Yu et al., 2023),
and the use of diffusion models as decoders (Shi et al.,
2022; Mizrahi et al., 2023; Xu et al., 2024; Zhao et al.,
2024). A key advancement is finite scalar quantization
(FSQ) (Mentzer et al., 2023), which replaces the learned
codebook with a projection to a small-dimensional latent
space and quantizes values using fixed bins along each di-
mension. This approach maintains reconstruction quality
while being simpler to implement and train.

Instead of maintaining a 2D spatial structure in the latent
space, TiTok (Yu et al., 2024a) creates 1D representations
using learned register tokens R ∈ RK×D (Darcet et al.,
2023). During encoding, these K register tokens are con-
catenated with image patch embeddings P ∈ Rh×w×D

for processing in a ViT encoder. The encoder output re-
tains only the register token embeddings as Z1D, which
capture the image content in a compact sequence. For re-
construction, the image patches are replaced with a grid of
h× w learnable mask tokens M ∈ Rh×w×D. These mask
tokens, guided by the quantized register embeddings, are
transformed by the decoder into the reconstructed image:
X̂ = Dec(Quant(Z1D)⊕M).

Although effective at producing 1D token sequences, TiTok
requires a two-stage training process and represents im-
ages using a fixed number of tokens. Compared to TiTok,
FlexTok shows a superior reconstruction and generation
quality (see Figure 4 and Table 1). To address the issue of
the token sequence length depending entirely on the image
height and width instead of its complexity, a range of con-
current works have proposed adaptive tokenization methods.
While FlexTok can compress images into as little as a
single token, ElasticTok’s (Yan et al., 2024) FSQ tokenizer
is limited to a minimum of 256 tokens and ALIT (Dug-
gal et al., 2024) to 32 tokens. Generation is a key use
case of tokenizers, and unlike ElasticTok, ALIT, or One-D-
Piece (Miwa et al., 2025), we show in Section 5 that training
on FlexTok tokens can produce strong generative models.
Compared to our focus on AR models, ViLex (Wang et al.,
2024b) and CAT (Shen et al., 2025) focus more on learning
continous tokens to use in diffusion models. We discuss
further differences with respect to FlexTok in detail in
Appendix D.

3. Method
FlexTok is an autoencoder with a discrete 1D bottleneck,
see Figure 3 for an overview. A ViT encoder maps 2D image
patches into a 1D sequence using register tokens (Darcet
et al., 2023; Yu et al., 2024a). The registers are discretized
using FSQ (Mentzer et al., 2023), and then used as condi-
tioning for a rectified flow model tasked with reconstructing
the image. We use causal attention among register tokens
followed by nested dropout (Rippel et al., 2014) to induce
an ordering in the bottleneck representation. Paired with
a rectified flow decoder, this design enables the model to
decode any nested subset of tokens into plausible images.

3.1. 1D tokenization with a rectified flow decoder

Register encoder and discrete bottleneck. Similar to
TiTok (Yu et al., 2024a), the encoder uses register tokens to
resample the patched 2D VAE latents into a 1D sequence
of discrete tokens. Specifically, we concatenate VAE la-
tent patches with a set of learnable register tokens that act
as read-write storage for the encoder. After encoding, the
register tokens act as the bottleneck representation for the
autoencoder, while the encoded patches are discarded. The
register tokens are quantized into discrete tokens using FSQ.
Instead of pixels, we operate on latent representations of a
VAE-GAN, similar to SDXL’s VAE (Podell et al., 2023),
to abstract away the perceptual compression from this in-
vestigation. Using the VAE-GAN latent space enables us
to greatly simplify our design space and reduce computa-
tional requirements as training generative models on pixels
is expensive (Rombach et al., 2022).
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Figure 3. FlexTok overview. Stage 1: FlexTok resamples 2D VAE latents to a 1D sequence of discrete tokens using a ViT with
registers (Darcet et al., 2023). The FSQ-quantized bottleneck (Mentzer et al., 2023) representation is used to condition a rectified flow
model that decodes and reconstructs the original images. FlexTok learns ordered token sequences of flexible length by applying nested
dropout (Rippel et al., 2014) on the register tokens. Stage 2: We train class- and text-conditional autoregressive Transformers to predict
1D token sequences in a coarse-to-fine manner. As more tokens are predicted, the generated image becomes more specific, encoding
high-level concepts first (e.g., presence of a car) followed by finer details (e.g., car shape, brand, color).

Rectified flow decoder. The decoder’s purpose is to gen-
erate perceptually plausible images conditioned on the com-
pressed latent representations. When the bottleneck size is
small, training a decoder with only a reconstruction loss can
result in blurry reconstructions. To mitigate this, FlexTok
uses a rectified flow model that is conditioned on the quan-
tized register tokens Quant(Z1D) by concatenating them
with noised VAE latent patches Xt = (1 − t)X0 + tϵ,
where X0 are the clean VAE latents, t ∈ [0, 1] is a ran-
dom time step, and ϵ ∼ N (0, 1) is a random sample from
the noise distribution. The decoder’s objective is to pre-
dict the flow U = ϵ−X0 given the partially noised VAE
latents and the encoded register tokens. We minimize the
rectified flow loss LRF = ||Û − (ϵ − X0)||2, given the
predicted flow Û = Dec(Quant(Z1D) ⊕ Xt). We find
that adding a REPA (Yu et al., 2024b) inductive bias loss
LREPA between an intermediate decoder layer and DINOv2-
L (Oquab et al., 2023) features significantly improves con-
vergence time and downstream generation performance (see
Table 3 and Fig.12). The total FlexTok loss we optimize
is LFlexTok = LRF + λREPA · LREPA, with λREPA = 1. See
Section 4 and Appendix C.2 for more implementation de-
tails.

3.2. Learning ordered 1D token sequences of flexible
length

1D tokenizers like TiTok (Yu et al., 2024a) require training
different tokenizers for each desired number of register to-
kens. As shown in the concurrent work ALIT (Duggal et al.,
2024), fixed token sequence lengths do not take into account
the inherent complexity of an image. Simple images can
be compressed into as few as 32 tokens, while more com-
plex ones require more tokens to faithfully reconstruct them.
Neither TiTok nor ALIT demonstrate flexible tokenization
below 32 tokens, and their image reconstruction perfor-

mance deteriorates when the compression degree is high,
see Figure 4 and Appendix K.3 for visual comparisons to
FlexTok. Since we target AR generation with FlexTok,
we additionally introduce a nested left-to-right ordering
structure that naturally aligns with next-token prediction.
We propose two techniques to introduce a 1D ordering and
variable length into the token sequences.

Nested dropout. We train FlexTok to produce an or-
dered representation by randomly dropping the encoded reg-
ister tokens in a nested manner during training (Rippel et al.,
2014; Kusupati et al., 2022; Cai et al., 2024) . Specifically,
given a register token sequence of length K, we randomly
sample the number of units to keep Kkeep ∈ {1, ...,K} and
remove the K − Kkeep last tokens by masking them out.
By training the tokenizer in this manner, the encoder learns
to compress the image content into the register tokens in an
ordered manner, while the rectified flow decoder learns to
reconstruct images given the variably-sized token sequences.
As we show in Figure 5, this design enables FlexTok to
capture the most important aspects of images in very few
tokens. Simplistic images require few tokens to be faithfully
compressed, while complex ones require longer token se-
quences. We note here that this ordering is not handcrafted
and emerges purely from performing nested dropout on reg-
ister tokens, and computing rectified flow and REPA losses.
We mainly ablate two strategies of dropping tokens in a
nested manner. In the first, we sample the number of tokens
to keep uniformly, as described above. In the second variant,
we uniformly sample them from an exponentially increasing
set, e.g. Kkeep ∈ {1, 2, 4, 8, 16, ...,K}. The latter variant
addresses an issue with uniform nested dropout, where the
last register tokens are passed to the decoder very rarely,
meaning they are effectively trained for only a small fraction
of gradient updates.
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Causal attention masks. Orthogonal to the use of nested
dropout, adding a causal attention mask to the encoded
registers enforces a causal dependency structure between
them (Ge et al., 2023). In this setting, the encoded image
patches can all attend to each other but not to the registers,
the register tokens can attend to all the patches, but the i-th
register token may only attend to the j-th register token if
i ≥ j. In addition, the use of causal masks enables users to
more efficiently encode images if they know ahead of time
that they only want to keep Kkeep ≪ K tokens.

3.3. Autoregressive image generation

To evaluate different design choices of FlexTok and com-
pare to relevant baselines, we measure both reconstruction
and generation performance. To that end, we train autore-
gressive Transformers to perform class-conditional genera-
tion on ImageNet-1k (Russakovsky et al., 2014), following
LlamaGen (Sun et al., 2024), and text-to-image generation
on DFN-2B (Fang et al., 2023).

4. Implementation
We break down the implementation into three distinct stages.
In Stage 0, we train VAE models (Rombach et al., 2022)
with continuous latents to perceptually compress images
into 2D token grids. In Stage 1, we then train FlexTok
tokenizers to resample these continuous 2D token grids into
discrete 1D token sequences of flexible length. Finally, in
Stage 2, we train autoregressive class-to-image and text-to-
image models to evaluate the effectiveness of FlexTok in
generative tasks.

Stage 0: VAE training. The rectified flow decoder (see
Section 3.1) is a key design element of FlexTok that en-
ables decoding arbitrary token subsequences. However,
training such models directly in pixel space is computation-
ally expensive (Rombach et al., 2022). The goal of this
stage is therefore to facilitate Stage 1 modeling by perceptu-
ally compressing images into more compact representations.
We follow the architecture of the SDXL VAE (Podell et al.,
2023), and train versions with 4, 8, and 16 channels on the
DFN dataset (Fang et al., 2023). All subsequent experiments
use the 16 channel VAE with a downsampling factor of 8.
Please see Appendix C.1 for more VAE training details, and
Table 2 for ablations on the number of latent channels.

Stage 1: FlexTok training. The FlexTok architec-
ture consists of a Transformer encoder and decoder using
a maximum of 256 registers tokens. After applying a 6-
dimensional FSQ (Mentzer et al., 2023) bottleneck with
levels [8, 8, 8, 5, 5, 5] (for an effective vocab-
ulary size of 64 000), the encoded registers are randomly
truncated using nested dropout. The decoder is a rectified

flow model that receives noised VAE latent patches and
the (randomly masked) registers as input, and is tasked
to predict the flow. We use adaLN-zero (Peebles & Xie,
2023) to condition the patches and registers separately on
the current timestep, and REPA (Yu et al., 2024b) with
DINOv2-L (Oquab et al., 2023) features to speed up con-
vergence. We use 2x2 patchification in both the FlexTok
encoder and decoder, which combined with the VAE’s 8x
downsampling yields a total 16x downsampling from pix-
els to patch tokens. All models are trained at a resolution
of 256x256 pixels. The encoder and decoder dimensions
w are parameterized using their respective depths d, us-
ing a fixed aspect ratio of 64, i.e. w = 64 · d. We train
three FlexTok versions with different encoder and de-
coder sizes (separated by a hyphen), d12-d12, d18-d18
and d18-d28 after sweeping optimal hyperparameters at
a small scale using µP (Yang et al., 2022). Depending
on the downstream use case, we train FlexTok models
on ImageNet-1k (Russakovsky et al., 2014) for subsequent
class-conditional generation, and on DFN (Fang et al., 2023)
for subsequent text-to-image modeling. See Appendix C.2
for further FlexTok implementation and training details.

Stage 2: AR Transformer training. Our autoregressive
Transformer follows LlamaGen’s Llama-inspired architec-
ture (Sun et al., 2024; Touvron et al., 2023), using pre-
normalization with RMSNorm (Zhang & Sennrich, 2019)
and a SwiGLU feedforward (Shazeer, 2020). Since our
tokens lack a 2D grid structure, we use learned absolute
positional embeddings instead of 2D RoPE (Su et al., 2024).

For class conditioning, we add a learned class embedding
to an [SOI] token (Tian et al., 2024) and concatenate it
with the image token sequence. The AR model, ranging
from 49M to 1.3B parameters, predicts the token sequence
from the FlexTok tokenizer. To enable comparisons with
LlamaGen and TiTok, we train without µP.

For text-conditioned generation, our AR decoder cross-
attends to text embeddings from FLAN-T5-XL (Chung et al.,
2024), projected to the model dimension via an MLP (Chen
et al., 2023). We scale these text-conditioned AR models up
to 3B parameters, using µP to maintain consistent behavior
across scales.

Following standard practice, we employ conditioning
dropout during training to enable classifier-free guidance
at inference. For text-conditioned models, this involves
randomly replacing text inputs with an empty string. For
additional implementation and training details, see Ap-
pendix C.3.

5. Experiments
In this section, we experimentally evaluate the reconstruc-
tion performance of FlexTok across different numbers of
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256 tokens128 tokens64 tokens32 tokens16 tokens8 tokens4 tokens2 tokens1 token

FlexTok 
d18-d28
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TiTok B-64,
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Original RGB

Figure 4. Image reconstruction comparison between three different TiTok (Yu et al., 2024a) models, ALIT (Duggal et al., 2024),
and FlexTok. Compared to other 1D tokenizers, FlexTok is able to tokenize images in a highly semantic and ordered manner, all the
way down to a single token, and all in a single model. For more visual comparisons, see Appendices K.1 to K.3.
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Figure 5. FlexTok rate-distortion tradeoff. We show ImageNet-1k reconstruction metrics for three different FlexTok sizes. The
more tokens used, the closer the reconstructions get to the original RGB images. Scaling the tokenizer size significantly improves
reconstruction FID, but is not as crucial in terms of MAE and DreamSim score. For each of the different FlexTok model sizes we use
the optimal inference hyperparameters detailed in Appendix F. We show additional reconstruction metrics in Table 8.

tokens, assess its applicability for class-conditional and text-
conditional image generation, and compare it to relevant
baselines. We show that FlexTok can effectively com-
press images into 1D sequences of flexible length, enabling
a novel ”visual vocabulary” where images can be specified
and generated in a coarse-to-fine manner.

5.1. Flexible-length tokenization

We demonstrate FlexTok’s variable-rate tokenization ca-
pability by evaluating its reconstruction performance on
nested token sequences of different lengths. We perform
comparisons using FlexTok models trained on ImageNet-
1k, testing them on 256x256 pixel crops from the valida-
tion set (Russakovsky et al., 2014). In Figure 5 we mea-
sure reconstruction metrics (rFID, MAE, DreamSim) for
Kkeep ∈ {1, 2, 4, 8, 16, ..., 256} tokens. FlexTok is able
to generate plausible images, as measured through the rFID
against the ImageNet-1k validation set, with as little as a
single token.

As shown in Figure 2 with a FlexTok d18-d28 model
trained on DFN, and in Figure 4 with a FlexTok
d18-d28 model trained on ImageNet-1k, reconstructions

using the first few tokens capture high-level semantic fea-
tures. As more tokens are used, both the alignment with the
original image becomes more fine-grained and the image-
wise reconstruction metrics (MAE and DreamSim) improve
rapidly.

Please see Appendices K.1 to K.3 for additional reconstruc-
tion examples and comparisons. For linear probing experi-
ments on the token sequences, see Appendix B.

We find the following properties particularly noteworthy: (1)
By performing nested dropout on the registers, a hierarchy
emerges in which high-level concepts are ordered first. (2)
Through training FlexTok with a Rectified Flow decoder,
any token subsequence can be decoded into a plausible
image. (3) The token sequences specify a distribution over
images that gets more and more specific with more tokens,
see Figures 34 and 35 for visual examples.

5.2. Coarse-to-fine generation with increasing specificity

As shown in Section 5.1, FlexTok compresses images
into ordered token sequences. This naturally leads us to
explore the implications of predicting these sequences for
autoregressive image generation. By training class- and text-
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

golden retriever
(207)
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vegetables."

"A blue Porsche
356 parked in
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brick wall"

"a corgi's head
depicted as an
explosion of a
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Figure 6. Image generation examples with varying numbers of tokens. Images generated with both class (top 3 rows) and text
conditioning (bottom 3 rows) demonstrate that FlexTok-based models achieve high quality all the way down to a single token, and all
within a single model. The conditioning alignment strengthens as more tokens are generated. For example with the prompt “a corgi’s
head depicted as an explosion of a nebula”, the first two tokens capture the high-level concept of a artistic depiction of a dog, while
adding more tokens adds in further details such as the dog breed and the nebula background. For more visualizations, see Appendices K.4
and K.5.
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Figure 7. Conditioning alignment and generation quality vs. number of tokens. Left: For class-conditional generation with a 1.3B AR
model, we compute DINOv2-L (Oquab et al., 2023) top-1 accuracy on generated images conditioned on ImageNet-1k class labels. Center:
For text-conditional generation with a 3B AR model, we show CLIPScore relative to input prompts from the COCO 30k validation
set (Lin et al., 2014), using a CLIP base model . Right: We measure class-conditional gFID on ImageNet-1k*, and text-conditional gFID
on COCO. The AR models use guidance scales of 1.0 (no guidance) and 2.5, respectively. We follow the optimal inference parameters
described in Appendices F and G.

* Note. For evaluation of the class-conditioned image generation results, we follow the common practice of measuring the generation
FID (gFID) of 50K generated samples relative to the reference statistics calculated over the entire training split of the ImageNet-1k
dataset (Dhariwal & Nichol, 2021).
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Figure 8. Image generation with simple and detailed prompts. Images generated with FlexTok-based models show that the number
of tokens needed to fulfill the conditioning depends on prompt complexity. For a simple prompt, the desired image is achieved with as
few as 4-16 tokens (as measured by CLIPScore), and semantic variation between different decoded images (as measured by pairwise
DreamSim scores) vanishes quickly. In contrast, a detailed prompt requires the full 256-token sequence to fully meet the conditioning and
shows greater variation at lower token counts as the FlexTok rectified flow decoder compensates for missing details. For each prompt,
the FlexTok tokens are generated just once using the AR Transformer and then decoded with 10 random seeds in the rectified flow
decoder.
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Figure 9. Class-conditioned AR model scaling. We show training loss, gFID and image generation CLIPScore values for the class-
conditional models with the FlexTok d18-d28 tokenizer. We calculate the CLIPScore using the text label of the classes from the
ImageNet-1k validation set, and do not use classifier-free guidance for the AR Transformer (CFG scale = 1.0). We show additional
generation metrics for the 1.33B AR model in Table 9.

conditional models, we find that FlexTok token sequences
act as a ”visual vocabulary”, allowing autoregressive mod-
els to describe images with increasing levels of specificity.
Unlike conventional autoregressive models that generate
images in a fixed raster-scan order on 2D token grids, our
approach enables progressive refinement of image details.
We also observe a clear relationship between conditioning
complexity and token requirements. Simple conditions, like
ImageNet class labels, can be fulfilled with as few as 16
tokens, while more complex ones, like open-ended text
prompts, benefit from generating up to 256 tokens.

In Figure 6, we show that images generated by class- or text-
conditional models become increasingly specific to their
conditioning as more tokens are produced. Our quantitative

results in Figure 7 confirm this trend, showing that align-
ment between the conditioning signal and the generated
images improves with higher token counts. We measure
alignment using DINOv2-L (Oquab et al., 2023) classifi-
cation accuracy for class conditioning and CLIPScore for
text conditioning. Notably, text-image alignment contin-
ues to improve as additional tokens are generated, whereas
classification accuracy tapers off after the first few tokens
and plateaus around 32 (Figures 7 and 9). Furthermore, we
observe that generation quality remains consistent across
all token sequence lengths, as measured by gFID, which we
attribute to the strength of our rectified flow decoder.

Similarly, Figure 8 shows that the number of tokens needed
to generate prompt-aligned images varies significantly based
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on prompt complexity. Simple prompts like ”a red apple”
can produce satisfactory results with just 4 to 16 tokens,
while detailed prompts like ”graffiti of a rocket ship” ben-
efit from using the full 256-token sequence. When fewer
tokens are used, the model can still produce realistic im-
ages, but at the cost of greater variation between different
random seeds. This variation decreases much more quickly
for simple prompts than for detailed ones as token count
increases, suggesting a fundamental relationship between
prompt complexity and token requirements.

5.3. Scaling autoregressive model size

As shown in Figure 7, using our largest autoregressive mod-
els, the alignment between condition and generations gen-
erally improves with more predicted tokens. In this sec-
tion, we investigate the scaling behavior of autoregressive
class-conditional models trained on FlexTok d18-d28
tokens, focusing on how model size impacts image-caption
alignment and image fidelity. In Figure 9, we show that
increasing the AR model size consistently improves the
measured training loss. However, for the prediction of the
first few (1-8) tokens, the generation FID (gFID) values
for the decoded images are effectively independent of the
autoregressive model size, indicating that these short initial
parts of the sequences are easily learned even by small mod-
els. In contrast, for long sequences (> 128 tokens) the task
becomes more challenging, and performance scales strongly
with model size for both gFID and CLIPScore.

This highlights an important trade-off between the
FlexTok and AR model: as more tokens are generated,
the AR model takes on a larger role in shaping the image.
With few tokens, FlexTok’s flow decoder drives most of
the generation, resulting in low gFID even with smaller AR
models. However, as the token count increases, an equally
powerful AR model is needed to maintain strong perfor-
mance.

5.4. System-level comparison

In Table 1, we compare our FlexTok models against
several relevant baselines. We evaluate the tokenizers by
training autoregressive models to perform ImageNet-1k
class-conditional generation. Compared to previous 1D
approaches FlexTok achieves superior reconstruction and
generation quality at each token budget, all in a single
model.

For comparison, we train a 2D grid-based tokenizer with a
flow matching decoder, matching the FlexTok d18-d28
tokenizer in parameter count, training steps, and source
dataset. Unlike FlexTok d18-d28, it does not use
register tokens, causal masking, or nested dropout. Text-
conditioned image generation using an FlexTok tokenizer
outperforms the 2D grid baseline when generating 2 to

Table 1. System-level comparison on ImageNet-1k class-
conditional generation. FlexTok generates variable length
token sequences from 1 to 256 tokens long. The FlexTok tok-
enizers are combined with 1.33B parameter AR Transformers for
class-conditioned image generation. For each FlexTokmodel we
follow the optimal inference parameters and use no classifier-free
guidance in the AR model, as described in Appendices F and G. †

indicates FlexTok results for a sequence of 32 tokens. The ”-re”
suffix indicates the use of rejection sampling.
Tokenizer # tokens Codebook size rFID ↓ gFID ↓
Taming VQ-GAN-re 16x16 16384 4.98 5.20
MaskGIT VQ-GAN 16x16 1024 2.28 6.06
Open MAGVIT-v2 16x16 262144 1.17 2.33
LlamaGen 16x16 16384 2.19 3.06
TiTok-L 32 4096 2.21 2.77
TiTok-B 64 4096 1.70 2.48
TiTok-S 128 4096 1.71 1.97

FlexTok d12-d12 1-256 64000 4.20† 3.83†

FlexTok d18-d18 1-256 64000 1.61† 2.02†

FlexTok d18-d28 1-256 64000 1.45† 1.86†

128 tokens (Figure 7). A full 256-token sequence with
FlexTok yields better text-image alignment (CLIPScore)
than the 2D grid tokenizer, despite a slight gFID regression
compared to the 2D grid-based model.

6. Discussion & Conclusion
In this work, we show the potential of a flexible sequence
length tokenizer for image reconstruction and generation.
Beyond enabling high-fidelity reconstructions with very few
tokens, we demonstrate through training class- and text-
conditional AR models that the FlexTok token sequences
specify a “visual vocabulary” that enables generation in a
coarse-to-fine ordering.

Our experiments suggest that depending on the complexity
of the generation task, a model may be trained to stop the
generation early as soon as the condition is fulfilled. While
FlexTok can semantically compress images into as little
as a single token, representing highly dense or structured
content like text requires more tokens and training objectives
that prioritize semantically meaningful concepts. We believe
that these present exciting research directions to speed up
and improve autoregressive image generation using adaptive
compute budgets.

Looking ahead, we anticipate that FlexTok-like tokeniz-
ers, which adapt to the intrinsic complexity of the input data,
could be applicable to other domains with high redundancy,
such as audio and video. Training generative models on
representations that can be both very compact and semantic,
or very long and detailed, may enable further explorations
into long-horizon video generation, understanding, as well
as visual reasoning.
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Appendix
A. Ablation of FlexTok Design Choices
We explore the design space offered by the FlexTok framework. The effects of the VAE choice, structure applied to the
tokens to induce an ordering, the decoder loss formulation, and the use of inductive bias losses are all investigated in the goal
of converging on a high-quality and compact 1D tokenizer that can resample images into variable-length token sequences.

Default ablation setup. Unless otherwise stated:

• All models are trained on images of resolution 256x256.

• We use a 16-channel VAE and produce the VAE latent space by sampling from the Gaussian distributions, rather than
just taking the mode.

• We use a FSQ quantization with 6 dimensions, each bucketed into levels [8, 8, 8, 5, 5, 5], for an effective
vocabulary size of 64 000.

• We use a 2x2 patchification inside the FlexTok encoder and decoder that acts on the VAE latent space which itself
has a downsample factor of 8. This yields an effective spatial downsample factor of 16 from pixels to patch tokens.

• All FlexTok ablation models have encoder and decoder sizes d12-d12, and are trained for 50B patch tokens on
ImageNet-1k (Russakovsky et al., 2014). We measure one patch token as a 16x16 pixel patch.

• To evaluate the ablation models for class conditional image generation, we train 393M parameter AR Transformers on
the resulting token sequences. The AR models are trained for 94B tokens on ImageNet-1k (300 epochs).

Evaluation Setup We evaluate our tokenizers using an array of metrics which probe their reconstruction and generation
properties. To evaluate image reconstruction we calculate reconstruction FID (rFID) (Heusel et al., 2017), DreamSim (Fu
et al., 2023), and Mean Absolute Error (MAE) on the full validation split of the ImageNet-1k dataset (Russakovsky
et al., 2014). During generation, we use a classifier-free guidance scale of 1.5 for the AR model. For evaluation of the
class-conditioned image generation results, we follow the common practice of measuring the generation FID (gFID) of
50K generated samples relative to the reference statistics calculated over the entire training split of the ImageNet-1k
dataset (Dhariwal & Nichol, 2021).

A.1. VAE choice ablation

We observe a strong correlation between the VAE reconstruction quality and the number of latent channels (Tab. 2), and
find that increasing the number of latent channels above 4 can significantly improve the FlexTok reconstruction quality
(Fig. 10). This finding is in line with the observations that the VAE latent channel size should be scaled with size of the
subsequent latent diffusion model (Esser et al., 2024). To optimize for the largest-sized tokenizer’s performance, we select
the 16-channel VAE for our final setup.

Table 2. VAE reconstruction performance. We measure MSE and rFID on the COCO-30k validation set (Lin et al., 2014).

Model Arch. # Latent Channels MSE ↓ rFID ↓
SDXL VAE SDXL VAE 4 0.0038 1.13

ours SDXL VAE 4 0.0043 1.53
ours SDXL VAE 8 0.0028 0.66
ours SDXL VAE 16 0.0013 0.35
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Figure 10. Guidance scale ablation for different VAE choices. We train FlexTok d12-d12 models on different VAE choices. We
use adaptive projected guidance (Sadat et al., 2024), and evaluate on the ImageNet-1k (Russakovsky et al., 2014) validation set.

A.2. Resampling strategy ablation

Table 3. Ablation of resampling strategies. We compare 2D grid tokenization with 1D tokenization, the use of a rectified flow decoder,
the training noise schedule, as well as the use of an auxiliary REPA (Yu et al., 2024b) loss. We compare on reconstruction MAE,
DreamSim, and rFID, as well as ImageNet-1k class-conditional generation gFID.

Token Structure Loss Formulation Noise REPA MAE ↓ DreamSim ↓ rFID ↓ gFID ↓
16 × 16 (2D) MSE - ✗ 0.059 0.288 51.27 35.93
16 × 16 (2D) Rectified flow mode(0.25) ✗ 0.083 0.272 32.85 23.29
256 (1D) Rectified flow mode(0.25) ✗ 0.078 0.220 23.28 22.16
256 (1D) Rectified flow uniform ✗ 0.078 0.222 23.63 21.35
256 (1D) Rectified flow logit-normal ✗ 0.082 0.208 19.03 18.69
256 (1D) Rectified flow mode(0.25) ✓ 0.075 0.128 5.98 7.40

We first compare the resampling strategy (2D grid tokenization versus 1D register tokenization), as well as the use of a
rectified flow decoder compared to a simple decoder optimized with MSE. Note that in none of these experiments do we
apply any ordering strategies. We reserve those investigations for Appendix A.4.

The results in rows 1 and 2 in Table 3 show that the use of a rectified flow decoder significantly improves both rFID and
gFID, while getting worse MAE. When switching from a 2D to a 1D tokenizer (row 2 vs. 3), we see improvements across
all metrics, with the largest improvements being on rFID. We also ablate three different choices of noise schedules following
Esser et al. (2024), namely a uniform noise schedule (row 4), a logit-normal schedule with location m = 0 and scale s = 1
(row 5), and a mode sampling schedule with scale s = 0.25 (row 3). While the logit-normal schedule shows the strongest
performance, we note that we observe inference instabilities due to the earliest and latest timesteps being undertrained. We
chose the mode sampling schedule for our models due to the comparatively better reconstruction performance.

A.3. Use of inductive bias loss.

We observe that rectified flow decoders converge slowly and investigate the use of inductive bias losses (Hu et al., 2023; Yu
et al., 2024b) to 1) improve convergence time, and 2) distill the semantic inductive biases of a strong pre-trained vision
model into the tokenizer to make the tokens more predictable. Following REPA (Yu et al., 2024b), we train a three-layer
MLP to read out the activations of the decoded 2D patches in the first decoder layer, and project them to the DINOv2-L
feature dimension. In addition to the rectified flow loss, we add a cosine similarity loss with weight 1.0 between the predicted
features and the reference DINOv2-L features.

The last row of Table 3 compared to row 3 shows that the use of REPA significantly improves perceptual reconstruction
metrics like DreamSim and rFID, as well as generation performance as measured by gFID. As shown in Figure 12, the use of
an inductive bias loss significantly improves convergence time to high quality reconstructions. This is mirrored in our visual
comparison in Figure 13, where reconstructions of models with REPA are significantly higher fidelity and more semantic.
Interestingly, we find that even though the use of REPA improves the reconstruction and generation metrics significantly, it
does not improve the convergence of the reconstruction loss during training of the tokenizer (Figure 11). Given the striking
improvements in downstream reconstruction and generation metrics, we use REPA for all experiments from here on.
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Figure 11. REPA (Yu et al., 2024b) ablation loss curves. We train FlexTok d12-d12 models on ImageNet-1k, with and without
REPA. The reconstruction loss shown here does not include the REPA loss contribution.
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Figure 12. REPA (Yu et al., 2024b) ablation evaluation curves. We train FlexTok d12-d12 models on ImageNet-1k, with and
without REPA. The evaluation metrics are measured on the ImageNet-1k (Russakovsky et al., 2014) validation set.
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Figure 13. Visual comparison of REPA (Yu et al., 2024b) ablation models. We train FlexTok d12-d12 models on ImageNet-1k,
with and without REPA and show ImageNet-1k validation set reconstructions with different number of tokens.
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A.4. Structuring the 1D tokens and inducing an ordering

We ablate various ways to induce an ordering into the register tokens, starting with the 1D rectified flow model trained with
REPA, as shown in the last row of Table 3 and first row of Table 4.

Table 4. Comparison of strategies to induce an ordering. We ablate the use of causal masks on the register tokens, as well as multiple
nested dropout variants.

MAE ↓ DreamSim ↓ rFID ↓ gFID ↓
Number of tokens 4 32 256 4 32 256 4 32 256 4 32 256

Baseline ✗ ✗ 0.075 ✗ ✗ 0.128 ✗ ✗ 5.98 ✗ ✗ 7.40
Causal register mask ✗ ✗ 0.080 ✗ ✗ 0.118 ✗ ✗ 3.28 ✗ ✗ 5.04

+ Uniform nested dropout 0.268 0.148 0.080 0.522 0.275 0.132 19.97 6.48 4.01 17.99 5.26 4.83
+ “Pow2” dropout 0.209 0.159 0.088 0.440 0.323 0.175 10.39 8.09 7.22 9.51 6.63 5.78
+ “Unifpow2” dropout 0.225 0.149 0.079 0.578 0.278 0.125 30.17 6.78 3.52 28.93 5.48 4.97

First, we ablate the use of a causal attention mask (see Section 3.2) applied to the encoder register tokens, see row 2 in
Table 4. Compared to unstructured registers, this results in a significant improvement in both rFID and gFID. While the
causal mask implicitly induces an ordering over the register tokens, it does not enable use of this model as a flexible-length
tokenizer. To that end, we ablate three different nested dropout (Rippel et al., 2014) schedules (see Section 3.2). In “uniform
nested dropout” we randomly draw Kkeep ∈ {1, 2, 3, 4, ...,K}. For the “pow2” setting, we uniformly sample from powers
of two, i.e. Kkeep ∈ {1, 2, 4, 8, ...,K}. Finally, for “unifpow2”, we sample as in “uniform nested dropout” but round to the
next-highest power-of-two. Each of these choices puts more or less weight on different subsets of the token sequences.
For example, when performing uniform nested dropout each valid number of tokens is only trained on roughly 1

256 of all
samples, while “pow2” and “unifpow2” reduce the number of possible sequence lengths from 256 down to 9. “unifpow2”
favors larger token sequences, which is preferable when dealing with images that require more tokens. That said, its rFID
and gFID for lower number of tokens is lower due to being relatively undertrained, and “pow2” can present a more balanced
approach across the range of sequence lengths (see Figure 14). This improvement of the reconstruction quality for short
sequences does come at the cost of a slight regression on the reconstruction and generation performance with the fully 256
token sequences. In Figure 15 we show guidance scale sweeps for all ablation models.
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Figure 14. Pow2 vs Unifpow2 nested dropout schedule as a function of the number of tokens. We train FlexTok d12-d12 models
on ImageNet-1k with different nested dropout schedules and evaluate on the Imagenet-1k validation set. Pow2 presents a more balanced
approach across sequence lengths, while Unifpow2 is preferable for higher sequence lengths.
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guidance (Sadat et al., 2024). Evaluation metrics are measured on the ImageNet-1k validation set.
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B. Evaluating the Representation Quality of FlexTok Tokenizers
In this subsection, we evaluate the quality of the representations learned by the FlexTok tokenizer. Specifically, we
perform linear evaluation on the quantized register tokens produced by the FlexTok encoder (i.e., the tokens passed as
input to the flow model). Importantly, we do not use patch representations, focusing only on the quantized register tokens.
For linear evaluation, we train a linear classifier on ImageNet-1k’s training set and evaluate it on the test set, keeping the
tokenizer frozen throughout. Since a single representation is needed for the linear classifier, we follow the approach of Yu
et al. (2024a), where the quantized register tokens are concatenated to form a single feature vector per image. For the rest,
we follow the probing setup in Fini et al. (2024). Given the 6-dimensional FSQ latents, this results in feature vectors of size
6× num register tokens.

To tune the linear evaluation recipe, we conduct a hyperparameter search over the following grid: Learn-
ing rate ∈ [1 × 10−3, 5 × 10−4, 2 × 10−4], weight decay ∈ [0.1, 0.05, 0.02], and minimum crop scale ∈
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. Using the optimal hyperparameters found (learning rate 5 × 10−4, weight de-
cay 0.05, crop scale [0.4, 1.0]), we perform a sweep over the number of register tokens to collect the results shown in
Figure 16. These experiments are conducted for all models (FlexTok d12-d12, FlexTok d18-d18, FlexTok
d18-d28) with a batch size of 1024, using 8 H100 or A100 GPUs for each experiment.
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Figure 16. Linear probing experiments. ImageNet-1k top-1 accuracy on the frozen tokenizer trunk when varying number of tokens.

Observations. These experiments are interesting because there is no guarantee that the representations learned by the
tokenizer will be linearly separable. However, as our results demonstrate, the representations are indeed linearly separable.
The results, presented in Figure 7, reveal several key insights:

• Improved performance with additional tokens: Increasing the number of register tokens consistently improves per-
formance. This behavior contrasts with TiTok, where the opposite occurs. The main difference lies in the training
approach: TiTok trains a separate model for each configuration (i.e., number of tokens), while we learn a unified
model capable of handling all configurations. In our model, when adding more tokens we retain the previous ones
unchanged, e.g for Kkeep = 16 the first 8 tokens will be the same as in the case Kkeep = 8. Consequently, the linear
layer has strictly more information to improve linear separability. In the worst case, the linear layer can simply ignore
the additional tokens if they do not contribute useful information. For this reason we expect that performance will
monotonically increase with more tokens, which is verified by the experimental evidence. In contrast, TiTok trains a
different model for each token configuration, resulting in distinct feature spaces for each model.

• Superior peak performance: The best performance achieved by our model significantly surpasses TiTok, with our
top-performing configuration reaching 64.6% top-1 accuracy on ImageNet.

• Trends across encoder and decoder sizes: A larger encoder improves linear separability when all register tokens are
activated; conversely, a larger decoder size leads to a slight degradation in linear separability.

20



FlexTok: Resampling Images into 1D Token Sequences of Flexible Length

C. Implementation and Training Details
In this Section, we list implementation and training details for the VAEs in Appendix C.1, the resamplers in Appendix C.2,
and the autoregressive models in Appendix C.3.

C.1. VAE details

We train a series of VAE models following the Stable Diffusion methodology (Rombach et al., 2022). The variational
autoencoder architecture is the same as the SDXL VAE (Podell et al., 2023) except we investigate varying the size of the
latent dimension from 4 up to 8 and 16 channels. For the discriminator loss we use a 3-layer Patch-GAN discriminator (Isola
et al., 2017) that is applied after 5k steps of training and combine it with perceptual (Dosovitskiy & Brox, 2016), KL and
reconstruction losses. We train all the VAEs using a learning rate of 1e-3, weight decay of 0.05, model EMA decay of 0.992,
spatial down-sampling factor of 8, KL loss weight of 1e-6, discriminator loss weight of 0.5, reconstruction and perceptual
loss weights of 1.0, a batch size of 128 and for 305k steps (40B patches) on images from the DFN dataset (Fang et al., 2023).
During inference, we produce the VAE latent space by sampling from the Gaussian distribution, rather than just taking the
mode.

The trained VAEs are evaluated on the COCO validation split using both mean squared error and reconstruction Fréchet
inception distance (rFID) (Heusel et al., 2017) metrics (see Table 2). We find that increasing the latent channel dimension
significantly improves the performance of the reconstructions produced by the VAEs. Critical for the upper bound of
the performance for the subsequent tokenizer and autoregressive models, the VAE trained with 16 channels achieves a
competitive rFID of 0.354. Furthermore, when training FlexTok d12-d12 tokenizers on these four VAE variants, we
show in Figure 10 that choosing Stage 0 VAEs with a low number of channels can have detrimental consequences on the
Stage 1 FlexTok reconstruction performance. This finding is consistent with Esser et al. (2024), and we choose to train
FlexTok models using our 16-channel VAE to avoid prematurely putting an upper-bound on its performance.

C.2. FlexTok details

See Table 5 for a detailed breakdown of the resampler tokenizer architecture and training settings. All encoders and decoders
are Transformers, whose hidden dimension w is parameterized by the number of layers d using a fixed aspect ratio of 64,
i.e. w = 64 · d. The number of attention heads is set to d. Both the encoder and decoder operate on 2× 2 patches of VAE
latents to reduce the sequence lengths they need to process. The registers are a randomly initialized and learnable parameter
of shape K × d, concatenated with the VAE patches. We use FlexAttention (PyTorch Team: Horace He, Driss Guessous,
Yanbo Liang, Joy Dong, 2024) to create an encoder attention mask in which all patch tokens can attend to each other but not
the registers, the registers can attend to all patch tokens, but the i-th register token can only attend to the j-th register token
if i ≥ j.

We use FSQ as the quantization bottleneck with levels [8,8,8,5,5,5], for an effective codebook size of 64 000. When
performing nested dropout, we replace the dropped tokens with a learnable mask token.

The FlexTok decoders are rectified flow models that are conditioned on the encoder’s register tokens by concatenating them
with the noised VAE latent patches. Unlike the encoder, the decoder computes full self-attention between the registers and
patch tokens, and only the patch tokens are output. The VAE latents are sampled according to a noise schedule that follows
Stable Diffusion 3’s mode sampling with heavy tails scheme, using scale parameter s = 0.25. We use adaLN-Zero (Peebles
& Xie, 2023) to condition the registers and image patches using separate sets of adaLN weights applied to the same
continuous timestep embeddings. As shown in Table 5, the adaLN parameters make up half the total decoder parameters,
but we note that their contribution to the overall decoder FLOPS is negligible as they are computed on the time embedding
tokens (once for the registers and once for the noised patches). We leave the reduction of this parameter cost to future
research. To enable the use of classifier-free guidance (Ho, 2022), we randomly replace the entirety of the encoded registers
by a learned null-condition with probability 0.2. The decoder’s target is the flow, see Section 3.1.

In addition to the rectified flow loss LRF, we use REPA (Yu et al., 2024b) to speed up convergence of FlexTok. Specifically,
we project the first decoder layer activations using a 3-layer MLP with the same dimension as the decoder and ratio 4.0,
upsample them to size 37× 37, and compute the cosine similarity with 1024-dimensional DINOv2-L (Oquab et al., 2023)
features. The REPA loss LREPA is weighted equally to the rectified flow loss, i.e. L = LRF + 1.0 · LREPA.

The resampler models are either trained on ImageNet-1k (Russakovsky et al., 2014) for downstream use in class-conditional
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Table 5. FlexTok training settings. Model and training configuration for three different model sizes of our resampler tokenizers. See
Appendix C.2 for further training details.

Configuration FlexTok d12-d12 FlexTok d18-d18 FlexTok d18-d28

Encoder depth denc 12 18 18
Decoder depth ddec 12 18 28
Encoder dim. wenc 768 1152 1152
Decoder dim. wdec 768 1152 1792
Encoder Transformer parameters 84.9M 286.7M 286.7M
Decoder Transformer parameters 84.9M 286.7M 1.1B
Decoder adaLN (Peebles & Xie, 2023) parameters 84.9M 286.7M 1.1B
Max. num. registers K 256
Register attention mask Causal (see Section 3.2)
Register nested dropout mode Powers of two: 1, 2, 4, 8, 16, 32, 64, 128, 256 (see Section 3.2)
FSQ (Mentzer et al., 2023) levels [8,8,8,5,5,5]
VAE channels 16
VAE downsampling factor 8
Patch size 2× 2
Feedforward activation SwiGLU (Shazeer, 2020)

Rectified flow decoder ✓
Decoder adaLN-Zero
time emb. (Peebles & Xie, 2023) ✓

Noise mode sampling
param. s ((Esser et al., 2024), Sec. 3.1) 0.25

Condition dropout prob. 0.2

REPA (Yu et al., 2024b) layer 1
REPA (Yu et al., 2024b) model DINOv2-L (Oquab et al., 2023)
REPA (Yu et al., 2024b) projection 3-layer MLP with decoder dim.
REPA (Yu et al., 2024b) loss weight 1.0

Training length (n tokens) 200B
Warmup length (n tokens) 4B
Warmup learning rate 1e-6
Learning rate schedule Cosine decay
Model EMA decay 0.998
Optimizer AdamW (Loshchilov & Hutter, 2017)
Opt. momentum β1, β2 = 0.9, 0.99
Learning rate η 5.62e-4
Batch size 2048
µP (Yang et al., 2022) base dim. 256
Weight decay timescale τiter (Wang & Aitchison, 2024) niter = 381 470
Gradient clipping norm 1.0

Dataset ImageNet-1k (Russakovsky et al., 2014) or DFN-2B (Fang et al., 2023)
Image resolution 2562

Augmentations
RandomResizedCrop,

RandomHorizontalFlip,
Normalize

Data type bfloat16 (Burgess et al., 2019)

image generation, or on DFN-2B (Fang et al., 2023) for training autoregressive text-to-image models. The image-caption
dataset contains a mixture of original and synthetic captions. During training, we randomly select crops of size 2562 using
random scales in [0.8, 1.0] and aspect ratio in [0.75, 1.3333]. The resulting images are randomly flipped horizontally with a
probability of 0.5, and normalized to the range [-1,1].

All models are trained for a total of 200B tokens seen, where one token is counted as a 2× 2 VAE patch, i.e. a 16× 16 grid
of pixels. For images of size 2562, this amounts to 256 tokens per sample. We linearly warm up the learning rate for 4B
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tokens, and decay it using cosine decay. The model is trained using the AdamW (Loshchilov & Hutter, 2017) optimizer, and
we swept the learning rate and batch size at a small scale using µP (Yang et al., 2022), which we transfer directly to all other
settings. We note here that we did not sweep these hyperparameters for every resampler setting, but only on the base setting
of a rectified flow resampler without REPA, causal register masks, nor nested dropout. We automatically set the weight
decay following the interpretation that AdamW with weight decay can be understood as an exponential moving average
(EMA) of recent updates (Wang & Aitchison, 2024). Concretely, we compute the weight decay such that it corresponds to
averaging over all training iterations, setting τiter to the total number of iterations niter. The weight decay λ is computed as
λ = 1

niter·η , using learning rate η. For the final model evaluations, we additionally use an EMA of the weights with decay
rate 0.998. See the exact settings in Table 5 and the ImageNet-1k training curves in Figure 17.
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Figure 17. FlexTok training loss curves. The FlexTok of different sizes shown here are trained for 200B tokens on ImageNet-
1k (Russakovsky et al., 2014). We plot the total loss, i.e. LRF + LREPA.
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Figure 18. FlexTok evaluation curves. We evaluate the resamplers during training at periodic intervals on the entire ImageNet-1k
validation set, showing rFID, MAE, Inception score, and LPIPS.

C.3. Autoregressive model details

See Table 6 and Table 7 for a detailed breakdown of the class conditional and text-conditional autoregressive transformer
architectures and training settings. The AR component of the models are casual decoder Transformers, similar to the
FlexTok tokenizer modules, the hidden dimension w is parameterized by the number of layers d using a fixed aspect ratio
of 64, i.e. w = 64 · d. The number of attention heads is set to d. We use a MLP ratio of 4 for the FFN hidden dim relative to
the attention hidden.

In the class-conditional models we do not apply µP (Yang et al., 2022) and instead scale the learning rate inversely with
the model width. To mitigate overfitting to the ImageNet-1k dataset we apply dropout with 0.1 probability to the FFN,
attention, and projection modules in the Transformer decoder blocks and we apply random hornizontal flipping of the
images. Additionally we produce 10 random crops per image prior to tokenization(Sun et al., 2024). Whereas, for the
text-conditional models we do apply µP, use a learning rate of 1e-2 for all model sizes, don’t use dropout in the Transfomrer
decoder blocks, take square center crops and apply no data augmentations to the training images. When scaling up the AR
transformer for the text conditioned models we warmup the learning rate for the same number of tokens as the model’s
parameter count (Porian et al., 2024).
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Table 6. Class conditioned AR training settings. Model and training configuration for different model sizes of our AR transformers.

Configuration AR 49M AR 85M AR 201M AR 393M AR 679M AR 1.33B

Num. non-embedding Parameters 49M 85M 201M 393M 679M 1.33B
Decoder depth ddec 10 12 16 20 24 30
Decoder dim. wdec 640 768 1024 1280 1536 1920
Cross Attn. dim. n/a n/a n/a n/a n/a n/a
MLP Ratio 4
Max. Sequence Length 256
Attention mask Causal
Vocab Size 64,000
Feedforward activation SwiGLU (Shazeer, 2020)
Positional Encoding Learned Embedding
Conditioning dropout prob. 0.1
FFN, Attn. and Projection dropout prob. 0.1

Training length (n tokens) 94B (300 Epochs)
Warmup length (n tokens) 9.4B
Initial warmup learning rate 1e-6
Learning rate schedule Cosine decay
Optimizer AdamW (Loshchilov & Hutter, 2017)
Opt. momentum β1, β2 = 0.9, 0.95
Learning rate η 1.2E-3 1E-3 7.5E-4 6E-4 5E-4 4E-4
Final learning rate η×1E-2
Batch size 1024
µP (Yang et al., 2022) base dim. n/a
Weight decay 0.05
Weight decay timescale τiter (Wang & Aitchison, 2024) n/a
Gradient clipping norm 1.0

Dataset ImageNet-1k (Russakovsky et al., 2014)
Image resolution 2562

Augmentations
10 options RandomResizedCrop,

RandomHorizontalFlip,
Normalize

Data type bfloat16 (Burgess et al., 2019)
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Table 7. Text conditioned AR training settings. Model and training configuration for different model sizes of our AR transformers.

Configuration AR 113M AR 382M AR 1.15B AR 3.06B

Num. non-embedding Parameters 113M 382M 1.15B 3.06B
Decoder depth ddec 12 18 26 36
Decoder dim. wdec 768 1152 1664 2304
Cross Attn. dim. 12 18 26 36
MLP Ratio 4
Max. Sequence Length 256
Attention mask Causal
Vocab Size 64,000
Feedforward activation SwiGLU (Shazeer, 2020)
Positional Encoding Learned Embedding
Conditioning dropout prob. 0.1
FFN, Attn. and Projection dropout prob. 0.0

Training length (n tokens) 284B
Training FLOPs 1.93E+20 6.39E+20 1.90E+21 5.00E+21
Warmup length (n tokens)
Initial warmup learning rate 1e-6
Learning rate schedule Cosine decay
Optimizer AdamW (Loshchilov & Hutter, 2017)
Opt. momentum β1, β2 = 0.9, 0.95
Learning rate η 1e-2
Final learning rate η×1E-2
Batch size 8192
µP (Yang et al., 2022) base dim. 256
Weight decay 0.05
Weight decay timescale τiter (Wang & Aitchison, 2024) niter = 135 594
Gradient clipping norm 1.0

Dataset DFN-2B (Fang et al., 2023)
Image resolution 2562

Augmentations n/a
Data type bfloat16 (Burgess et al., 2019)
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D. Related Work
Image tokenization. The goal of tokenization is to convert high-dimensional images into a more compact sequence of
token representations, making diffusion and flow (Rombach et al., 2022; Podell et al., 2023; Ma et al., 2024; Esser et al.,
2024; Yu et al., 2024b), masked (Chang et al., 2022; 2023; Li et al., 2022; Lu et al., 2022; 2023; Mizrahi et al., 2023;
Bachmann et al., 2024), or autoregressive (Chen et al., 2020; Ramesh et al., 2021; Yu et al., 2022; Sun et al., 2024) image
modeling more tractable. Usually, these tokens are learned using an autoencoder objective with a discrete (Van Den Oord
et al., 2017; Razavi et al., 2019) or continuously regularized (Rombach et al., 2022) bottleneck. In addition, auxilliary
perceptual and discriminator losses (Esser et al., 2021; Yu et al., 2021) are commonly used to abstract away imperceptible
details, while latent bias losses (Hu et al., 2023) have been shown to facilitate downstream token prediction. In the discrete
case, vector quantization (VQ) (Van Den Oord et al., 2017) has been the de facto standard, but more recent techniques such
as LFQ (Yu et al., 2023) and FSQ (Mentzer et al., 2023) show promising scaling trends.

Tokenizers with rectified flow decoding. A core property of image tokenizers is the ability to reconstruct perceptually
plausible images from the heavily compressed tokens. While discriminator losses (Esser et al., 2021) are commonly used for
this, their training can be notoriously difficult (Yu et al., 2024a). Instead, we opt to train the decoder as a rectified flow (Liu
et al., 2022) model, similar to other works (Shi et al., 2022; Mizrahi et al., 2023; Bachmann et al., 2024; Xu et al., 2024; Zhao
et al., 2024), as this approach has proven successful in scalable image generation with both coarse and fine conditioning – a
property that is particularly useful for our model, FlexTok, which can handle a wide range of conditioning specificity.

Structured tokenization. So far, most of the aforementioned image tokenization methods project images into a fixed-size
2D grid. Methods like VAR (Tian et al., 2024) and Infinity (Han et al., 2024) showed impressive scaling trends when
projecting images into a structured multi-scale latent representation, while TiTok (Yu et al., 2024a), TexTok (Zha et al.,
2024), and DisCo-Diff (Xu et al., 2024) explored doing away with the 2D grid entirely and projecting images into an
unstructured but highly compact 1D sequence. Still, the number of tokens an image is represented with is either fixed in the
case of Titok, or depends on the image resolution in the case of Infinity.

Structured and adaptive tokenization. To address the issue of the token sequence length depending entirely on the height
and width instead of the image complexity, a range of concurrent works have proposed adaptive tokenization methods:

• ElasticTok (Yan et al., 2024) is a joint image and video tokenizer that performs nested dropout during training between
a pre-specified minimum and maximum number of tokens. The authors note that the minimum bound is set to 128 or
256 due to instabilities at lower values. Compared to ElasticTok, we observe stable training of FlexTok down to
a single token. In addition, by training the decoder with a rectified flow objective, FlexTok is able to reconstruct
high-fidelity images at any number of tokens. Comparatively, ElasticTok requires much higher number of tokens to
reconstruct images with high perceptual quality due to being trained only with an MSE and LPIPS loss.

• ALIT (Duggal et al., 2024) presents an adaptive length tokenizer that recurrently encodes images into a growing
sequence of tokens. This process can be dynamically halted, leading to adaptively sized image representations.
Compared to ALIT, FlexTok encodes images in a single forward pass, and we efficiently enforce an ordering through
causal masks and nested dropout. Since the tokenizers are trained on a 100-class subset of ImageNet-1k and not
evaluated on generative tasks, its scaling and generation properties are not entirely experimentally demonstrated. In
comparison, we scale both the FlexTok and downstream AR models, and demonstrate strong generative modeling
capabilities.

• One-D-Piece (Miwa et al., 2025) is architecturally similar to TiTok (Yu et al., 2024a) and FlexTok, in that it uses a
register encoder and decoder and is trained using nested dropout on token sequences between 1 and 256. While the
One-D-Piece models achieve good reconstruction metrics at high number of tokens, the model fails to produce plausible
images at lower number of tokens, unlike FlexTok. In addition, it requires a two-stage training approach like TiTok,
while FlexTok’s Stage 1 is trained end-to-end. Similar to ElasticTok and ALIT, the authors do not evaluate the use of
One-D-Piece tokens to train generative models.

• ViLex (Wang et al., 2024b) uses a pre-trained text encoder and diffusion model to learn variable-sized sets of “text
tokens” that encode a given image. These soft tokens can be combined with image prompts to generate novel images,
similar to textual inversion (Gal et al., 2022). The goal of FlexTok lies more in learning a generic set of coarse-to-
fine-grained token sequences, which can both be highly semantic for short sequences and highly detailed for longer
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sequences. We believe that the use of pre-trained diffusion models as the decoder presents exciting future research
directions.

• CAT (Shen et al., 2025) presents a nested VAE architecture that can adaptively compress images into 8x, 16x, and 32x
spatially down-sampled representations. Compared to FlexTok’s discrete 1D representations, these token grids are
2D and continuous.

Ordered representation learning. Besides image generation, learning ordered representations has been a long-studied
topic. Nested dropout (Rippel et al., 2014) learns a variably sized bottleneck representation through uniformly dropping
latents from one side, while Matryoshka Represenation Learning (Kusupati et al., 2022) proposes to sample the representation
dimensions from powers of two, and decodes each with a weight shared decoder. Matroshka Multimodal Models (Cai et al.,
2024) proposes instead to adaptively pool 2D vision encoder representations into smaller 2D grid sizes. UViM (Kolesnikov
et al., 2022) proposes to use nested dropout to learn codes that are more robust and easier to model with a downstream
language model.

Variable-rate compression. In lossy image compression, how to trade compression strength (rate) for reconstruction
performance (distortion) has been a long-studied topic. Classical lossy image compression codecs (Wallace, 1992; Zern
et al., 2024; Taubman & Marcellin, 2001) and more recent neural compression algorithms (Mentzer et al., 2020; El-Nouby
et al., 2022; Hoogeboom et al., 2023) effectively enable users to choose this trade-off and are able to compress simple
images to smaller file sizes compared to more complex ones. While classical JPEG images are transmitted and decoded in a
raster-scan order, progressive schemes like progressive JPEG (Wallace, 1992) structure images in a coarse-to-fine manner,
allowing users to very quickly reconstruct a low-quality version of an image.
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E. Additional ImageNet Reconstruction and Generation Metrics
To complement the ImageNet-1k reconstruction metrics (rFID, MAE, and DreamSim) shown in Figure 5, we provide
additional image-wise reconstruction metrics in Table 8, including PSNR, SSIM, and LPIPS, measured on the ImageNet-1k
validation set. We also supplement the class-conditional generation results from Figure 7 (right) and Figure 9 with additional
metrics in Table 9, which includes CLIP score, gFID, sFID, Inception score, precision, and recall measured against the
complete ImageNet-1k training set.

Table 8. FlexTok d18-d28 ImageNet-1k reconstruction metrics. For the largest FlexTok d18-d28 model trained on ImageNet-
1k, we show reconstruction metrics on the full validation set that measure distribution-level differences (reconstruction FID), as well as
image-wise distortions in pixel-space (MAE, PSNR, and SSIM) and feature-space (LPIPS and DreamSim). Given a vocabulary size of
64 000, each token takes up 2 bytes of storage.

# tokens # bytes rFID ↓ MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓
1 2 4.01 0.273 9.35 0.187 0.701 0.546
2 4 3.09 0.237 10.25 0.222 0.651 0.494
4 8 2.43 0.197 11.51 0.254 0.582 0.417
8 16 1.90 0.185 11.90 0.269 0.532 0.321
16 32 1.61 0.154 13.05 0.304 0.462 0.271
32 64 1.45 0.134 13.96 0.330 0.407 0.227
64 128 1.37 0.126 14.34 0.343 0.380 0.207
128 256 1.20 0.102 15.90 0.407 0.293 0.158
256 512 1.08 0.081 17.70 0.489 0.219 0.114

Table 9. Class-conditional 1.33B AR model with FlexTok d18-d28 generation metrics on ImageNet-1k. We show generation
metrics for a 1.33B class-conditional AR model trained on tokens from FlexTok d18-d28. The generation FID, sFID, Inception
score, precision, and recall are measured using 50k generated samples by comparing against the full ImageNet-1k train set statistics, while
the CLIP score is computed on the full validation set instead.

# tokens CLIP score ↑ gFID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑
1 26.84 3.14 6.54 236.47 0.83 0.53
2 27.10 2.51 5.33 238.07 0.82 0.57
4 27.51 2.00 4.86 226.77 0.80 0.60
8 28.84 1.82 4.53 266.48 0.82 0.61
16 29.12 1.75 4.32 277.45 0.82 0.61
32 29.10 1.71 4.46 284.99 0.82 0.61
64 29.14 1.76 4.53 286.40 0.82 0.61
128 29.03 1.89 5.24 275.63 0.82 0.61
256 28.94 2.45 6.76 258.33 0.80 0.61
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F. FlexTok Inference Hyperparameter Sweeps
For trained FlexTok models, we sweep different inference-time hyperparameters relating to the rectified flow decoder, such
as the number of denoising steps in Figure 19 and the classifier-free guidance scale when using adaptive projected guidance
(APG) (Sadat et al., 2024) in Figure 21. We further show guidance sweeps when using a vanilla guidance formulation in
Figure 20, and compare guidance scales for our largest 1D and 2D tokenizers in Figure 22.

F.1. FlexTok flow decoder timestep sweeps

We sweep the number of denoising steps between 1 and 100 on FlexTok d18-d28 (trained on ImageNet-1k) for different
number of tokens. By default, we set the guidance scale to 7.5 and use APG (Sadat et al., 2024). We find that denoising
for more than 25 steps leads to significant diminishing returns in terms of the reconstruction quality metrics, as shown in
Figure 19. rFID and DreamSim metrics plateau, but the mean absolute error to the original images continues to increase,
especially for low number of tokens. We choose 25 denoising steps for all subsequent ablations and use it as our default
value for all model sizes, as it provides a good balance between inference speed and quality.
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Figure 19. Number of inference denoising steps ablation. We sweep number of inference steps on FlexTok d18-d28 (trained on
ImageNet-1k) and find that 25 denoising step provides a good balance between inference speed and quality.

F.2. Ablating standard classifier-free guidance

We find that using standard classifier-free guidance (Ho, 2022) in the flow matching decoder results in narrow basins
of optimal reconstruction performance that are highly dependent on the number of tokens provided to the decoder (see
Figure 20). We instead opt to use APG (Sadat et al., 2024), as discussed in Appendix F.3.
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Figure 20. Standard classifier-free guidance ablation. We sweep guidance scales for FlexTok d18-d28 (trained on ImageNet-1k)
and find optimal guidance scale basins to be narrow and vary strongly across different number of tokens used.

F.3. FlexTok normalized guidance sweeps

We would like to avoid cases where the optimal guidance scales varies greatly across different number of FlexTok tokens.
As observed in Appendix F.2, standard classifier-free guidance can exhibit narrow optimality basins. For that reason, we
explore the use of normalized guidance schemes like adaptive projected guidance (APG) (Sadat et al., 2024). We choose
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hyperparameters for rescaling threshold as r = 2.5, parallel component as η = 0, and momentum as β = −0.5, and sweep
the guidance scale. Compared to standard guidance, using APG (Sadat et al., 2024) yields optimal performance basins
which are shallower, more aligned across differing numbers of tokens, and have overall improved rFID values. The basins of
smaller FlexTok models are less aligned than the ones of larger models, and their optimal guidance values are higher. No
matter the model size, the DreamSim metric improves and plateaus with higher guidance scales, while the MAE degrades
slightly.
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Figure 21. Adaptive projected guidance (Sadat et al., 2024) ablation. We sweep guidance scales for different FlexTok model sizes
and number of tokens and find that APG results in smoother guidance scale basins than standard guidance.
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F.4. 1D vs 2D tokenizer classifier-free guidance ablation

For our largest tokenizer size FlexTok d18-d28 (trained on DFN-2B), we compare classifier-free guidance basins with
our controlled 2D grid tokenizer baseline on the COCO 30.5k validation set. Both models use APG (Sadat et al., 2024). As
shown in Figure 22, we find that in terms of rFID and DreamSim score, the 1D tokenizer outperforms the 2D baseline by a
large margin across guidance scale values, but observe that the 2D grid tokenizer performs better in terms of MAE.
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Figure 22. 1D vs 2D FlexTok d18-d28 guidance scale ablation. We sweep the APG guidance scale for FlexTok d18-d28
(trained on DFN-2B) and the controlled 2D tokenizer baseline. The 1D FlexTok d18-d28 model is evaluated using the full 256
tokens.

F.5. Final FlexTok inference hyperparameters

From these observations we make the final choices of the inference hyperparameters for each of the model sizes and training
datasets and use these for all subsequent image generation experiments. We detail them in Table 10 for ImageNet-1k
tokenizers and 11 for DFN-2B tokenizers. We note that common timestep and guidance-scale distillation techniques
for diffusion and flow models are applicable to FlexTok decoders, and we expect that such steps could reduce the
computational requirements of running the decoder significantly.

Table 10. ImageNet-1k FlexTok inference settings. Chosen tokenizer inference configurations used for the three different model sizes
trained on ImageNet-1k.

Configuration FlexTok d12-d12 FlexTok d18-d18 FlexTok d18-d28

# denoising steps 25 25 25
Adaptive Projected Guidance (APG) (Sadat et al., 2024) True True True
Decoder guidance scale 15 7.5 7.5

Table 11. DFN FlexTok inference settings. Chosen tokenizer inference configurations used for the three different model sizes trained
on DFN-2B.

Configuration FlexTok d18-d28 2D Grid d18-d28

# denoising steps 25 25
Adaptive Projected Guidance (APG) (Sadat et al., 2024) True True
Decoder guidance scale 7.5 5.0
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G. Autoregressive Class-Conditional Image Generation Hyperparameter Sweeps
For class-conditional AR Transformers trained on top of FlexTok tokenizers we sweep a variety of inference-time
hyperparameters. We implement classifier-free guidance in the AR model as a update of the prediction logits x̂ given by
x̂ = xuncond + s · (xcond − xuncond). Here xcond and xuncond are the logits with and without the conditioning supplied to
the model. Taking a fully trained AR 1.33B and FlexTok d18-d28 we find that using no guidance, i.e. CFG scale
s = 1.0, results in the best gFID values irrelevant of the top-k sampling or number of tokens generated before decoding to
image space (Figures 23 and 24). A optimal gFID value with no guidance sets AR models with FlexTok tokenizers apart
from previous examples in the literature. For example the optimal CFG value for the LlamaGen models was 2.0 for their
class-conditional models (Sun et al., 2024). The ordering introduced by the causal mask and nested-dropout in the tokenizer
could be the source of the property in the subsequent AR model. There are significant inference compute advantages if
CFG is not applied, in particular the batch doesn’t need to be increased by a factor of 2 to accommodate the unconditional
samples. Besides the interesting dependence on the classifier-free guidance scale we find that increasing the top-k sampling
threshold improves the gFID values. For optimal generation FID we find that no top-k sampling should be used.
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Figure 23. Class-conditional 1.33B AR model with FlexTok d18-d28 guidance and top-K ablation. gFID measured with respect
to the full ImageNet-1k train set statistics.
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Figure 24. Class-conditional 1.33B AR model with FlexTok d18-d28 guidance and number of tokens ablation. gFID measured
with respect to the full ImageNet-1k train set statistics.
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H. Autoregressive Class-Conditional Image Generation Model Size
By scaling up the AR model size in the class conditioned models we observe consistent improvements in the training
loss (Figure 25). Following the optimal inference parameters observed in Appendix G, no CFG and no top-k sampling,
we evaluate the effect of scaling the AR model size on top of the FlexTok d18-d28 tokenizer. Figure 26 shows that
generation performance when producing only a few tokens is independant of model size. However the longer the sequence
the more the larger AR model size limits token decoding errors. When generating the full 256 tokens scaling up the AR
model size significantly improves the gFID values. We note that even with the largest AR model investigated here, with
1.33B parameters, we still observe a slight regression in the gFID values as the number of decoded tokens increases about
128.
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Figure 25. Autoregressive class-conditional image generation loss curves. The AR models of different sizes shown here are trained for
94B tokens on ImageNet-1k using the FlexTok d18-d28 tokenizer trained on ImageNet-1k.
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Figure 26. Autoregressive class-conditional image generation model scaling. Left shows the gFID values for each model size at varying
numbers of generated tokens. The right figure shows the gFID with 256 tokens against the parameter count of the AR model. The gFID
values are measured with respect to the full ImageNet-1k train set statistics. All AR models are trained using the FlexTok d18-d28
tokenizer trained on ImageNet-1k. During generation we use the optimal inference parameters detailed in Appendix G.

Scaling up the tokenizer size significantly improves the generation quality (Figure 27). With a fixed AR model size of
1.33B we scale up the tokenizers size from FlexTok d12-d12 to FlexTok d18-d28 and find improvements in
the measured gFID values. For some tokenizer sizes the reconstruction quality of the tokenizer is upper bounding the
performance of the generative model.
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Figure 27. Autoregressive class-conditional image generation FlexTok tokenizer scaling. Left shows the gFID values for 1.33B
AR models trained with each of the different sized FlexTok tokeninizers at varying numbers of generated tokens. The right figure
shows the gFID with 256 tokens against the parameter in the FlexTok tokenizer. The gFID values are measured with respect to the full
ImageNet-1k train set statistics. During generation we use the optimal inference parameters detailed in Appendix G.
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I. Autoregressive Text-Conditional Image Generation Inference Hyperparameter Sweeps
For text conditional AR Transformers trained with FlexTok tokenizers we sweep the hyperparameter classifier-free
guidance scale and number of decoded tokens. Taking a fully trained AR 3.06B and FlexTok d18-d28 we find that
using classifier-free guidance improves the gFID for all lengths of generated token sequences (Figure 28). This observation
in contrast to the class conditioned FlexTok based models where using CFG hurt gFID performance. The difference in the
complexity of the conditioning and any distribution shift between the DFN training and COCO validation datasets could be
a contributing factor here. In addition to the CFG improving gFID values we also find that the CLIPScore increases with
increasing guidance.

We find that a CFG scale of 2.5 optimizes the gFID values across the variety of number of tokens generated. Using this CFG
scale we see gFID values which sharply drops and then gradually increase as the number of tokens generated increases
(Figure 29). In comparison we find that the text-image alignment measured by the CLIPScore only improves as the number
of tokens is increased.
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Figure 28. Text-conditional 3.06B AR with FlexTok d18-d28 guidance and number of tokens ablation. gFID (left) and CLIPScore
(right) metrics measured with respect to the COCO validation set at varying numbers of tokens.
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Figure 29. Text-conditional 3.06B AR with FlexTok d18-d28 image generation vs number of tokens. All metrics are computed
using a CFG scale of 2.5 during generation. Left shows the rFID of the DFN trained FlexTok d18-d28 on the COCO validation set.
The AR image generation gFID (middle) and CLIPScore (right) on the COCO validation set as functions of the number of generated
tokens.

Figure 30 shows the 2D grid based tokenizer has a similar dependence of the evaluation metrics on the CFG scale used. We
select a CFG scale of 2.5 as a balance between optimizing the gFID and CLIPScore metrics. Additionally this selected CFG
scale is the same as the value used for the FlexTok based models enabling a balanced comparison of the two approaches.
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Figure 30. Text-conditional 3.06B AR with 2D grid tokenizer guidance ablation. gFID (left) and CLIPScore (right) metrics measured
with respect to the COCO validation set at varying numbers of tokens.
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J. Autoregressive Text Conditional Image Generation Model Size
Following the optimal inference parameters observed in Appendix I, we evaluate the effect of scaling the AR model size
while fixing the FlexTok d18-d28 tokenizer. Scaling up the model size from 113M to 3.06B parameters results in lower
final loss values being achieved for both the FlexTok and 2D grid tokenizer (Figure 31 and 32). When generating the full
256 tokens, scaling up the AR model size significantly improves the gFID values (Figure 33).
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Figure 31. FlexTok autoregressive text-conditional image generation loss curves. The AR models of different sizes shown here are
trained for 284B tokens on DFN using the FlexTok d18-d28 tokenizer trained on DFN.
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Figure 32. 2D grid tokenizer autoregressive text-conditional image generation loss curves. The AR models of different sizes shown
here are trained for 284B tokens on DFN using the FlexTok d18-d28 tokenizer trained on DFN.
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Figure 33. Autoregressive text conditional image generation model scaling. The gFID values for each model size as functions of the
parameter count of the AR model. During AR generation we generate 256 tokens so that the FlexTok and 2D grid tokenizer can be
compared and use the optimal inference parameters detailed in Appendix I. The gFID values are measured with respect to the COCO
validation set. All AR models are trained using the tokenizers trained on DFN.
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K. Additional Visualizations
K.1. FlexTok image reconstruction for different numbers of tokens – multiple samples per token sequence
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Figure 34. FlexTok samples for different number of tokens. We show FlexTok d18-d28 (trained on ImageNet-1k) reconstructions
for different numbers of tokens for ImageNet-1k validation set samples. We draw 5 random samples from the rectified flow decoder given
the same token sequences. FlexTok token sequences define a distribution over images that gets narrower, and more specific to the
original image, the more tokens are used.
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Figure 35. FlexTok samples for different number of tokens. We show FlexTok d18-d28 (trained on ImageNet-1k) reconstructions
for different numbers of tokens for ImageNet-1k validation set samples. We draw 5 random samples from the rectified flow decoder given
the same token sequences. FlexTok token sequences define a distribution over images that gets narrower, and more specific to the
original image, the more tokens are used.
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K.2. FlexTok image reconstruction for different numbers of tokens and tokenizer sizes
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d18-d28

FlexTok 
d12-d12

FlexTok 
d18-d18

FlexTok 
d18-d28

Figure 36. FlexTok reconstructions for different numbers of tokens and model sizes. We show FlexTok (trained on ImageNet-1k)
reconstructions for different numbers of tokens and model sizes (d12-d12, d18-d18, d18-d28) for ImageNet-1k validation set
samples.
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Figure 37. FlexTok reconstructions for different numbers of tokens and model sizes. We show FlexTok (trained on ImageNet-1k)
reconstructions for different numbers of tokens and model sizes (d12-d12, d18-d18, d18-d28) for ImageNet-1k validation set
samples.
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K.3. Image reconstruction comparison between FlexTok, TiTok, and ALIT
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(semi-large)

TiTok L-32,
TiTok B-64,
TiTok S-128

Original RGB

256 tokens128 tokens64 tokens32 tokens16 tokens8 tokens4 tokens2 tokens1 token

FlexTok 
d18-d28

ALIT 
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Figure 38. Reconstruction comparison between FlexTok and baselines. We show FlexTok d18-d28 (trained on ImageNet-1k)
reconstructions for different numbers of tokens and for ImageNet-1k validation set samples, and compare against three different TiTok (Yu
et al., 2024a) models, and ALIT (Duggal et al., 2024).
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Figure 39. Reconstruction comparison between FlexTok and baselines. We show FlexTok d18-d28 (trained on ImageNet-1k)
reconstructions for different numbers of tokens and for ImageNet-1k validation set samples, and compare against three different TiTok (Yu
et al., 2024a) models, and ALIT (Duggal et al., 2024).
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K.4. Class-conditional image generation visualizations

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

arctic wolf (270)

volcano (980)

cliff drop-of
(972)

balloon (417)

panda (388)

macaw (88)

loggerhead sea
turtle (33)

golden retriever
(207)

lion (291)

Figure 40. FlexTok class-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Each row represents a different ImageNet-1k class index supplied to the
auto-regressive image generator as conditioning. Images are generated using the FlexTok d18-d28 tokenizer combined with a 1.33B
parameter AR Transformer.
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

Figure 41. FlexTok class-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer combined with a
1.33B parameter AR Transformer. The model is conditioned on the class label from ImageNet-1k for ”golden retriever” (207), using
different random seeds for each row.
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

Figure 42. FlexTok class-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer combined with a
1.33B parameter AR Transformer. The model is conditioned on the class label from ImageNet-1k for ”flamingo” (130), using different
random seeds for each row.
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

Figure 43. FlexTok class-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer combined with
a 1.33B parameter AR Transformer. The model is conditioned on the class label from ImageNet-1k for ”Macaw” (88), using different
random seeds for each row.
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K.5. Text-conditional image generation visualizations

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

A cutting board
topped with bread,

meat and
vegetables.

A kitchen that is
in the process of
having the floors

done

a big purple bus
parked in a

parking spot

A furry, black
bear standing in a
rocky, weedy, area

in the wild.

A plate on a
wooden table full

of bread.

A cat resting on
an open laptop

computer.

A large green
truck on a city

street.

A few bags laying
around in a living

room.

Two birds that are
sitting in a marsh

area.

Figure 44. FlexTok text-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer trained on DFN
combined with a 3.06B parameter AR Transformer also trained on DFN. For each row the AR Transformer is conditioned on the text
embeddings of the prompts.
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

Figure 45. FlexTok text-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer trained on DFN
combined with a 3.06B parameter AR Transformer also trained on DFN. For each row the AR Transformer is conditioned on the text
embeddings of the prompt “A furry, black bear standing in a rocky, weedy, area in the wild”, but uses a different random seed.
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

a pickup truck at
the beach at

sunrise

A photo of an
astronaut riding a

horse in the
forest. There is a
river in front of

them with water
lilies.

A blue Porsche 356
parked in front of

a yellow brick
wall

Dogs sitting
around a poker
table with beer

bottles and chips.
Their hands are
holding cards.

a large white
yacht in a calm

bay on a sunny day

a sunken ship at
the bottom of the

ocean

A photo of a four-
leaf clover made

of water.

a photograph of a
squirrel holding

an arrow above its
head and holding a

longbow in its
left hand

a corgi's head
depicted as an
explosion of a

nebula

Figure 46. FlexTok text-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer trained on DFN
combined with a 3.06B parameter AR Transformer also trained on DFN. For each row the AR Transformer is conditioned on the text
embeddings of a different PartiPrompt (Yu et al., 2022).
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

a black and orange
yin-yang symbol

with tiger's heads
instead of circles

a blue wall with a
large framed

watercolor
painting of a

mountain

a real flamingo
reading a large

open book. a big
stack of books is
piled up next to

it. dslr
photograph.

graffiti of a
rocket ship on a

brick wall

a cityscape at
night with a full

moon

a professional
photo of a sunset
behind the grand

canyon

a water tower next
to a deserted road

Snow mountain and
tree reflection in

the lake

a stained glass
window depicting a
calm tyrannosaurus

rex

Figure 47. FlexTok text-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer trained on DFN
combined with a 3.06B parameter AR Transformer also trained on DFN. For each row the AR Transformer is conditioned on the text
embeddings of a different PartiPrompt (Yu et al., 2022).
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

Figure 48. FlexTok text-conditional image generations with varying numbers of tokens. From left to right the number of tokens
used increases in powers of 2 from 1 up to 256 tokens. Images are generated using the FlexTok d18-d28 tokenizer trained on DFN
combined with a 3.06B parameter AR Transformer also trained on DFN. For each row the AR Transformer is conditioned on the text
embeddings of the prompt “A blue Porsche 356 parked in front of a yellow brick wall”, but uses a different random seed.
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