
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAN YOU HEAR ME NOW? A BENCHMARK FOR LONG-
RANGE GRAPH PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Effectively capturing long-range interactions remains a fundamental yet unresolved
challenge in graph neural network (GNN) research, critical for applications across
diverse fields of science. To systematically address this, we introduce ECHO (Eval-
uating Communication over long HOps), a novel benchmark specifically designed
to rigorously assess the capabilities of GNNs in handling very long-range graph
propagation. ECHO includes three synthetic graph tasks, namely single-source
shortest paths, node eccentricity, and graph diameter, each constructed over di-
verse and structurally challenging topologies intentionally designed to introduce
significant information bottlenecks. ECHO also includes two real-world datasets,
ECHO-Charge and ECHO-Energy, which define chemically grounded bench-
marks for predicting atomic partial charges and molecular total energies, respec-
tively, with reference computations obtained at the density functional theory (DFT)
level. Both tasks inherently depend on capturing complex long-range molecular
interactions. Our extensive benchmarking of popular GNN architectures reveals
clear performance gaps, emphasizing the difficulty of true long-range propagation
and highlighting design choices capable of overcoming inherent limitations. ECHO
thereby sets a new standard for evaluating long-range information propagation,
also providing a compelling example for its need in AI for science.

1 INTRODUCTION

Graphs are fundamental data structures used extensively to represent complex interconnected systems,
ranging from social networks and biological pathways, to communication infrastructures and molecu-
lar structures. Graph Neural Networks (GNNs) (Sperduti, 1993; Gori et al., 2005; Scarselli et al.,
2008; Micheli, 2009; Bruna et al., 2014; Defferrard et al., 2016) have emerged as a successful method-
ology within deep learning, whose research community was initially driven by the development of
diverse architectures capable of capturing intricate relational patterns inherent to graph-structured
data, as well as impactful applications across various domains (Hamilton et al., 2017; Derrow-Pinion
et al., 2021; Gravina et al., 2022; Gravina & Bacciu, 2024; Khemani et al., 2024).

More recently, the research community has shifted its focus towards understanding and overcoming
fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been
driven by the observation that effectively propagating information over long distances in graphs
remains a significant challenge. Such challenges have been formally linked to phenomena like
over-smoothing (Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al., 2023), over-squashing (Alon
& Yahav, 2021; Di Giovanni et al., 2023), and more generally, vanishing gradients (Arroyo et al.,
2025), all of which hinder GNN performance in tasks that require capturing long-range dependencies.

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while
looking into methodological advancements that can surpass or mitigate such shortcomings. A key
enabler of this progress is the establishment of solid and challenging benchmarks that can accurately
assess and validate long-range propagation capacities. The availability of controlled synthetic
benchmarks, should be complemented by the introduction of compelling application-driven datasets
which can clearly demonstrate the practical advantages of addressing long-range propagation issues.
Long-range propagation capacities, in this sense, have been noted to be central in key areas of science,
such as in biology (Dwivedi et al., 2022; Hariri & Vandergheynst, 2024), biochemistry (Gromiha &
Selvaraj, 1999), and climate (Lam et al., 2023).
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Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks (Bo-
jchevski & Günnemann, 2018; Shchur et al., 2018; Wu et al., 2018; Sterling & Irwin, 2015; Wale
& Karypis, 2006; Hu et al., 2020a; Dwivedi et al., 2023), often overlooking the unique challenges
associated with distant information propagation. More recently, the growing interest in this challenge
has motivated the community to develop a few benchmarks specifically designed to evaluate infor-
mation propagation in GNNs. These include the Long-Range Graph Benchmark (LRGB) (Dwivedi
et al., 2022) and the Graph Property Prediction (GPP) dataset (Gravina et al., 2023). While this is a
significant step forward compared to earlier benchmarks, it does not fully account for the need to
capture the true long-range dependencies present in some real-world applications. This is due to
limited size of the graphs, the absence of well-defined conditions on the expected propagation range,
and the focus of the benchmarks, which is often more aimed at specific issues of over-smoothing and
over-squashing, rather than providing a broader evaluation of long-range propagation capabilities.
Moreover, LRGB and GPP tasks are facing a natural performance saturation, as novel methodologies
are being developed and optimized on them.

Motivated by this, we introduce ECHO (Evaluating Communication over long HOps), a new bench-
mark designed to assess the capabilities of GNNs to exploit long-range interactions. ECHO consists
of three synthetic tasks and two real-world chemically grounded task. The former are designed
to provide a controlled setting to assess propagation capabilities. They comprise the prediction of
shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph
diameter) across a diverse graph topologies. These have been defined to increase the difficulty of
effective long-range communication, as they present structural bottlenecks for the information flow.
The main characteristic of these tasks is that GNNs must heavily rely on global information and effec-
tively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford (Bellman,
1958). The real-world tasks target the prediction of molecular total energy and the long-range charge
redistribution in molecules, which are critical and practically relevant challenges in computational
chemistry (Dupradeau et al., 2010), as they underly many fundamental processes such as chemical
reactivity, molecular stability, and intermolecular interactions. Accurate modeling of these effects is
essential for drug design, materials science, and biology understanding.

Our contributions can be summarized as follows:

• We introduce ECHO, a novel benchmark featuring five new tasks specifically designed to evaluate
the ability of GNNs to effectively handle long-range communication in both synthetic and real-
world settings. ECHO includes three synthetic tasks (collectively referred to as ECHO-Synth)
with a total of 10,080 graphs, and two real-world task (ECHO-Charge and ECHO-Energy)
comprising 196,545 graphs, where the required propagation ranges from 17 to 40 hops.

• We propose ECHO-Charge and ECHO-Energy, two novel benchmark tasks designed to capture
long-range atomic interactions in molecular graphs. Specifically, ECHO-Charge is a dataset
for predicting atomic charge distributions, while ECHO-Energy focuses on predicting the total
energy of a molecule. Both tasks are built on Density Functional Theory (DFT) (Argaman &
Makov, 2000) calculations, ensuring quantum-level accuracy. This makes them particularly
suitable for evaluating long-range message passing in GNNs, since both charge redistribution and
molecular energy depend on subtle, non-local effects. Beyond benchmarking, these datasets also
address central challenges in computational chemistry, where modeling long-range interactions
remains difficult and computationally expensive, as evidenced by the ≈ 2 months of parallel DFT
computations required to generate our benchmark on the given hardware configuration.

• We present a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range
dependencies, providing a rigorous evaluation of GNNs’ ability to propagate information over
extended graph distances.

• We conduct extensive experiments to establish strong baselines for each task in ECHO, providing
a comprehensive reference point for future research on long-range graph propagation.

2 ON THE NEED OF A NEW BENCHMARK

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range
propagation, in relation to existing datasets.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The most widely used benchmark for assessing these capabilities is arguably LRGB (Dwivedi et al.,
2022). Its introduction in 2022 has certainly marked an important milestone and promoted the
development of the field. However, despite initial rapid improvements, performance on LRGB has
now plateaued, showing a noticeable deceleration in progress across the last year, as discussed in
Appendix B. In addition to this, it has to be noted that recent works (Tönshoff et al., 2023; Bamberger
et al., 2025b) questions the long-range nature of several LRGB tasks, revealing that a subset of tasks
is inherently local, rather than requiring long-range diffusion, and that the benchmark itself is highly
sensitive to hyperparameter tuning. Other benchmarks propose synthetic tasks on generated structures,
including the Tree-Neighborhood (Alon & Yahav, 2021), Graph Property Prediction (Gravina et al.,
2023), graph transfer (Di Giovanni et al., 2023; Gravina et al., 2025), GLoRA (Zhou et al., 2025),
and Barbell and Clique graphs (Bamberger et al., 2025a). Indeed, most of these tasks are originally
designed to address narrow challenges that prevent long-range propagation, such as over-smoothing
(Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al., 2023) and over-squashing (Alon & Yahav,
2021; Di Giovanni et al., 2023). These phenomena, while related, do not necessarily capture the
full spectrum of challenges associated with long-range communication. Moreover, despite being
designed to test the ability of GNNs to overcome these limitations, these datasets typically involve
small graphs with limited-size diameters. This inherently restricts the propagation radius, creating
a significant gap between the benchmark tasks and real-world problems that require much deeper
propagation across significantly larger structures.

The limitations above suggest the need for a new benchmark that reflects the challenges and oppor-
tunities in long-range GNN research. An effective benchmark should provide tasks that explicitly
test a model’s ability to traverse extensive graph structures, effectively aggregate global information,
and adapt to diverse topological constraints. Moreover, as the field has matured and a wide range of
models have been established, ranging from graph transformers (Shi et al., 2021; Rampášek et al.,
2022) to multi-hop GNNs (Abu-El-Haija et al., 2019; Gutteridge et al., 2023) and others (Shi et al.,
2023), it seems timely to introduce a new benchmark that can accurately assess the long-range
propagation skills of these families of models, now that they are well understood and consolidated.

ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-
range propagation needs, providing a clear target for the evaluation of this property. Specifically,
ECHO tasks require computing shortest paths between all nodes, long-range charge redistribution, or
molecular total energies, with clearly defined propagation ranges between 17 and 40 hops, depending
on the specific graph structure. This explicit range ensures that models failing to capture dependencies
within this span are underreaching and have poor long-range capabilities.

The ECHO-Charge and ECHO-Energy molecular tasks have strong value per se, proposing
a novel, practical, and high-impact challenge for learning models in computational chemistry
(Dupradeau et al., 2010). Previous popular benchmarks in this domain (Sterling & Irwin, 2015; Wale
& Karypis, 2006; Hu et al., 2020a; Wu et al., 2018; Dwivedi et al., 2022) focused on the prediction of
molecular-level properties, such as solubility or HIV inhibition, which are predominantly short-range
tasks. This is evident when they can be reduced to the problem of counting small-dimensional local
substructures (i.e., with length smaller than 7) (Bouritsas et al., 2023). Differently, ECHO-Charge
and ECHO-Energy are the first graph benchmarks that targets long-range interactions at the atomic
level, i.e., the microscopic scale. Both benchmarks are not only inherently long-range, but also par-
ticularly challenging as they require accurate modeling of charge distributions, energy stabilization,
and the complex interplay of atomic interactions. This makes them computationally expensive to
solve with current computational chemistry tools. We provide further details on the computational
complexity of the underlying quantum simulations in Appendix C.

Therefore, ECHO-Charge and ECHO-Energy set a new standard for evaluating long-range graph
information propagation, as well as they provide a compelling application of AI for science and
chemistry, enabling faster predictions with potential impact on drug/material design or understanding
biological functions.

3 THE ECHO BENCHMARK

In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range
information propagation capabilities of GNNs. Our benchmark consists of two complementary
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(a) line (b) ladder (c) grid (d) tree
(e)
caterpillar (f) lobster

Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, N = 30

components: a set of algorithmically constructed tasks and a set chemically grounded real-world
datasets. Detailed dataset statistics are reported in Appendix E.

The synthetic component includes classical graph-theoretic problems (i.e., single-source shortest
path, node eccentricity, and graph diameter) posed across diverse graph topologies designed to induce
structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range
dependencies and enable controlled analysis of model behavior under varying topological conditions.

The proposed real-world benchmarks target practically relevant and physically grounded tasks in
computational chemistry: ECHO-Charge focuses on predicting long-range charge redistribution at
the atomic level, while ECHO-Energy addresses the prediction of molecular total energies. Both
problems are rooted in electronic structure modeling, reflecting realistic quantum phenomena such
as charge transfer and energy stabilization, and build upon prior work in quantum-accurate deep
learning models for molecular systems (Ko et al., 2021; Zhang et al., 2022).

3.1 THE ECHO-SYNTH DATASET

The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information
propagation across a diverse set of graph topologies. It focuses on three graph property prediction
tasks: Single Source Shortest Path (sssp), Node Eccentricity (ecc), and Graph Diameter
(diam). Among these, sssp and ecc are node-level tasks requiring the prediction of a scalar value
per node, while diam is a graph-level task requiring a single prediction for the entire graph. We refer
to this dataset as ECHO-Synth.

These tasks were intentionally selected due to their heavy reliance on global information. For example,
solving sssp from a given source node requires identifying shortest paths to all other nodes (Dijkstra,
2022), since the information spans the entire graph. Eccentricity builds on this by requiring the longest
shortest path from each node, demanding complete graph awareness. Diameter is even more global,
involving the longest shortest path between any two nodes (Cormen et al., 2022). Classical algorithms
like Dijkstra’s (Dijkstra, 2022) and Bellman-Ford (Bellman, 1958), which perform complete graph
traversal, illustrate the challenge these tasks pose for GNNs, which rely on localized message passing.
To prevent models from relying on input features rather than learning structural patterns, each node is
assigned a uniformly distributed random scalar feature r ∼ U(0, 1). Additionally, for the sssp task,
a binary indicator is included to mark the source node. This ensures that the model can distinguish
the source while maintaining uniform input statistics across tasks.

Dataset Construction. This dataset includes six distinct families of graph topologies i.e., line, ladder,
grid, tree, caterpillar, and lobster (see Figure 1), each selected to highlight different structural and
propagation characteristics. The line graph (Figure 1 (a)) serves as a simple but non-trivial baseline.
To introduce non-local interactions, we modify it with stochastic skip connections: each node has
a 20% chance of forming an edge to another node 2–6 hops away. Building on this, the ladder
topology (Figure 1 (b)) consists of two parallel line graphs connected by one-to-one cross-links,
enabling richer routing possibilities and redundancy in message pathways. The grid topology
(Figure 1 (c)) represents a 2D lattice structure where edges are independently removed with a 20%
probability. This results in irregular neighborhoods and broken spatial symmetries.

To model hierarchical structures, we include tree-structured graphs (Figure 1 (d)) generated through
preferential attachment. A new node connects to an existing one with probability proportional to
kαi , where ki represents the degree of the i-th node (with α = 3), leading to the formation of high-
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degree hubs and reflecting connectivity patterns often seen in natural networks. The caterpillar
topology (Figure 1 (e)) augments a central linear backbone with peripheral nodes attached randomly
along the spine, combining features of chain-like and tree-like graphs to create moderate branching
and directional flow. Extending this idea, the lobster graph (Figure 1 (f)) adds a third hierarchical
layer: nodes in the outermost layer connect only to intermediate nodes, resulting in deeper branching
while preserving an overall elongated structure. This configuration is especially useful for testing
the limits of multi-hop message passing under structured constraints. Beyond their long-range
dependencies, the complexity of the synthetic tasks is further increased by the presence of topological
bottlenecks, which pose significant challenges to GNN based on message passing (Gilmer et al.,
2017). Bottlenecks emerge in graphs where information flow between distant nodes is constrained to
pass through a small subset of intermediary nodes, thereby restricting the bandwidth of information
flow. This structural constraint can increse the risk of over-squashing, a phenomenon in which
exponentially growing information is aggregated into the low-dimensional node representations (Alon
& Yahav, 2021). As a result, critical signals may be compressed or lost during propagation, severely
limiting the model’s capacity to distinguish and preserve meaningful long-range interactions (Topping
et al., 2022; Di Giovanni et al., 2023).

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks.
For example, in the line topology information between distant nodes must propagate sequentially
through a single path, making each node along the path a critical bottleneck. Similarly, tree-
structured graphs inherently introduce bottlenecks at branch points and hierarchical layers, where
entire subtrees depend on narrow pathways for communication with the rest of the graph. The
caterpillar and lobster graphs further reinforce this pattern by adding additional peripheral
layers while maintaining centralized backbones, exacerbating the bottleneck effect in their hierar-
chical layouts. Even in the more uniform grid topology, bottlenecks are implicitly introduced
through random edge deletions, which can disrupt regular pathways and force information to traverse
suboptimal and congested routes.

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range
d ∈ [17, 40], capturing diverse long-range interaction scenarios. For each of the six graph topologies
and each diameter value, we produce 70 unique graphs, yielding a total of 70×24×6 = 10,080 graphs.
To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and
test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign
40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees
that all splits share the same distribution over both graph topologies and diameter values, which are
uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the
training set, avoiding distributional shifts and ensuring fair comparison across methods.

3.2 ECHO-CHARGE AND ECHO-ENERGY DATASETS

Figure 2: The 3D molecular graph
of caffeine annotated with atomic
partial charges. Blue indicates re-
gions of negative partial charge,
while red corresponds to positive
charge accumulation.

Molecular property prediction is a cornerstone application of
GNNs, with common benchmarks involving graph-level predic-
tion tasks such as molecular fingerprint (Duvenaud et al., 2015),
solubility, toxicity and various chemical properties (Coley et al.,
2017; Hu et al., 2020c). One fundamental task in this domain is
the prediction of atomic partial charges, which are continuous,
atom-level properties that reflect the electron distribution within
a molecule. Accurate charge prediction is essential for model-
ing molecular interactions, reactivity, and electrostatic behavior.
Figure 2 illustrates this task on the 3D molecular graph of caf-
feine, where each atom is colored according to its predicted
partial charge. Complementary to this, another central quantum
property of molecular systems is the total energy, which governs
stability, chemical reactivity, and conformational preferences.
Thus, predicting molecular energies is equally important for
chemistry applications.

Traditionally, both atomic charges and molecular energies are computed using quantum mechanical
methods, especially Density Functional Theory (DFT) (Argaman & Makov, 2000) or related quantum
chemical simulations. While these methods provide high accuracy, their computational cost, arising
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from solving complex equations, limits their scalability to large molecular datasets or high-throughput
tasks. Specifically, high-accuracy simulations require several minutes to process a single molecule.
We report a quantitative description of DFT simulation efficiency in Appendix C.

A significant challenge for Machine Learning (ML) methods addressing these prediction tasks is
effectively capturing long-range dependencies across molecular graphs. Specifically, here we will
refer to “long-range” in the graph space (e.g., nodes separated by many hops), rather than purely
spatial distance. The three-dimensional configuration of molecules greatly intensifies this task
complexity, as distant atoms in the graph topology can still exert significant influence on electronic
properties and total energy. Such non-trivial, long-range interdependencies become increasingly
challenging to model accurately as molecular graph diameter grows. To systematically address
this challenge, we introduce ECHO-Charge and ECHO-Energy, with the specific aim to stress
long-range dependencies in real-world scenarios. ECHO-Charge is formulated as a node-level
regression problem, where the model must predict the partial charge of each atom in a molecular
graph, while ECHO-Energy is formulated as a graph-level regression problem, requiring prediction
of the total molecular energy.

Beyond serving as rigorous benchmarks for GNN architectures, these datasets have strong potential
for practical impact in ML applications for science and chemistry. Capturing these sophisticated
long-range interactions can significantly improve efficiency of predicting atomic partial charges and
molecular energies, while also serving as accurate and computationally inexpensive initialization
for subsequent quantum mechanical simulations. Such improvements could substantially accelerate
computational chemistry workflows, facilitating rapid exploration of the large molecular space.

Dataset Construction. Comprising ≈170,000 (ECHO-Charge) and ≈196,000 (ECHO-Energy)
molecular graphs selected from the ChEMBL database (Zdrazil et al., 2024), our benchmarks include
molecules with graph diameters between 17 and 40, where the interplay between the molecule size
and the task ensures the need to work with significant long-range dependencies that thoroughly stress
model capabilities. In both ECHO-Charge and ECHO-Energy, each graph represents a single
molecule (see Figure 2), and each node (i.e., atom) is labeled with the atomic number, essential for
chemical identity, and spatial distance from the center of mass of the molecule, to provide geometrical
context. Edges correspond to chemical bonds, and are labeled with bond type (single, double, triple,
or aromatic) and bond length. Notably, this encoding of spatial information is invariant under the
action of the E(3) group, meaning that relative geometric features such as distances remain invariant
under global 3D rotations, reflections, and translations of the molecular structure. This ensures that
the spatial representation respects the underlying symmetries of molecular physics, essential for
learning physically consistent models.

To generate the datasets, we employed a two-step approach. Firstly, the generation process began with
molecular 3D structure generation starting from ChEMBL SMILES (Weininger, 1988) strings for all
molecules satisfying the given diameter constraint. In order to generate molecular conformations
we opted for coordinate optimization using the Generalized Amber Force Field (GAFF) (Grimme
et al., 2010), a well-established force field specifically designed for optimizing a wide variety of
organic and medically relevant compounds. These optimized structures served as initialization for
the subsequent quantum chemical calculations to determine accurate structures, partial charges,
and molecular energies. Specifically, we employed Density Functional Theory (DFT) to match the
required chemical accuracy required for reliable molecular property annotation. All computations
were run with the ORCA package for quantum chemistry (Neese, 2022; Neese et al., 2020; Neese,
2023). A detailed description of the quantum simulations is provided in Appendix C, along with
information about the computing platform in Appendix D.

Dataset Split. To evaluate model performance under consistent and reproducible conditions, we
employed a random uniform sampling strategy to split the original datasets. This approach ensures a
balanced distribution of molecular structures, charge ranges, and energy levels across the training,
validation, and test sets, therefore minimizing potential sampling bias. For ECHO-Charge, we adopt
an 80/10/10 split for training, validation, and testing, while for ECHO-Energy we use a 90/5/5 split.
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4 EXPERIMENTS

Baselines. We consider a diverse set of GNNs baselines that capture core directions in the devel-
opment of graph neural architectures, spanning from classical GNNs to more recent approaches
that demonstrate strong empirical performance in capturing long-range dependencies. As classical
baseline models, we include GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), GINE1 (Hu et al.,
2020b) and GCNII (Chen et al., 2020), which represent standard message-passing frameworks with
strong theoretical grounding. We also consider a multi-hop GNN, i.e., DRew (Gutteridge et al., 2023),
which adaptively rewire the graph to facilitate more effective propagation across distant nodes. We
evaluate GPS (Rampášek et al., 2022), an effective graph transformer that enables long-range propa-
gation via attention mechanism between any pairs of nodes. Finally, we explore the performance of a
family of GNNs that draw on principles from dynamical systems theory, namely differential-equation
inspired GNNs (DE-GNNs). This includes GraphCON (Rusch et al., 2022), which is designed
to address the over-smoothing issue, as well as models explicitly designed to perform long-range
propagation, whose architectures are based on non-dissipative or port-Hamiltoninan dynamics, such
as A-DGN (Gravina et al., 2023), SWAN (Gravina et al., 2025), and PH-DGN (Heilig et al., 2025).

Model Architecture and hyperparameter selection. All models share a unified backbone design to
enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack
of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer
MLP applied directly to the node representations. For graph-level tasks, node representations are
first aggregated using the mean, max, and sum operations, concatenated, and then processed by a
two-layer MLP. This standardization ensures that differences in performance are attributable to the
core propagation mechanisms rather than auxiliary architectural choices.

Training follows a consistent protocol across all models. We minimize the base-10 logarithm of the
Mean Squared Error loss (MSE), log10(MSE(ytrue − ytarget)), since the predicted values can be very
small in magnitude and this scale-sensitive loss emphasizes small differences. We use the Adam
(Kingma & Ba, 2015) optimizer and adopt Early Stopping based on validation loss. with a patience
of 100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures
convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility
of our results. In order to ensure a fair and robust comparison across all methods and datasets, we
employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset pair,
we perform a Bayesian Optimization based on a Gaussian Process prior (Snoek et al., 2012) in the
chosen hyperparameter space, spanning 100 trials to explore the respective search space efficiently.
We report the complete set of explored hyperparameters for each model, as well as with the selected
hyperparameters, in Appendix F. Finally, the best configuration found is validated through four
independent training runs, each initialized with a different random seed.

Results on ECHO-Synth dataset. We report results on the synthetic benchmarks in Table 1. All
the values are reported using the Mean Absolute Error (MAE). Additional metrics are reported in
the Appendix H, Table 16. We start observing that models employing global attention mechanisms
significantly outperform traditional message-passing frameworks. Specifically, GPS demonstrates
superior performance on the sssp task, achieving a remarkably low MAE of 0.472. In line with
literature findings (Dwivedi et al., 2022), this result suggests that incorporating transformer-like
global attention substantially mitigates inherent limitations in localized message-passing, which are
pronounced in classic architectures such as GCN and GIN. This is further supported by the analysis
in Appendix J, which shows that the highest attention scores are often assigned to node pairs that are
not directly connected and often far apart in the graph. Interestingly, differential-equation-inspired
architectures, particularly those employing non-dissipative or port-Hamiltonian formulations like
SWAN, A-DGN, and PH-DGN, consistently perform well across tasks, with similar performance
metrics. Notably, SWAN achieves the lowest MAE on the diam task (1.121), closely followed
by A-DGN and PH-DGN. This highlights the benefit of incorporating non-dissipative dynamics to
improve long-range information propagation, thereby preserving critical structural information across
extensive message-passing steps. Moreover, the multi-hop GNN, DRew, reveals its effectiveness
in the ecc task, attaining the lowest MAE (4.651). This success emphasizes the advantage of

1We added GINE as a baseline to ECHO-Charge and ECHO-Energy benchmarks to overcome the
limitations of GIN to process edge attributes.
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dynamically rewiring graph structures, thus effectively addressing topological bottlenecks critical for
accurately capturing node eccentricities.

Table 1: Test MAE (mean with standard deviation as subscript)
for each model across the three synthetic tasks: diam, ecc, and
sssp. Lower is better. Values are color-coded by performance,
with darker green indicating lower error.

Model diam ↓ ecc ↓ sssp ↓
A-DGN 1.151± 0.038 4.981± 0.037 1.176± 0.140

DRew 1.243± 0.047 4.651± 0.020 1.279± 0.011

GraphCON 2.969± 0.189 5.474± 0.001 5.734± 0.011

GCN 3.832± 0.262 5.233± 0.034 2.102± 0.094

GCNII 2.005± 0.093 5.241± 0.030 2.128± 0.429

GIN 1.630± 0.161 4.869± 0.092 2.234± 0.271

GPS 2.160± 0.098 4.758± 0.021 0.472± 0.050

PH-DGN 1.627± 0.398 5.068± 0.126 1.323± 0.485

SWAN 1.121± 0.070 4.840± 0.045 0.896± 0.232

Differently, GraphCON do not
inherently outperform traditional
methods, and show notably
weaker performance relative to
other models of the same archi-
tectural family (e.g., A-DGN and
SWAN). Thus, mere message-
passing dynamics that only mit-
igate the over-smoothing issue
does not ensure superior perfor-
mance in long-range tasks.

Finally, traditional message-
passing models like GCN
demonstrate consistent limita-
tions across all benchmarks,
indicative of fundamental constraints in purely localized message-passing architectures when
facing extensive long-range dependencies as required in our ECHO-Synth benchmark suite.
This limitation is most evident in the diam task, where GCN records the highest MAE (3.832),
underscoring its inadequate capacity for global information aggregation.

Results on ECHO-Charge and ECHO-Energy dataset. We detail the performance of all evaluated
models on the atomic partial charge and energy prediction task in Table 2. Additional metrics are
reported in the Appendix H, Tables 17 and 18. As anticipated, architectures capable of handling
long-range dependencies demonstrate a clear advantage on both benchmarks, given the nature of the
task which requires precise modeling of subtle interatomic interactions spread across the molecular
graph.

Notably, GPS achieves the best performance on ECHO-Energy and it is competitive on
ECHO-Charge, confirming the utility of global attention mechanisms in capturing distant influences
that modulate quantum chemical properties, albeit at the cost of increased computational complexity
(as shown in Appendix I).

Table 2: Test MAE (mean with standard deviation as sub-
script) performance across models on the ECHO-Energy and
ECHO-Charge tasks. Lower values are better. Cells are color-
coded by performance, with darker green indicating lower error
(independently normalized per column).

Model ECHO-Energy ↓ ECHO-Charge ↓
(×10−3)

A-DGN 12.486± 1.621 6.543± 0.146

DRew 11.325± 2.394 9.086± 0.473

GCN 28.112± 1.239 8.421±0.512

GCNII 13.235± 2.630 8.829± 0.021

GIN 47.851± 10.154 10.784± 0.059

GINE 23.558± 7.568 7.176±0.371

GPS 5.257± 0.842 6.182± 0.219

GraphCON 14.295± 0.807 19.629± 0.195

PH-DGN 16.080± 1.123 7.915± 0.269

SWAN 12.629± 1.157 6.109± 0.103

Models like A-DGN and SWAN
also yield competitive perfor-
mance, consistently appearing
among the top performers,
with SWAN emerging as best
model in ECHO-Charge.
Their success suggests that
imposing non-dissipative priors
not only improves the propaga-
tion dynamics but also guides
the model toward chemically
plausible solutions. Interest-
ingly, while DRew outperforms
classical GNNs, especially
in the ECHO-Energy taks,
it performs comparatively
worse than DE-GNN and
transformer-based models.
Traditional message-passing net-
works, particularly GCN and GIN, again lag behind. These results again confirm the hypothesis
that localized aggregation, without mechanisms to to improve propagation effectiveness or integrate
distant node information, is inadequate for atomic-level charge modeling. The ECHO-Charge
and ECHO-Energy benchmarks thus clearly illustrates the necessity for architectures that either
incorporate global attention or embed non-dissipative dynamics to effectively tackle the intricate and
non-local dependencies inherent in these molecular tasks.
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Figure 3: Visualization of prediction errors for the
ECHO-Charge task using two different GNN archi-
tectures: A-DGN (a) and GCN (b). The coloring rep-
resents the logarithm of the absolute prediction error,
log(|ytrue −ypred|). Lower values (in green) indicate bet-
ter prediction accuracy, while higher values (in orange)
correspond to larger errors.

We provide a visual depiction of charge pre-
diction accuracy on a non-trivial molecule
from the test set in Figure 3: the figure com-
pares prediction errors between A-DGN (a)
and GCN (b). Atoms are colored by log-
error: green = low, orange = high. A-DGN
shows consistently lower errors, especially
at peripheral atoms, highlighting its ability
to capture long-range interactions, while
GCN accumulates errors at structurally dis-
tant or chemically sensitive sites. This
comparison illustrates the benefit of non-
dissipative architectures for long-range in-
formation propagation on complex graphs
and chemical structures.

Lastly, we note that although energies and
partial charges errors are small in absolute
magnitude across baselines, even subtle
deviations (as stated in Dupradeau et al.
(2010)), on the order of 10−4 e to 10−6 e, can lead to significant downstream effects in molecu-
lar modeling and reproducibility of results. Therefore, predictive models must target this level of
granularity to produce chemically meaningful outputs.

Additional Experiments and Analysis. We provide further results and a detailed evaluation of
baseline performance in Appendix G. Specifically, we investigate how the radius of the explored
neighborhood affects each method and how model performance varies across graphs with different
diameters. Our results consistently indicate that deeper networks outperform shallower ones, con-
firming the long-range nature of these benchmarks. In Appendix J, we also visualize GPS’s attention
patterns, highlighting the importance of connecting distant nodes to facilitate information flow and
improve performance. Together, these analyses reinforce the importance of long-range information
propagation in the ECHO benchmark. Finally, Appendix I reports runtime measurements, illustrating
a key trade-off between accuracy and efficiency: transformer-based models like GPS achieve strong
performance but are computationally demanding, whereas models such as A-DGN provide a more
balanced alternative.

5 CONCLUSION

In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation
in GNNs. Our benchmark includes two main components, ECHO-Synth and a set chemically
grounded real-world datasets (ECHO-Charge and ECHO-Energy), that target long-range com-
munication in both synthetic and real-world settings. The synthetic tasks are designed to predict
algorithmic and long-range-by-design graph properties, while the real-world tasks focus on predicting
atomic charge distributions and molecular total energies, both of which critically depend on long-
range quantum interactions. We provided a detailed analysis to demonstrate that the tasks in ECHO
genuinely capture long-range dependencies, and we established strong baselines for each task to
provide a comprehensive reference point for future research. Our results highlight the limitations
of current GNN architectures when faced with long-range propagation challenges, and we believe
that ECHO will serve as a critical step toward building more robust, scalable, and generalizable
GNNs capable of handling the full spectrum of graph-based learning tasks, posing a challenge to the
community to push the boundaries of GNN design and evaluation. Not only does ECHO provide a
solid benchmark, but it also leaves ample room for future architectures to improve and advance GNN
architectures capable of more effective information propagation.

ETHICS STATEMENT

The research conducted in this paper conforms in every aspect with the ICLR Code of Ethics. Our
study does not involve human subjects, sensitive personal data, or applications with foreseeable
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harmful consequences. No ethical concerns are anticipated regarding data usage, methodology, or
findings.

REPRODUCIBILITY STATEMENT

We provide all necessary details to reproduce our ECHO benchmark in Section 3 and
Appendix C, and describe the setup of each experiment in Section 4 and Appendix F,
thus ensuring sufficient information to replicate our results. We openly release data
at https://huggingface.co/datasets/gmander44/echo/tree/main (where the
username is randomly generated to preserve anonymity in the double-blind review), and the code at
https://anonymous.4open.science/r/ECHO-benchmarks.
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A LLMS USAGE

Large Language Models (LLMs) were used as general-purpose assistive tools to improve the writing
quality of this paper. Specifically, we used LLMs to help with grammar correction, rephrasing for
clarity, and suggesting some improvements to the overall structure of the text. All LLM-generated
text was carefully reviewed and edited by the authors to ensure that it accurately reflects the authors’
intentions and scientific content. No LLMs were used to generate scientific content, including but
not limited to research direction, hypothesis formulation, experimental design, data analysis, or
interpretation of results.

B DISCUSSION ON LRGB

One of the most widely used benchmark for assessing the lon-range propagation capabilities of GNNs
is the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). The benchmark proposes five
tasks: two molecular property prediction tasks (Peptides-func and Peptides-struct), one molecular
bond prediction task (PCQM-Contact), and two computer vision tasks (PascalVOC-SP and COCO-
SP). However, despite initial rapid improvements, performance on LRGB has plateaued. Since its
introduction in 2022, there has been a noticeable deceleration in progress. Considering a set of 30
models on the Peptides-func task, we observe a performance improvement by 6.5% in the first year,
but only by 1.3% in the second, and no significant gain in the third year (Gravina et al., 2025; Heilig
et al., 2025; Errica et al., 2024; Gutteridge et al., 2023; Dwivedi et al., 2022; Tönshoff et al., 2023;
Giusti et al., 2023; Ma et al., 2023a; Shirzad et al., 2023; Behrouz & Hashemi, 2024; Wang et al.,
2024; Eliasof et al., 2025; Ding et al., 2024; Ma et al., 2023b; Cai et al., 2023; Glickman & Yahav,
2023; He et al., 2023; Rampášek et al., 2022; Ngo et al., 2023; Michel et al., 2023; Geisler et al.,
2024; Choi et al., 2024). A similar trend exists for the other benchmark tasks as well.

Furthermore, a recent analysis on LRGB (Bamberger et al., 2025b), as well as the benchmark’s
sensitivity to hyperparameter tuning (Tönshoff et al., 2023), raises additional concerns about the
long-range nature of its tasks. The analysis reveals that only a subset of tasks genuinely require longer
interactions, while the peptides tasks are effectively local. This highlights the need for more focused
benchmarks that explicitly and systematically test long-range propagation capabilities of GNNs.

C CHEMICAL SIMULATION TECHNICAL INFORMATION

This appendix provides detailed information on the computational pipeline used to derive partial
atomic charges in the ECHO-Charge dataset and total energies in ECHO-Energy. The pipeline
comprises three primary stages: (i) 3D structure generation from SMILES, (ii) quantum chemical
computation of partial charges, and (iii) geometry optimization.

3D Structure Generation from SMILES. Since subsequent charge optimization steps require
pre-optimized 3D coordinates, all structures were geometry-optimized prior to simulation using Open
Babel (O’Boyle et al., 2011) and its Python interface, Pybel (O’Boyle et al., 2008) Initial molecular
geometries were generated from SMILES strings using the General AMBER Force Field (GAFF)
(Grimme et al., 2010). GAFF was chosen over alternatives such as MMFF94 (Halgren, 1996) due
to its favorable trade-off between accuracy and computational cost, and its strong performance in
predicting both energies and geometries. The optimization procedure involved 100 steps of coarse
minimization followed by 500 steps of local refinement for each molecule. The SMILES strings were
converted into 3D conformers, which were then minimized to yield low-energy structures. These
structures were exported in SDF format for subsequent compatibility. The average time required for
3D structure generation per molecule—considering only those satisfying the ECHO-Charge and
ECHO-Energy dataset diameter criteria—was 562± 124 ms.

Quantum Chemical Computations with ORCA. To compute partial atomic charges and total
energies, we employed the ORCA quantum chemistry software suite (version 6.0.1) (Neese, 2022;
2023; Neese et al., 2020). All calculations were performed using the B3LYP a hybrid density func-
tional (DFT) method that mixes Hartree–Fock exchange with Becke’s exchange and Lee–Yang–Parr
correlation functionals to balance accuracy and efficiency in quantum chemical calculations (Argaman
& Makov, 2000).
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Table 3: Mean time required for computation of partial charges of a single molecule with differ-
ent configuration of the ORCA tool. Variance is computed over 30 random molecules from the
ECHO-Charge/ECHO-Energy dataset. ⋆Denotes the chosen basis set for DFT computation.

Method Setting Times (s)
HF-3c LooseSCF 10.4±1.3

HF-3c TightSCF 28.1±4.3

B3LYP def2-TZVP⋆ (DFT) LooseSCF 146.5±10.1

B3LYP def2-TZVP⋆ (DFT) TightSCF 634.5±21.3

We provide a summary of required times for computation with both full DFT computations and HF
methods in Table 3. Under our configuration, the average runtime for a single quantum chemical
calculation was 634.5± 21.3 seconds per molecule requiring ≈ 2 months of computational time
on our hardware configuration. Simulation were run exploiting full thread parallelism provided by
ORCA.

Self-Consistent Field (SCF) Convergence Settings. To further improve the accuracy of the simula-
tions, we employed the TightSCF setting in ORCA, which enforces tighter convergence thresholds
in the self-consistent field (SCF) procedure, thereby reducing numerical errors in the electronic
structure calculation.

Charge Extraction. Atomic partial charges were extracted using the Löwdin Szabo & Ostlund
(1989) population analysis method. These charges were used as supervision signals in our dataset
generation pipeline.

D HARDWARE RESOURCES

All quantum chemistry simulations were conducted on a dual-socket Intel Xeon 6780E machine
with a total of 288 physical cores (144 cores per socket, 1 thread per core). Each socket is equipped
with 108MiB of L3 cache, for a combined 216MiB of shared L3 cache, along with 288MiB of L2
and 27MiB of L1 (data + instruction) cache across the system. The CPUs support AVX2 and FMA
instruction sets, enabling efficient linear algebra operations, which are critical for electronic structure
methods.

The machine is configured with two NUMA nodes, each associated with one of the sockets. Each
NUMA node has over 500GiB of local RAM for a total of approximately 1TiB of RAM. The high
memory capacity and bandwidth are critical for quantum chemistry workloads, particularly those
using density functional theory (DFT) or correlated wavefunction methods, which require extensive
memory for large basis sets and integral evaluations.

The large number of physical cores allowed us to parallelize over both molecular batches and
internal basis function evaluations, providing efficient scaling for density functional theory (DFT)
and semi-empirical calculations.

For model training and inference, we used a separate compute node equipped with 8 NVIDIA H100
GPUs.

E ADDITIONAL DATASET INFORMATION

We report in Table 4 the detailed statistics of the proposed datasets. In Table 5 we provide a summary
of the input and target features used in the ECHO-Synth, ECHO-Charge, and ECHO-Energy
datasets. Figures 4 and 5 report detailed statistics on the structural properties of the graphs in the
datasets, including distributions of the number of nodes, number of edges, average node degree, and
graph diameter. Additionally, Figures 6a and 6b illustrate the correlation between the number of
nodes and the graph diameter, highlighting structural differences between real and synthetic data.
These insights support the design choices for model evaluation across diverse graph regimes.
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Table 4: Statistics of the proposed dataset.

Dataset # Graphs Avg Nodes Avg Deg. Avg Edges Avg Diam # Node Feat # Edge Feat # Tasks

ECHO-Synth 10,080 83.69±66.24 2.53±1.19 211.63±209.39 28.50±6.92 2 None 3

line 1,680 75.60±27.32 2.37±0.10 90.10±33.89 28.50±6.92 2 None 3
ladder 1,680 56.52±13.82 2.92±0.02 82.54±20.72 28.50±6.92 2 None 3
grid 1,680 193.10±93.10 2.95±0.12 288.32±145.29 28.50±6.92 2 None 3
tree 1,680 60.42±17.17 1.96±0.01 59.42±17.17 28.50±6.92 2 None 3
caterpillar 1,680 34.71±7.96 1.94±0.02 33.71±7.96 28.50±6.92 2 None 3
lobster 1,680 81.79±25.46 1.97±0.01 80.79±25.46 28.50±6.92 2 None 3

ECHO-Charge 170,367 72.49±12.48 2.09±0.04 151.32±25.16 23.54±2.54 2 2 1
ECHO-Energy 196,528 73.73±13.22 2.09±0.04 153.84±26.58 23.61±2.59 2 2 1

Table 5: Summary of dataset properties.

Dataset Node Features Edge Features Target

ECHO-Synth Random scalar, source indicator for sssp None diam, sssp, ecc
ECHO-Charge Atomic number, distance from center of mass Bond type, bond length Partial charges
ECHO-Energy Atomic number, distance from center of mass Bond type, bond length Total energy
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Figure 4: Statistics of the ECHO-Synth dataset.
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Figure 5: Statistics of the ECHO-Charge and ECHO-Energy dataset.
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Figure 6: Correlation between number of nodes and graph diameter in ECHO-Synth and
ECHO-Charge/ECHO-Energy.
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F HYPERPARAMETER SELECTION

Tables 6 to 15 report the hyperparameter search space and the best values selected for each task
(diam, ecc, sssp, ECHO-Charge, and ECHO-Energy) across the different GNN architectures
we considered. For details on specific hyperparameters, we refer the reader to the original papers.
Each table includes the name of the hyperparameter, its search range or categorical options, and the
optimal value obtained for each task, as identified through hyperparameter tuning on the validation
set.

Another strong evidence supporting the long-range nature of the ECHO benchmark, implicitly comes
from our hyperparameter optimization process. Specifically, Bayesian Optimization consistently
selected configurations with a large number of GNN layers. This suggests that, even without explicit
guidance, the hyperparameter optimization procedure identifies deeper models as necessary to
minimize validation error, further reinforcing the notion that the task demands long-range information
propagation.

Table 6: Hyperparameters and their best values across tasks for A-DGN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] 27 28 40 34 16
Hidden dimension [16− 256] 68 65 45 130 216
Learning rate [10−5, 10−2] 0.00101 0.00229 0.00473 0.00072 0.0085223
Weight decay [10−8, 10−3] 0.00098 0.00000 0.00003 0.00001 0.00044851

ϵ [0.001, 0.5] 0.19254 0.32934 0.10560 0.25667 0.4215
γ [0.001, 0.5] 0.41827 0.46803 0.21252 0.19499 0.15304
Graph convolution NaiveAggr, GCN NaiveAggr NaiveAggr NaiveAggr GCN NaiveAggr

Table 7: Hyperparameters and their best values across tasks for DRew.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 4] 4 4 4 4 3
k-hop [1− 10] 10 10 10 10 10
Hidden dimension [16− 256] 249 78 119 232 241
Learning rate [10−5, 10−2] 0.00037 0.00797 0.00126 0.00036 0.00023597
Weight decay [10−8, 10−3] 0.00068 0.00011 0.00003 0.0 0.00001099

Employ delay True, False False False False True True

Table 8: Hyperparameters and their best values across tasks for GCNII.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [10− 40] 32 39 30 37 21
Hidden dimension [16− 256] 81 40 64 33 103
Learning rate [10−5, 10−2] 0.00260 0.00032 0.00005 0.00345 0.0047014
Weight decay [10−8, 10−3] 0.00000 0.00009 0.00009 0.00002 0.000035227

α [0.0, 0.9] 0.70544 0.07902 0.04742 0.17158 0.10116
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Table 9: Hyperparameters and their best values across tasks for GCN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] 26 40 26 8 9
Hidden dimension [16− 256] 48 42 40 109 160
Learning rate [10−5, 10−2] 0.00007 0.00004 0.00023 0.00079 0.00052181
Weight decay [10−8, 10−3] 0.00007 0.00009 0.00002 0.00002 0.000043613

Table 10: Hyperparameters and their best values across tasks for GIN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [10− 40] 29 34 25 11 19
Hidden dimension [16− 256] 58 170 78 197 90
Learning rate [10−5, 10−2] 0.00002 0.00003 0.00006 0.00002 0.000046134
Weight decay [10−8, 10−3] 0.00003 0.00036 0.00091 0.00069 0.00046213

Table 11: Hyperparameters and their best values across tasks for GINE.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] – – – 22 31
Hidden dimension [16− 256] – – – 85 33
Learning rate [10−5, 10−2] – – – 0.00014 0.0005028
Weight decay [10−8, 10−3] – – – 0.00004 0.00033338

Table 12: Hyperparameters and their best values across tasks for GPS.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] 17 26 17 36 26
Hidden dimension [16− 256] 40 56 162 216 192
Learning rate [10−5, 10−2] 0.00004 0.00031 0.00034 0.00005 0.000024067
Weight decay [10−8, 10−3] 0.00015 0.00029 0.00007 0.00005 0.00038179

Table 13: Hyperparameters and their best values across tasks for GraphCON.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] 37 25 19 35 32
Hidden dimension [16− 256] 63 72 151 144 96
Learning rate [10−5, 10−2] 0.00088 0.00013 0.00007 0.00292 0.00032
Weight decay [10−8, 10−3] 0.00038 0.00001 0.00001 0.00026 0.00059

ϵ [0.001, 1.0] 0.57880 0.95470 0.98433 0.78163 0.82108
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Table 14: Hyperparameters and their best values across tasks PH-DGN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] 17 37 21 14 10
Hidden dimension [16− 256] 28 66 120 103 166
Learning rate [10−5, 10−2] 0.00150 0.00178 0.00037 0.00033 0.0038211
Weight decay [10−8, 10−3] 0.00054 0.00082 0.00081 0.00063 0.00044422

ϵ [0.001, 1.0] 0.34977 0.16491 0.36140 0.68993 0.40992
α [0.01, 1.0] 0.47190 0.90892 0.63323 0.87607 0.15544
β [0.01, 1.0] 0.70474 0.92918 0.99675 0.91251 0.11011
p conv mode NaiveAggr, GCN GCN GCN GCN GCN NaiveAggr
q conv mode NaiveAggr, GCN GCN GCN GCN NaiveAggr NaiveAggr
Doubled dimension True, False False False True True false
Final state p, q, pq pq p pq pq q

Dampening mode

param
param+
MLP4ReLU
DGNReLU

param+ DGNReLU param param+ param+

External mode MLP4Sin, DGNtanh MLP4Sin MLP4Sin MLP4Sin MLP4Sin MLP4Sin

Table 15: Hyperparameters and their best values across tasks for SWAN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers [1− 40] 28 40 32 38 25
Hidden dimension [16− 256] 167 97 195 163 217
Learning rate [10−5, 10−2] 0.00040 0.00107 0.00086 0.00063 0.00012157
Weight decay [10−8, 10−3] 0.00057 0.00011 0.00010 0.00016 0.00028686

ϵ [0.001, 1.0] 0.54847 0.45462 0.07451 0.38229 0.67265
γ [0.001, 0.5] 0.41480 0.28342 0.45928 0.07794 0.3156
β [−1.0, 1.0] 0.34233 -0.20976 0.37682 -0.36245 -0.67256

Graph convolution
AntiSymNaiveAggr (ASNA)
BoundedGCNConv (BGC)
BoundedNaiveAggr (BNA)

ASNA BNA BNA ASNA BNA

Attention True, False True False False False True
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G ADDITIONAL EXPERIMENTAL ANALYSIS

In this section, we investigate how the radius of the explored neighborhood influences the performance
of each method, as well as how the models perform across graphs with varying diameters.
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Figure 7: Test MAE at different numbers of GNN layers across tasks.

Layer-wise Performance Analysis. In Figure 7, we evaluate the impact of the radius of the
explored neighborhood (i.e., the number of GNN layers) on test MAE across all tasks. We divide the
results into three regimes: shallow (< 10 layers), medium (10–17 layers), and deep (> 17 layers).
Therefore, in the shallow regime, GNNs perform short-range propagation; in the medium regime,
they capture medium-range dependencies; and in the deep regime, they are able to model long-range
interactions. A consistent pattern emerges across most tasks: deeper networks, especially those
tailored for long-range propagation, tend to perform better, thus confirming the long-range nature of
the proposed benchmarks. Specifically:

• On the diam task (Figure 7a), performance trends are model-dependent. Long-range models
such as DRew and A-DGN remain stable or slightly improve, others like PH-DGN exhibit
a large performance improvement moving from shallow to medium depth regime. This
task, being graph-level and heavily reliant on global information by design, clearly benefits
from increased depth and non-dissipative architectures which are able to perform many
message-passing steps across multiple hops.
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• For the ecc task (Figure 7b), we observe a consistent performance gain with increasing
depth across nearly all models. Again, long-range architectures like A-DGN and SWAN, or
the multi-hop GNN, DRew, show strong improvements in the deep regime, outperforming
the others. This aligns with the intuition that eccentricity, being a node-level but globally-
informed property, benefits from many message-passing layers to capture distant context,
highlighting the strength of long-range architectures.

• In the case of sssp (Figure 7c) we again observe strong depth-related improvements, with
the exception of GraphCON. Notably, SWAN, GPS, and DRew achieve large gains in the
deep regime. Traditional models such as GCN and GIN or GraphCON exhibit plateau or
degradation, revealing limited depth scalability.

• Finally, on the ECHO-Charge task (Figure 7d), the behavior differs. This task involves
precise regression of atomic partial charges, where small errors matter. Most models show
stable MAE across depths, except for GCN and GIN, which degrade significantly in the deep
regime. Importantly, models with explicit long-range message-passing capabilities (A-DGN,
SWAN, PH-DGN, GPS, and DRew) retain high accuracy even at > 17 layers. This suggests
their robustness in fine-grained, long-range molecular prediction tasks. We do not include
ECHO-Energy in this ablation, as it exhibited very similar behavior to ECHO-Charge.

Overall, the observed patterns reveal a clear correlation between the number of message-passing
layers and performance: models require many layers to perform well, confirming the long-range
nature of these benchmarks. Remarkably, architectures explicitly designed to support many message-
passing steps consistently outperform others, further confirming the long-range nature of our proposed
benchmarks.
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Figure 8: Test MAE at different graph diameters across synthetic and molecular tasks.
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Performance Across Graph Diameters. Figure 8 reports test MAE across varying graph diam-
eters for all tasks. This analysis highlights how different models handle increasingly long-range
dependencies.

For the diam task (Figure 8a), most models show robust performance for small to moderate diameters,
with a slight increase in MAE for very large diameters. Notably, GCN, GraphCON and GCNII
architectures exhibits substantial degradation as diameter increases, suggesting poor scalability in
capturing global structure on many message-passing steps. Again, non-dissipative architectures
(i.e., A-DGN, PH-DGN, and SWAN), DRew and GPS remain consistently accurate across all graph
diameters, demonstrating their capacity to generalize across different graph scales.

The ecc task (Figure 8b) reveals a characteristic U-shaped curve. Performance improves as diameter
increases from small to moderate values, and deteriorates again for very large graphs. Here, all
models follow a similar trend, although A-DGN and GPS tend to dominate in the optimal range.

In the sssp task (Figure 8c), increasing graph diameter consistently correlates with rising MAE.
Model performance divides into three groups, with GraphCON exhibiting the worst performance
both in terms of overall MAE and degradation with increasing diameter. GCN, GCNII, and GIN
show similar values across the task and similar degradation trends. Finally, non-dissipative models,
GPS Transformer and DRew, once again demonstrate remarkable and consistent performance even
on difficult graphs. This trend reinforces the long-range nature of the task, where deeper or more
expressive models are required to maintain strong performance.

On the molecular ECHO-Charge task (Figure 8d), test MAE consistent across all ranges, but subtle
trends emerge. Models like DRew and GPS show stability and even slight improvements for larger
molecular graphs, while GCN and GIN degrade more noticeably, confirming their limited capacity
to manage increasing molecular complexity. Interestingly, GINE performs substantially better than
its counterpart GIN, suggesting that edge-level attributes play a crucial role in the ECHO-Charge
regression task. Similarly to the previous ablation study, we do not include ECHO-Energy, as it
exhibited very similar behavior to ECHO-Charge. Additionally, we note that all models exhibit a
general performance drop when processing molecular graphs with a diameter greater than 35. We
attribute this behavior to the original ChEMBL dataset’s distribution, which includes fewer graphs
with diameters in the 35–40 range. This also impacts our ECHO-Charge dataset as illustrated in
Figure 5. As a result, models have limited opportunity to learn effective representations for such large
graphs, which likely contributes to the observed degradation.

Overall, this complementary diameter-wise analysis underlines the necessity for architectures capable
of handling variable and large receptive fields. It also highlights that while shallow models may
perform competitively on small graphs, their limitations become apparent in regimes requiring
long-range reasoning.

H EXTENDED RESULTS

In Table 16 we report additional result on ECHO-Synth benchmark. In particular we report MAE,
MSE and loss (defined as log10(MSE)) obtained on the test set. Similarly, we report the same metrics
for ECHO-Charge and ECHO-Energy in Table 17 and Table 18, respectively.
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Table 16: Test performance (mean ± std) of different models across ECHO-Synth tasks. Lower is
better. In bold the best model.

Model Test Loss ↓ Test MSE ↓ Test MAE ↓
diam

A-DGN −2.531±0.010 4.818±0.108 1.151±0.038

DRew −2.635±0.020 3.756±0.170 1.243±0.047

GCN −1.848±0.051 22.872±2.766 3.832±0.262

GCNII −2.227±0.026 9.696±0.568 2.005±0.093

GIN −2.356±0.066 7.238±1.153 1.630±0.161

GPS −2.192±0.025 10.454±0.610 2.160±0.098

GraphCON −1.995±0.037 16.427±1.419 2.969±0.189

PH-DGN −2.416±0.181 6.699±2.728 1.627±0.398

SWAN −2.517±0.023 4.950±0.265 1.121±0.070

ecc

A-DGN −1.649±0.006 35.967±0.492 4.981±0.037

DRew −1.696±0.002 32.247±0.148 4.651±0.020

GCN −1.606±0.005 39.706±0.460 5.233±0.034

GCNII −1.603±0.006 39.911±0.518 5.241±0.030

GIN −1.668±0.015 34.454±1.201 4.869±0.092

GPS −1.682±0.003 33.346±0.226 4.758±0.021

GraphCON −1.566±0.001 43.505±0.017 5.474±0.001

PH-DGN −1.630±0.017 37.510±1.416 5.068±0.126

SWAN −1.671±0.007 34.208±0.578 4.840±0.045

sssp

A-DGN −2.566±0.089 4.425±0.879 1.176±0.140

DRew −2.386±0.001 6.589±0.015 1.279±0.011

GCN −2.217±0.033 9.743±0.757 2.102±0.094

GCNII −2.213±0.177 10.369±3.575 2.128±0.429

GIN −2.138±0.090 11.868±2.689 2.234±0.271

GPS −3.115±0.040 1.255±0.113 0.472±0.050

GraphCON −1.488±0.000 52.104±0.016 5.734±0.011

PH-DGN −2.616±0.317 4.656±3.013 1.323±0.485

SWAN −2.782±0.205 2.905±1.556 0.896±0.232

Table 17: Test performance (mean ± std) of different models across the ECHO-Charge task. Lower
is better. In bold the best model. Test loss (log10(MSE)) is computed on the normalized dataset,
while test MSE and test MAE are reported on the original (non-scaled) data.

Model Test Loss ↓ Test MSE ×104 ↓ Test MAE ×103 ↓
A-DGN -3.840±0.009 1.456±0.032 6.543±0.146

DRew -3.444±0.054 3.669±0.459 9.086±0.473

GCN -3.508±0.086 3.126 ±0.263 8.421±0.512

GCNII -3.462±0.019 3.490±0.147 8.829±0.021

GIN -3.245±0.038 5.750±0.239 10.784±0.059

GINE -3.648±0.020 2.284±0.402 7.176±0.371

GPS -3.821±0.018 1.620±0.065 6.182±0.219

GraphCON -2.879±0.009 13.256±0.265 19.629±0.195

PH-DGN -3.595±0.024 2.562±0.144 7.915±0.269

SWAN -3.907±0.027 1.251±0.029 6.109±0.103
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Table 18: Test performance (mean ± std) of different models across the ECHO-Energy task. Lower
is better. In bold the best model. Test loss (log10(MSE)) is computed on the normalized dataset,
while test MSE and test MAE are reported on the original (non-scaled) data.

Model Test Loss ↓ Test MSE ×103 ↓ Test MAE ×102 ↓
A-DGN -4.857±0.083 1.415±0.799 0.125±0.016

DRew -5.007±0.231 1.281±0.733 0.113±0.024

GCN -4.210±0.010 4.561±0.176 0.281±0.012

GCNII -4.884±0.196 1.560±0.653 0.132±0.026

GIN -3.800±0.160 12.215±2.878 0.479±0.102

GINE -4.418±0.265 5.225±2.536 0.236±0.076

GPS -5.786±0.118 0.180±0.045 0.053±0.008

GraphCON -4.817±0.089 0.975±0.242 0.143±0.008

PH-DGN -4.717±0.046 1.359±0.408 0.161±0.011

SWAN -4.825±0.107 2.652±2.257 0.126±0.012

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I RUNTIMES

To assess the computational efficiency and predictive performance of all models, we report both
training and inference runtimes measured on a NVIDIA H100 GPU, as well as the mean absolute
error (MAE) across tasks in the ECHO benchmark (see Table 19). Training time is measured as the
average per-epoch duration over 10 epochs, while inference time is computed as the average forward
pass duration over 10 independent runs on the test set, using a batch size of 512. The three metrics
correspond to the best hyperparameter configuration selected for each model. This comprehensive
evaluation allows a direct comparison of models not only in terms of accuracy but also with respect to
their scalability and practical deployability. We note that DRew’s reported runtime does not include
the preprocessing step, which involves computing the Floyd–Warshall algorithm (Cormen et al.,
2009), a procedure with cubic time complexity in the number of nodes.

Table 19 highlights that while transformer-based models like GPS achieve strong performance on
long-range tasks, particularly on the real-world ECHO-Charge/ECHO-Energy dataset, they do so
at the cost of significantly higher computational overhead. In contrast, architectures such as SWAN
and A-DGN strike a more favorable balance between efficiency and accuracy, suggesting the potential
of non-dissipative DE-GNNs in overcoming the limitations of standard message passing.

Table 19: Training and inference runtime (in seconds, mean ± standard deviation) on the ECHO
Benchmark measured on a NVIDIA H100 GPU. Training time refers to the average time per epoch
computed over 10 epochs. Inference time refers to the forward pass on the test set, computed over 10
independent runs. In both cases the batch size is set to 512. For each task, the reported values corre-
spond to the best configuration of each model as selected during model selection. DRew’s reported
runtime does not include the preprocessing step, which involves computing the Floyd–Warshall
algorithm, a procedure with cubic time complexity in the number of nodes.

Metric Model diam sssp ecc
ECHO-Charge
ECHO-Energy

Training (s)
A-DGN

1.430±0.100 1.460±0.130 1.710±0.070 38.010±0.430

Inference (s) 0.028±0.002 0.018±0.001 0.027±0.001 0.809±0.001

Training (s)

DRew

1.920±0.050 1.880±0.060 1.760±0.100 31.090±1.140

Inference (s) 0.100±0.001 0.043±0.001 0.057±0.002 0.636±0.007

Pre-processing (s) 48.108±0.943 48.108±0.943 48.108±0.943 610.303±1.629

Training (s)
GCNII

1.700±0.050 1.830±0.020 1.620±0.110 37.570±0.500

Inference (s) 0.071±0.002 0.062±0.001 0.059±0.001 0.463±0.005

Training (s)
GCN

1.480±0.060 1.790±0.060 1.450±0.100 16.590±0.300

Inference (s) 0.048±0.001 0.065±0.003 0.046±0.002 0.139±0.001

Training (s)
GIN

1.410±0.220 1.370±0.060 1.340±0.040 17.960±0.460

Inference (s) 0.020±0.001 0.019±0.001 0.016±0.001 0.122±0.001

Training (s)
GINE

N/A N/A N/A 30.240±1.140

Inference (s) N/A N/A N/A 0.164±0.001

Training (s)
GPS

9.720±0.070 14.580±0.210 11.960±0.050 689.420±1.040

Inference (s) 4.536±0.006 7.026±0.001 6.235±0.076 97.952±0.433

Training (s)
GraphCON

0.990±0.120 0.920±0.040 0.940±0.190 13.570±0.780

Inference (s) 0.006±0.001 0.004±0.001 0.006±0.001 0.066±0.003

Training (s)
PH-DGN

2.840±0.060 4.480±0.060 3.010±0.060 46.710±0.780

Inference (s) 0.180±0.011 0.375±0.002 0.299±0.006 1.005±0.021

Training (s)
SWAN

2.330±0.120 2.130±0.050 2.090±0.110 81.590±0.700

Inference (s) 0.203±0.002 0.099±0.001 0.168±0.001 3.822±0.048

J VISUALIZATION OF GPS ATTENTION PATTERNS

In this section, we analyze the attention patterns of the GPS model within the sssp task. These
patterns are illustrated in Figure 9. We observed that, starting from the first layer, the highest attention
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Figure 9: Visualization of the first-layer GPS attention scores in sssp for the Ladder and Lobster
topologies, averaged across all heads. The top 40 attention-weighted node pairs are highlighted in
color, while the original graph topology is shown in black.

scores are often assigned to pairs of nodes that are not directly connected and that are usually far apart
in the underlying graph. Notably, the model appears to identify one or a few nodes as central hubs that
aggregate and redistribute information from these distant nodes. This mechanism effectively reduces
the maximal traversal distance to only few hops, allowing distant nodes to communicate more easily.
Therefore, this mechanism effectively reveals how the model routes long-range communication
through structural shortcuts, thus confirming the long-range nature of the proposed tasks.
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