CAN YOU HEAR ME NOW? A BENCHMARK FOR LONG-RANGE GRAPH PROPAGATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Effectively capturing long-range interactions remains a fundamental yet unresolved challenge in graph neural network (GNN) research, critical for applications across diverse fields of science. To systematically address this, we introduce ECHO (Evaluating Communication over long HOps), a novel benchmark specifically designed to rigorously assess the capabilities of GNNs in handling very long-range graph propagation. ECHO includes three synthetic graph tasks, namely single-source shortest paths, node eccentricity, and graph diameter, each constructed over diverse and structurally challenging topologies intentionally designed to introduce significant information bottlenecks. ECHO also includes two real-world datasets, ECHO-Charge and ECHO-Energy, which define chemically grounded benchmarks for predicting atomic partial charges and molecular total energies, respectively, with reference computations obtained at the density functional theory (DFT) level. Both tasks inherently depend on capturing complex long-range molecular interactions. Our extensive benchmarking of popular GNN architectures reveals clear performance gaps, emphasizing the difficulty of true long-range propagation and highlighting design choices capable of overcoming inherent limitations. ECHO thereby sets a new standard for evaluating long-range information propagation, also providing a compelling example for its need in AI for science.

1 Introduction

Graphs are fundamental data structures used extensively to represent complex interconnected systems, ranging from social networks and biological pathways, to communication infrastructures and molecular structures. Graph Neural Networks (GNNs) (Sperduti, 1993; Gori et al., 2005; Scarselli et al., 2008; Micheli, 2009; Bruna et al., 2014; Defferrard et al., 2016) have emerged as a successful methodology within deep learning, whose research community was initially driven by the development of diverse architectures capable of capturing intricate relational patterns inherent to graph-structured data, as well as impactful applications across various domains (Hamilton et al., 2017; Derrow-Pinion et al., 2021; Gravina et al., 2022; Gravina & Bacciu, 2024; Khemani et al., 2024).

More recently, the research community has shifted its focus towards understanding and overcoming fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been driven by the observation that effectively propagating information over long distances in graphs remains a significant challenge. Such challenges have been formally linked to phenomena like over-smoothing (Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al., 2023), over-squashing (Alon & Yahav, 2021; Di Giovanni et al., 2023), and more generally, vanishing gradients (Arroyo et al., 2025), all of which hinder GNN performance in tasks that require capturing long-range dependencies.

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while looking into methodological advancements that can surpass or mitigate such shortcomings. A key enabler of this progress is the establishment of solid and challenging benchmarks that can accurately assess and validate long-range propagation capacities. The availability of controlled synthetic benchmarks, should be complemented by the introduction of compelling application-driven datasets which can clearly demonstrate the practical advantages of addressing long-range propagation issues. Long-range propagation capacities, in this sense, have been noted to be central in key areas of science, such as in biology (Dwivedi et al., 2022; Hariri & Vandergheynst, 2024), biochemistry (Gromiha & Selvaraj, 1999), and climate (Lam et al., 2023).

Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks (Bojchevski & Günnemann, 2018; Shchur et al., 2018; Wu et al., 2018; Sterling & Irwin, 2015; Wale & Karypis, 2006; Hu et al., 2020a; Dwivedi et al., 2023), often overlooking the unique challenges associated with distant information propagation. More recently, the growing interest in this challenge has motivated the community to develop a few benchmarks specifically designed to evaluate information propagation in GNNs. These include the Long-Range Graph Benchmark (LRGB) (Dwivedi et al., 2022) and the Graph Property Prediction (GPP) dataset (Gravina et al., 2023). While this is a significant step forward compared to earlier benchmarks, it does not fully account for the need to capture the true long-range dependencies present in some real-world applications. This is due to limited size of the graphs, the absence of well-defined conditions on the expected propagation range, and the focus of the benchmarks, which is often more aimed at specific issues of over-smoothing and over-squashing, rather than providing a broader evaluation of long-range propagation capabilities. Moreover, LRGB and GPP tasks are facing a natural performance saturation, as novel methodologies are being developed and optimized on them.

Motivated by this, we introduce ECHO (Evaluating Communication over long HOps), a new benchmark designed to assess the capabilities of GNNs to exploit long-range interactions. ECHO consists of three synthetic tasks and two real-world chemically grounded task. The former are designed to provide a controlled setting to assess propagation capabilities. They comprise the prediction of shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph diameter) across a diverse graph topologies. These have been defined to increase the difficulty of effective long-range communication, as they present structural bottlenecks for the information flow. The main characteristic of these tasks is that GNNs must heavily rely on global information and effectively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford (Bellman, 1958). The real-world tasks target the prediction of molecular total energy and the long-range charge redistribution in molecules, which are critical and practically relevant challenges in computational chemistry (Dupradeau et al., 2010), as they underly many fundamental processes such as chemical reactivity, molecular stability, and intermolecular interactions. Accurate modeling of these effects is essential for drug design, materials science, and biology understanding.

Our contributions can be summarized as follows:

- We introduce ECHO, a novel benchmark featuring five new tasks specifically designed to evaluate the ability of GNNs to effectively handle long-range communication in both synthetic and real-world settings. ECHO includes three synthetic tasks (collectively referred to as ECHO-Synth) with a total of 10,080 graphs, and two real-world task (ECHO-Charge and ECHO-Energy) comprising 196,545 graphs, where the required propagation ranges from 17 to 40 hops.
- We propose ECHO-Charge and ECHO-Energy, two novel benchmark tasks designed to capture long-range atomic interactions in molecular graphs. Specifically, ECHO-Charge is a dataset for predicting atomic charge distributions, while ECHO-Energy focuses on predicting the total energy of a molecule. Both tasks are built on Density Functional Theory (DFT) (Argaman & Makov, 2000) calculations, ensuring quantum-level accuracy. This makes them particularly suitable for evaluating long-range message passing in GNNs, since both charge redistribution and molecular energy depend on subtle, non-local effects. Beyond benchmarking, these datasets also address central challenges in computational chemistry, where modeling long-range interactions remains difficult and computationally expensive, as evidenced by the ≈ 2 months of parallel DFT computations required to generate our benchmark on the given hardware configuration.
- We present a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range dependencies, providing a rigorous evaluation of GNNs' ability to propagate information over extended graph distances.
- We conduct extensive experiments to establish strong baselines for each task in ECHO, providing a comprehensive reference point for future research on long-range graph propagation.

2 On the need of a new benchmark

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range propagation, in relation to existing datasets.

The most widely used benchmark for assessing these capabilities is arguably LRGB (Dwivedi et al., 2022). Its introduction in 2022 has certainly marked an important milestone and promoted the development of the field. However, despite initial rapid improvements, performance on LRGB has now plateaued, showing a noticeable deceleration in progress across the last year, as discussed in Appendix B. In addition to this, it has to be noted that recent works (Tönshoff et al., 2023; Bamberger et al., 2025b) questions the long-range nature of several LRGB tasks, revealing that a subset of tasks is inherently local, rather than requiring long-range diffusion, and that the benchmark itself is highly sensitive to hyperparameter tuning. Other benchmarks propose synthetic tasks on generated structures, including the Tree-Neighborhood (Alon & Yahav, 2021), Graph Property Prediction (Gravina et al., 2023), graph transfer (Di Giovanni et al., 2023; Gravina et al., 2025), GLoRA (Zhou et al., 2025), and Barbell and Clique graphs (Bamberger et al., 2025a). Indeed, most of these tasks are originally designed to address narrow challenges that prevent long-range propagation, such as over-smoothing (Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al., 2023) and over-squashing (Alon & Yahav, 2021; Di Giovanni et al., 2023). These phenomena, while related, do not necessarily capture the full spectrum of challenges associated with long-range communication. Moreover, despite being designed to test the ability of GNNs to overcome these limitations, these datasets typically involve small graphs with limited-size diameters. This inherently restricts the propagation radius, creating a significant gap between the benchmark tasks and real-world problems that require much deeper propagation across significantly larger structures.

The limitations above suggest the need for a new benchmark that reflects the challenges and opportunities in long-range GNN research. An effective benchmark should provide tasks that explicitly test a model's ability to traverse extensive graph structures, effectively aggregate global information, and adapt to diverse topological constraints. Moreover, as the field has matured and a wide range of models have been established, ranging from graph transformers (Shi et al., 2021; Rampášek et al., 2022) to multi-hop GNNs (Abu-El-Haija et al., 2019; Gutteridge et al., 2023) and others (Shi et al., 2023), it seems timely to introduce a new benchmark that can accurately assess the long-range propagation skills of these families of models, now that they are well understood and consolidated.

ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-range propagation needs, providing a clear target for the evaluation of this property. Specifically, ECHO tasks require computing shortest paths between all nodes, long-range charge redistribution, or molecular total energies, with clearly defined propagation ranges between 17 and 40 hops, depending on the specific graph structure. This explicit range ensures that models failing to capture dependencies within this span are underreaching and have poor long-range capabilities.

The ECHO-Charge and ECHO-Energy molecular tasks have strong value per se, proposing a novel, practical, and high-impact challenge for learning models in computational chemistry (Dupradeau et al., 2010). Previous popular benchmarks in this domain (Sterling & Irwin, 2015; Wale & Karypis, 2006; Hu et al., 2020a; Wu et al., 2018; Dwivedi et al., 2022) focused on the prediction of molecular-level properties, such as solubility or HIV inhibition, which are predominantly short-range tasks. This is evident when they can be reduced to the problem of counting small-dimensional local substructures (i.e., with length smaller than 7) (Bouritsas et al., 2023). Differently, ECHO-Charge and ECHO-Energy are the first graph benchmarks that targets long-range interactions at the atomic level, i.e., the microscopic scale. Both benchmarks are not only inherently long-range, but also particularly challenging as they require accurate modeling of charge distributions, energy stabilization, and the complex interplay of atomic interactions. This makes them computationally expensive to solve with current computational chemistry tools. We provide further details on the computational complexity of the underlying quantum simulations in Appendix C.

Therefore, ECHO-Charge and ECHO-Energy set a new standard for evaluating long-range graph information propagation, as well as they provide a compelling application of AI for science and chemistry, enabling faster predictions with potential impact on drug/material design or understanding biological functions.

3 THE ECHO BENCHMARK

In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range information propagation capabilities of GNNs. Our benchmark consists of two complementary

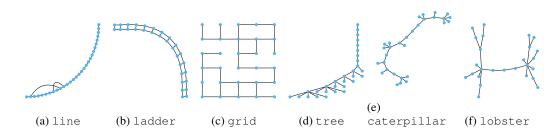


Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, N=30

components: a set of algorithmically constructed tasks and a set chemically grounded real-world datasets. Detailed dataset statistics are reported in Appendix E.

The synthetic component includes classical graph-theoretic problems (i.e., single-source shortest path, node eccentricity, and graph diameter) posed across diverse graph topologies designed to induce structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range dependencies and enable controlled analysis of model behavior under varying topological conditions.

The proposed real-world benchmarks target practically relevant and physically grounded tasks in computational chemistry: ECHO-Charge focuses on predicting long-range charge redistribution at the atomic level, while ECHO-Energy addresses the prediction of molecular total energies. Both problems are rooted in electronic structure modeling, reflecting realistic quantum phenomena such as charge transfer and energy stabilization, and build upon prior work in quantum-accurate deep learning models for molecular systems (Ko et al., 2021; Zhang et al., 2022).

3.1 THE ECHO-SYNTH DATASET

The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information propagation across a diverse set of graph topologies. It focuses on three graph property prediction tasks: **Single Source Shortest Path** (sssp), **Node Eccentricity** (ecc), and **Graph Diameter** (diam). Among these, sssp and ecc are node-level tasks requiring the prediction of a scalar value per node, while diam is a graph-level task requiring a single prediction for the entire graph. We refer to this dataset as ECHO-Synth.

These tasks were intentionally selected due to their heavy reliance on global information. For example, solving ssp from a given source node requires identifying shortest paths to all other nodes (Dijkstra, 2022), since the information spans the entire graph. Eccentricity builds on this by requiring the longest shortest path from each node, demanding complete graph awareness. Diameter is even more global, involving the longest shortest path between *any* two nodes (Cormen et al., 2022). Classical algorithms like Dijkstra's (Dijkstra, 2022) and Bellman-Ford (Bellman, 1958), which perform complete graph traversal, illustrate the challenge these tasks pose for GNNs, which rely on localized message passing. To prevent models from relying on input features rather than learning structural patterns, each node is assigned a uniformly distributed random scalar feature $r \sim \mathcal{U}(0,1)$. Additionally, for the ssp task, a binary indicator is included to mark the source node. This ensures that the model can distinguish the source while maintaining uniform input statistics across tasks.

Dataset Construction. This dataset includes six distinct families of graph topologies i.e., line, ladder, grid, tree, caterpillar, and lobster (see Figure 1), each selected to highlight different structural and propagation characteristics. The line graph (Figure 1 (a)) serves as a simple but non-trivial baseline. To introduce non-local interactions, we modify it with stochastic skip connections: each node has a 20% chance of forming an edge to another node 2–6 hops away. Building on this, the ladder topology (Figure 1 (b)) consists of two parallelline graphs connected by one-to-one cross-links, enabling richer routing possibilities and redundancy in message pathways. The grid topology (Figure 1 (c)) represents a 2D lattice structure where edges are independently removed with a 20% probability. This results in irregular neighborhoods and broken spatial symmetries.

To model hierarchical structures, we include tree-structured graphs (Figure 1 (d)) generated through preferential attachment. A new node connects to an existing one with probability proportional to k_i^{α} , where k_i represents the degree of the *i*-th node (with $\alpha=3$), leading to the formation of high-

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240 241

242

243

244

245

246

247

248

249250251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

degree hubs and reflecting connectivity patterns often seen in natural networks. The caterpillar topology (Figure 1 (e)) augments a central linear backbone with peripheral nodes attached randomly along the spine, combining features of chain-like and tree-like graphs to create moderate branching and directional flow. Extending this idea, the lobster graph (Figure 1 (f)) adds a third hierarchical layer: nodes in the outermost layer connect only to intermediate nodes, resulting in deeper branching while preserving an overall elongated structure. This configuration is especially useful for testing the limits of multi-hop message passing under structured constraints. Beyond their long-range dependencies, the complexity of the synthetic tasks is further increased by the presence of topological bottlenecks, which pose significant challenges to GNN based on message passing (Gilmer et al., 2017). Bottlenecks emerge in graphs where information flow between distant nodes is constrained to pass through a small subset of intermediary nodes, thereby restricting the bandwidth of information flow. This structural constraint can increse the risk of over-squashing, a phenomenon in which exponentially growing information is aggregated into the low-dimensional node representations (Alon & Yahav, 2021). As a result, critical signals may be compressed or lost during propagation, severely limiting the model's capacity to distinguish and preserve meaningful long-range interactions (Topping et al., 2022; Di Giovanni et al., 2023).

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks. For example, in the line topology information between distant nodes must propagate sequentially through a single path, making each node along the path a critical bottleneck. Similarly, treestructured graphs inherently introduce bottlenecks at branch points and hierarchical layers, where entire subtrees depend on narrow pathways for communication with the rest of the graph. The caterpillar and lobster graphs further reinforce this pattern by adding additional peripheral layers while maintaining centralized backbones, exacerbating the bottleneck effect in their hierarchical layouts. Even in the more uniform grid topology, bottlenecks are implicitly introduced through random edge deletions, which can disrupt regular pathways and force information to traverse suboptimal and congested routes.

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range $d \in [17, 40]$, capturing diverse long-range interaction scenarios. For each of the six graph topologies and each diameter value, we produce 70 unique graphs, yielding a total of $70 \times 24 \times 6 = 10,080$ graphs. To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign 40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees that all splits share the same distribution over both graph topologies and diameter values, which are uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the training set, avoiding distributional shifts and ensuring fair comparison across methods.

3.2 ECHO-CHARGE AND ECHO-ENERGY DATASETS

Molecular property prediction is a cornerstone application of GNNs, with common benchmarks involving graph-level prediction tasks such as molecular fingerprint (Duvenaud et al., 2015), solubility, toxicity and various chemical properties (Coley et al., 2017; Hu et al., 2020c). One fundamental task in this domain is the prediction of atomic partial charges, which are continuous, atom-level properties that reflect the electron distribution within a molecule. Accurate charge prediction is essential for modeling molecular interactions, reactivity, and electrostatic behavior. Figure 2 illustrates this task on the 3D molecular graph of caffeine, where each atom is colored according to its predicted partial charge. Complementary to this, another central quantum property of molecular systems is the total energy, which governs stability, chemical reactivity, and conformational preferences. Thus, predicting molecular energies is equally important for chemistry applications.

Figure 2: The 3D molecular graph of *caffeine* annotated with atomic partial charges. Blue indicates regions of negative partial charge, while red corresponds to positive charge accumulation.

Traditionally, both atomic charges and molecular energies are computed using quantum mechanical methods, especially Density Functional Theory (DFT) (Argaman & Makov, 2000) or related quantum chemical simulations. While these methods provide high accuracy, their computational cost, arising

from solving complex equations, limits their scalability to large molecular datasets or high-throughput tasks. Specifically, high-accuracy simulations require several minutes to process a single molecule. We report a quantitative description of DFT simulation efficiency in Appendix C.

A significant challenge for Machine Learning (ML) methods addressing these prediction tasks is effectively capturing long-range dependencies across molecular graphs. Specifically, here we will refer to "long-range" in the graph space (e.g., nodes separated by many hops), rather than purely spatial distance. The three-dimensional configuration of molecules greatly intensifies this task complexity, as distant atoms in the graph topology can still exert significant influence on electronic properties and total energy. Such non-trivial, long-range interdependencies become increasingly challenging to model accurately as molecular graph diameter grows. To systematically address this challenge, we introduce **ECHO-Charge** and **ECHO-Energy**, with the specific aim to stress long-range dependencies in real-world scenarios. ECHO-Charge is formulated as a node-level regression problem, where the model must predict the partial charge of each atom in a molecular graph, while ECHO-Energy is formulated as a graph-level regression problem, requiring prediction of the total molecular energy.

Beyond serving as rigorous benchmarks for GNN architectures, these datasets have strong potential for practical impact in ML applications for science and chemistry. Capturing these sophisticated long-range interactions can significantly improve efficiency of predicting atomic partial charges and molecular energies, while also serving as accurate and computationally inexpensive initialization for subsequent quantum mechanical simulations. Such improvements could substantially accelerate computational chemistry workflows, facilitating rapid exploration of the large molecular space.

Dataset Construction. Comprising $\approx 170,000$ (ECHO-Charge) and $\approx 196,000$ (ECHO-Energy) molecular graphs selected from the ChEMBL database (Zdrazil et al., 2024), our benchmarks include molecules with graph diameters between 17 and 40, where the interplay between the molecule size and the task ensures the need to work with significant long-range dependencies that thoroughly stress model capabilities. In both ECHO-Charge and ECHO-Energy, each graph represents a single molecule (see Figure 2), and each node (i.e., atom) is labeled with the atomic number, essential for chemical identity, and spatial distance from the center of mass of the molecule, to provide geometrical context. Edges correspond to chemical bonds, and are labeled with bond type (single, double, triple, or aromatic) and bond length. Notably, this encoding of spatial information is invariant under the action of the E(3) group, meaning that relative geometric features such as distances remain invariant under global 3D rotations, reflections, and translations of the molecular structure. This ensures that the spatial representation respects the underlying symmetries of molecular physics, essential for learning physically consistent models.

To generate the datasets, we employed a two-step approach. Firstly, the generation process began with molecular 3D structure generation starting from ChEMBL SMILES (Weininger, 1988) strings for all molecules satisfying the given diameter constraint. In order to generate molecular conformations we opted for coordinate optimization using the Generalized Amber Force Field (GAFF) (Grimme et al., 2010), a well-established force field specifically designed for optimizing a wide variety of organic and medically relevant compounds. These optimized structures served as initialization for the subsequent quantum chemical calculations to determine accurate structures, partial charges, and molecular energies. Specifically, we employed Density Functional Theory (DFT) to match the required chemical accuracy required for reliable molecular property annotation. All computations were run with the ORCA package for quantum chemistry (Neese, 2022; Neese et al., 2020; Neese, 2023). A detailed description of the quantum simulations is provided in Appendix C, along with information about the computing platform in Appendix D.

Dataset Split. To evaluate model performance under consistent and reproducible conditions, we employed a random uniform sampling strategy to split the original datasets. This approach ensures a balanced distribution of molecular structures, charge ranges, and energy levels across the training, validation, and test sets, therefore minimizing potential sampling bias. For ECHO-Charge, we adopt an 80/10/10 split for training, validation, and testing, while for ECHO-Energy we use a 90/5/5 split.

EXPERIMENTS

328 329 330 331 332

324

325 326

327

333

334

335

336

337

338

339 340

341

342

343

344

345

346 347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

364

366

367

368

369

370

371

372

373

374

375 376

377

Baselines. We consider a diverse set of GNNs baselines that capture core directions in the development of graph neural architectures, spanning from classical GNNs to more recent approaches that demonstrate strong empirical performance in capturing long-range dependencies. As classical baseline models, we include GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), GINE¹ (Hu et al., 2020b) and GCNII (Chen et al., 2020), which represent standard message-passing frameworks with strong theoretical grounding. We also consider a multi-hop GNN, i.e., DRew (Gutteridge et al., 2023), which adaptively rewire the graph to facilitate more effective propagation across distant nodes. We evaluate GPS (Rampášek et al., 2022), an effective graph transformer that enables long-range propagation via attention mechanism between any pairs of nodes. Finally, we explore the performance of a family of GNNs that draw on principles from dynamical systems theory, namely differential-equation inspired GNNs (DE-GNNs). This includes GraphCON (Rusch et al., 2022), which is designed to address the over-smoothing issue, as well as models explicitly designed to perform long-range propagation, whose architectures are based on non-dissipative or port-Hamiltoninan dynamics, such as A-DGN (Gravina et al., 2023), SWAN (Gravina et al., 2025), and PH-DGN (Heilig et al., 2025).

Model Architecture and hyperparameter selection. All models share a unified backbone design to enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer MLP applied directly to the node representations. For graph-level tasks, node representations are first aggregated using the mean, max, and sum operations, concatenated, and then processed by a two-layer MLP. This standardization ensures that differences in performance are attributable to the core propagation mechanisms rather than auxiliary architectural choices.

Training follows a consistent protocol across all models. We minimize the base-10 logarithm of the Mean Squared Error loss (MSE), $\log_{10}(\text{MSE}(y_{\text{true}} - y_{\text{target}}))$, since the predicted values can be very small in magnitude and this scale-sensitive loss emphasizes small differences. We use the Adam (Kingma & Ba, 2015) optimizer and adopt Early Stopping based on validation loss. with a patience of 100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility of our results. In order to ensure a fair and robust comparison across all methods and datasets, we employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset pair, we perform a Bayesian Optimization based on a Gaussian Process prior (Snoek et al., 2012) in the chosen hyperparameter space, spanning 100 trials to explore the respective search space efficiently. We report the complete set of explored hyperparameters for each model, as well as with the selected hyperparameters, in Appendix F. Finally, the best configuration found is validated through four independent training runs, each initialized with a different random seed.

Results on ECHO-Synth dataset. We report results on the synthetic benchmarks in Table 1. All the values are reported using the Mean Absolute Error (MAE). Additional metrics are reported in the Appendix H, Table 16. We start observing that models employing global attention mechanisms significantly outperform traditional message-passing frameworks. Specifically, GPS demonstrates superior performance on the sssp task, achieving a remarkably low MAE of 0.472. In line with literature findings (Dwivedi et al., 2022), this result suggests that incorporating transformer-like global attention substantially mitigates inherent limitations in localized message-passing, which are pronounced in classic architectures such as GCN and GIN. This is further supported by the analysis in Appendix J, which shows that the highest attention scores are often assigned to node pairs that are not directly connected and often far apart in the graph. Interestingly, differential-equation-inspired architectures, particularly those employing non-dissipative or port-Hamiltonian formulations like SWAN, A-DGN, and PH-DGN, consistently perform well across tasks, with similar performance metrics. Notably, SWAN achieves the lowest MAE on the diam task (1.121), closely followed by A-DGN and PH-DGN. This highlights the benefit of incorporating non-dissipative dynamics to improve long-range information propagation, thereby preserving critical structural information across extensive message-passing steps. Moreover, the multi-hop GNN, DRew, reveals its effectiveness in the ecc task, attaining the lowest MAE (4.651). This success emphasizes the advantage of

¹We added GINE as a baseline to ECHO-Charge and ECHO-Energy benchmarks to overcome the limitations of GIN to process edge attributes.

dynamically rewiring graph structures, thus effectively addressing topological bottlenecks critical for accurately capturing node eccentricities.

Differently, GraphCON do not inherently outperform traditional methods, and show notably weaker performance relative to other models of the same architectural family (e.g., A-DGN and SWAN). Thus, mere message-passing dynamics that only mitigate the over-smoothing issue does not ensure superior performance in long-range tasks.

Finally, traditional messagepassing models like GCN demonstrate consistent limitations across all benchmarks,

Table 1: Test MAE (mean with standard deviation as subscript) for each model across the three synthetic tasks: diam, ecc, and ssp. Lower is better. Values are color-coded by performance, with darker green indicating lower error.

Model	diam↓	ecc↓	sssp↓
A-DGN	1.151 ± 0.038	4.981 ± 0.037	1.176 ± 0.140
DRew	1.243 ± 0.047	$4.651_{\pm0.020}$	$1.279_{\pm0.011}$
GraphCON	2.969 ± 0.189	5.474 ± 0.001	5.734 ± 0.011
GCN	3.832 ± 0.262	5.233 ± 0.034	2.102 ± 0.094
GCNII	2.005 ± 0.093	5.241 ± 0.030	2.128 ± 0.429
GIN	1.630 ± 0.161	4.869 ± 0.092	2.234 ± 0.271
GPS	2.160 ± 0.098	4.758 ± 0.021	0.472 ± 0.050
PH-DGN	1.627 ± 0.398	5.068 ± 0.126	1.323 ± 0.485
SWAN	${\bf 1.121} \pm 0.070$	4.840 ± 0.045	0.896 ± 0.232

indicative of fundamental constraints in purely localized message-passing architectures when facing extensive long-range dependencies as required in our ECHO-Synth benchmark suite. This limitation is most evident in the diam task, where GCN records the highest MAE (3.832), underscoring its inadequate capacity for global information aggregation.

Results on ECHO-Charge and ECHO-Energy dataset. We detail the performance of all evaluated models on the atomic partial charge and energy prediction task in Table 2. Additional metrics are reported in the Appendix H, Tables 17 and 18. As anticipated, architectures capable of handling long-range dependencies demonstrate a clear advantage on both benchmarks, given the nature of the task which requires precise modeling of subtle interatomic interactions spread across the molecular graph.

Notably, GPS achieves the best performance on ECHO-Energy and it is competitive on ECHO-Charge, confirming the utility of global attention mechanisms in capturing distant influences that modulate quantum chemical properties, albeit at the cost of increased computational complexity (as shown in Appendix I).

Models like A-DGN and SWAN also yield competitive performance, consistently appearing among the top performers, with SWAN emerging as best model in ECHO-Charge. Their success suggests that imposing non-dissipative priors not only improves the propagation dynamics but also guides the model toward chemically plausible solutions. Interestingly, while DRew outperforms classical GNNs, especially in the ECHO-Energy taks, performs comparatively worse than DE-GNN and transformer-based models. Traditional message-passing net-

Table 2: Test MAE (mean with standard deviation as subscript) performance across models on the ECHO-Energy and ECHO-Charge tasks. Lower values are better. Cells are color-coded by performance, with darker green indicating lower error (independently normalized per column).

Model	ECHO-Energy \downarrow	$\begin{array}{c} {\tt ECHO-Charge} \downarrow \\ (\times 10^{-3}) \end{array}$
A-DGN	$12.486 \pm \scriptstyle{1.621}$	6.543 ± 0.146
DRew	11.325 ± 2.394	9.086 ± 0.473
GCN	28.112 ± 1.239	$8.421_{\pm 0.512}$
GCNII	13.235 ± 2.630	8.829 ± 0.021
GIN	47.851 ± 10.154	10.784 ± 0.059
GINE	23.558 ± 7.568	$7.176_{\pm0.371}$
GPS	$\bf 5.257 \pm 0.842$	6.182 ± 0.219
GraphCON	14.295 ± 0.807	19.629 ± 0.195
PH-DGN	16.080 ± 1.123	7.915 ± 0.269
SWAN	12.629 ± 1.157	$\boldsymbol{6.109} \pm 0.103$

works, particularly GCN and GIN, again lag behind. These results again confirm the hypothesis that localized aggregation, without mechanisms to to improve propagation effectiveness or integrate distant node information, is inadequate for atomic-level charge modeling. The ECHO-Charge and ECHO-Energy benchmarks thus clearly illustrates the necessity for architectures that either incorporate global attention or embed non-dissipative dynamics to effectively tackle the intricate and non-local dependencies inherent in these molecular tasks.

We provide a visual depiction of charge prediction accuracy on a non-trivial molecule from the test set in Figure 3: the figure compares prediction errors between A-DGN (a) and GCN (b). Atoms are colored by logerror: green = low, orange = high. A-DGN shows consistently lower errors, especially at peripheral atoms, highlighting its ability to capture long-range interactions, while GCN accumulates errors at structurally distant or chemically sensitive sites. This comparison illustrates the benefit of non-dissipative architectures for long-range information propagation on complex graphs and chemical structures.

Lastly, we note that although energies and partial charges errors are small in absolute magnitude across baselines, even subtle deviations (as stated in Dupradeau et al.

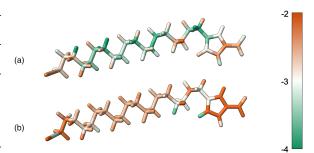


Figure 3: Visualization of prediction errors for the ECHO-Charge task using two different GNN architectures: A-DGN (a) and GCN (b). The coloring represents the logarithm of the absolute prediction error, $\log(|y_{\rm true}-y_{\rm pred}|)$. Lower values (in green) indicate better prediction accuracy, while higher values (in orange) correspond to larger errors.

(2010)), on the order of $10^{-4} e$ to $10^{-6} e$, can lead to significant downstream effects in molecular modeling and reproducibility of results. Therefore, predictive models must target this level of granularity to produce chemically meaningful outputs.

Additional Experiments and Analysis. We provide further results and a detailed evaluation of baseline performance in Appendix G. Specifically, we investigate how the radius of the explored neighborhood affects each method and how model performance varies across graphs with different diameters. Our results consistently indicate that deeper networks outperform shallower ones, confirming the long-range nature of these benchmarks. In Appendix J, we also visualize GPS's attention patterns, highlighting the importance of connecting distant nodes to facilitate information flow and improve performance. Together, these analyses reinforce the importance of long-range information propagation in the ECHO benchmark. Finally, Appendix I reports runtime measurements, illustrating a key trade-off between accuracy and efficiency: transformer-based models like GPS achieve strong performance but are computationally demanding, whereas models such as A-DGN provide a more balanced alternative.

5 CONCLUSION

In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation in GNNs. Our benchmark includes two main components, ECHO-Synth and a set chemically grounded real-world datasets (ECHO-Charge and ECHO-Energy), that target long-range communication in both synthetic and real-world settings. The synthetic tasks are designed to predict algorithmic and long-range-by-design graph properties, while the real-world tasks focus on predicting atomic charge distributions and molecular total energies, both of which critically depend on long-range quantum interactions. We provided a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range dependencies, and we established strong baselines for each task to provide a comprehensive reference point for future research. Our results highlight the limitations of current GNN architectures when faced with long-range propagation challenges, and we believe that ECHO will serve as a critical step toward building more robust, scalable, and generalizable GNNs capable of handling the full spectrum of graph-based learning tasks, posing a challenge to the community to push the boundaries of GNN design and evaluation. Not only does ECHO provide a solid benchmark, but it also leaves ample room for future architectures to improve and advance GNN architectures capable of more effective information propagation.

ETHICS STATEMENT

The research conducted in this paper conforms in every aspect with the ICLR Code of Ethics. Our study does not involve human subjects, sensitive personal data, or applications with foreseeable

harmful consequences. No ethical concerns are anticipated regarding data usage, methodology, or findings.

REPRODUCIBILITY STATEMENT

We provide all necessary details to reproduce our ECHO benchmark in Section 3 and Appendix C, and describe the setup of each experiment in Section 4 and Appendix F, thus ensuring sufficient information to replicate our results. We openly release data at https://huggingface.co/datasets/gmander44/echo/tree/main (where the username is randomly generated to preserve anonymity in the double-blind review), and the code at https://anonymous.4open.science/r/ECHO-benchmarks.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In *International Conference on Machine Learning*, pp. 21–29. PMLR, 2019.

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implications. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=i80OPhOCVH2.

Nathan Argaman and Guy Makov. Density functional theory: An introduction. *American Journal of Physics*, 68(1):69–79, 2000.

Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning. *arXiv* preprint arXiv:2502.10818, 2025.

Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael M. Bronstein. Bundle neural network for message diffusion on graphs. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL https://openreview.net/forum?id=sc19307PLG.

Jacob Bamberger, Benjamin Gutteridge, Scott le Roux, Michael M. Bronstein, and Xiaowen Dong. On measuring long-range interactions in graph neural networks. In *Forty-second International Conference on Machine Learning*, 2025b. URL https://openreview.net/forum?id=2fBcAOi81O.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 119–130, 2024.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=r1ZdKJ-0W.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. *arXiv* preprint arXiv:1312.6203, 2014.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. *arXiv preprint* arXiv:2006.13318, 2020.

- Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and graph transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 3408–3430. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/cai23b.html.
- Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph Convolutional Networks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1725–1735. PMLR, 13–18 Jul 2020.
- Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph transformer. In Sharvaree Vadgama, Erik Bekkers, Alison Pouplin, Sekou-Oumar Kaba, Robin Walters, Hannah Lawrence, Tegan Emerson, Henry Kvinge, Jakub Tomczak, and Stephanie Jegelka (eds.), Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), volume 251 of Proceedings of Machine Learning Research, pp. 20–34. PMLR, 29 Jul 2024. URL https://proceedings.mlr.press/v251/choi24a.html.
- Connor W. Coley, Regina Barzilay, William H. Green, Tommi S. Jaakkola, and Klavs F. Jensen. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. *Journal of Chemical Information and Modeling*, 57(8):1757–1772, August 2017. ISSN 1549-9596. doi: 10.1021/acs.jcim.6b00601.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition, 2009. ISBN 0262033844.
- Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2022.
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.
- Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Velickovic. ETA Prediction with Graph Neural Networks in Google Maps. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, CIKM '21, pp. 3767–3776. Association for Computing Machinery, 2021. ISBN 9781450384469. doi: 10.1145/3459637.3481916.
- Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael Bronstein. On over-squashing in message passing neural networks: the impact of width, depth, and topology. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- Edsger W Dijkstra. A note on two problems in connexion with graphs. In *Edsger Wybe Dijkstra: his life, work, and legacy*, pp. 287–290. 2022.
- Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for graph representation learning. In *Forty-first International Conference on Machine Learning*, 2024.
- François-Yves Dupradeau, Adrien Pigache, Thomas Zaffran, Corentin Savineau, Rodolphe Lelong, Nicolas Grivel, Dimitri Lelong, Wilfried Rosanski, and Piotr Cieplak. The r.e.d. tools: advances in resp and esp charge derivation and force field library building. *Phys. Chem. Chem. Phys.*, 12:7821–7839, 2010. doi: 10.1039/C0CP00111B. URL http://dx.doi.org/10.1039/C0CP00111B.
- David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

- Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
 and Dominique Beaini. Long Range Graph Benchmark. In *Advances in Neural Information Processing Systems*, volume 35, pp. 22326–22340. Curran Associates, Inc., 2022.
 - Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. *J. Mach. Learn. Res.*, 24(1), January 2023. ISSN 1532-4435.
 - Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schönlieb. Graph Adaptive Autoregressive Moving Average Models. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=UFlyLkvyAE.
 - Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmoothing, oversquashing, and underreaching. *arXiv preprint arXiv:2312.16560*, 2024.
 - Simon Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral graph neural networks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 49022–49080. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/580c4ec4738ff61d5862a122cdf139b6-Paper-Conference.pdf.
 - Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message passing for Quantum chemistry. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *ICML'17*, pp. 1263–1272. JMLR.org, 2017.
 - Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++: Enhancing topological message passing. *arXiv preprint arXiv:2306.03561*, 2023.
 - Daniel Glickman and Eran Yahav. Diffusing graph attention. arXiv preprint arXiv:2303.00613, 2023.
 - M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In *Proceedings*. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 729–734. IEEE, 2005.
 - Alessio Gravina and Davide Bacciu. Deep Learning for Dynamic Graphs: Models and Benchmarks. *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–14, 2024. doi: 10.1109/TNNLS.2024.3379735.
 - Alessio Gravina, Jennifer L. Wilson, Davide Bacciu, Kevin J. Grimes, and Corrado Priami. Controlling astrocyte-mediated synaptic pruning signals for schizophrenia drug repurposing with deep graph networks. *PLOS Computational Biology*, 18(5):1–19, 05 2022. doi: 10.1371/journal.pcbi. 1009531.
 - Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable architecture for Deep Graph Networks. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=J3Y7cgZOOS.
 - Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schönlieb. On oversquashing in graph neural networks through the lens of dynamical systems. In *The 39th Annual AAAI Conference on Artificial Intelligence*, 2025.
 - Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. *J. Chem. Phys.*, 132:154104, 2010. doi: 10.1063/1.3382344.
 - M.Michael Gromiha and S. Selvaraj. Importance of long-range interactions in protein folding. *Biophysical Chemistry*, 77(1):49–68, 1999. ISSN 0301-4622. doi: https://doi.org/10.1016/S0301-4622(99)00010-1.

- Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dynamically rewired message passing with delay. In *International Conference on Machine Learning*, pp. 12252–12267. PMLR, 2023.
- Thomas A. Halgren. Merck molecular force field. i. basis, form, scope, parameterization, and performance of mmff94. *Journal of Computational Chemistry*, 17(5-6):490–519, 1996. doi: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6(490::AID-JCC1)3.0.CO;2-P. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-987X%28199604%2917%3A5/6%3C490%3A%3AAID-JCC1%3E3.0.CO%3B2-P.
- William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pp. 1025–1035. Curran Associates Inc., 2017. ISBN 9781510860964.
- Ali Hariri and Pierre Vandergheynst. Graph learning for capturing long-range dependencies in protein structures. In David A Knowles and Sara Mostafavi (eds.), *Proceedings of the 19th Machine Learning in Computational Biology meeting*, volume 261 of *Proceedings of Machine Learning Research*, pp. 117–128. PMLR, 05–06 Sep 2024. URL https://proceedings.mlr.press/v261/hariri24a.html.
- Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann Lecun, and Xavier Bresson. A generalization of ViT/MLP-mixer to graphs. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 12724–12745. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/he23a.html.
- Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu. Port-Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=03EkqSCKuO.
- Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 22118–22133. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.
- Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for Pre-training Graph Neural Networks. In *International Conference on Learning Representations*, 2020b. URL https://openreview.net/forum?id=HJlWWJSFDH.
- Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. In *International Conference on Learning Representations*, 2020c. URL https://openreview.net/forum?id=HJlWWJSFDH.
- Bharti Khemani, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions. *Journal of Big Data*, 11(1):18, Jan 2024. ISSN 2196-1115. doi: 10.1186/s40537-023-00876-4.
- Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
- Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.
- Tsz Wai Ko, Jonas A Finkler, Stefan Goedecker, and Jörg Behler. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. *Nature communications*, 12(1):398, 2021.

- Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. *Science*, 382(6677): 1416–1421, 2023. doi: 10.1126/science.adi2336. URL https://www.science.org/doi/abs/10.1126/science.adi2336.
- Guixiang Ma, Vy A. Vo, Theodore L. Willke, and Nesreen K. Ahmed. Augmenting recurrent graph neural networks with a cache. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '23, pp. 1608–1619, New York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599260. URL https://doi.org/10.1145/3580305.3599260.
- Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 23321–23337. PMLR, 23–29 Jul 2023b.
- Gaspard Michel, Giannis Nikolentzos, Johannes F. Lutzeyer, and Michalis Vazirgiannis. Path neural networks: Expressive and accurate graph neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 24737–24755. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/michel23a.html.
- Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. *IEEE Transactions on Neural Networks*, 20(3):498–511, 2009.
- Frank Neese. Software update: the orca program system, version 5.0. WIREs Comput. Mol. Sci., 12 (1):e1606, 2022. doi: 10.1002/wcms.1606.
- Frank Neese. The shark integral generation and digestion system. *J. Comput. Chem.*, 44:381–396, 2023. doi: 10.1002/jcc.26942.
- Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The ORCA quantum chemistry program package. *The Journal of Chemical Physics*, 152(22):224108, June 2020. ISSN 1089-7690. doi: 10.1063/5.0004608.
- Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution graph transformers and wavelet positional encoding for learning long-range and hierarchical structures. *The Journal of Chemical Physics*, 159(3), July 2023. ISSN 1089-7690. doi: 10.1063/5.0152833. URL http://dx.doi.org/10.1063/5.0152833.
- Noel M. O'Boyle, Chris Morley, and Geoffrey R. Hutchison. Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit. *Chemistry Central Journal*, 2(1):5, March 2008. ISSN 1752-153X. doi: 10.1186/1752-153X-2-5.
- Noel M. O'Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and Geoffrey R. Hutchison. Open Babel: An open chemical toolbox. *Journal of Cheminformatics*, 3(1):33, October 2011. ISSN 1758-2946. doi: 10.1186/1758-2946-3-33.
- Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power for Node Classification. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=S1ldO2EFPr.
- Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. *Advances in Neural Information Processing Systems*, 35, 2022.
- T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein. Graph-coupled oscillator networks. In *International Conference on Machine Learning*, pp. 18888–18909. PMLR, 2022.

- T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmoothing in Graph Neural Networks. arXiv preprint arXiv:2303.10993, 2023.
 - Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.
 - Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of Graph Neural Network Evaluation. *Relational Representation Learning Workshop, NeurIPS* 2018, 2018.
 - Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges, 2023.
 - Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*, pp. 1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/214. URL https://doi.org/10.24963/ijcai.2021/214.
 - Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Exphormer: Sparse transformers for graphs. In *International Conference on Machine Learning*, pp. 31613–31632. PMLR, 2023.
 - Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning algorithms. In *Proceedings of the 26th International Conference on Neural Information Processing Systems Volume 2*, NIPS'12, pp. 2951–2959, Red Hook, NY, USA, 2012. Curran Associates Inc.
 - Alessandro Sperduti. Encoding labeled graphs by labeling raam. *Advances in Neural Information Processing Systems*, 6, 1993.
 - Teague Sterling and John J. Irwin. Zinc 15 ligand discovery for everyone. *Journal of Chemical Information and Modeling*, 55(11):2324–2337, Nov 2015. ISSN 1549-9596. doi: 10.1021/acs.jcim.5b00559. URL https://doi.org/10.1021/acs.jcim.5b00559.
 - Attila Szabo and Neil S. Ostlund. *Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory*. Dover Publications, 1989. ISBN 978-0-486-69186-2.
 - Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing the long-range graph benchmark. In *The Second Learning on Graphs Conference*, 2023. URL https://openreview.net/forum?id=rIUjwxc5lj.
 - Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=7UmjRGzp-A.
 - Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound retrieval and classification. In *Sixth International Conference on Data Mining (ICDM'06)*, pp. 678–689, 2006. doi: 10.1109/ICDM.2006.39.
 - Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence modeling with selective state spaces. *arXiv preprint arXiv:2402.00789*, 2024.
 - David Weininger. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. *Journal of Chemical Information and Computer Sciences*, 28(1):31–36, February 1988. ISSN 0095-2338. doi: 10.1021/ci00057a005.
 - Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learning. *arXiv preprint arXiv:1703.00564*, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural Networks? In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

- Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett, Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, Maria Paula Magarinos, Nicolas Bosc, Ricardo Arcila, Tevfik Kizilören, Anna Gaulton, A Patrícia Bento, Melissa F Adasme, Peter Monecke, Gregory A Landrum, and Andrew R Leach. The ChEMBL Database in 2023: A drug discovery platform spanning multiple bioactivity data types and time periods. *Nucleic Acids Research*, 52(D1):D1180–D1192, January 2024. ISSN 0305-1048. doi: 10.1093/nar/gkad1004.
- Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, et al. A deep potential model with long-range electrostatic interactions. *The Journal of Chemical Physics*, 156(12), 2022.
- Dongzhuoran Zhou, Evgeny Kharlamov, and Egor V. Kostylev. GLora: A benchmark to evaluate the ability to learn long-range dependencies in graphs. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=2jf5x5XoYk.

A LLMs Usage

Large Language Models (LLMs) were used as general-purpose assistive tools to improve the writing quality of this paper. Specifically, we used LLMs to help with grammar correction, rephrasing for clarity, and suggesting some improvements to the overall structure of the text. All LLM-generated text was carefully reviewed and edited by the authors to ensure that it accurately reflects the authors' intentions and scientific content. No LLMs were used to generate scientific content, including but not limited to research direction, hypothesis formulation, experimental design, data analysis, or interpretation of results.

B DISCUSSION ON LRGB

One of the most widely used benchmark for assessing the lon-range propagation capabilities of GNNs is the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). The benchmark proposes five tasks: two molecular property prediction tasks (Peptides-func and Peptides-struct), one molecular bond prediction task (PCQM-Contact), and two computer vision tasks (PascalVOC-SP and COCOSP). However, despite initial rapid improvements, performance on LRGB has plateaued. Since its introduction in 2022, there has been a noticeable deceleration in progress. Considering a set of 30 models on the Peptides-func task, we observe a performance improvement by 6.5% in the first year, but only by 1.3% in the second, and no significant gain in the third year (Gravina et al., 2025; Heilig et al., 2025; Errica et al., 2024; Gutteridge et al., 2023; Dwivedi et al., 2022; Tönshoff et al., 2023; Giusti et al., 2023; Ma et al., 2023a; Shirzad et al., 2023; Behrouz & Hashemi, 2024; Wang et al., 2024; Eliasof et al., 2025; Ding et al., 2024; Ma et al., 2023; Michel et al., 2023; Glickman & Yahav, 2023; He et al., 2023; Rampášek et al., 2022; Ngo et al., 2023; Michel et al., 2023; Geisler et al., 2024; Choi et al., 2024). A similar trend exists for the other benchmark tasks as well.

Furthermore, a recent analysis on LRGB (Bamberger et al., 2025b), as well as the benchmark's sensitivity to hyperparameter tuning (Tönshoff et al., 2023), raises additional concerns about the long-range nature of its tasks. The analysis reveals that only a subset of tasks genuinely require longer interactions, while the peptides tasks are effectively local. This highlights the need for more focused benchmarks that explicitly and systematically test long-range propagation capabilities of GNNs.

C CHEMICAL SIMULATION TECHNICAL INFORMATION

This appendix provides detailed information on the computational pipeline used to derive partial atomic charges in the ECHO-Charge dataset and total energies in ECHO-Energy. The pipeline comprises three primary stages: (i) 3D structure generation from SMILES, (ii) quantum chemical computation of partial charges, and (iii) geometry optimization.

3D Structure Generation from SMILES. Since subsequent charge optimization steps require pre-optimized 3D coordinates, all structures were geometry-optimized prior to simulation using Open Babel (O'Boyle et al., 2011) and its Python interface, Pybel (O'Boyle et al., 2008) Initial molecular geometries were generated from SMILES strings using the General AMBER Force Field (GAFF) (Grimme et al., 2010). GAFF was chosen over alternatives such as MMFF94 (Halgren, 1996) due to its favorable trade-off between accuracy and computational cost, and its strong performance in predicting both energies and geometries. The optimization procedure involved 100 steps of coarse minimization followed by 500 steps of local refinement for each molecule. The SMILES strings were converted into 3D conformers, which were then minimized to yield low-energy structures. These structures were exported in SDF format for subsequent compatibility. The average time required for 3D structure generation per molecule—considering only those satisfying the ECHO-Charge and ECHO-Energy dataset diameter criteria—was $\bf 562 \pm 124$ ms.

Quantum Chemical Computations with ORCA. To compute partial atomic charges and total energies, we employed the ORCA quantum chemistry software suite (version 6.0.1) (Neese, 2022; 2023; Neese et al., 2020). All calculations were performed using the B3LYP a hybrid density functional (DFT) method that mixes Hartree–Fock exchange with Becke's exchange and Lee–Yang–Parr correlation functionals to balance accuracy and efficiency in quantum chemical calculations (Argaman & Makov, 2000).

Table 3: Mean time required for computation of partial charges of a single molecule with different configuration of the ORCA tool. Variance is computed over 30 random molecules from the ECHO-Charge/ECHO-Energy dataset. *Denotes the chosen basis set for DFT computation.

Method	Setting	Times (s)
HF-3c	LooseSCF	$10.4_{\pm 1.3}$
HF-3c	TightSCF	$28.1_{\pm 4.3}$
B3LYP def2-TZVP*(DFT)	LooseSCF	$146.5_{\pm 10.1}$
$\texttt{B3LYP} \ \texttt{def2-TZVP}^{\star} \ (DFT)$	TightSCF	$634.5_{\pm 21.3}$

We provide a summary of required times for computation with both full DFT computations and HF methods in Table 3. Under our configuration, the average runtime for a single quantum chemical calculation was 634.5 ± 21.3 seconds per molecule requiring ≈ 2 months of computational time on our hardware configuration. Simulation were run exploiting full thread parallelism provided by ORCA.

Self-Consistent Field (SCF) Convergence Settings. To further improve the accuracy of the simulations, we employed the TightSCF setting in ORCA, which enforces tighter convergence thresholds in the self-consistent field (SCF) procedure, thereby reducing numerical errors in the electronic structure calculation.

Charge Extraction. Atomic partial charges were extracted using the Löwdin Szabo & Ostlund (1989) population analysis method. These charges were used as supervision signals in our dataset generation pipeline.

D HARDWARE RESOURCES

All quantum chemistry simulations were conducted on a dual-socket Intel Xeon 6780E machine with a total of 288 physical cores (144 cores per socket, 1 thread per core). Each socket is equipped with 108MiB of L3 cache, for a combined 216MiB of shared L3 cache, along with 288MiB of L2 and 27MiB of L1 (data + instruction) cache across the system. The CPUs support AVX2 and FMA instruction sets, enabling efficient linear algebra operations, which are critical for electronic structure methods.

The machine is configured with two NUMA nodes, each associated with one of the sockets. Each NUMA node has over 500GiB of local RAM for a total of approximately 1TiB of RAM. The high memory capacity and bandwidth are critical for quantum chemistry workloads, particularly those using density functional theory (DFT) or correlated wavefunction methods, which require extensive memory for large basis sets and integral evaluations.

The large number of physical cores allowed us to parallelize over both molecular batches and internal basis function evaluations, providing efficient scaling for density functional theory (DFT) and semi-empirical calculations.

For model training and inference, we used a separate compute node equipped with 8 NVIDIA H100 GPUs.

E ADDITIONAL DATASET INFORMATION

We report in Table 4 the detailed statistics of the proposed datasets. In Table 5 we provide a summary of the input and target features used in the ECHO-Synth, ECHO-Charge, and ECHO-Energy datasets. Figures 4 and 5 report detailed statistics on the structural properties of the graphs in the datasets, including distributions of the number of nodes, number of edges, average node degree, and graph diameter. Additionally, Figures 6a and 6b illustrate the correlation between the number of nodes and the graph diameter, highlighting structural differences between real and synthetic data. These insights support the design choices for model evaluation across diverse graph regimes.

972 973 974

Table 4: Statistics of the proposed dataset.

976
977
978
979
980
981
982

984 985 986 987

983

988 989 990 991

992 993 994 995

996

997

998

1021

1022

1023 1024

1025

3000

2500

1500 1500

1000

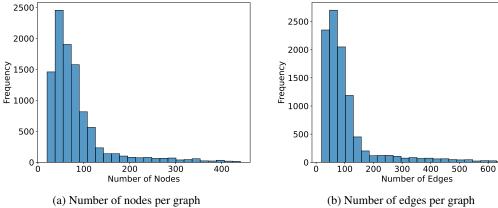
500

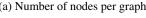
0

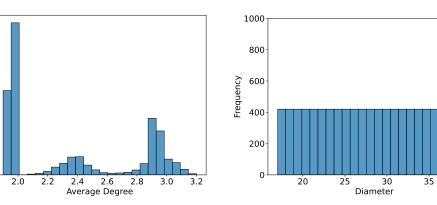
Dataset # Graphs Avg Nodes Avg Deg. Avg Edges Avg Diam # Node Feat # Edge Feat # Tasks ECHO-Synth 10,080 83.69 ± 66.24 $2.53_{\pm 1.19}$ $211.63 {\scriptstyle \pm 209.39}$ $28.50 {\scriptstyle \pm 6.92}$ None 2 3 line 1,680 $75.60_{\pm 27.32}$ $2.37_{\pm0.10}$ $90.10_{\pm 33.89}$ $28.50_{\pm 6.92}$ None ladder 1,680 $56.52_{\pm 13.82}^{-}$ $2.92_{\pm 0.02}^{-1}$ $82.54_{\pm 20.72}$ $28.50_{\pm 6.92}$ None 3 grid 1,680 $193.10_{\pm 93.10}$ $2.95 \!\pm\! 0.12$ $288.32 {\pm} 145.29$ $28.50 {\scriptstyle \pm 6.92}$ 2 None 3 2 1,680 $60.42_{\pm 17.17}$ $1.96_{\pm0.01}$ $59.42 {\scriptstyle \pm 17.17}$ $28.50 {\scriptstyle \pm 6.92}$ None caterpillar 1,680 $34.71_{\pm 7.96}$ $1.94_{\pm 0.02}$ $33.71_{\pm 7.96}$ $28.50_{\pm 6.92}$ 2 None 2 lobster 1,680 $81.79_{\pm 25.46}$ $1.97_{\pm 0.01}$ $80.79_{\pm 25.46}$ $28.50 {\scriptstyle \pm 6.92}$ None 170,367 2 2 ECHO-Charge $72.49_{\pm 12.48}$ $2.09_{\pm0.04}$ $151.32_{\pm 25.16}$ $23.54_{\pm 2.54}$ 2 ECHO-Energy 196,528 $73.73_{\pm 13.22}$ $2.09_{\pm 0.04}$ $153.84_{\pm 26.58}$ $23.61_{\pm 2.59}$

Table 5: Summary of dataset properties.

Dataset	Node Features	Edge Features	Target
ECHO-Synth	Random scalar, source indicator for sssp	None	diam, sssp, ecc
ECHO-Charge	Atomic number, distance from center of mass	Bond type, bond length	Partial charges
ECHO-Energy	Atomic number, distance from center of mass	Bond type, bond length	Total energy







(c) Average degree per graph

(d) Diameter per graph

Figure 4: Statistics of the ECHO-Synth dataset.

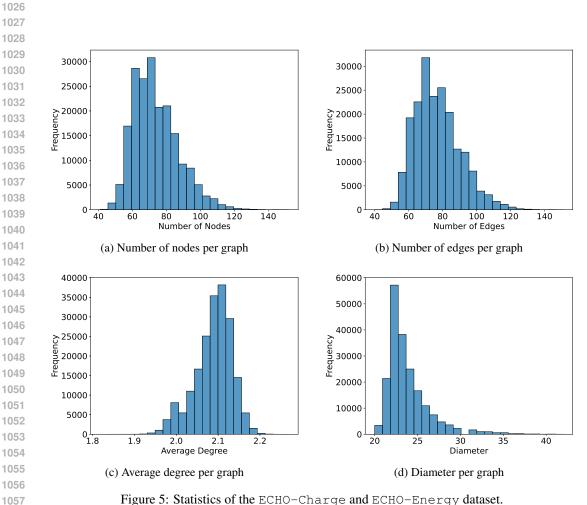


Figure 5: Statistics of the ECHO-Charge and ECHO-Energy dataset.

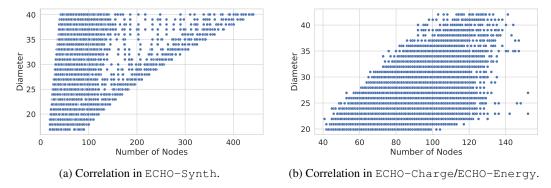


Figure 6: Correlation between number of nodes and graph diameter in ECHO-Synth and ECHO-Charge/ECHO-Energy.

F HYPERPARAMETER SELECTION

Tables 6 to 15 report the hyperparameter search space and the best values selected for each task (diam, ecc, sssp, ECHO-Charge, and ECHO-Energy) across the different GNN architectures we considered. For details on specific hyperparameters, we refer the reader to the original papers. Each table includes the name of the hyperparameter, its search range or categorical options, and the optimal value obtained for each task, as identified through hyperparameter tuning on the validation set.

Another strong evidence supporting the long-range nature of the ECHO benchmark, implicitly comes from our hyperparameter optimization process. Specifically, Bayesian Optimization consistently selected configurations with a large number of GNN layers. This suggests that, even without explicit guidance, the hyperparameter optimization procedure identifies deeper models as necessary to minimize validation error, further reinforcing the notion that the task demands long-range information propagation.

Table 6: Hyperparameters and their best values across tasks for A-DGN.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	$ \begin{bmatrix} 1 - 40 \\ [16 - 256] \\ [10^{-5}, 10^{-2}] \\ [10^{-8}, 10^{-3}] \end{bmatrix} $	27	28	40	34	16
Hidden dimension		68	65	45	130	216
Learning rate		0.00101	0.00229	0.00473	0.00072	0.0085223
Weight decay		0.00098	0.00000	0.00003	0.00001	0.00044851
$\epsilon \\ \gamma \\ \text{Graph convolution}$	[0.001, 0.5]	0.19254	0.32934	0.10560	0.25667	0.4215
	[0.001, 0.5]	0.41827	0.46803	0.21252	0.19499	0.15304
	NaiveAggr, GCN	NaiveAggr	NaiveAggr	NaiveAggr	GCN	NaiveAggr

Table 7: Hyperparameters and their best values across tasks for DRew.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 - 4]	4	4	4	4	3
k-hop	[1 - 10]	10	10	10	10	10
Hidden dimension	[16 - 256]	249	78	119	232	241
Learning rate	$[10^{-5}, 10^{-2}]$	0.00037	0.00797	0.00126	0.00036	0.00023597
Weight decay	$[10^{-8}, 10^{-3}]$	0.00068	0.00011	0.00003	0.0	0.00001099
Employ delay	True, False	False	False	False	True	True

Table 8: Hyperparameters and their best values across tasks for GCNII.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[10 - 40]	32	39	30	37	21
Hidden dimension	[16 - 256]	81	40	64	33	103
Learning rate	$[10^{-5}, 10^{-2}]$	0.00260	0.00032	0.00005	0.00345	0.0047014
Weight decay	$[10^{-8}, 10^{-3}]$	0.00000	0.00009	0.00009	0.00002	0.000035227
α	[0.0, 0.9]	0.70544	0.07902	0.04742	0.17158	0.10116

Table 9: Hyperparameters and their best values across tasks for GCN.

1136
1137
1138
1139
1140

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	$ \begin{bmatrix} 1 - 40 \\ 16 - 256 \\ 10^{-5}, 10^{-2} \\ 10^{-8}, 10^{-3} \end{bmatrix} $	26	40	26	8	9
Hidden dimension		48	42	40	109	160
Learning rate		0.00007	0.00004	0.00023	0.00079	0.00052181
Weight decay		0.00007	0.00009	0.00002	0.00002	0.000043613

Table 10: Hyperparameters and their best values across tasks for GIN.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[10 - 40]	29	34	25	11	19
Hidden dimension	[16 - 256]	58	170	78	197	90
Learning rate	$[10^{-5}, 10^{-2}]$	0.00002	0.00003	0.00006	0.00002	0.000046134
Weight decay	$[10^{-8}, 10^{-3}]$	0.00003	0.00036	0.00091	0.00069	0.00046213

Table 11: Hyperparameters and their best values across tasks for GINE.

1	1	56
1	1	57
1	1	58

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 - 40]	_	_	_	22	31
Hidden dimension	[16 - 256]	-	_	_	85	33
Learning rate	$[10^{-5}, 10^{-2}]$	_	_	_	0.00014	0.0005028
Weight decay	$[10^{-8}, 10^{-3}]$	_	_	_	0.00004	0.00033338

Table 12: Hyperparameters and their best values across tasks for GPS.

1	1	7	0
1	1	7	1
1	1	7	2

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 - 40]	17	26	17	36	26
Hidden dimension	[16 - 256]	40	56	162	216	192
Learning rate	$[10^{-5}, 10^{-2}]$	0.00004	0.00031	0.00034	0.00005	0.000024067
Weight decay	$[10^{-8}, 10^{-3}]$	0.00015	0.00029	0.00007	0.00005	0.00038179

Table 13: Hyperparameters and their best values across tasks for GraphCON.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 - 40]	37	25	19	35	32
Hidden dimension	[16 - 256]	63	72	151	144	96
Learning rate	$[10^{-5}, 10^{-2}]$	0.00088	0.00013	0.00007	0.00292	0.00032
Weight decay	$[10^{-8}, 10^{-3}]$	0.00038	0.00001	0.00001	0.00026	0.00059
ϵ	[0.001, 1.0]	0.57880	0.95470	0.98433	0.78163	0.82108

Search interval

[1 - 40]

[16 - 256]

 $[10^{-5}, 10^{-2}]$

 $[10^{-8}, 10^{-3}]$

[0.001, 1.0]

[0.01, 1.0]

[0.01, 1.0]

True, False

MLP4ReLU

DGNReLU

MLP4Sin, DGNtanh

p,q,pq

param param+

NaiveAggr, GCN

NaiveAggr, GCN

1190 1191 1192

1193 1194

1195

1188 1189

Table 14: Hyperparameters and their best values across tasks PH-DGN.

sssp

0.00178

0.00082

0.16491

0.90892

0.92918

GCN

GCN

False

DGNReLU

MLP4Sin

37

66

есс

21

120

0.00037

0.00081

0.36140

0.63323

0.99675

GCN

GCN

True

param

MLP4Sin

pq

diam

0.00150

0.00054

0.34977

0.47190

0.70474

GCN

GCN

False

param+

MLP4Sin

pq

28

ECHO-Energy

10

166

0.0038211

0.40992

0.15544

0.11011

false

param+

MLP4Sin

NaiveAggr

NaiveAggr

0.00044422

ECHO-Charge

14

103

0.00033

0.00063

0.68993

0.87607

0.91251

NaiveAggr

GCN

True

param+

MLP4Sin

pq

1	1	96
1	1	97
1	1	98

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Hidden dimension Learning rate Weight decay
$\begin{array}{l} \epsilon \\ \alpha \\ \beta \\ p \ {\rm conv \ mode} \\ q \ {\rm conv \ mode} \\ {\rm Doubled \ dimension} \\ {\rm Final \ state} \end{array}$
Dampening mode

Hyperparameter

Number of layers

External mode

1210 1211 1212 1213

1214 1215

1216 1217 1218 1219 1220

1221 1222 1223 1224

1225

1226 1227 1228 1229 1230 1231

**	G 11.					
Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1-40]	28	40	32	38	25
Hidden dimension	[16 - 256]	167	97	195	163	217
Learning rate	$[10^{-5}, 10^{-2}]$	0.00040	0.00107	0.00086	0.00063	0.00012157
Weight decay	$[10^{-8}, 10^{-3}]$	0.00057	0.00011	0.00010	0.00016	0.00028686
ϵ	[0.001, 1.0]	0.54847	0.45462	0.07451	0.38229	0.67265
γ	[0.001, 0.5]	0.41480	0.28342	0.45928	0.07794	0.3156
β	[-1.0, 1.0]	0.34233	-0.20976	0.37682	-0.36245	-0.67256
	AntiSymNaiveAggr (ASNA)					
Graph convolution	BoundedGCNConv (BGC)	ASNA	BNA	BNA	ASNA	BNA
	BoundedNaiveAggr (BNA)					
Attention	True, False	True	False	False	False	True

Table 15: Hyperparameters and their best values across tasks for SWAN.

G ADDITIONAL EXPERIMENTAL ANALYSIS

In this section, we investigate how the radius of the explored neighborhood influences the performance of each method, as well as how the models perform across graphs with varying diameters.

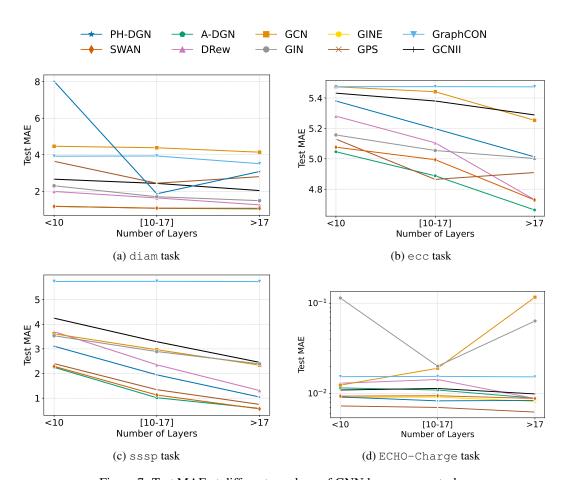


Figure 7: Test MAE at different numbers of GNN layers across tasks.

Layer-wise Performance Analysis. In Figure 7, we evaluate the impact of the radius of the explored neighborhood (i.e., the number of GNN layers) on test MAE across all tasks. We divide the results into three regimes: shallow (< 10 layers), medium (10–17 layers), and deep (> 17 layers). Therefore, in the shallow regime, GNNs perform short-range propagation; in the medium regime, they capture medium-range dependencies; and in the deep regime, they are able to model long-range interactions. A consistent pattern emerges across most tasks: deeper networks, especially those tailored for long-range propagation, tend to perform better, thus confirming the long-range nature of the proposed benchmarks. Specifically:

On the diam task (Figure 7a), performance trends are model-dependent. Long-range models such as DRew and A-DGN remain stable or slightly improve, others like PH-DGN exhibit a large performance improvement moving from shallow to medium depth regime. This task, being graph-level and heavily reliant on global information by design, clearly benefits from increased depth and non-dissipative architectures which are able to perform many message-passing steps across multiple hops.

- For the ecc task (Figure 7b), we observe a consistent performance gain with increasing depth across nearly all models. Again, long-range architectures like A-DGN and SWAN, or the multi-hop GNN, DRew, show strong improvements in the deep regime, outperforming the others. This aligns with the intuition that eccentricity, being a node-level but globally-informed property, benefits from many message-passing layers to capture distant context, highlighting the strength of long-range architectures.
- In the case of sssp (Figure 7c) we again observe strong depth-related improvements, with the exception of GraphCON. Notably, SWAN, GPS, and DRew achieve large gains in the deep regime. Traditional models such as GCN and GIN or GraphCON exhibit plateau or degradation, revealing limited depth scalability.
- Finally, on the ECHO-Charge task (Figure 7d), the behavior differs. This task involves precise regression of atomic partial charges, where small errors matter. Most models show stable MAE across depths, except for GCN and GIN, which degrade significantly in the deep regime. Importantly, models with explicit long-range message-passing capabilities (A-DGN, SWAN, PH-DGN, GPS, and DRew) retain high accuracy even at > 17 layers. This suggests their robustness in fine-grained, long-range molecular prediction tasks. We do not include ECHO-Energy in this ablation, as it exhibited very similar behavior to ECHO-Charge.

Overall, the observed patterns reveal a clear correlation between the number of message-passing layers and performance: models require many layers to perform well, confirming the long-range nature of these benchmarks. Remarkably, architectures explicitly designed to support many message-passing steps consistently outperform others, further confirming the long-range nature of our proposed benchmarks.

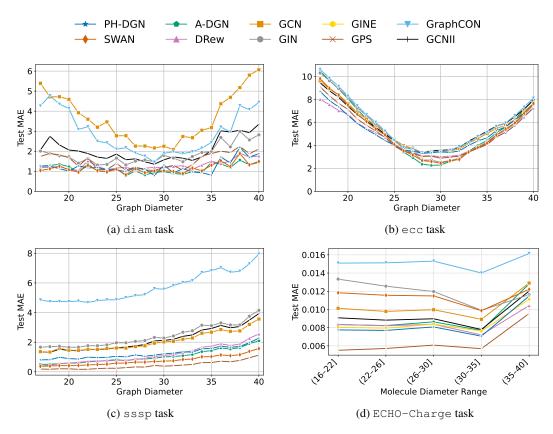


Figure 8: Test MAE at different graph diameters across synthetic and molecular tasks.

Performance Across Graph Diameters. Figure 8 reports test MAE across varying graph diameters for all tasks. This analysis highlights how different models handle increasingly long-range dependencies.

For the diam task (Figure 8a), most models show robust performance for small to moderate diameters, with a slight increase in MAE for very large diameters. Notably, GCN, GraphCON and GCNII architectures exhibits substantial degradation as diameter increases, suggesting poor scalability in capturing global structure on many message-passing steps. Again, non-dissipative architectures (i.e., A-DGN, PH-DGN, and SWAN), DRew and GPS remain consistently accurate across all graph diameters, demonstrating their capacity to generalize across different graph scales.

The ecc task (Figure 8b) reveals a characteristic U-shaped curve. Performance improves as diameter increases from small to moderate values, and deteriorates again for very large graphs. Here, all models follow a similar trend, although A-DGN and GPS tend to dominate in the optimal range.

In the sssp task (Figure 8c), increasing graph diameter consistently correlates with rising MAE. Model performance divides into three groups, with GraphCON exhibiting the worst performance both in terms of overall MAE and degradation with increasing diameter. GCN, GCNII, and GIN show similar values across the task and similar degradation trends. Finally, non-dissipative models, GPS Transformer and DRew, once again demonstrate remarkable and consistent performance even on difficult graphs. This trend reinforces the long-range nature of the task, where deeper or more expressive models are required to maintain strong performance.

On the molecular ECHO-Charge task (Figure 8d), test MAE consistent across all ranges, but subtle trends emerge. Models like DRew and GPS show stability and even slight improvements for larger molecular graphs, while GCN and GIN degrade more noticeably, confirming their limited capacity to manage increasing molecular complexity. Interestingly, GINE performs substantially better than its counterpart GIN, suggesting that edge-level attributes play a crucial role in the ECHO-Charge regression task. Similarly to the previous ablation study, we do not include ECHO-Energy, as it exhibited very similar behavior to ECHO-Charge. Additionally, we note that all models exhibit a general performance drop when processing molecular graphs with a diameter greater than 35. We attribute this behavior to the original ChEMBL dataset's distribution, which includes fewer graphs with diameters in the 35–40 range. This also impacts our ECHO-Charge dataset as illustrated in Figure 5. As a result, models have limited opportunity to learn effective representations for such large graphs, which likely contributes to the observed degradation.

Overall, this complementary diameter-wise analysis underlines the necessity for architectures capable of handling variable and large receptive fields. It also highlights that while shallow models may perform competitively on small graphs, their limitations become apparent in regimes requiring long-range reasoning.

H EXTENDED RESULTS

In Table 16 we report additional result on ECHO-Synth benchmark. In particular we report MAE, MSE and loss (defined as $\log_{10}(\mathrm{MSE})$) obtained on the test set. Similarly, we report the same metrics for ECHO-Charge and ECHO-Energy in Table 17 and Table 18, respectively.

Table 16: Test performance (mean \pm std) of different models across ECHO-Synth tasks. Lower is better. In bold the best model.

Model	Test Loss ↓	Test MSE ↓	Test MAE ↓				
diam							
A-DGN	$-2.531_{\pm 0.010}$	$4.818_{\pm0.108}$	$1.151_{\pm 0.038}$				
DRew	$-2.635 {\scriptstyle \pm 0.020}$	$3.756 {\scriptstyle \pm 0.170}$	$1.243_{\pm 0.047}$				
GCN	$-1.848_{\pm0.051}$	$22.872_{\pm 2.766}$	$3.832_{\pm0.262}$				
GCNII	$-2.227_{\pm 0.026}$	$9.696_{\pm 0.568}$	$2.005_{\pm 0.093}$				
GIN	$-2.356_{\pm0.066}$	$7.238_{\pm 1.153}$	$1.630_{\pm 0.161}$				
GPS	$-2.192_{\pm 0.025}$	$10.454_{\pm0.610}$	$2.160_{\pm 0.098}$				
GraphCON	$-1.995_{\pm 0.037}$	$16.427_{\pm 1.419}$	$2.969_{\pm 0.189}$				
PH-DGN	$-2.416_{\pm0.181}$	$6.699_{\pm 2.728}$	$1.627_{\pm 0.398}$				
SWAN	$-2.517_{\pm 0.023}$	$4.950_{\pm 0.265}$	$1.121 {\scriptstyle \pm 0.070}$				
	6	ecc					
A-DGN	$-1.649_{\pm 0.006}$	$35.967_{\pm 0.492}$	$4.981_{\pm 0.037}$				
DRew	$-1.696 _{\pm 0.002}$	$32.247 _{\pm 0.148}$	$4.651_{\pm 0.020}$				
GCN	$-1.606_{\pm 0.005}$	$39.706_{\pm0.460}$	$5.233_{\pm 0.034}$				
GCNII	$-1.603_{\pm 0.006}$	$39.911_{\pm 0.518}$	$5.241_{\pm 0.030}$				
GIN	$-1.668_{\pm0.015}$	$34.454_{\pm 1.201}$	$4.869_{\pm 0.092}$				
GPS	$-1.682_{\pm0.003}$	$33.346_{\pm0.226}$	$4.758_{\pm0.021}$				
GraphCON	$-1.566_{\pm0.001}$	$43.505_{\pm0.017}$	$5.474_{\pm 0.001}$				
PH-DGN	$-1.630_{\pm 0.017}$	$37.510_{\pm 1.416}$	$5.068_{\pm0.126}$				
SWAN	$-1.671_{\pm 0.007}$	$34.208_{\pm 0.578}$	$4.840_{\pm 0.045}$				
	S	ssp					
A-DGN	$-2.566_{\pm 0.089}$	$4.425_{\pm 0.879}$	$1.176_{\pm 0.140}$				
DRew	$-2.386_{\pm0.001}$	$6.589_{\pm 0.015}$	$1.279_{\pm 0.011}$				
GCN	$-2.217_{\pm 0.033}$	$9.743_{\pm 0.757}$	$2.102_{\pm 0.094}$				
GCNII	$-2.213_{\pm 0.177}$	$10.369_{\pm 3.575}$	$2.128_{\pm 0.429}$				
GIN	$-2.138_{\pm0.090}$	$11.868_{\pm 2.689}$	$2.234_{\pm0.271}$				
GPS	$-3.115 {\scriptstyle \pm 0.040}$	$\bf 1.255_{\pm 0.113}$	$0.472 \scriptstyle{\pm 0.050}$				
GraphCON	$-1.488_{\pm0.000}$	$52.104_{\pm0.016}$	$5.734_{\pm0.011}$				
PH-DGN	$-2.616_{\pm0.317}$	$4.656_{\pm 3.013}$	$1.323_{\pm 0.485}$				
SWAN	$-2.782_{\pm0.205}$	$2.905_{\pm 1.556}$	$0.896_{\pm0.232}$				

Table 17: Test performance (mean \pm std) of different models across the ECHO-Charge task. Lower is better. In bold the best model. Test loss ($\log_{10}(\mathrm{MSE})$) is computed on the normalized dataset, while test MSE and test MAE are reported on the original (non-scaled) data.

Model	Test Loss ↓	Test MSE $\times 10^4 \downarrow$	Test MAE $\times 10^3 \downarrow$
A-DGN	$-3.840_{\pm 0.009}$	$1.456_{\pm0.032}$	$6.543_{\pm 0.146}$
DRew	$-3.444_{\pm 0.054}$	$3.669_{\pm0.459}$	$9.086_{\pm0.473}$
GCN	-3.508 ± 0.086	3.126 ± 0.263	$8.421_{\pm 0.512}$
GCNII	$-3.462_{\pm 0.019}$	$3.490_{\pm0.147}$	$8.829_{\pm 0.021}$
GIN	-3.245 ± 0.038	$5.750_{\pm0.239}$	$10.784_{\pm 0.059}$
GINE	$-3.648_{\pm0.020}$	$2.284_{\pm0.402}$	$7.176_{\pm0.371}$
GPS	$-3.821_{\pm 0.018}$	$1.620_{\pm 0.065}$	$6.182_{\pm0.219}$
GraphCON	-2.879 ± 0.009	13.256 ± 0.265	$19.629_{\pm 0.195}$
PH-DGN	$-3.595_{\pm 0.024}$	$2.562_{\pm0.144}$	$7.915_{\pm 0.269}$
SWAN	-3.907 $_{\pm 0.027}$	$1.251_{\pm 0.029}$	$6.109_{\pm 0.103}$

Table 18: Test performance (mean \pm std) of different models across the ECHO-Energy task. Lower is better. In bold the best model. Test loss ($\log_{10}(\mathrm{MSE})$) is computed on the normalized dataset, while test MSE and test MAE are reported on the original (non-scaled) data.

Model	Test Loss \downarrow	Test MSE $\times 10^3 \downarrow$	Test MAE $\times 10^2 \downarrow$
A-DGN	$-4.857_{\pm 0.083}$	$1.415_{\pm 0.799}$	$0.125_{\pm 0.016}$
DRew	$-5.007_{\pm0.231}$	$1.281_{\pm 0.733}$	$0.113_{\pm 0.024}$
GCN	$-4.210_{\pm 0.010}$	$4.561_{\pm 0.176}$	$0.281_{\pm 0.012}$
GCNII	$-4.884_{\pm0.196}$	$1.560_{\pm 0.653}$	$0.132_{\pm 0.026}$
GIN	$-3.800_{\pm0.160}$	$12.215_{\pm 2.878}$	$0.479_{\pm 0.102}$
GINE	$-4.418_{\pm0.265}$	$5.225_{\pm 2.536}$	$0.236_{\pm 0.076}$
GPS	-5.786 $_{\pm0.118}$	$0.180_{\pm 0.045}$	$0.053_{\pm 0.008}$
GraphCON	$-4.817_{\pm 0.089}$	$0.975_{\pm 0.242}$	$0.143_{\pm 0.008}$
PH-DGN	$-4.717_{\pm 0.046}$	$1.359_{\pm 0.408}$	$0.161_{\pm0.011}$
SWAN	$-4.825_{\pm 0.107}$	$2.652_{\pm 2.257}$	$0.126_{\pm 0.012}$

I RUNTIMES

To assess the computational efficiency and predictive performance of all models, we report both training and inference runtimes measured on a NVIDIA H100 GPU, as well as the mean absolute error (MAE) across tasks in the ECHO benchmark (see Table 19). Training time is measured as the average per-epoch duration over 10 epochs, while inference time is computed as the average forward pass duration over 10 independent runs on the test set, using a batch size of 512. The three metrics correspond to the best hyperparameter configuration selected for each model. This comprehensive evaluation allows a direct comparison of models not only in terms of accuracy but also with respect to their scalability and practical deployability. We note that DRew's reported runtime does not include the preprocessing step, which involves computing the Floyd–Warshall algorithm (Cormen et al., 2009), a procedure with cubic time complexity in the number of nodes.

Table 19 highlights that while transformer-based models like GPS achieve strong performance on long-range tasks, particularly on the real-world ECHO-Charge/ECHO-Energy dataset, they do so at the cost of significantly higher computational overhead. In contrast, architectures such as SWAN and A-DGN strike a more favorable balance between efficiency and accuracy, suggesting the potential of non-dissipative DE-GNNs in overcoming the limitations of standard message passing.

Table 19: Training and inference runtime (in seconds, mean \pm standard deviation) on the ECHO Benchmark measured on a NVIDIA H100 GPU. Training time refers to the average time per epoch computed over 10 epochs. Inference time refers to the forward pass on the test set, computed over 10 independent runs. In both cases the batch size is set to 512. For each task, the reported values correspond to the best configuration of each model as selected during model selection. DRew's reported runtime does not include the preprocessing step, which involves computing the Floyd–Warshall algorithm, a procedure with cubic time complexity in the number of nodes.

Metric	Model	diam	sssp	ecc	ECHO-Charge ECHO-Energy
Training (s) Inference (s)	A-DGN	$\begin{array}{c} 1.430_{\pm 0.100} \\ 0.028_{\pm 0.002} \end{array}$	$\begin{array}{c} 1.460_{\pm 0.130} \\ 0.018_{\pm 0.001} \end{array}$	$\begin{array}{c} 1.710_{\pm 0.070} \\ 0.027_{\pm 0.001} \end{array}$	$\begin{array}{c} 38.010_{\pm 0.430} \\ 0.809_{\pm 0.001} \end{array}$
Training (s) Inference (s) Pre-processing (s)	DRew	$\begin{array}{c} 1.920_{\pm 0.050} \\ 0.100_{\pm 0.001} \\ 48.108_{\pm 0.943} \end{array}$	$\begin{array}{c} 1.880_{\pm 0.060} \\ 0.043_{\pm 0.001} \\ 48.108_{\pm 0.943} \end{array}$	$\begin{array}{c} 1.760_{\pm 0.100} \\ 0.057_{\pm 0.002} \\ 48.108_{\pm 0.943} \end{array}$	$31.090_{\pm 1.140} \\ 0.636_{\pm 0.007} \\ 610.303_{\pm 1.629}$
Training (s) Inference (s)	GCNII	$\begin{array}{c} 1.700_{\pm 0.050} \\ 0.071_{\pm 0.002} \end{array}$	$\begin{array}{c} 1.830_{\pm 0.020} \\ 0.062_{\pm 0.001} \end{array}$	$\begin{array}{c} 1.620_{\pm 0.110} \\ 0.059_{\pm 0.001} \end{array}$	$37.570_{\pm 0.500} \ 0.463_{\pm 0.005}$
Training (s) Inference (s)	GCN	$\begin{array}{c} 1.480 _{\pm 0.060} \\ 0.048 _{\pm 0.001} \end{array}$	$\begin{array}{c} 1.790_{\pm 0.060} \\ 0.065_{\pm 0.003} \end{array}$	$\begin{array}{c} 1.450_{\pm 0.100} \\ 0.046_{\pm 0.002} \end{array}$	$16.590_{\pm 0.300} \\ 0.139_{\pm 0.001}$
Training (s) Inference (s)	GIN	$\begin{array}{c} 1.410_{\pm 0.220} \\ 0.020_{\pm 0.001} \end{array}$	$\begin{array}{c} 1.370_{\pm 0.060} \\ 0.019_{\pm 0.001} \end{array}$	$\begin{array}{c} 1.340_{\pm 0.040} \\ 0.016_{\pm 0.001} \end{array}$	$17.960_{\pm 0.460} \\ 0.122_{\pm 0.001}$
Training (s) Inference (s)	GINE	N/A N/A	N/A N/A	N/A N/A	$\begin{array}{c} 30.240_{\pm 1.140} \\ 0.164_{\pm 0.001} \end{array}$
Training (s) Inference (s)	GPS	$\begin{array}{c} 9.720_{\pm 0.070} \\ 4.536_{\pm 0.006} \end{array}$	$14.580_{\pm 0.210} \\ 7.026_{\pm 0.001}$	$11.960_{\pm 0.050} \\ 6.235_{\pm 0.076}$	$689.420_{\pm 1.040} \\ 97.952_{\pm 0.433}$
Training (s) Inference (s)	GraphCON	$\begin{array}{c} 0.990_{\pm 0.120} \\ 0.006_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.920_{\pm 0.040} \\ 0.004_{\pm 0.001} \end{array}$	$0.940_{\pm 0.190} \\ 0.006_{\pm 0.001}$	$\begin{array}{c} 13.570_{\pm 0.780} \\ 0.066_{\pm 0.003} \end{array}$
Training (s) Inference (s)	PH-DGN	$\begin{array}{c} 2.840_{\pm 0.060} \\ 0.180_{\pm 0.011} \end{array}$	$\begin{array}{c} 4.480_{\pm 0.060} \\ 0.375_{\pm 0.002} \end{array}$	$\begin{array}{c} 3.010_{\pm 0.060} \\ 0.299_{\pm 0.006} \end{array}$	$46.710_{\pm 0.780} \\ 1.005_{\pm 0.021}$
Training (s) Inference (s)	SWAN	$\begin{array}{c} 2.330_{\pm 0.120} \\ 0.203_{\pm 0.002} \end{array}$	$\begin{array}{c} 2.130_{\pm 0.050} \\ 0.099_{\pm 0.001} \end{array}$	$\begin{array}{c} 2.090_{\pm 0.110} \\ 0.168_{\pm 0.001} \end{array}$	$81.590_{\pm 0.700} \\ 3.822_{\pm 0.048}$

J VISUALIZATION OF GPS ATTENTION PATTERNS

In this section, we analyze the attention patterns of the GPS model within the sssp task. These patterns are illustrated in Figure 9. We observed that, starting from the first layer, the highest attention

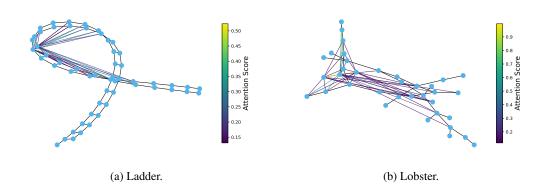


Figure 9: Visualization of the first-layer GPS attention scores in sssp for the Ladder and Lobster topologies, averaged across all heads. The top 40 attention-weighted node pairs are highlighted in color, while the original graph topology is shown in black.

scores are often assigned to pairs of nodes that are not directly connected and that are usually far apart in the underlying graph. Notably, the model appears to identify one or a few nodes as central hubs that aggregate and redistribute information from these distant nodes. This mechanism effectively reduces the maximal traversal distance to only few hops, allowing distant nodes to communicate more easily. Therefore, this mechanism effectively reveals how the model routes long-range communication through structural shortcuts, thus confirming the long-range nature of the proposed tasks.