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ABSTRACT

Effectively capturing long-range interactions remains a fundamental yet unresolved
challenge in graph neural network (GNN) research, critical for applications across
diverse fields of science. To systematically address this, we introduce ECHO (Eval-
uating Communication over long HOps), a novel benchmark specifically designed
to rigorously assess the capabilities of GNNs in handling very long-range graph
propagation. ECHO includes three synthetic graph tasks, namely single-source
shortest paths, node eccentricity, and graph diameter, each constructed over di-
verse and structurally challenging topologies intentionally designed to introduce
significant information bottlenecks. ECHO also includes two real-world datasets,
ECHO-Charge and ECHO-Energy, which define chemically grounded bench-
marks for predicting atomic partial charges and molecular total energies, respec-
tively, with reference computations obtained at the density functional theory (DFT)
level. Both tasks inherently depend on capturing complex long-range molecular
interactions. Our extensive benchmarking of popular GNN architectures reveals
clear performance gaps, emphasizing the difficulty of true long-range propagation
and highlighting design choices capable of overcoming inherent limitations. ECHO
thereby sets a new standard for evaluating long-range information propagation,
also providing a compelling example for its need in Al for science.

1 INTRODUCTION

Graphs are fundamental data structures used extensively to represent complex interconnected systems,
ranging from social networks and biological pathways, to communication infrastructures and molecu-
lar structures. Graph Neural Networks (GNNs) (Sperdutil [1993}; |Gori et al., 2005} Scarselli et al.,
2008; [Micheli, [2009; Bruna et al., 2014} Defferrard et al.,2016) have emerged as a successful method-
ology within deep learning, whose research community was initially driven by the development of
diverse architectures capable of capturing intricate relational patterns inherent to graph-structured
data, as well as impactful applications across various domains (Hamilton et al., 2017} Derrow-Pinion
et al.| 2021 |Gravina et al.| 2022; |Gravina & Bacciul [2024; Khemani et al., [2024]).

More recently, the research community has shifted its focus towards understanding and overcoming
fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been
driven by the observation that effectively propagating information over long distances in graphs
remains a significant challenge. Such challenges have been formally linked to phenomena like
over-smoothing (Cai & Wang| 2020;|Oono & Suzuki, |2020; |[Rusch et al.,|2023), over-squashing (Alon
& Yahav, 2021}; D1 Giovanni et al.} 2023)), and more generally, vanishing gradients (Arroyo et al.,
2025)), all of which hinder GNN performance in tasks that require capturing long-range dependencies.

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while
looking into methodological advancements that can surpass or mitigate such shortcomings. A key
enabler of this progress is the establishment of solid and challenging benchmarks that can accurately
assess and validate long-range propagation capacities. The availability of controlled synthetic
benchmarks, should be complemented by the introduction of compelling application-driven datasets
which can clearly demonstrate the practical advantages of addressing long-range propagation issues.
Long-range propagation capacities, in this sense, have been noted to be central in key areas of science,
such as in biology (Dwivedi et al., 2022; |Hariri & Vandergheynst, 2024])), biochemistry (Gromiha &
Selvaraj, [1999)), and climate (Lam et al.,|2023)).
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Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks (Bo-
jchevski & Gilinnemann, |2018; Shchur et al., 2018} [Wu et al.| 2018} |Sterling & Irwinl 2015 [Wale
& Karypis| 2006; |Hu et al.l 2020a; |Dwived: et al., 2023), often overlooking the unique challenges
associated with distant information propagation. More recently, the growing interest in this challenge
has motivated the community to develop a few benchmarks specifically designed to evaluate infor-
mation propagation in GNNs. These include the Long-Range Graph Benchmark (LRGB) (Dwivedi
et al.| 2022)) and the Graph Property Prediction (GPP) dataset (Gravina et al., 2023)). While this is a
significant step forward compared to earlier benchmarks, it does not fully account for the need to
capture the true long-range dependencies present in some real-world applications. This is due to
limited size of the graphs, the absence of well-defined conditions on the expected propagation range,
and the focus of the benchmarks, which is often more aimed at specific issues of over-smoothing and
over-squashing, rather than providing a broader evaluation of long-range propagation capabilities.
Moreover, LRGB and GPP tasks are facing a natural performance saturation, as novel methodologies
are being developed and optimized on them.

Motivated by this, we introduce ECHO (Evaluating Communication over long HOps), a new bench-
mark designed to assess the capabilities of GNNs to exploit long-range interactions. ECHO consists
of three synthetic tasks and two real-world chemically grounded task. The former are designed
to provide a controlled setting to assess propagation capabilities. They comprise the prediction of
shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph
diameter) across a diverse graph topologies. These have been defined to increase the difficulty of
effective long-range communication, as they present structural bottlenecks for the information flow.
The main characteristic of these tasks is that GNNs must heavily rely on global information and effec-
tively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford (Bellman,
1958). The real-world tasks target the prediction of molecular total energy and the long-range charge
redistribution in molecules, which are critical and practically relevant challenges in computational
chemistry (Dupradeau et al.| [2010), as they underlie many fundamental processes such as chemical
reactivity, molecular stability, and intermolecular interactions. Accurate modeling of these effects is
essential for drug design, materials science, and biology understanding.

Our contributions can be summarized as follows:

* We introduce ECHO, a novel benchmark featuring five new tasks specifically designed to evaluate
the ability of GNNs to effectively handle long-range communication in both synthetic and real-
world settings. ECHO includes three synthetic tasks (collectively referred to as ECHO-Synth)
with a total of 10,080 graphs, and two real-world task (ECHO-Charge and ECHO-Energy)
comprising 196,545 graphs, where the required propagation ranges from 17 to 40 hops.

* We propose ECHO-Charge and ECHO-Energy, two novel benchmark tasks designed to capture
long-range atomic interactions in molecular graphs. Specifically, ECHO-Charge is a dataset
for predicting atomic charge distributions, while ECHO-Energy focuses on predicting the total
energy of a molecule. Both tasks are built on Density Functional Theory (DFT) (Argaman &
Makovl, 2000) calculations, ensuring quantum-level accuracy. This makes them particularly
suitable for evaluating long-range message passing in GNNs, since both charge redistribution and
molecular energy depend on subtle, non-local effects. Beyond benchmarking, these datasets also
address central challenges in computational chemistry, where modeling long-range interactions
remains difficult and computationally expensive, as evidenced by the ~ 2 months of paralle]l DFT
computations required to generate our benchmark on the given hardware configuration.

* We present a detailed analysis to demonstrate that the tasks in ECHO genuinely capture long-range
dependencies, providing a rigorous evaluation of GNNs’ ability to propagate information over
extended graph distances.

* We conduct extensive experiments to establish strong baselines for each task in ECHO, providing
a comprehensive reference point for future research on long-range graph propagation.

2 ON THE NEED FOR A NEW BENCHMARK

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range
propagation, in relation to existing datasets.
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The most widely used benchmark for assessing these capabilities is arguably LRGB (Dwivedi et al.|
2022). Its introduction in 2022 has certainly marked an important milestone and promoted the
development of the field. However, despite initial rapid improvements, performance on LRGB has
now plateaued, showing a noticeable deceleration in progress across the last year, as discussed in
Appendix In addition to this, it has to be noted that recent works (Tonshoff et al., 2023} Bamberger
et al.| [2025b) questions the long-range nature of several LRGB tasks, revealing that a subset of tasks
is inherently local, rather than requiring long-range diffusion, and that the benchmark itself is highly
sensitive to hyperparameter tuning. Other benchmarks propose synthetic tasks on generated structures,
including the Tree-Neighborhood (Alon & Yahav, |2021), Graph Property Prediction (Gravina et al.,
2023)), graph transfer (Di Giovanni et al.| 2023} |Gravina et al.,2025)), GLoRA (Zhou et al., [2025)),
and Barbell and Clique graphs (Bamberger et al., 2025a). Indeed, most of these tasks are originally
designed to address narrow challenges that prevent long-range propagation, such as over-smoothing
(Cai & Wang} 2020;|Oono & Suzukil, 2020; Rusch et al.}2023) and over-squashing (Alon & Yahav,
20215 |D1 Giovanni et al., 2023). These phenomena, while related, do not necessarily capture the
full spectrum of challenges associated with long-range communication. Moreover, despite being
designed to test the ability of GNNs to overcome these limitations, these datasets typically involve
small graphs with limited-size diameters. This inherently restricts the propagation radius, creating
a significant gap between the benchmark tasks and real-world problems that require much deeper
propagation across significantly larger structures.

The limitations above suggest the need for a new benchmark that reflects the challenges and oppor-
tunities in long-range GNN research. An effective benchmark should provide tasks that explicitly
test a model’s ability to traverse extensive graph structures, effectively aggregate global information,
and adapt to diverse topological constraints. Moreover, as the field has matured and a wide range of
models have been established, ranging from graph transformers (Shi et al.,|2021; Rampasek et al.,
2022) to multi-hop GNNs (Abu-El-Haija et al.,2019; |Gutteridge et al.l|2023) and others (Shi et al.}
2023), it seems timely to introduce a new benchmark that can accurately assess the long-range
propagation skills of these families of models, now that they are well understood and consolidated.

ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-
range propagation needs, providing a clear target for the evaluation of this property. ECHO tasks
require computing shortest paths between all nodes, long-range charge redistribution, or molecular
total energies, with clearly defined propagation ranges between 17 and 40 hops, depending on the
specific graph structure. This explicit range ensures that models failing to capture dependencies
within this span are underreaching and have poor long-range capabilities.

The ECHO-Charge and ECHO-Energy molecular tasks have strong value per se, proposing
a novel, practical, and high-impact challenge for learning models in computational chemistry
(Dupradeau et al.,2010). Previous popular benchmarks in this domain (Sterling & Irwin} 2015} Wale
& Karypis, 2006; [Hu et al.l 2020a; Wu et al., [2018; |Dwivedi et al.l 2022)) focused on the prediction of
molecular-level properties, such as solubility or HIV inhibition, which are predominantly short-range
tasks. This is evident when they can be reduced to the problem of counting small-dimensional local
substructures (i.e., with length smaller than 7) (Bouritsas et al.}, 2023). Differently, ECHO-Charge
and ECHO-Energy are the first graph benchmarks that targets long-range interactions at the atomic
level, i.e., the microscopic scale. Both benchmarks are not only inherently long-range, but also par-
ticularly challenging as they require accurate modeling of charge distributions, energy stabilization,
and the complex interplay of atomic interactions. This makes them computationally expensive to
solve with current computational chemistry tools. We provide further details on the computational
complexity of the underlying quantum simulations in Appendix

Therefore, ECHO-Charge and ECHO-Energy set a new standard for evaluating long-range graph
information propagation, as well as they provide a compelling application of Al for science and
chemistry, enabling faster predictions with potential impact on drug/material design or understanding
biological functions.

Contemporaneously with our work, [Liang et al.| (2025) proposed a synthetic benchmark, which we
view as a complementary effort to our ECHO in addressing the long-range propagation problem.
While Liang et al.| (2025) focuses on a single synthetic task on large graphs (up to 569k nodes), our
ECHO benchmark proposes five tasks (as discussed before) that provide a controlled setting to assess
propagation capabilities, are inherently long-range, and extend beyond current standards. Our goal is
to provide a practical, accessible benchmark that balances long-range complexity and usability for
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the broader community, avoiding digital divide concerns while still reflecting real-world scientific
challenges.

3 THE ECHO BENCHMARK

In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range
information propagation capabilities of GNNs. Our benchmark consists of two complementary
components: a set of algorithmically constructed tasks and a set chemically grounded real-world
datasets. Detailed dataset statistics are reported in Appendix [E]

The synthetic component includes classical graph-theoretic problems (i.e., single-source shortest
path, node eccentricity, and graph diameter) posed across diverse graph topologies designed to induce
structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range
dependencies and enable controlled analysis of model behavior under varying topological conditions.

The proposed real-world benchmarks target practically relevant and physically grounded tasks in
computational chemistry: ECHO-Charge focuses on predicting long-range charge redistribution at
the atomic level, while ECHO-Energy addresses the prediction of molecular total energies. Both
problems are rooted in electronic structure modeling, reflecting realistic quantum phenomena such
as charge transfer and energy stabilization, and build upon prior work in quantum-accurate deep
learning models for molecular systems (Ko et al.,|2021; |Zhang et al., [2022).

3.1 THE ECHO-SYNTH DATASET

The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information
propagation across a diverse set of graph topologies. It focuses on three graph property prediction
tasks: Single Source Shortest Path (sssp), Node Eccentricity (ecc), and Graph Diameter
(diam). Among these, sssp and ecc are node-level tasks requiring the prediction of a scalar value
per node, while diam is a graph-level task requiring a single prediction for the entire graph. We refer
to this dataset as ECHO-Synth.

These tasks draw inspiration from (Corso et al., 2020; |Gravina et al., 2023E| and were intentionally
selected due to their heavy reliance on global information. For example, solving sssp from a
given source node requires identifying shortest paths to all other nodes (Dijkstral [2022)), since the
information spans the entire graph. Eccentricity builds on this by requiring the longest shortest path
from each node, demanding complete graph awareness. Diameter is even more global, involving
the longest shortest path between any two nodes (Cormen et al.| [2022). Classical algorithms like
Dijkstra’s (Dijkstral, [2022) and Bellman-Ford (Bellman, [1958)), which perform complete graph
traversal, illustrate the challenge these tasks pose for GNNs, which rely on localized message passing.
To prevent models from relying on input features rather than learning structural patterns, each node is
assigned a uniformly distributed random scalar feature r ~ U/ (0, 1) | Additionally, for the sssp task,
a binary indicator is included to mark the source node. This ensures that the model can distinguish
the source while maintaining uniform input statistics across tasks.

Dataset Construction. This dataset includes six distinct families of graph topologies i.e., line, ladder,
grid, tree, caterpillar, and lobster (see Figure[T), each selected to highlight different structural and
propagation characteristics. The 1ine graph (Figure[](a)) serves as a simple but non-trivial baseline.
To introduce non-local interactions, we modify it with stochastic residual connections: each node
has a 20% chance of forming an edge to another node 2—-6 hops away. Building on this, the 1adder

"While ECHO-Synth draws inspiration from (Corso et al.,|2020; |Gravina et al.}|2023)), it departs from them in
a key aspect. Both (Corso et al.}|2020) and (Gravina et al.,|2023) use small graphs that are mostly sampled from
distributions that yield highly connected structures with small diameters and limited long-range dependencies.
In contrast, ECHO-Synth is explicitly designed to rigorously stress-test long-range capabilities, leveraging larger
graphs and employing topologies deliberately designed to introduce bottlenecks, i.e., requiring substantially
more propagation steps for accurate predictions. These design choices significantly increase the long-range
difficulty of the tasks, making ECHO-Synth a more rigorous benchmark for evaluating long-range propagation.

2We opted for random uniform node features rather than zero vectors to introduce stochasticity (which makes
the synthetic tasks less trivial), and to provide a unique identifier for the nodes in the tasks and prevent the
trivial scenario in which all nodes share identical initial representations, hindering the expressiveness of certain
architectures (Sato et al.,|2021).
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Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, N = 30

topology (Figure[I] (b)) consists of two parallel 1ine graphs connected by one-to-one cross-links,
enabling richer routing possibilities and redundancy in message pathways. The grid topology
(Figure[T] (c)) represents a 2D lattice structure where edges are independently removed with a 20%
probability. This results in irregular neighborhoods and broken spatial symmetries.

To model hierarchical structures, we include t ree-structured graphs (Figure[I](d)) generated through
preferential attachment. A new node connects to an existing one with probability proportional to
k¢, where k; represents the degree of the i-th node (with o = 3), leading to the formation of high-
degree hubs and reflecting connectivity patterns often seen in natural networks. The caterpillar
topology (Figure([T](e)) augments a central linear backbone with peripheral nodes attached randomly
along the spine, combining features of chain-like and tree-like graphs to create moderate branching
and directional flow. Extending this idea, the 1obster graph (Figure[I] (f)) adds a third hierarchical
layer: nodes in the outermost layer connect only to intermediate nodes, resulting in deeper branching
while preserving an overall elongated structure. This configuration is especially useful for testing
the limits of multi-hop message passing under structured constraints. Beyond their long-range
dependencies, the complexity of the synthetic tasks is further increased by the presence of topological
bottlenecks, which pose significant challenges to GNN based on message passing (Gilmer et al.|
2017). Bottlenecks emerge in graphs where information flow between distant nodes is constrained to
pass through a small subset of intermediary nodes, thereby restricting the bandwidth of information
flow. This structural constraint can increse the risk of over-squashing, a phenomenon in which
exponentially growing information is aggregated into the low-dimensional node representations (Alon
& Yahav, [2021). As a result, critical signals may be compressed or lost during propagation, severely
limiting the model’s capacity to distinguish and preserve meaningful long-range interactions (Topping
et al.| [2022; D1 Giovanni et al., [2023)).

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks.
For example, in the 1ine topology information between distant nodes must propagate sequentially
through a single path, making each node along the path a critical bottleneck. Similarly, tree-
structured graphs inherently introduce bottlenecks at branch points and hierarchical layers, where
entire subtrees depend on narrow pathways for communication with the rest of the graph. The
caterpillar and lobster graphs further reinforce this pattern by adding additional peripheral
layers while maintaining centralized backbones, exacerbating the bottleneck effect in their hierar-
chical layouts. Even in the more uniform grid topology, bottlenecks are implicitly introduced
through random edge deletions, which can disrupt regular pathways and force information to traverse
suboptimal and congested routes.

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range
d € [17,40], capturing diverse long-range interaction scenarios. For each of the six graph topologies
and each diameter value, we produce 70 unique graphs, yielding a total of 70 x24 x6 = 10,080 graphs.
To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and
test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign
40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees
that all splits share the same distribution over both graph topologies and diameter values, which are
uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the
training set, avoiding distributional shifts and ensuring fair comparison across methods.



Under review as a conference paper at ICLR 2026

3.2 ECHO-CHARGE AND ECHO-ENERGY DATASETS

Molecular property prediction is a cornerstone application of GNNs, with common benchmarks
involving graph-level prediction tasks such as molecular fingerprint (Duvenaud et al., 2015)), solubility,
toxicity and various chemical properties (Coley et al.l [2017; |[Hu et al., 2020c)). One fundamental
task in this domain is the prediction of atomic partial charges, which are continuous, atom-level
properties that reflect the electron distribution within a molecule. Accurate charge prediction is
essential for modeling molecular interactions, reactivity, and electrostatic behavior. Figure [2|illus-
trates this task on the 3D molecular graph of caffeine, where each atom is colored according to
its predicted partial charge. Complementary to this, another central quantum property of molec-
ular systems is the total energy, which governs stability, chemical reactivity, and conformational
preferences. Thus, predicting molecular energies is equally important for chemistry applications.
Traditionally, both atomic charges and molecular energies are
computed using quantum mechanical methods, especially Den-
sity Functional Theory (DFT) (Argaman & Makovl 2000) or
related quantum chemical simulations. While these methods
provide high accuracy, their computational cost, arising from
solving complex equations, limits their scalability to large
molecular datasets or high-throughput tasks. Specifically, high-
accuracy simulations require several minutes to process a single
molecule. We report a quantitative description of DFT simula-
tion efficiency in Appendix

A significant challenge for Machine Learning (ML) methods
addressing these prediction tasks is effectively capturing long-
range dependencies across molecular graphs. Specifically, here
we will refer to “long-range” in the graph space (e.g., nodes sep-
arated by many hops), rather than purely spatial distance. The
three-dimensional configuration of molecules greatly intensi-
fies this task complexity, as distant atoms in the graph topology
can still exert significant influence on electronic properties and
total energy (Jensen, [2017; Ko et al., 2021} |Shaidu et al., [2024).
Specifically, the total molecular energy is computed consider-
ing several quantum-mechanical long-range interactions (Jensen, [2017)), and, similarly, the partial
atomic charges are influenced by non-local electronic effects (Ko et al., 2021} |Shaidu et al., [2024]).

Figure 2: The 3D molecular graph
of caffeine annotated with atomic
partial charges. Blue indicates re-
gions of negative partial charge,
while red corresponds to positive
charge accumulation.

Such non-trivial, long-range interdependencies become increasingly challenging to model accu-
rately as molecular graph diameter grows. To systematically address this challenge, we introduce
ECHO-Charge and ECHO-Energy, with the specific aim to stress long-range dependencies in
real-world scenarios. ECHO-Charge is formulated as a node-level regression problem, where the
model must predict the partial charge of each atom in a molecular graph, while ECHO-Energy is
formulated as a graph-level regression problem, requiring the prediction of the total molecular energy.
We note that the total energy cannot be computed as the sum of per-atom energies, since it consists of
several quantum-mechanical long-range interactions, e.g., electron—nuclear, electron—electron, and
nuclear—nuclear contributions at the chosen level of theory (Jensen, 2017).

Beyond serving as rigorous benchmarks for GNN architectures, these datasets have strong potential
for practical impact in ML applications for science and chemistry. Capturing these sophisticated
long-range interactions can significantly improve efficiency of predicting atomic partial charges and
molecular energies, while also serving as accurate and computationally inexpensive initialization
for subsequent quantum mechanical simulations. Such improvements could substantially accelerate
computational chemistry workflows, facilitating rapid exploration of the large molecular space.

Dataset Construction. Comprising ~170,000 (ECHO-Charge) and ~196,000 (ECHO-Energy)
molecular graphs selected from the ChEMBL database (Zdrazil et al.,|2024), our benchmarks include
molecules with graph diameters between 17 and 40, where the interplay between the molecule size
and the task ensures the need to work with significant long-range dependencies that thoroughly stress
model capabilities. In both ECHO-Charge and ECHO-Energy, each graph represents a single
molecule (see Figure E]) and each node (i.e., atom) is labeled with the atomic number, essential for
chemical identity, and spatial distance from the center of mass of the molecule, to provide geometrical
context. Edges correspond to chemical bonds, and are labeled with bond type (single, double, triple,



Under review as a conference paper at ICLR 2026

or aromatic) and bond length. Notably, this encoding of spatial information is invariant under the
action of the E(3) group, meaning that relative geometric features such as distances remain invariant
under global 3D rotations, reflections, and translations of the molecular structure. This ensures that
the spatial representation respects the underlying symmetries of molecular physics, essential for
learning physically consistent models.

To generate the datasets, we employed a two-step approach. Firstly, the generation process began with
molecular 3D structure generation starting from ChEMBL SMILES (Weininger} |1988)) strings for all
molecules satisfying the given diameter constraint. In order to generate molecular conformations
we opted for coordinate optimization using the Generalized Amber Force Field (GAFF) (Grimme
et al.} |2010), a well-established force field specifically designed for optimizing a wide variety of
organic and medically relevant compounds. These optimized structures served as initialization for
the subsequent quantum chemical calculations to determine accurate structures, partial charges,
and molecular energies. Specifically, we employed Density Functional Theory (DFT) to match the
required chemical accuracy required for reliable molecular property annotation. All computations
were run with the ORCA package for quantum chemistry (Neesel 2022; Neese et al., 2020; Neese),
2023). A detailed description of the quantum simulations is provided in Appendix [C| along with
information about the computing platform in Appendix [D]

Dataset Split. To evaluate model performance under consistent and reproducible conditions, we
employed a random uniform sampling strategy to split the original datasets. This approach ensures a
balanced distribution of molecular structures, charge ranges, and energy levels across the training,
validation, and test sets, therefore minimizing potential sampling bias. For ECHO-Charge, we adopt
an 80/10/10 split for training, validation, and testing, while for ECHO-Energy we use a 90/5/5 split.

4 EXPERIMENTS

Baselines. We consider a diverse set of GNNs baselines that capture core directions in the devel-
opment of graph neural architectures, spanning from classical GNNs to more recent approaches
that demonstrate strong empirical performance in capturing long-range dependencies. As classical
baseline models, we include GCN (Kipf & Welling} [2017), GIN (Xu et al.,[2019), GINEE](Hu et al.,
2020b) and GCNII (Chen et al., [2020), which represent standard message-passing frameworks with
strong theoretical grounding. We also consider a multi-hop GNN, i.e., DRew (Gutteridge et al.| [2023)),
which adaptively rewire the graph to facilitate more effective propagation across distant nodes. We
evaluate GPS (Rampasek et al., 2022) and GRIT (Ma et al.| 2023b), two effective graph transformer
that enables long-range propagation via attention mechanism between any pairs of nodes. Finally,
we explore the performance of a family of GNNs that draw on principles from dynamical systems
theory, namely differential-equation inspired GNNs (DE-GNNs). This includes GraphCON (Rusch
et al., [2022), which is designed to address the over-smoothing issue, as well as models explicitly
designed to perform long-range propagation, whose architectures are based on non-dissipative or
port-Hamiltoninan dynamics, such as A-DGN (Gravina et al.| 2023), SWAN (Gravina et al., 2025)),
and PH-DGN (Heilig et al., 2025)).

Model Architecture and hyperparameter selection. All models share a unified backbone design to
enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack
of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer
MLP applied directly to the node representations. For graph-level tasks, node representations are
first aggregated using the mean, max, and sum operations, concatenated, and then processed by a
two-layer MLP. This standardization ensures that differences in performance are attributable to the
core propagation mechanisms rather than auxiliary architectural choices.

Training follows a consistent protocol across all models. We minimize the base-10 logarithm of the
Mean Squared Error loss (MSE), log; o (MSE(¥irue — Yuarget)), since the predicted values can be very
small in magnitude and this scale-sensitive loss emphasizes small differences. We use the Adam
(Kingma & Bal 2015)) optimizer and adopt Early Stopping based on validation loss. with a patience
of 100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures
convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility

*We added GINE as a baseline to ECHO-Charge and ECHO-Energy benchmarks to overcome the
limitations of GIN to process edge attributes.
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of our results. In order to ensure a fair and robust comparison across all methods and datasets, we
employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset pair,
we perform a Bayesian Optimization based on a Gaussian Process prior (Snoek et al.,2012) in the
chosen hyperparameter space, spanning 100 trials to explore the respective search space efficiently.
We report the complete set of explored hyperparameters for each model, as well as with the selected
hyperparameters, in Appendix [F| Finally, the best configuration found is validated through four
independent training runs, each initialized with a different random seed.

Results on ECHO-Synth dataset. We report results on the synthetic benchmarks in Table|1} All
the values are reported using the Mean Absolute Error (MAE). Additional metrics are reported in
the Appendix [H] Table[I8] We start observing that models employing global attention mechanisms
significantly outperform traditional message-passing frameworks. Specifically, GRIT demonstrates
a superior performance on the sssp task, achieving a remarkably low MAE of 0.121. In line with
literature findings (Dwivedi et al. 2022), this result suggests that incorporating transformer-like
global attention substantially mitigates inherent limitations in localized message-passing, which are
pronounced in classic architectures such as GCN and GIN. This is further supported by the analysis in
Appendix [J| which shows that the highest attention scores are often assigned to node pairs that are not
directly connected and often far apart in the graph. Interestingly, differential-equation-inspired archi-
tectures, particularly those employing non-dissipative or port-Hamiltonian formulations like SWAN,
A-DGN, and PH-DGN, consistently perform well across tasks, with similar performance metrics.
GRIT achieves the lowest MAE on the diam task (1.014), closely followed by SWAN and A-DGN.
This highlights the benefit of incorporating attention or non-dissipative dynamics to improve long-
range information propagation Moreover, DRew, reveals its effectiveness in the ecc task, attaining the
lowest MAE (4.651). This success emphasizes the advantage of multi-hop information propagation,
thus effectively addressing topological bottlenecks critical for accurately capturing node eccentricities.

Differently, GraphCON does
not inherently outperform tradi-
tional methods, and show no-
tably weaker performance rel-
ative to other models of the
same architectural family (e.g.,

Table 1: Test MAE (mean with standard deviation as subscript)
for each model across the three synthetic tasks: diam, ecc, and
sssp. Lower is better. Values are color-coded by performance,
with darker green indicating lower error.

A-DGN and SWAN). Thus, mere ~ __10del diam | ece | sssp |
message-passing dynamics that A-DGN 1.151 £ 0.038  4.981+0.037 1.176+0.140
only mitigate the over-smoothing DRew 1.243 40,047 = 4.651 40020 1.279+0.011
issue does not ensure superior GraphCON ~ 2.969+0.180  547410.001  5.734+0.011
. ) GCN 3.832 1 0.262 5.233 +0.034 2.102 4+ 0.094
performance in long-range tasks. GONII 200510005 5241 100m 2128 1 0490
Finally, traditional message- GIN 1.630 £0.161 4.869+0.002 2.234 1£o0.271
passing models like GCN GPS 2.160+0.00s ~ 4.758 +0.021 = 0:472%0.050
demonstrate consistent limita- GRIT 1.01450.0s6 5.091+0.158 [10.12140.013
. PH-DGN 1.627 £ 0.308 5.068 1 0.126 1.323 £ 0.485
tions across all benchmarks, SWAN 1121 s oom0 4840 000e  0.896 1 0259

indicative  of  fundamental
constraints in purely localized message-passing architectures when facing extensive long-range
dependencies as required in our ECHO-Synth benchmark suite. This limitation is most evident in
the diam task, where GCN records the highest MAE (3.832), underscoring its inadequate capacity
for global information aggregation.

Results on ECHO-Charge and ECHO-Energy dataset. We detail the performance of all evaluated
models on the atomic partial charge and energy prediction task in Table 2| Additional metrics are
reported in the Appendix [H] Tables[I9]and [20] As anticipated, architectures capable of handling
long-range dependencies demonstrate a clear advantage on both benchmarks, given the nature of the
task which requires precise modeling of subtle interatomic interactions spread across the molecular
graph. Notably, GPS achieves the best performance on ECHO-Energy and it is competitive on
ECHO-Charge, confirming the utility of global attention mechanisms in capturing distant influences
that modulate quantum chemical properties, albeit at the cost of increased computational complexity
(as shown in Appendix [I).

Models like A-DGN and SWAN also yield competitive performance, consistently appearing among
the top performers, with SWAN emerging as best model in ECHO-Charge. Their success suggests
that imposing non-dissipative priors not only improves the propagation dynamics but also guides
the model toward chemically plausible solutions. Interestingly, while DRew outperforms classical
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GNNs, especially in the ECHO-Energy taks, it performs comparatively worse than DE-GNN and
transformer-based models.

Traditional =~ message-passing Table 2: Test MAE (mean with standard deviation as sub-
networks, particularly GCN script) performance across models on the ECHO-Energy and
and GIN, again lag behind. ECHO-Charge tasks. Lower values are better. Cells are color-
These results again confirm coded by performance, with darker green indicating lower error
the hypothesis that localized (independently normalized per column).

aggregation, without mecha-
nisms to to improve propagation

ECHO-Charge |

effectiveness or integrate distant Model ECHO-Energy | (x1073)
node 1nfqrmat10n, is inadequate A-DGN 12.486 + 1. 021 6.543 + 0 146
for atomic-level charge model-
. DRew 11.325 4+ 2.304 9.086 + 0.473
ing. The ECHO-Charge and GCN 28.112 1 1.939 8.421 & 40.512
ECHO-Energy benchmarks GCNII 13.235 1 2.630 8.829 1 0.021
thus clearly illustrates the neces- GIN 47.851 4 10.154 10.784 + 0.059
sity for architectures that either GINE 23.558 + 7.568 7.176 + 0.371
incorporate global attention or GPS 5.257 1 0.842 6.182 4 0.219
embed non-dissipative dynamics GRIT 25.508 + 2.507 7.13446.090
to effectively tackle the intricate glf[a[]))hc(}jSN 1231(2)3(5) +0.807 179961259 +0.195
and non-local dependencies i AUz 1128 DO
P SWAN DN Ly 6.109 + 010

inherent in these molecular
tasks.

We provide a visual depiction of charge prediction accuracy on a non-trivial molecule from the test
set in Figure [3} the figure compares prediction errors between A-DGN (a) and GCN (b). Atoms
are colored by log-error: green = low, orange = high. A-DGN shows consistently lower errors,
especially at peripheral atoms, highlighting its ability to capture long-range interactions, while GCN
accumulates errors at structurally distant or chemically sensitive sites. This comparison illustrates the
benefit of non-dissipative architectures for long-range information propagation on complex graphs
and chemical structures.

Lastly, we note that although energies and partial charges errors are small in absolute magnitude
across baselines, even subtle deviations (as stated in [Dupradeau et al.|(2010)), on the order of 10~% ¢
to 1076 ¢, can lead to significant downstream effects in molecular modeling and reproducibility of
results. Therefore, predictive models must target this level of granularity to produce chemically
meaningful outputs.

Additional Experiments and Analysis.
We provide further results and a detailed , 2
evaluation of baseline performance in Ap- N/ '
pendix[G| Specifically, we investigate how , N

the radius of the explored neighborhood af- () M
fects each method (Appendix|[G.I)) and how ~

model performance varies across graphs

sl P ?
with different diameters (Appendix [G.2). o M%
Our results consistently indicate that deeper ] TR
networks outperform shallower ones, con- ® M ‘ .
firming the long-range nature of these 4
benchmarks. Moreover, in Appendix [G.3|

we examine the impact of the readout depth  Figure 3: Visualization of prediction errors for the
and show that the final performance ap- ECHO-Charge task using two different GNN archi-
pears to be independent of this design tectures: A-DGN (a) and GCN (b). The coloring rep-
choice. In Appendix [G.4] we further an- resents the logarithm of the absolute prediction error,
alyze model performance across different 10g(|¥ue — Yprea|). Lower values (in green) indicate bet-
graph topologies in ECHO-Synth. The ter prediction accuracy, while higher values (in orange)
results indicate that, although absolute per- correspond to larger errors.

formance varies slightly with the underly-

ing graph structure, the relative ranking of the models remains consistent, reinforcing the robustness
of our findings. In Appendix[J} we also visualize GPS’s attention patterns, highlighting the importance
of connecting distant nodes to facilitate information flow and improve performance. Together, these
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analyses reinforce the importance of long-range information propagation in the ECHO benchmark.
Finally, Appendix [[ reports runtime measurements, illustrating a key trade-off between accuracy and
efficiency: transformer-based models like GPS achieve strong performance but are computationally
demanding, whereas models such as A-DGN provide a more balanced alternative.

5 CONCLUSION

In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation
in GNNs. Our benchmark includes two main components, ECHO-Synth and a set chemically
grounded real-world datasets (ECHO-Charge and ECHO-Energy), that target long-range com-
munication in both synthetic and real-world settings. The synthetic tasks are designed to predict
algorithmic and long-range-by-design graph properties, while the real-world tasks focus on predicting
atomic charge distributions and molecular total energies, both of which critically depend on long-
range quantum interactions. We provided a detailed analysis to demonstrate that the tasks in ECHO
genuinely capture long-range dependencies, and we established strong baselines for each task to
provide a comprehensive reference point for future research. Our results highlight the limitations
of current GNN architectures when faced with long-range propagation challenges, and we believe
that ECHO will serve as a critical step toward building more robust, scalable, and generalizable
GNNss capable of handling the full spectrum of graph-based learning tasks, posing a challenge to the
community to push the boundaries of GNN design and evaluation. Not only does ECHO provide a
solid benchmark, but it also leaves ample room for future architectures to improve and advance GNN
architectures capable of more effective information propagation.
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A LLMs USAGE

Large Language Models (LLMs) were used as general-purpose assistive tools to improve the writing
quality of this paper. Specifically, we used LLMs to help with grammar correction, rephrasing for
clarity, and suggesting some improvements to the overall structure of the text. All LLM-generated
text was carefully reviewed and edited by the authors to ensure that it accurately reflects the authors’
intentions and scientific content. No LLMs were used to generate scientific content, including but
not limited to research direction, hypothesis formulation, experimental design, data analysis, or
interpretation of results.

B DiscussioN ON LRGB

One of the most widely used benchmark for assessing the lon-range propagation capabilities of GNNs
is the Long Range Graph Benchmark (LRGB) (Dwivedi et al.,|2022). The benchmark proposes five
tasks: two molecular property prediction tasks (Peptides-func and Peptides-struct), one molecular
bond prediction task (PCQM-Contact), and two computer vision tasks (PascalVOC-SP and COCO-
SP). However, despite initial rapid improvements, performance on LRGB has plateaued. Since its
introduction in 2022, there has been a noticeable deceleration in progress. Considering a set of 30
models on the Peptides-func task, we observe a performance improvement by 6.5% in the first year,
but only by 1.3% in the second, and no significant gain in the third year (Gravina et al., 2025} Heilig
et al.,|[2025}; [Errica et al., [2024; |Gutteridge et al.| 2023; Dwivedi et al., 2022} |Tonshoff et al., [2023};
Giusti et al., [2023; Ma et al.| 2023a} |Shirzad et al., 2023; [Behrouz & Hashemil [2024; Wang et al.,
2024; [Eliasof et al., [2025; Ding et al., [2024; Ma et al., [2023bj} |Cai et al., 2023} |Glickman & Yahav,
2023 He et al., [2023; Rampasek et al., |2022; [Ngo et al., 2023} Michel et al., 2023}, |Geisler et al.,
2024 |Chot et al., [2024)). A similar trend exists for the other benchmark tasks as well.

Furthermore, a recent analysis on LRGB (Bamberger et al.l [2025b), as well as the benchmark’s
sensitivity to hyperparameter tuning (Tonshoff et al., 2023), raises additional concerns about the
long-range nature of its tasks. The analysis reveals that only a subset of tasks genuinely require longer
interactions, while the peptides tasks are effectively local. This highlights the need for more focused
benchmarks that explicitly and systematically test long-range propagation capabilities of GNNs.

C CHEMICAL SIMULATION TECHNICAL INFORMATION

This appendix provides detailed information on the computational pipeline used to derive partial
atomic charges in the ECHO-Charge dataset and total energies in ECHO-Energy. The pipeline
comprises three primary stages: (i) 3D structure generation from SMILES, (ii) quantum chemical
computation of partial charges, and (iii) geometry optimization.

3D Structure Generation from SMILES. Since subsequent charge optimization steps require
pre-optimized 3D coordinates, all structures were geometry-optimized prior to simulation using Open
Babel (O’Boyle et al., [2011)) and its Python interface, Pybel (O’Boyle et al., [2008)) Initial molecular
geometries were generated from SMILES strings using the General AMBER Force Field (GAFF)
(Grimme et al., 2010). GAFF was chosen over alternatives such as MMFF94 (Halgren, |1996)) due
to its favorable trade-off between accuracy and computational cost, and its strong performance in
predicting both energies and geometries. The optimization procedure involved 100 steps of coarse
minimization followed by 500 steps of local refinement for each molecule. The SMILES strings were
converted into 3D conformers, which were then minimized to yield low-energy structures. These
structures were exported in SDF format for subsequent compatibility. The average time required for
3D structure generation per molecule—considering only those satisfying the ECHO-Charge and
ECHO-Energy dataset diameter criteria—was 562 + 124 ms.

Quantum Chemical Computations with ORCA. To compute partial atomic charges and total
energies, we employed the ORCA quantum chemistry software suite (version 6.0.1) (Neesel 2022
2023; Neese et al., 2020). All calculations were performed using the B3LYP a hybrid density func-
tional (DFT) method that mixes Hartree—Fock exchange with Becke’s exchange and Lee—Yang—Parr
correlation functionals to balance accuracy and efficiency in quantum chemical calculations (Argaman
& Makov, [2000).
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Table 3: Mean time required for computation of partial charges of a single molecule with differ-
ent configuration of the ORCA tool. Variance is computed over 30 random molecules from the
ECHO-Charge/ECHO-Energy dataset. *Denotes the chosen basis set for DFT computation.

Method Setting Times (s)
HF -3¢ LooseSCF 10.4413
HF-3c TightSCF 28.1143

B3LYP def2-TzVP* (DFT) LooseSCF 146.5410.1
B3LYP def2-TzVP* (DFT) TightSCF 634.5.213

We provide a summary of required times for computation with both full DFT computations and HF
methods in Table [3] Under our configuration, the average runtime for a single quantum chemical
calculation was 634.5 4 21.3 seconds per molecule requiring ~ 2 months of computational time
on our hardware configuration. Simulation were run exploiting full thread parallelism provided by
ORCA.

Self-Consistent Field (SCF) Convergence Settings. To further improve the accuracy of the simula-
tions, we employed the Tight SCF setting in ORCA, which enforces tighter convergence thresholds
in the self-consistent field (SCF) procedure, thereby reducing numerical errors in the electronic
structure calculation.

Charge Extraction. Atomic partial charges were extracted using the Lowdin |Szabo & Ostlund
(1989) population analysis method. These charges were used as supervision signals in our dataset
generation pipeline.

D HARDWARE RESOURCES

All quantum chemistry simulations were conducted on a dual-socket Intel Xeon 6780E machine
with a total of 288 physical cores (144 cores per socket, 1 thread per core). Each socket is equipped
with 108MiB of L3 cache, for a combined 216MiB of shared L3 cache, along with 288MiB of L2
and 27MiB of L1 (data + instruction) cache across the system. The CPUs support AVX2 and FMA
instruction sets, enabling efficient linear algebra operations, which are critical for electronic structure
methods.

The machine is configured with two NUMA nodes, each associated with one of the sockets. Each
NUMA node has over 500GiB of local RAM for a total of approximately 1TiB of RAM. The high
memory capacity and bandwidth are critical for quantum chemistry workloads, particularly those
using density functional theory (DFT) or correlated wavefunction methods, which require extensive
memory for large basis sets and integral evaluations.

The large number of physical cores allowed us to parallelize over both molecular batches and
internal basis function evaluations, providing efficient scaling for density functional theory (DFT)
and semi-empirical calculations.

For model training and inference, we used a separate compute node equipped with 8 NVIDIA H100
GPUs.

E ADDITIONAL DATASET INFORMATION

We report in Table ] the detailed statistics of the proposed datasets. In Table[5 we provide a summary
of the input and target features used in the ECHO-Synth, ECHO-Charge, and ECHO-Energy
datasets. Figures ] [5]and [6] report detailed statistics on the structural properties of the graphs in the
datasets, including distributions of the number of nodes, number of edges, average node degree, graph
diameter, and node eccentricity. Additionally, Figure[/|illustrates the correlation between the number
of nodes and the graph diameter, highlighting structural differences between real and synthetic data.
These insights support the design choices for model evaluation across diverse graph regimes.
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Table 4: Statistics of the proposed dataset.

Dataset # Graphs Avg Nodes  Avg Deg. Avg Edges  Avg Diam # Node Feat # Edge Feat # Tasks
ECHO-Synth 10,080 83.69466.24 253+1.19 211.631209.30 28.50+6.92 2 None 3
line 1,680 75.60;&27,32 2.37:&0‘10 90-10i33.89 28-50i6.92 2 None 3
ladder 1,680  56.52413.82 2.9210.02 82.54420.72 28.5046.92 2 None 3
grid 1,680 193.10+93.10 2.95+0.12 28832414529 28.5046.92 2 None 3
tree 1,680 604211717 1.9640.01 5942411717 28.5046.92 2 None 3
caterpillar 1,680 347147.96 1.9440.02 33.71+7.96 28.50+6.92 2 None 3
lobster 1,680 81.79495.46 1.97+0.01 80.79+25.46 28.504+6.92 2 None 3
ECHO-Charge 170,367 724941248 2.0940.04 151.32425.16 23.5442.54 2 2 1
ECHO-Energy 196,528 73.73:{:13_22 2.09i0_04 153-84j:26.58 23.61i2_59 2 2 1

Table 5: Summary of dataset properties.

Dataset Node Features Edge Features Target
ECHO-Synth Random scalar, source indicator for sssp None diam, sssp, ecc
ECHO-Charge Atomic number, distance from center of mass  Bond type, bond length Partial charges
ECHO-Energy Atomic number, distance from center of mass  Bond type, bond length Total energy
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Figure 4: Statistics of the ECHOS dataset. The top panel shows dataset-level statistics across splits,
and the bottom plot shows the overall node eccentricity distribution.
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F HYPERPARAMETER SELECTION

Tables [6] to [16] report the hyperparameter search space and the best values selected for each task
(diam, ecc, sssp, ECHO-Charge, and ECHO-Energy) across the different GNN architectures
we considered. For details on specific hyperparameters, we refer the reader to the original papers.
Each table includes the name of the hyperparameter, its search range or categorical options, and the
optimal value obtained for each task, as identified through hyperparameter tuning on the validation
set.

Another strong evidence supporting the long-range nature of the ECHO benchmark, implicitly comes
from our hyperparameter optimization process. Specifically, Bayesian Optimization consistently
selected configurations with a large number of GNN layers. This suggests that, even without explicit
guidance, the hyperparameter optimization procedure identifies deeper models as necessary to
minimize validation error, further reinforcing the notion that the task demands long-range information
propagation.

Table 6: Hyperparameters and their best values across tasks for A-DGN.

Hyperparameter  Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers  [1 — 40] 27 28 40 34 16

Hidden dimension ~ [16 — 256] 68 65 45 130 216

Learning rate [107° —1072] 0.00101 0.00229 0.00473 0.00072 0.0085223
Weight decay [107% —107%] 0.00098 0.00000 0.00003 0.00001 0.00044851

€ [0.001 — 0.5] 0.19254 0.32934 0.10560 0.25667 0.4215

y [0.001 — 0.5] 0.41827 0.46803 0.21252 0.19499 0.15304

Graph convolution  [NaiveAggr, GCN] NaiveAggr NaiveAggr NaiveAggr GCN NaiveAggr

Table 7: Hyperparameters and their best values across tasks for DRew.

Hyperparameter  Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layerd’] 1—4] 4 4 4 4 3

k-hop [1-10] 10 10 10 10 10

Hidden dimension  [16 — 256] 249 78 119 232 241

Learning rate [107® —1073]  0.00037 0.00797 0.00126 0.00036 0.00023597
Weight decay [107® —107%]  0.00068 0.00011 0.00003 0.0 0.00001099
Employ delay [True, False] False False False True True

Table 8: Hyperparameters and their best values across tasks for GCNII.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers ~ [10 — 40] 32 39 30 37 21

Hidden dimension  [16 — 256] 81 40 64 33 103

Learning rate [107° — 1077 0.00260  0.00032  0.00005 0.00345 0.0047014
Weight decay [107% — 1079 0.00000  0.00009  0.00009 0.00002 0.000035227

o [0.0 —0.9] 0.70544  0.07902  0.04742  0.17158 0.10116

*While the layer search goes up to 4 layers, DRew performs multi-hop aggregation (up to 10 hops per layer),
yielding an effective receptive field of 4 x 10 = 40 hops, comparable to the ranges explored by the other
architectures.
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Table 9: Hyperparameters and their best values across tasks for GCN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers ~ [1 — 40] 26 40 26 8 9

Hidden dimension  [16 — 256] 48 42 40 109 160

Learning rate [107° —1072]  0.00007 0.00004 0.00023 0.00079 0.00052181
Weight decay [107® —107%]  0.00007 0.00009 0.00002  0.00002 0.000043613

Table 10: Hyperparameters and their best values across tasks for GIN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers  [10 — 40] 29 34 25 11 19

Hidden dimension  [16 — 256] 58 170 78 197 90

Learning rate [107° — 1077 0.00002  0.00003  0.00006 0.00002 0.000046134
Weight decay [107% — 1079 0.00003  0.00036  0.00091  0.00069 0.00046213

Table 11: Hyperparameters and their best values across tasks for GINE.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers  [1 — 40] - - - 22 31

Hidden dimension  [16 — 256] - - - 85 33

Learning rate [107° —107%] - — - 0.00014 0.0005028
Weight decay [107% —107%] - - - 0.00004 0.00033338

Table 12: Hyperparameters and their best values across tasks for GPS.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers (1 —40] 17 26 17 36 26

Hidden dimension (16 — 256] 40 56 162 216 192

Learning rate [107°—107%]  0.00004 0.00031 0.00034 0.00005 0.000024067
Weight decay (10~ 8 —107%] 0.00015  0.00029  0.00007  0.00005 0.00038179
GNN Backbone [GCN] GCN GCN GCN GCN GCN

Number of Backbone Layers  [1] 1 1 1 1 1

Number of attention heads 2] 2 2 2 2 2

Table 13: Hyperparameters and their best values across tasks for GraphCON.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers 1 — 40] 37 25 35 32

Hidden dimension  [16 — 256] 63 72 151 144 96

Learning rate [107° — 1077 0.00088 0.00013  0.00007 0.00292 0.00032

Weight decay [107% — 1079 0.00038  0.00001  0.00001  0.00026 0.00059

€ [0.001 — 1.0] 0.57880 0.95470 0.98433 0.78163 0.82108

Table 14: Hyperparameters and their best values across tasks for GRIT.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers (1 —40] 32 40 32 N/A N/A
Hidden dimension (16 — 256] 256 128 128 N/A N/A
Learning rate 107~ 107 0.00082 0.00048 000003 N/A N/A
Weight decay [107% —1077] 0.00032  0.00047 0.00001 N/A N/A
Attention dropout [0 —0.5] 0.433 0.008 0.014 N/A N/A
Number of attention heads 2] 2 2 2 N/A N/A
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Table 15: Hyperparameters and their best values across tasks PH-DGN.

Hyperparameter Search interval diam sssp ecc ECHO-Charge ECHO-Energy
Number of layers (1 —40] 17 37 21 14 10
Hidden dimension (16 — 256] 28 66 120 103 166
Learning rate [107° — 10 7 0.00150 0.00178 0.00037 0.00033 0.0038211
Weight decay [1078 —1077] 0.00054  0.00082 0.00081  0.00063 0.00044422
€ (0.001 — 1.0] 0.34977 0.16491 0.36140 0.68993 0.40992
e (0.01 —1.0] 0.47190 0.90892 0.63323 0.87607 0.15544
B8 (0.01 — 1.0] 0.70474 0.92918 0.99675 0.91251 0.11011
p conv mode [NaiveAggr, GCN] GCN GCN GCN GCN NaiveAggr
q conv mode [NaiveAggr, GCN] GCN GCN GCN NaiveAggr NaiveAggr
Doubled dimension  [True, False] False False True True false
Final state [p, 4, pd] Pq P pq Pq q
[param,
Dampening mode EZS;ZECLU’ param+ DGNReLU  param param+ param+
DGNReLU,]
External mode [MLP4Sin, DGNtanh] MLP4Sin  MLP4Sin MLP4Sin  MLP4Sin MLP4Sin

Table 16: Hyperparameters and their best values across tasks for SWAN.

Hyperparameter  Search interval diam sssp ecc ECHO-Charge ECHO-Energy

Number of layers  [1 — 40] 28 40 32 38 25

Hidden dimension  [16 — 256] 167 97 195 163 217

Learning rate [107° — 1072 0.00040  0.00107  0.00086  0.00063 0.00012157

Weight decay [10_8 - 10_3] 0.00057  0.00011 0.00010  0.00016 0.00028686

€ [0.001 — 1.0] 0.54847 0.45462  0.07451 0.38229 0.67265

¥y [0.001 — 0.5] 0.41480 0.28342 0.45928  0.07794 0.3156

B [-1.0—1.0] 0.34233  -0.20976  0.37682 -0.36245 -0.67256
[AntiSymNaiveAggr (ASNA),

Graph convolution  BoundedGCNConv (BGC), ASNA BNA BNA ASNA BNA
BoundedNaiveAggr (BNA)]

Attention [True, False] True False False False True
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G ADDITIONAL EXPERIMENTAL ANALYSIS

In this section, we investigate how the radius of the explored neighborhood influences the performance
of each method, as well as how the models perform across graphs with varying diameters. We also
analyze how the performance of the models change across different graph topologies and the influence
of the readout depth in ECHO-Synth.

G.1 LAYER-WISE PERFORMANCE ANALYSIS

In Figure[8] we evaluate the impact of the radius of the explored neighborhood (i.e., the number of
GNN layers) on test MAE across all tasks. We divide the results into three regimes: shallow (< 10
layers), medium (10-17 layers), and deep (> 17 layers). Therefore, in the shallow regime, GNNs
perform short-range propagation; in the medium regime, they capture medium-range dependencies;
and in the deep regime, they are able to model long-range interactions. A consistent pattern emerges
across most tasks: deeper networks, especially those tailored for long-range propagation, tend to
perform better, thus confirming the long-range nature of the proposed benchmarks. Specifically:

* On the diam task (Figure[8a)), performance trends are model-dependent. Long-range models
such as DRew and A-DGN remain stable or slightly improve, others like PH-DGN exhibit
a large performance improvement moving from shallow to medium depth regime. This
task, being graph-level and heavily reliant on global information by design, clearly benefits
from increased depth and non-dissipative architectures which are able to perform many
message-passing steps across multiple hops.

* For the ecc task (Figure [8b), we observe a consistent performance gain with increasing
depth across nearly all models. Again, long-range architectures like A-DGN and SWAN, or
the multi-hop GNN, DRew, show strong improvements in the deep regime, outperforming
the others. This aligns with the intuition that eccentricity, being a node-level but globally-
informed property, benefits from many message-passing layers to capture distant context,
highlighting the strength of long-range architectures.

* In the case of sssp (Figure|8c) we again observe strong depth-related improvements, with
the exception of GraphCON. Notably, SWAN, GPS, and DRew achieve large gains in the
deep regime. Traditional models such as GCN and GIN or GraphCON exhibit plateau or
degradation, revealing limited depth scalability.

* Finally, on the ECHO-Charge task (Figure[8d), the behavior differs. This task involves
precise regression of atomic partial charges, where small errors matter. Most models show
stable MAE across depths, except for GCN and GIN, which degrade significantly in the deep
regime. Importantly, models with explicit long-range message-passing capabilities (A-DGN,
SWAN, PH-DGN, GPS, and DRew) retain high accuracy even at > 17 layers. This suggests
their robustness in fine-grained, long-range molecular prediction tasks. We do not include
ECHO-Energy in this ablation, as it exhibited very similar behavior to ECHO-Charge.

Overall, the observed patterns reveal a clear correlation between the number of message-passing
layers and performance: models require many layers to perform well, confirming the long-range
nature of these benchmarks. Remarkably, architectures explicitly designed to support many message-
passing steps consistently outperform others, further confirming the long-range nature of our proposed
benchmarks.

G.2 PERFORMANCE ACROSS GRAPH DIAMETERS

Figure 9] reports, for the best configuration of each model (as selected during model selection), the
test MAE across varying graph diameters for all tasks. This analysis highlights how different models
handle increasingly long-range dependencies.

For the diam task (Figure @, most models show robust performance for small to moderate diameters,
with a slight increase in MAE for very large diameters. Notably, GCN, GraphCON and GCNII
architectures exhibits substantial degradation as diameter increases, suggesting poor scalability in
capturing global structure on many message-passing steps. Again, non-dissipative architectures
(i.e., A-DGN, PH-DGN, and SWAN), DRew and GPS remain consistently accurate across all graph
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Figure 8: Test MAE at different numbers of GNN layers across tasks.

diameters, demonstrating their capacity to generalize across different graph scales. Finally, we
observe that models with lower generalization capabilities tend to bias their predictions towards the
statistical mean of the dataset. Consequently, these models achieve low error rates in the central
range, where the ground truth aligns with the mean, but show high errors at the tails, as they fail to
distinguish graphs with extreme diameters from the average case.

The ecc task (Figure Ob) reveals a characteristic U-shaped curve. Performance improves as diameter
increases from small to moderate values, and deteriorates again for very large graphs. Here, all
models follow a similar trend, although A-DGN and GPS tend to dominate in the optimal range.
This patterns is highly correlated with the node eccentricity distribution depicted in Figure ] as it
follows a non-uniform distribution, creating an inverse relationship between sample frequency and
error. In particular, in the center of the plot, it is possible to see the GNNs that learn the dominant
pattern; in addition, simply predicting values close to the statistical mean minimizes the expected loss
in this dense region, and results in a lower error. Conversely, graph exhibiting lower eccentricities
are statistically less frequent, leading to a noticeable degradation of the performance across extreme
values.

In the sssp task (Figure 0c), increasing graph diameter consistently correlates with rising MAE.
Model performance divides into three groups, with GraphCON exhibiting the worst performance
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Figure 9: Test MAE for the best configuration of each model (as selected during model selection) at
different graph diameters across synthetic and molecular tasks.

both in terms of overall MAE and degradation with increasing diameter. GCN, GCNII, and GIN
show similar values across the task and similar degradation trends. Finally, non-dissipative models,
GPS Transformer and DRew, once again demonstrate remarkable and consistent performance even
on difficult graphs. This trend reinforces the long-range nature of the task, where deeper or more
expressive models are required to maintain strong performance.

On the molecular ECHO-Charge task (Figure @) test MAE consistent across all ranges, but subtle
trends emerge. Models like DRew and GPS show stability and even slight improvements for larger
molecular graphs, while GCN and GIN degrade more noticeably, confirming their limited capacity
to manage increasing molecular complexity. Interestingly, GINE performs substantially better than
its counterpart GIN, suggesting that edge-level attributes play a crucial role in the ECHO-Charge
regression task. Similarly to the previous ablation study, we do not include ECHO-Energy, as it
exhibited very similar behavior to ECHO-Charge. Additionally, we note that all models exhibit a
general performance drop when processing molecular graphs with a diameter greater than 35. We
attribute this behavior to the original ChEMBL dataset’s distribution, which includes fewer graphs
with diameters in the 35—40 range. This also impacts our ECHO-Charge dataset as illustrated in
Figure[5] As a result, models have limited opportunity to learn effective representations for such large
graphs, which likely contributes to the observed degradation.
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Overall, this complementary diameter-wise analysis underlines the necessity for architectures capable
of handling variable and large receptive fields. It also highlights that while shallow models may
perform competitively on small graphs, their limitations become apparent in regimes requiring
long-range reasoning.

G.3 IMPACT OF READOUT LAYER DEPTH

To examine the impact of the readout depth, we conducted an experiment varying the depth of the
readout (from 1 to 3 layers) on the ECHO-Synth tasks. Table[I7]presents the performance of a GCN
with varying readout layers. The results indicate that increasing the readout depth to three layers does
not improve GCN performance on the synthetic tasks. Therefore, the final performance appears to be
independent of the readout depth. Since the additional layer does not yield measurable benefits, we
consider the increased model complexity unjustified. For this reason, we retain a two-layer readout to
prioritize computational efficiency and performance.

Table 17: Ablation study on Readout Depth for GCN on ECHO-Synth tasks. Metrics are reported as
Mean Absolute Error (MAE) 4 Standard Deviation.

Model diam | ecc | sssp |

GCN (1 layer readout) 6-219:I:0.387 5.493:|:0_007 2.367:|:0_083
GCN (2 layers readout) 3.832:‘:0‘262 5.233:|:0‘034 2.102:&0.094
GCN (3 layers readout) 5.743104009 5-172i0.091 2-075i0.545

G.4 PERFORMANCE ACROSS DIFFERENT GRAPH TOPOLOGIES

In this section we analyze the models’ performance on different graph topologies in ECHO-Synth.
Figures [0} [TT] and [T2] show respectively diam, ecc and sssp. The results show that although
absolute performance varies slightly with the underlying graph topology (e.g., GPS performs better
on lobster graphs than on tree-like topologies in SSSP), the relative ranking of models remains
consistent, reinforcing the robustness of our findings. Interestingly, we observe that the line topology
is consistently the most challenging one. This is expected: in a line graph, every message must pass
through a sequence of intermediate nodes, making each node a critical bottleneck for information
propagation and amplifying the need for long-range communication.
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Figure 10: Results by different topologies on diam task.
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Figure 11: Results by different topologies on ecc task.

Model

v v
6 @ A-DGN
v v v A DRew
5 2 @ GCN
+ GCNII
4 ® GIN
O GINE
5 8 GPS
=3 © GRIT
. $ (®) g V  GraphCON
2 u @ = *  PH-DGN
) 2 ]
& ¢ SWAN
Y
e ¥ $ $ 8 ¢
% %
0 o o o o o o
Caterpillar Line Grid Ladder Lobster Tree
Graph Topology

Figure 12: Results by different topologies on sssp task.

H EXTENDED RESULTS

In Table[I8] we report additional result on ECHO-Synth benchmark. In particular we report MAE,
MSE and loss (defined as log;,(MSE)) obtained on the test set. Similarly, we report the same metrics
for ECHO-Charge and ECHO-Energy in Table[I9and Table[20] respectively.
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Table 18: Test performance (mean + std) of different models across ECHO-Synth tasks. Lower is
better. In bold the best model.

Model Test Loss | Test MSE | Test MAE |
diam
A-DGN —2.531+0.010 4.81840.10s 1.1514+0.038
DRew —2.635;}:0020 3.756;‘:0‘170 1~243:|:04047
GCN —1.84810.051 22.87212 766 3.8324+0.262
GCNII —2.227;|;0A026 9.696i0568 2-005:|:04093
GIN —2.356+0.066 7.23841.153 1.630+0.161
GPS —2.19240.025 10.45410.610 2.1604+0.098
GraphCON —1.99540.037 16.427 11 419 2.96910.189
PH-DGN —2.416;[:0181 6‘699:[:2728 1.627:&0_398
SWAN —2.517+0.023 4.95040.265 1.12140.070
ecc
A-DGN —1.649+0.006 35.967+0.492 4.98140.037
DRew —1.696i0,002 32-247i0.148 4.651i0,020
GCN —1.606+0.005 39.706+0.460 5.23340.034
GCNII —1.603+0.006 3991140518 5.24140.030
GIN —1.668+0.015 34.454 11 201 4.869+0.092
GPS —1.68240.003 33.346+0.226 4.75840.021
GraphCON —1.566:{:0‘001 43.505;&),017 5.474:{:0‘001
PH-DGN —1.630+0.017 37.510+1 416 5.068+0.126
SWAN —1.671+0.007 34.208.10 578 4.84040.045
sssp
A-DGN —2.566+0.089 4.42540.879 1.17640.140
DRew —2.386+0.001 6.58940.015 1.27940.011
GCN —2.217:&0033 9.743:‘:0,757 2.102i0_094
GCNII —2.213+0.177 10.3694+3.575 2.12840.429
GIN —2.13840.090 11.86812.689 2.23410.2071
GPS —3.11540.0a40 1.25510.113 0.47240.050
GraphCON —1.4883:0,000 52-104i0.016 5-734:l:0.011
PH-DGN —2.61640.317 4.65613.013 1.32310.485
SWAN —2.78240.205 2.9054+1.556 0.89640.232

Table 19: Test performance (mean + std) of different models across the ECHO-Charge task. Lower
is better. In bold the best model. Test loss (log;,(MSE)) is computed on the normalized dataset,
while test MSE and test MAE are reported on the original (non-scaled) data.

Model Test Loss | Test MSE x10* | Test MAE x10% |
A-DGN -3.8404+0.009 1.456+0.032 6.54340.146
DRew -3.444i04054 3.669i0,459 9.086i0,473
GCN -3.508+0.086 3.126 +0.263 8.421410.512
GCNII -3.462i0‘019 3.490i0.147 8.829i0,021
GIN -3.24540.038 5.750+0.239 10.784+0.059
GINE -3.648i04020 2.284i0A402 7.176i0,371
GPS -3.82140.018 1.62040.065 6.18210.219
GraphCON -2.879i0‘009 13-256i04265 19.629i0‘195
PH-DGN -3.59510.024 2.56240.144 7.915+0.269
SWAN -3.907 10027 1.25110.029 6.109-0.103
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Table 20: Test performance (mean =+ std) of different models across the ECHO-Energy task. Lower
is better. In bold the best model. Test loss (log;,(MSE)) is computed on the normalized dataset,
while test MSE and test MAE are reported on the original (non-scaled) data.

Model Test Loss | Test MSE x10% | Test MAE x102 |
A-DGN -4.85710.083 1.415i0,799 012510.016
DRew —5.007i0231 1.281i0A733 0.1 13i0A024
GCN -4.21040.010 4.56140.176 0.281+0.012
GCNII -4.884 10196 1.560+0.653 0.13210.026
GIN -3.800+0.160 12.21542.878 0.479+0.102
GINE -4.418+0.265 5.22512 536 0.23640.076
GPS -5.78610.118 0.180i0,045 0-053i0.008
GraphCON  -4.817+0.089 0.975+0.242 0.14310.008
PH-DGN -4.717+0.046 1.35940.40s 0.161+0.011
SWAN -4.82510.107 2.65215.057 0.12610.012
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I RUNTIMES

To assess the computational efficiency and predictive performance of all models, we report both
training and inference runtimes measured on a NVIDIA H100 GPU, as well as the mean absolute
error (MAE) across tasks in the ECHO benchmark (see Table @) Training time is measured as the
average per-epoch duration over 10 epochs, while inference time is computed as the average forward
pass duration over 10 independent runs on the test set, using a batch size of 512. The three metrics
correspond to the best hyperparameter configuration selected for each model. This comprehensive
evaluation allows a direct comparison of models not only in terms of accuracy but also with respect to
their scalability and practical deployability. We note that DRew’s reported runtime does not include
the preprocessing step, which involves computing the Floyd—Warshall algorithm (Cormen et al.,
2009), a procedure with cubic time complexity in the number of nodes.

Table 21| highlights that while transformer-based models like GPS achieve strong performance on
long-range tasks, particularly on the real-world ECHO-Charge/ECHO-Energy dataset, they do so
at the cost of significantly higher computational overhead. In contrast, architectures such as SWAN
and A-DGN strike a more favorable balance between efficiency and accuracy, suggesting the potential
of non-dissipative DE-GNNSs in overcoming the limitations of standard message passing.

Table 21: Training and inference runtime (in seconds, mean =+ standard deviation) on the ECHO Bench-
mark. Results for ECHO-Synth were measured on an NVIDIA H100 GPU, while ECHO-Charge
and ECHO-Energy were measured on an NVIDIA L40S GPU. Training time refers to the average
time per epoch computed over 10 epochs. Inference time refers to the forward pass on the test
set, computed over 10 independent runs. In both cases the batch size is set to 256. For each task,
the reported values correspond to the best configuration of each model as selected during model
selection. To ease comparison, we also report the performance of each model alongside its runtime.
Note that ECHO-Charge MAE values should be multiplied by x10~2 for correct interpretation.
DRew’s reported runtime does not include the pre-processing step, which involves computing the
Floyd—Warshall algorithm, a procedure with cubic time complexity in the number of nodes.

Metric Model diam sssp ecc ECHO-Charge ECHO-Energy
Training (s) 1.43040.100 1.46040.130 1.71040.070 12.84740.543 36.47640.400
Inference (S) A-DGN 0.028:&0,002 0.018i0.001 0.027i0.001 0.191:&0,193 2.124;{0,197
MAE 1.15140.038 1.176+0.140 4.981+0.037 6.54310.146 12.486 11,621
Training (5) 1.920i0_050 1.880i0_060 1.760i0_100 17.648:&0‘325 17-318i1.061
Inference (s) DRew 0.100+0.001 0.043+0.001 0.057+0.002 0.606+0.557 0.8474+0.563
Pre-processing (s) 48.108+40.943 48.108+40.943 48.108+40.943 345.379+1.592 404.337+1.601
MAE 1.24310.047 1.27940.011 4.651+0.020 9.086+0.473 11.32542.3094
Training (S) 1.700i0.050 1.830i0.020 1.620:&0.110 19'013i0,286 23~039i0.89
Inference (b) GCNII 0‘071:&0‘002 0‘062:&0‘001 0‘059:&0‘001 0.829:&0,728 1‘466i0.982
MAE 2.005+0.093 2.12840.429 5.241+0.030 8.829+0.021 13.2354+2.630
Training (s) 1.480+0.060 1.790+0.060 1.4504+0.100 9.418+0.388 8.97640.49
Inference (s) GCN 0.048+0.001 0.065+0.003 0.046+0.002 0.3764+0.472 0.38540.388
MAE 3.83240.262 2.102+0.004 5.2334+0.034 8.42140.512 28.11241 239
Training (s) 1.41040.220 1.370+0.060 1.340+0.040 9.066+0.509 10.25940.471
Inference (S) GIN 0‘020:&0‘001 O‘Olgiolgol 0‘016:&0‘001 0.065:&0,043 O~550i0.769
MAE 1.630+0.161 2.23440.271 4.869+40.092 10.78440.059 47.851410.154
Training (s) N/A N/A N/A 18.978 1 0.778 13.61540.619
Inference (s) GINE N/A N/A N/A 0.13840.003 1.31141 834
MAE N/A N/A N/A 7.176+0.371 23.558 47 568
Training (s) 9.72040.070  14.58040.210 11.96010.0s0 513.908410.777  383.79441. 975
Inference (S) GPS 4.536:&0‘005 7.026;&0,001 6~235i0.076 34.264;&2(416 89.699i5‘475
MAE 2.16040.098 0.47210.050 4.758 £0.021 6.18240.219 5.25710.842
Training (s) 0.99040.120 0.92040.040 0.94040.190 7.47110.429 9.037+0.79
Inference (s) GraphCON 0.00640.001 0.004+0.001 0.006+0.001 0.14640.218 0.18840.218
MAE 2.969+0.189 5.73440.011 5.474+0.001 19.62940.195 14.295+0.807
Training (s) 2.840+0.060 4.4804-0.060 3.01040.060 39.40541 753 49.09941.186
Inference (S) PH-DGN 0.180i0.011 0.375i0.002 0.299:&0.005 1.218i0,535 2~311i0.560
MAE 1.62710.398 1.32310.485 5.06810.126 7.91540.269 16.08041.123
Training (s) 2.330+0.120 2.130+0.050 2.090+0.110 40.77140.317 20.520+0.468
Inference (s) SWAN 0.20340.002 0.09940.001 0.1684+0.001 0.59540.520 1.873+0.101
MAE 1.12140.070 0.896+0.232 4.84040.045 6.10910.103 12.629+0.507
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Figure 13: Visualization of the first-layer GPS attention scores in sssp for the Ladder and Lobster
topologies, averaged across all heads. The top 40 attention-weighted node pairs are highlighted in
color, while the original graph topology is shown in black.

J  VISUALIZATION OF GPS ATTENTION PATTERNS

In this section, we analyze the attention patterns of the GPS model within the sssp task. These
patterns are illustrated in Figure [I3] We observed that, starting from the first layer, the highest
attention scores are often assigned to pairs of nodes that are not directly connected and that are usually
far apart in the underlying graph. Notably, the model appears to identify one or a few nodes as central
hubs that aggregate and redistribute information from these distant nodes. This mechanism effectively
reduces the maximal traversal distance to only few hops, allowing distant nodes to communicate more
easily. Therefore, this mechanism effectively reveals how the model routes long-range communication
through structural shortcuts, thus confirming the long-range nature of the proposed tasks.

K EVALUATING Ecc LONG-RANGEDNESS WITH [LIANG ET AL.|(2025) METRIC

In Figure [T4] we tested the metric for evaluating the long-rangedness proposed in 2025)
on ecc, which shares the same objective as (Liang et al[2025)), and it is long-range by design. We

found that the same model configuration produces substantially different measures of long-rangedness
when evaluated with trained versus randomly initialized weights. This variability suggests that, while
the metric can be used to measure the relative long-rangedness between different models when the
dataset is fixed, it may not be used, per-se, to measure the absolute long-rangedness of a specific
dataset (and to confront it with others).
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