

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN YOU HEAR ME NOW? A BENCHMARK FOR LONG-RANGE GRAPH PROPAGATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Effectively capturing long-range interactions remains a fundamental yet unresolved challenge in graph neural network (GNN) research, critical for applications across diverse fields of science. To systematically address this, we introduce ECHO (Evaluating Communication over long HOps), a novel benchmark specifically designed to rigorously assess the capabilities of GNNs in handling very long-range graph propagation. ECHO includes three synthetic graph tasks, namely single-source shortest paths, node eccentricity, and graph diameter, each constructed over diverse and structurally challenging topologies intentionally designed to introduce significant information bottlenecks. ECHO also includes two real-world datasets, ECHO-Charge and ECHO-Energy, which define chemically grounded benchmarks for predicting atomic partial charges and molecular total energies, respectively, with reference computations obtained at the density functional theory (DFT) level. Both tasks inherently depend on capturing complex long-range molecular interactions. Our extensive benchmarking of popular GNN architectures reveals clear performance gaps, emphasizing the difficulty of true long-range propagation and highlighting design choices capable of overcoming inherent limitations. ECHO thereby sets a new standard for evaluating long-range information propagation, also providing a compelling example for its need in AI for science.

1 INTRODUCTION

Graphs are fundamental data structures used extensively to represent complex interconnected systems, ranging from social networks and biological pathways, to communication infrastructures and molecular structures. Graph Neural Networks (GNNs) (Sperduti, 1993; Gori et al., 2005; Scarselli et al., 2008; Micheli, 2009; Bruna et al., 2014; Defferrard et al., 2016) have emerged as a successful methodology within deep learning, whose research community was initially driven by the development of diverse architectures capable of capturing intricate relational patterns inherent to graph-structured data, as well as impactful applications across various domains (Hamilton et al., 2017; Derrow-Pinion et al., 2021; Gravina et al., 2022; Gravina & Bacciu, 2024; Khemani et al., 2024).

More recently, the research community has shifted its focus towards understanding and overcoming fundamental limitations of the message-passing paradigm underlying GNNs. This shift has been driven by the observation that effectively propagating information over long distances in graphs remains a significant challenge. Such challenges have been formally linked to phenomena like over-smoothing (Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al., 2023), over-squashing (Alon & Yahav, 2021; Di Giovanni et al., 2023), and more generally, vanishing gradients (Arroyo et al., 2025), all of which hinder GNN performance in tasks that require capturing long-range dependencies.

Currently, we are in the stage in which such pioneer theoretical studies need consolidation, while looking into methodological advancements that can surpass or mitigate such shortcomings. A key enabler of this progress is the establishment of solid and challenging benchmarks that can accurately assess and validate long-range propagation capacities. The availability of controlled synthetic benchmarks, should be complemented by the introduction of compelling application-driven datasets which can clearly demonstrate the practical advantages of addressing long-range propagation issues. Long-range propagation capacities, in this sense, have been noted to be central in key areas of science, such as in biology (Dwivedi et al., 2022; Hariri & Vandergheynst, 2024), biochemistry (Gromiha & Selvaraj, 1999), and climate (Lam et al., 2023).

Existing graph benchmarks have, instead, focused primarily on short to medium-range tasks (Bojchevski & Günnemann, 2018; Shchur et al., 2018; Wu et al., 2018; Sterling & Irwin, 2015; Wale & Karypis, 2006; Hu et al., 2020a; Dwivedi et al., 2023), often overlooking the unique challenges associated with distant information propagation. More recently, the growing interest in this challenge has motivated the community to develop a few benchmarks specifically designed to evaluate information propagation in GNNs. These include the Long-Range Graph Benchmark (LRGB) (Dwivedi et al., 2022) and the Graph Property Prediction (GPP) dataset (Gravina et al., 2023). While this is a significant step forward compared to earlier benchmarks, it does not fully account for the need to capture the true long-range dependencies present in some real-world applications. This is due to limited size of the graphs, the absence of well-defined conditions on the expected propagation range, and the focus of the benchmarks, which is often more aimed at specific issues of over-smoothing and over-squashing, rather than providing a broader evaluation of long-range propagation capabilities. Moreover, LRGB and GPP tasks are facing a natural performance saturation, as novel methodologies are being developed and optimized on them.

Motivated by this, we introduce **ECHO** (Evaluating Communication over long HOps), a new benchmark designed to assess the capabilities of GNNs to exploit long-range interactions. **ECHO** consists of three synthetic tasks and two real-world chemically grounded task. The former are designed to provide a controlled setting to assess propagation capabilities. They comprise the prediction of shortest-path-based graph properties (i.e., node eccentricity, single-source shortest paths, and graph diameter) across a diverse graph topologies. These have been defined to increase the difficulty of effective long-range communication, as they present structural bottlenecks for the information flow. The main characteristic of these tasks is that GNNs must heavily rely on global information and effectively learn to traverse the entire graph, similarly to classical algorithms like Bellman-Ford (Bellman, 1958). The real-world tasks target the prediction of molecular total energy and the long-range charge redistribution in molecules, which are critical and practically relevant challenges in computational chemistry (Dupradeau et al., 2010), as they underlie many fundamental processes such as chemical reactivity, molecular stability, and intermolecular interactions. Accurate modeling of these effects is essential for drug design, materials science, and biology understanding.

Our contributions can be summarized as follows:

- We introduce **ECHO**, a novel benchmark featuring five new tasks specifically designed to evaluate the ability of GNNs to effectively handle long-range communication in both synthetic and real-world settings. **ECHO** includes three synthetic tasks (collectively referred to as **ECHO-Synth**) with a total of 10,080 graphs, and two real-world task (**ECHO-Charge** and **ECHO-Energy**) comprising 196,545 graphs, where the required propagation ranges from 17 to 40 hops.
- We propose **ECHO-Charge** and **ECHO-Energy**, two novel benchmark tasks designed to capture long-range atomic interactions in molecular graphs. Specifically, **ECHO-Charge** is a dataset for predicting atomic charge distributions, while **ECHO-Energy** focuses on predicting the total energy of a molecule. Both tasks are built on Density Functional Theory (DFT) (Argaman & Makov, 2000) calculations, ensuring quantum-level accuracy. This makes them particularly suitable for evaluating long-range message passing in GNNs, since both charge redistribution and molecular energy depend on subtle, non-local effects. Beyond benchmarking, these datasets also address central challenges in computational chemistry, where modeling long-range interactions remains difficult and computationally expensive, as evidenced by the ≈ 2 months of parallel DFT computations required to generate our benchmark on the given hardware configuration.
- We present a detailed analysis to demonstrate that the tasks in **ECHO** genuinely capture long-range dependencies, providing a rigorous evaluation of GNNs' ability to propagate information over extended graph distances.
- We conduct extensive experiments to establish strong baselines for each task in **ECHO**, providing a comprehensive reference point for future research on long-range graph propagation.

2 ON THE NEED FOR A NEW BENCHMARK

We now elaborate on the need for novel benchmarks specialized on the evaluation of long-range propagation, in relation to existing datasets.

108 The most widely used benchmark for assessing these capabilities is arguably LRGB (Dwivedi et al.,
 109 2022). Its introduction in 2022 has certainly marked an important milestone and promoted the
 110 development of the field. However, despite initial rapid improvements, performance on LRGB has
 111 now plateaued, showing a noticeable deceleration in progress across the last year, as discussed in
 112 Appendix B. In addition to this, it has to be noted that recent works (Tönshoff et al., 2023; Bamberger
 113 et al., 2025b) questions the long-range nature of several LRGB tasks, revealing that a subset of tasks
 114 is inherently local, rather than requiring long-range diffusion, and that the benchmark itself is highly
 115 sensitive to hyperparameter tuning. Other benchmarks propose synthetic tasks on generated structures,
 116 including the Tree-Neighborhood (Alon & Yahav, 2021), Graph Property Prediction (Gravina et al.,
 117 2023), graph transfer (Di Giovanni et al., 2023; Gravina et al., 2025), GLoRA (Zhou et al., 2025),
 118 and Barbell and Clique graphs (Bamberger et al., 2025a). Indeed, most of these tasks are originally
 119 designed to address narrow challenges that prevent long-range propagation, such as over-smoothing
 120 (Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al., 2023) and over-squashing (Alon & Yahav,
 121 2021; Di Giovanni et al., 2023). These phenomena, while related, do not necessarily capture the
 122 full spectrum of challenges associated with long-range communication. Moreover, despite being
 123 designed to test the ability of GNNs to overcome these limitations, these datasets typically involve
 124 small graphs with limited-size diameters. This inherently restricts the propagation radius, creating
 125 a significant gap between the benchmark tasks and real-world problems that require much deeper
 propagation across significantly larger structures.

126 The limitations above suggest the need for a new benchmark that reflects the challenges and oppor-
 127 tunities in long-range GNN research. An effective benchmark should provide tasks that explicitly
 128 test a model’s ability to traverse extensive graph structures, effectively aggregate global information,
 129 and adapt to diverse topological constraints. Moreover, as the field has matured and a wide range of
 130 models have been established, ranging from graph transformers (Shi et al., 2021; Rampášek et al.,
 131 2022) to multi-hop GNNs (Abu-El-Haija et al., 2019; Gutteridge et al., 2023) and others (Shi et al.,
 132 2023), it seems timely to introduce a new benchmark that can accurately assess the long-range
 133 propagation skills of these families of models, now that they are well understood and consolidated.

134 ECHO addresses this scenario by a suite of synthetic and real-world tasks with clearly defined long-
 135 range propagation needs, providing a clear target for the evaluation of this property. ECHO tasks
 136 require computing shortest paths between all nodes, long-range charge redistribution, or molecular
 137 total energies, with clearly defined propagation ranges between 17 and 40 hops, depending on the
 138 specific graph structure. This explicit range ensures that models failing to capture dependencies
 139 within this span are underreaching and have poor long-range capabilities.

140 The ECHO-Charge and ECHO-Energy molecular tasks have strong value per se, proposing
 141 a novel, practical, and high-impact challenge for learning models in computational chemistry
 142 (Dupradeau et al., 2010). Previous popular benchmarks in this domain (Sterling & Irwin, 2015; Wale
 143 & Karypis, 2006; Hu et al., 2020a; Wu et al., 2018; Dwivedi et al., 2022) focused on the prediction of
 144 molecular-level properties, such as solubility or HIV inhibition, which are predominantly short-range
 145 tasks. This is evident when they can be reduced to the problem of counting small-dimensional local
 146 substructures (i.e., with length smaller than 7) (Bouritsas et al., 2023). Differently, ECHO-Charge
 147 and ECHO-Energy are the first graph benchmarks that targets long-range interactions at the atomic
 148 level, i.e., the microscopic scale. Both benchmarks are not only inherently long-range, but also par-
 149 ticularly challenging as they require accurate modeling of charge distributions, energy stabilization,
 150 and the complex interplay of atomic interactions. This makes them computationally expensive to
 151 solve with current computational chemistry tools. We provide further details on the computational
 complexity of the underlying quantum simulations in Appendix C.

152 Therefore, ECHO-Charge and ECHO-Energy set a new standard for evaluating long-range graph
 153 information propagation, as well as they provide a compelling application of AI for science and
 154 chemistry, enabling faster predictions with potential impact on drug/material design or understanding
 155 biological functions.

157 **Contemporaneously with our work, Liang et al. (2025) proposed a synthetic benchmark, which we**
 158 **view as a complementary effort to our ECHO in addressing the long-range propagation problem.**
 159 **While Liang et al. (2025) focuses on a single synthetic task on large graphs (up to 569k nodes), our**
 160 **ECHO benchmark proposes five tasks (as discussed before) that provide a controlled setting to assess**
 161 **propagation capabilities, are inherently long-range, and extend beyond current standards. Our goal is**
to provide a practical, accessible benchmark that balances long-range complexity and usability for

162 the broader community, avoiding digital divide concerns while still reflecting real-world scientific
 163 challenges.

165 3 THE ECHO BENCHMARK

168 In this section, we introduce a suite of datasets designed to rigorously evaluate the long-range
 169 information propagation capabilities of GNNs. Our benchmark consists of two complementary
 170 components: a set of algorithmically constructed tasks and a set chemically grounded real-world
 171 datasets. Detailed dataset statistics are reported in Appendix E.

172 The synthetic component includes classical graph-theoretic problems (i.e., single-source shortest
 173 path, node eccentricity, and graph diameter) posed across diverse graph topologies designed to induce
 174 structural bottlenecks and challenge multi-hop message passing. These tasks isolate long-range
 175 dependencies and enable controlled analysis of model behavior under varying topological conditions.

176 The proposed real-world benchmarks target practically relevant and physically grounded tasks in
 177 computational chemistry: ECHO-Charge focuses on predicting long-range charge redistribution at
 178 the atomic level, while ECHO-Energy addresses the prediction of molecular total energies. Both
 179 problems are rooted in electronic structure modeling, reflecting realistic quantum phenomena such
 180 as charge transfer and energy stabilization, and build upon prior work in quantum-accurate deep
 181 learning models for molecular systems (Ko et al., 2021; Zhang et al., 2022).

182 3.1 THE ECHO-SYNTH DATASET

184 The algorithmic dataset is designed to benchmark GNNs on tasks that require long-range information
 185 propagation across a diverse set of graph topologies. It focuses on three graph property prediction
 186 tasks: **Single Source Shortest Path** (`sssp`), **Node Eccentricity** (`ecc`), and **Graph Diameter**
 187 (`diam`). Among these, `sssp` and `ecc` are node-level tasks requiring the prediction of a scalar value
 188 per node, while `diam` is a graph-level task requiring a single prediction for the entire graph. We refer
 189 to this dataset as ECHO-Synth.

190 These tasks [draw inspiration from](#) (Corso et al., 2020; Gravina et al., 2023)¹ and were intentionally
 191 selected due to their heavy reliance on global information. For example, solving `sssp` from a
 192 given source node requires identifying shortest paths to all other nodes (Dijkstra, 2022), since the
 193 information spans the entire graph. Eccentricity builds on this by requiring the longest shortest path
 194 from each node, demanding complete graph awareness. Diameter is even more global, involving
 195 the longest shortest path between *any* two nodes (Cormen et al., 2022). Classical algorithms like
 196 Dijkstra’s (Dijkstra, 2022) and Bellman-Ford (Bellman, 1958), which perform complete graph
 197 traversal, illustrate the challenge these tasks pose for GNNs, which rely on localized message passing.
 198 To prevent models from relying on input features rather than learning structural patterns, each node is
 199 assigned a uniformly distributed random scalar feature $r \sim \mathcal{U}(0, 1)$.² Additionally, for the `sssp` task,
 200 a binary indicator is included to mark the source node. This ensures that the model can distinguish
 201 the source while maintaining uniform input statistics across tasks.

202 **Dataset Construction.** This dataset includes six distinct families of graph topologies i.e., line, ladder,
 203 grid, tree, caterpillar, and lobster (see Figure 1), each selected to highlight different structural and
 204 propagation characteristics. The `line` graph (Figure 1 (a)) serves as a simple but non-trivial baseline.
 205 To introduce non-local interactions, we modify it with stochastic residual connections: each node
 206 has a 20% chance of forming an edge to another node 2–6 hops away. Building on this, the `ladder`

207 ¹While ECHO-Synth draws inspiration from (Corso et al., 2020; Gravina et al., 2023), it departs from them in
 208 a key aspect. Both (Corso et al., 2020) and (Gravina et al., 2023) use small graphs that are mostly sampled from
 209 distributions that yield highly connected structures with small diameters and limited long-range dependencies.
 210 In contrast, ECHO-Synth is explicitly designed to rigorously stress-test long-range capabilities, leveraging larger
 211 graphs and employing topologies deliberately designed to introduce bottlenecks, i.e., requiring substantially
 212 more propagation steps for accurate predictions. These design choices significantly increase the long-range
 213 difficulty of the tasks, making ECHO-Synth a more rigorous benchmark for evaluating long-range propagation.

214 ²We opted for random uniform node features rather than zero vectors to introduce stochasticity (which makes
 215 the synthetic tasks less trivial), and to provide a unique identifier for the nodes in the tasks and prevent the
 trivial scenario in which all nodes share identical initial representations, hindering the expressiveness of certain
 architectures (Sato et al., 2021).

Figure 1: Visualization of the proposed topologies in the synthetic dataset. In all graphs, $N = 30$

topology (Figure 1 (b)) consists of two parallel `line` graphs connected by one-to-one cross-links, enabling richer routing possibilities and redundancy in message pathways. The `grid` topology (Figure 1 (c)) represents a 2D lattice structure where edges are independently removed with a 20% probability. This results in irregular neighborhoods and broken spatial symmetries.

To model hierarchical structures, we include `tree`-structured graphs (Figure 1 (d)) generated through preferential attachment. A new node connects to an existing one with probability proportional to k_i^α , where k_i represents the degree of the i -th node (with $\alpha = 3$), leading to the formation of high-degree hubs and reflecting connectivity patterns often seen in natural networks. The `caterpillar` topology (Figure 1 (e)) augments a central linear backbone with peripheral nodes attached randomly along the spine, combining features of chain-like and tree-like graphs to create moderate branching and directional flow. Extending this idea, the `lobster` graph (Figure 1 (f)) adds a third hierarchical layer: nodes in the outermost layer connect only to intermediate nodes, resulting in deeper branching while preserving an overall elongated structure. This configuration is especially useful for testing the limits of multi-hop message passing under structured constraints. Beyond their long-range dependencies, the complexity of the synthetic tasks is further increased by the presence of **topological bottlenecks**, which pose significant challenges to GNN based on message passing (Gilmer et al., 2017). Bottlenecks emerge in graphs where information flow between distant nodes is constrained to pass through a small subset of intermediary nodes, thereby restricting the bandwidth of information flow. This structural constraint can increase the risk of *over-squashing*, a phenomenon in which exponentially growing information is aggregated into the low-dimensional node representations (Alon & Yahav, 2021). As a result, critical signals may be compressed or lost during propagation, severely limiting the model’s capacity to distinguish and preserve meaningful long-range interactions (Topping et al., 2022; Di Giovanni et al., 2023).

Graph families in synthetic dataset are explicitly designed to expose models to such bottlenecks. For example, in the `line` topology information between distant nodes must propagate sequentially through a single path, making each node along the path a critical bottleneck. Similarly, `tree`-structured graphs inherently introduce bottlenecks at branch points and hierarchical layers, where entire subtrees depend on narrow pathways for communication with the rest of the graph. The `caterpillar` and `lobster` graphs further reinforce this pattern by adding additional peripheral layers while maintaining centralized backbones, exacerbating the bottleneck effect in their hierarchical layouts. Even in the more uniform `grid` topology, bottlenecks are implicitly introduced through random edge deletions, which can disrupt regular pathways and force information to traverse suboptimal and congested routes.

Dataset Split. To support robust evaluation, we generate graphs with target diameters in the range $d \in [17, 40]$, capturing diverse long-range interaction scenarios. For each of the six graph topologies and each diameter value, we produce 70 unique graphs, yielding a total of $70 \times 24 \times 6 = 10,080$ graphs. To ensure consistent and unbiased evaluation, we partition these graphs into training, validation, and test splits in a stratified manner. Specifically, for each topology and diameter combination, we assign 40 graphs to the training set, 15 to the validation set, and 15 to the test set. This strategy guarantees that all splits share the same distribution over both graph topologies and diameter values, which are uniformly sampled. Consequently, models are evaluated on data that is statistically aligned with the training set, avoiding distributional shifts and ensuring fair comparison across methods.

270 3.2 ECHO-CHARGE AND ECHO-ENERGY DATASETS
271

272 Molecular property prediction is a cornerstone application of GNNs, with common benchmarks
273 involving graph-level prediction tasks such as molecular fingerprint (Duvenaud et al., 2015), solubility,
274 toxicity and various chemical properties (Coley et al., 2017; Hu et al., 2020c). One fundamental
275 task in this domain is the prediction of atomic partial charges, which are continuous, atom-level
276 properties that reflect the electron distribution within a molecule. Accurate charge prediction is
277 essential for modeling molecular interactions, reactivity, and electrostatic behavior. Figure 2 illus-
278 trates this task on the 3D molecular graph of caffeine, where each atom is colored according to
279 its predicted partial charge. Complementary to this, another central quantum property of molec-
280 ular systems is the total energy, which governs stability, chemical reactivity, and conformational
281 preferences. Thus, predicting molecular energies is equally important for chemistry applications.
282 Traditionally, both atomic charges and molecular energies are
283 computed using quantum mechanical methods, especially Den-
284 sity Functional Theory (DFT) (Argaman & Makov, 2000) or
285 related quantum chemical simulations. While these methods
286 provide high accuracy, their computational cost, arising from
287 solving complex equations, limits their scalability to large
288 molecular datasets or high-throughput tasks. Specifically, high-
289 accuracy simulations require several minutes to process a single
290 molecule. We report a quantitative description of DFT simu-
291 lation efficiency in Appendix C.

292 A significant challenge for Machine Learning (ML) methods
293 addressing these prediction tasks is effectively capturing long-
294 range dependencies across molecular graphs. Specifically, here
295 we will refer to “long-range” in the graph space (e.g., nodes sep-
296 arated by many hops), rather than purely spatial distance. The
297 three-dimensional configuration of molecules greatly intensi-
298 fies this task complexity, as distant atoms in the graph topology
299 can still exert significant influence on electronic properties and
300 total energy (Jensen, 2017; Ko et al., 2021; Shaidu et al., 2024).
301 Specifically, the total molecular energy is computed consider-
302 ing several quantum-mechanical long-range interactions (Jensen, 2017), and, similarly, the partial
303 atomic charges are influenced by non-local electronic effects (Ko et al., 2021; Shaidu et al., 2024).

304 Such non-trivial, long-range interdependencies become increasingly challenging to model accu-
305 rately as molecular graph diameter grows. To systematically address this challenge, we introduce
306 **ECHO-Charge** and **ECHO-Energy**, with the specific aim to stress long-range dependencies in
307 real-world scenarios. ECHO-Charge is formulated as a node-level regression problem, where the
308 model must predict the partial charge of each atom in a molecular graph, while ECHO-Energy is
309 formulated as a graph-level regression problem, requiring the prediction of the total molecular energy.
310 We note that the total energy cannot be computed as the sum of per-atom energies, since it consists of
311 several quantum-mechanical long-range interactions, e.g., electron–nuclear, electron–electron, and
312 nuclear–nuclear contributions at the chosen level of theory (Jensen, 2017).

313 Beyond serving as rigorous benchmarks for GNN architectures, these datasets have strong potential
314 for practical impact in ML applications for science and chemistry. Capturing these sophisticated
315 long-range interactions can significantly improve efficiency of predicting atomic partial charges and
316 molecular energies, while also serving as accurate and computationally inexpensive initialization
317 for subsequent quantum mechanical simulations. Such improvements could substantially accelerate
318 computational chemistry workflows, facilitating rapid exploration of the large molecular space.

319 **Dataset Construction.** Comprising $\approx 170,000$ (ECHO-Charge) and $\approx 196,000$ (ECHO-Energy)
320 molecular graphs selected from the ChEMBL database (Zdrazil et al., 2024), our benchmarks include
321 molecules with graph diameters between 17 and 40, where the interplay between the molecule size
322 and the task ensures the need to work with significant long-range dependencies that thoroughly stress
323 model capabilities. In both ECHO-Charge and ECHO-Energy, each graph represents a single
324 molecule (see Figure 2), and each node (i.e., atom) is labeled with the atomic number, essential for
325 chemical identity, and spatial distance from the center of mass of the molecule, to provide geometrical
326 context. Edges correspond to chemical bonds, and are labeled with bond type (single, double, triple,

Figure 2: The 3D molecular graph of *caffeine* annotated with atomic partial charges. Blue indicates regions of negative partial charge, while red corresponds to positive charge accumulation.

324 or aromatic) and bond length. Notably, this encoding of spatial information is invariant under the
 325 action of the $E(3)$ group, meaning that relative geometric features such as distances remain invariant
 326 under global 3D rotations, reflections, and translations of the molecular structure. This ensures that
 327 the spatial representation respects the underlying symmetries of molecular physics, essential for
 328 learning physically consistent models.

329 To generate the datasets, we employed a two-step approach. Firstly, the generation process began with
 330 molecular 3D structure generation starting from ChEMBL SMILES (Weininger, 1988) strings for all
 331 molecules satisfying the given diameter constraint. In order to generate molecular conformations
 332 we opted for coordinate optimization using the Generalized Amber Force Field (GAFF) (Grimme
 333 et al., 2010), a well-established force field specifically designed for optimizing a wide variety of
 334 organic and medically relevant compounds. These optimized structures served as initialization for
 335 the subsequent quantum chemical calculations to determine accurate structures, partial charges,
 336 and molecular energies. Specifically, we employed Density Functional Theory (DFT) to match the
 337 required chemical accuracy required for reliable molecular property annotation. All computations
 338 were run with the ORCA package for quantum chemistry (Neese, 2022; Neese et al., 2020; Neese,
 339 2023). A detailed description of the quantum simulations is provided in Appendix C, along with
 340 information about the computing platform in Appendix D.

341 **Dataset Split.** To evaluate model performance under consistent and reproducible conditions, we
 342 employed a random uniform sampling strategy to split the original datasets. This approach ensures a
 343 balanced distribution of molecular structures, charge ranges, and energy levels across the training,
 344 validation, and test sets, therefore minimizing potential sampling bias. For ECHO-Charge, we adopt
 345 an 80/10/10 split for training, validation, and testing, while for ECHO-Energy we use a 90/5/5 split.

347 4 EXPERIMENTS

349 **Baselines.** We consider a diverse set of GNNs baselines that capture core directions in the devel-
 350 opment of graph neural architectures, spanning from classical GNNs to more recent approaches
 351 that demonstrate strong empirical performance in capturing long-range dependencies. As classical
 352 baseline models, we include GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), GINE³ (Hu et al.,
 353 2020b) and GCNII (Chen et al., 2020), which represent standard message-passing frameworks with
 354 strong theoretical grounding. We also consider a multi-hop GNN, i.e., DRew (Gutteridge et al., 2023),
 355 which adaptively rewire the graph to facilitate more effective propagation across distant nodes. We
 356 evaluate GPS (Rampášek et al., 2022) and GRIT (Ma et al., 2023b), two effective graph transformer
 357 that enables long-range propagation via attention mechanism between any pairs of nodes. Finally,
 358 we explore the performance of a family of GNNs that draw on principles from dynamical systems
 359 theory, namely differential-equation inspired GNNs (DE-GNNs). This includes GraphCON (Rusch
 360 et al., 2022), which is designed to address the over-smoothing issue, as well as models explicitly
 361 designed to perform long-range propagation, whose architectures are based on non-dissipative or
 362 port-Hamiltonian dynamics, such as A-DGN (Gravina et al., 2023), SWAN (Gravina et al., 2025),
 363 and PH-DGN (Heilig et al., 2025).

364 **Model Architecture and hyperparameter selection.** All models share a unified backbone design to
 365 enable a fair comparison. In particular, each model is composed of a linear embedding layer, a stack
 366 of GNN layers, and a task-specific readout module. For node-level tasks, the readout is a two-layer
 367 MLP applied directly to the node representations. For graph-level tasks, node representations are
 368 first aggregated using the mean, max, and sum operations, concatenated, and then processed by a
 369 two-layer MLP. This standardization ensures that differences in performance are attributable to the
 370 core propagation mechanisms rather than auxiliary architectural choices.

371 Training follows a consistent protocol across all models. We minimize the base-10 logarithm of the
 372 Mean Squared Error loss (MSE), $\log_{10}(\text{MSE}(y_{\text{true}} - y_{\text{target}}))$, since the predicted values can be very
 373 small in magnitude and this scale-sensitive loss emphasizes small differences. We use the Adam
 374 (Kingma & Ba, 2015) optimizer and adopt Early Stopping based on validation loss, with a patience
 375 of 100 epochs. The maximum number of training epochs is set to 1000. This procedure ensures
 376 convergence while preventing overfitting, and serves as a reference setup to facilitate reproducibility

377 ³We added GINE as a baseline to ECHO-Charge and ECHO-Energy benchmarks to overcome the
 378 limitations of GIN to process edge attributes.

378 of our results. In order to ensure a fair and robust comparison across all methods and datasets, we
 379 employ an extensive hyperparameter optimization protocol. Specifically, for each model-dataset pair,
 380 we perform a Bayesian Optimization based on a Gaussian Process prior (Snoek et al., 2012) in the
 381 chosen hyperparameter space, spanning 100 trials to explore the respective search space efficiently.
 382 We report the complete set of explored hyperparameters for each model, as well as with the selected
 383 hyperparameters, in Appendix F. Finally, the best configuration found is validated through four
 384 independent training runs, each initialized with a different random seed.

385 **Results on ECHO-Synth dataset.** We report results on the synthetic benchmarks in Table 1. All
 386 the values are reported using the Mean Absolute Error (MAE). Additional metrics are reported in
 387 the Appendix H, Table 18. We start observing that models employing global attention mechanisms
 388 significantly outperform traditional message-passing frameworks. Specifically, GRIT demonstrates
 389 a superior performance on the `sssp` task, achieving a remarkably low MAE of 0.121. In line with
 390 literature findings (Dwivedi et al., 2022), this result suggests that incorporating transformer-like
 391 global attention substantially mitigates inherent limitations in localized message-passing, which are
 392 pronounced in classic architectures such as GCN and GIN. This is further supported by the analysis in
 393 Appendix J, which shows that the highest attention scores are often assigned to node pairs that are not
 394 directly connected and often far apart in the graph. Interestingly, differential-equation-inspired archi-
 395 tectures, particularly those employing non-dissipative or port-Hamiltonian formulations like SWAN,
 396 A-DGN, and PH-DGN, consistently perform well across tasks, with similar performance metrics.
 397 GRIT achieves the lowest MAE on the `diam` task (1.014), closely followed by SWAN and A-DGN.
 398 This highlights the benefit of incorporating attention or non-dissipative dynamics to improve long-
 399 range information propagation. Moreover, DRew, reveals its effectiveness in the `ecc` task, attaining the
 400 lowest MAE (4.651). This success emphasizes the advantage of multi-hop information propagation,
 401 thus effectively addressing topological bottlenecks critical for accurately capturing node eccentricities.

401 Differently, GraphCON does
 402 not inherently outperform tradi-
 403 tional methods, and show no-
 404 tably weaker performance rel-
 405 ative to other models of the
 406 same architectural family (e.g.,
 407 A-DGN and SWAN). Thus, mere
 408 message-passing dynamics that
 409 only mitigate the over-smoothing
 410 issue does not ensure superior
 411 performance in long-range tasks.

412 Finally, traditional message-
 413 passing models like GCN
 414 demonstrate consistent limita-
 415 tions across all benchmarks,
 416 indicative of fundamental

Table 1: Test MAE (mean with standard deviation as subscript) for each model across the three synthetic tasks: `diam`, `ecc`, and `sssp`. Lower is better. Values are color-coded by performance, with darker green indicating lower error.

Model	<code>diam</code> \downarrow	<code>ecc</code> \downarrow	<code>sssp</code> \downarrow
A-DGN	1.151 ± 0.038	4.981 ± 0.037	1.176 ± 0.140
DRew	1.243 ± 0.047	4.651 ± 0.020	1.279 ± 0.011
GraphCON	2.969 ± 0.189	5.474 ± 0.001	5.734 ± 0.011
GCN	3.832 ± 0.262	5.233 ± 0.034	2.102 ± 0.094
GCNII	2.005 ± 0.093	5.241 ± 0.030	2.128 ± 0.429
GIN	1.630 ± 0.161	4.869 ± 0.092	2.234 ± 0.271
GPS	2.160 ± 0.098	4.758 ± 0.021	0.472 ± 0.050
GRIT	1.014 ± 0.046	5.091 ± 0.158	0.121 ± 0.013
PH-DGN	1.627 ± 0.398	5.068 ± 0.126	1.323 ± 0.485
SWAN	1.121 ± 0.070	4.840 ± 0.045	0.896 ± 0.232

416 constraints in purely localized message-passing architectures when facing extensive long-range
 417 dependencies as required in our ECHO-Synth benchmark suite. This limitation is most evident in
 418 the `diam` task, where GCN records the highest MAE (3.832), underscoring its inadequate capacity
 419 for global information aggregation.

420 **Results on ECHO-Charge and ECHO-Energy dataset.** We detail the performance of all evaluated
 421 models on the atomic partial charge and energy prediction task in Table 2. Additional metrics are
 422 reported in the Appendix H, Tables 19 and 20. As anticipated, architectures capable of handling
 423 long-range dependencies demonstrate a clear advantage on both benchmarks, given the nature of the
 424 task which requires precise modeling of subtle interatomic interactions spread across the molecular
 425 graph. Notably, GPS achieves the best performance on ECHO-Energy and it is competitive on
 426 ECHO-Charge, confirming the utility of global attention mechanisms in capturing distant influences
 427 that modulate quantum chemical properties, albeit at the cost of increased computational complexity
 428 (as shown in Appendix I).

429 Models like A-DGN and SWAN also yield competitive performance, consistently appearing among
 430 the top performers, with SWAN emerging as best model in ECHO-Charge. Their success suggests
 431 that imposing non-dissipative priors not only improves the propagation dynamics but also guides
 432 the model toward chemically plausible solutions. Interestingly, while DRew outperforms classical

432 GNNs, especially in the ECHO-Energy tasks, it performs comparatively worse than DE-GNN and
 433 transformer-based models.
 434

435 Traditional message-passing
 436 networks, particularly GCN
 437 and GIN, again lag behind.
 438 These results again confirm
 439 the hypothesis that localized
 440 aggregation, without mecha-
 441 nisms to improve propagation
 442 effectiveness or integrate distant
 443 node information, is inadequate
 444 for atomic-level charge model-
 445 ing. The ECHO-Charge and
 446 ECHO-Energy benchmarks
 447 thus clearly illustrates the neces-
 448 sity for architectures that either
 449 incorporate global attention or
 450 embed non-dissipative dynamics
 451 to effectively tackle the intricate
 452 and non-local dependencies
 453 inherent in these molecular
 454 tasks.
 455

456 We provide a visual depiction of charge prediction accuracy on a non-trivial molecule from the test
 457 set in Figure 3: the figure compares prediction errors between A-DGN (a) and GCN (b). Atoms are
 458 colored by log-error: green = low, orange = high. A-DGN shows consistently lower errors,
 459 especially at peripheral atoms, highlighting its ability to capture long-range interactions, while GCN
 460 accumulates errors at structurally distant or chemically sensitive sites. This comparison illustrates the
 461 benefit of non-dissipative architectures for long-range information propagation on complex graphs
 462 and chemical structures.
 463

464 Lastly, we note that although energies and partial charges errors are small in absolute magnitude
 465 across baselines, even subtle deviations (as stated in Dupradeau et al. (2010)), on the order of $10^{-4} e$
 466 to $10^{-6} e$, can lead to significant downstream effects in molecular modeling and reproducibility of
 467 results. Therefore, predictive models must target this level of granularity to produce chemically
 468 meaningful outputs.
 469

470 Additional Experiments and Analysis.

471 We provide further results and a detailed
 472 evaluation of baseline performance in Ap-
 473 pendix G. Specifically, we investigate how
 474 the radius of the explored neighborhood af-
 475 fects each method (Appendix G.1) and how
 476 model performance varies across graphs
 477 with different diameters (Appendix G.2).
 478 Our results consistently indicate that deeper
 479 networks outperform shallower ones, con-
 480 firming the long-range nature of these
 481 benchmarks. Moreover, in Appendix G.3
 482 we examine the impact of the readout depth
 483 and show that the final performance ap-
 484 pears to be independent of this design
 485 choice. In Appendix G.4, we further an-
 486alyze model performance across different
 487 graph topologies in ECHO-Synth. The
 488 results indicate that, although absolute per-
 489 formance varies slightly with the underly-
 490 ing graph structure, the relative ranking of the models remains consistent, reinforcing the robustness
 491 of our findings. In Appendix J, we also visualize GPS’s attention patterns, highlighting the impor-
 492 tance of connecting distant nodes to facilitate information flow and improve performance. Together, these
 493

494 Table 2: Test MAE (mean with standard deviation as sub-
 495 script) performance across models on the ECHO-Energy and
 496 ECHO-Charge tasks. Lower values are better. Cells are color-
 497 coded by performance, with darker green indicating lower error
 498 (independently normalized per column).
 499

Model	ECHO-Energy ↓	ECHO-Charge ↓ ($\times 10^{-3}$)
A-DGN	12.486 ± 1.621	6.543 ± 0.146
DRew	11.325 ± 2.394	9.086 ± 0.473
GCN	28.112 ± 1.239	8.421 ± 0.512
GCNII	13.235 ± 2.630	8.829 ± 0.021
GIN	47.851 ± 10.154	10.784 ± 0.059
GINE	23.558 ± 7.568	7.176 ± 0.371
GPS	5.257 ± 0.842	6.182 ± 0.219
GRIT	25.508 ± 2.507	7.134 ± 6.090
GraphCON	14.295 ± 0.807	19.629 ± 0.195
PH-DGN	16.080 ± 1.123	7.915 ± 0.269
SWAN	12.629 ± 1.157	6.109 ± 0.103

500 Figure 3: Visualization of prediction errors for the
 501 ECHO-Charge task using two different GNN archi-
 502 tectures: A-DGN (a) and GCN (b). The coloring rep-
 503 resents the logarithm of the absolute prediction error,
 504 $\log(|y_{\text{true}} - y_{\text{pred}}|)$. Lower values (in green) indicate
 505 better prediction accuracy, while higher values (in orange)
 506 correspond to larger errors.
 507

486 analyses reinforce the importance of long-range information propagation in the ECHO benchmark.
 487 Finally, Appendix I reports runtime measurements, illustrating a key trade-off between accuracy and
 488 efficiency: transformer-based models like GPS achieve strong performance but are computationally
 489 demanding, whereas models such as A-DGN provide a more balanced alternative.
 490

491 5 CONCLUSION

492
 493 In this paper we propose ECHO, a new benchmark for evaluating long-range information propagation
 494 in GNNs. Our benchmark includes two main components, ECHO-Synth and a set chemically
 495 grounded real-world datasets (ECHO-Charge and ECHO-Energy), that target long-range com-
 496 munication in both synthetic and real-world settings. The synthetic tasks are designed to predict
 497 algorithmic and long-range-by-design graph properties, while the real-world tasks focus on predicting
 498 atomic charge distributions and molecular total energies, both of which critically depend on long-
 499 range quantum interactions. We provided a detailed analysis to demonstrate that the tasks in ECHO
 500 genuinely capture long-range dependencies, and we established strong baselines for each task to
 501 provide a comprehensive reference point for future research. Our results highlight the limitations
 502 of current GNN architectures when faced with long-range propagation challenges, and we believe
 503 that ECHO will serve as a critical step toward building more robust, scalable, and generalizable
 504 GNNs capable of handling the full spectrum of graph-based learning tasks, posing a challenge to the
 505 community to push the boundaries of GNN design and evaluation. Not only does ECHO provide a
 506 solid benchmark, but it also leaves ample room for future architectures to improve and advance GNN
 507 architectures capable of more effective information propagation.
 508

509 ETHICS STATEMENT

510
 511 The research conducted in this paper conforms in every aspect with the ICLR Code of Ethics. Our
 512 study does not involve human subjects, sensitive personal data, or applications with foreseeable
 513 harmful consequences. No ethical concerns are anticipated regarding data usage, methodology, or
 514 findings.

515 516 REPRODUCIBILITY STATEMENT

517
 518 We provide all necessary details to reproduce our ECHO benchmark in Section 3 and
 519 Appendix C, and describe the setup of each experiment in Section 4 and Appendix F,
 520 thus ensuring sufficient information to replicate our results. We openly release data
 521 at <https://huggingface.co/datasets/gmander44/echo/tree/main> (where the
 522 username is randomly generated to preserve anonymity in the double-blind review), and the code at
 523 <https://anonymous.4open.science/r/ECHO-benchmarks>.
 524

525 REFERENCES

526 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
 527 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
 528 chitectures via sparsified neighborhood mixing. In *International Conference on Machine Learning*,
 529 pp. 21–29. PMLR, 2019.

530 Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implications.
 531 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=i800PhOCVH2>.

532 Nathan Argaman and Guy Makov. Density functional theory: An introduction. *American Journal of*
 533 *Physics*, 68(1):69–79, 2000.

534 Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, Xi-
 535 aowen Dong, Michael Bronstein, and Pierre Vandergheynst. On Vanishing Gradients, Over-
 536 Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning. *arXiv*
 537 preprint *arXiv:2502.10818*, 2025.

540 Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael M. Bronstein. Bundle neural
 541 network for message diffusion on graphs. In *The Thirteenth International Conference on Learning*
 542 *Representations*, 2025a. URL <https://openreview.net/forum?id=sci9307PLG>.

543

544 Jacob Bamberger, Benjamin Gutteridge, Scott le Roux, Michael M. Bronstein, and Xiaowen Dong.
 545 On measuring long-range interactions in graph neural networks. In *Forty-second International*
 546 *Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=2fBcAOi81o>.

547

548 Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
 549 models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data*
 550 *Mining*, pp. 119–130, 2024.

551

552 Richard Bellman. On a routing problem. *Quarterly of applied mathematics*, 16(1):87–90, 1958.

553

554 Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
 555 inductive learning via ranking. In *International Conference on Learning Representations*, 2018.
 556 URL <https://openreview.net/forum?id=r1ZdKJ-0W>.

557

558 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
 559 neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern*
 560 *Analysis and Machine Intelligence*, 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

561

562 Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
 563 connected networks on graphs. *arXiv preprint arXiv:1312.6203*, 2014.

564

565 Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. *arXiv preprint*
 566 *arXiv:2006.13318*, 2020.

567

568 Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and graph
 569 transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 570 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine*
Learning, volume 202 of *Proceedings of Machine Learning Research*, pp. 3408–3430. PMLR,
 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/cai23b.html>.

571

572 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph
 573 Convolutional Networks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th*
574 International Conference on Machine Learning, volume 119 of *Proceedings of Machine Learning*
Research, pp. 1725–1735. PMLR, 13–18 Jul 2020.

575

576 Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph trans-
 577 former. In Sharvaree Vadgama, Erik Bekkers, Alison Poulin, Sekou-Oumar Kaba, Robin Walters,
 578 Hannah Lawrence, Tegan Emerson, Henry Kvinge, Jakub Tomczak, and Stephanie Jegelka (eds.),
 579 *Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Work-
 shop (GRaM)*, volume 251 of *Proceedings of Machine Learning Research*, pp. 20–34. PMLR, 29
 580 Jul 2024. URL <https://proceedings.mlr.press/v251/choi24a.html>.

581

582 Connor W. Coley, Regina Barzilay, William H. Green, Tommi S. Jaakkola, and Klavs F. Jensen. Con-
 583 volutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. *Journal*
 584 *of Chemical Information and Modeling*, 57(8):1757–1772, August 2017. ISSN 1549-9596. doi:
 585 10.1021/acs.jcim.6b00601.

586

587 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to*
 588 *Algorithms, Third Edition*. The MIT Press, 3rd edition, 2009. ISBN 0262033844.

589

590 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to*
 591 *algorithms*. MIT press, 2022.

592

593 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
 594 Neighbourhood Aggregation for Graph Nets. In *Advances in Neural Information Processing*
Systems, volume 33, pp. 13260–13271. Curran Associates, Inc., 2020.

594 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
 595 Graphs with Fast Localized Spectral Filtering. In *Advances in Neural Information Processing*
 596 *Systems*, volume 29. Curran Associates, Inc., 2016.

597

598 Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
 599 Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang
 600 Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Velickovic. ETA Prediction
 601 with Graph Neural Networks in Google Maps. In *Proceedings of the 30th ACM International*
 602 *Conference on Information & Knowledge Management*, CIKM '21, pp. 3767–3776. Association
 603 for Computing Machinery, 2021. ISBN 9781450384469. doi: 10.1145/3459637.3481916.

604

605 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael
 606 Bronstein. On over-squashing in message passing neural networks: the impact of width, depth, and
 607 topology. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23.
 608 JMLR.org, 2023.

609

610 Edsger W Dijkstra. A note on two problems in connexion with graphs. In *Edsger Wybe Dijkstra: his*
life, work, and legacy, pp. 287–290. 2022.

611

612 Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for
 613 graph representation learning. In *Forty-first International Conference on Machine Learning*, 2024.

614

615 François-Yves Dupradeau, Adrien Pigache, Thomas Zaffran, Corentin Savineau, Rodolphe Lelong,
 616 Nicolas Grivel, Dimitri Lelong, Wilfried Rosanski, and Piotr Cieplak. The r.e.d. tools: advances
 617 in resp and esp charge derivation and force field library building. *Phys. Chem. Chem. Phys.*,
 12:7821–7839, 2010. doi: 10.1039/C0CP00111B. URL <http://dx.doi.org/10.1039/C0CP00111B>.

618

619 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
 620 Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
 621 molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Asso-
 622 ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

623

624 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
 625 and Dominique Beaini. Long Range Graph Benchmark. In *Advances in Neural Information*
626 Processing Systems, volume 35, pp. 22326–22340. Curran Associates, Inc., 2022.

627

628 Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 629 Xavier Bresson. Benchmarking graph neural networks. *J. Mach. Learn. Res.*, 24(1), January 2023.
 630 ISSN 1532-4435.

631

632 Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacci, and Carola-
 633 Bibiane Schönlieb. Graph Adaptive Autoregressive Moving Average Models. In *Forty-second*
634 International Conference on Machine Learning, 2025. URL <https://openreview.net/forum?id=UFLyLkvyAE>.

635

636 Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
 637 Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmoothing,
 638 oversquashing, and underreaching. *arXiv preprint arXiv:2312.16560*, 2024.

639

640 Simon Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-
 641 spectral graph neural networks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 642 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Pro-
 643 cessing Systems*, volume 37, pp. 49022–49080. Curran Associates, Inc., 2024. URL
 644 https://proceedings.neurips.cc/paper_files/paper/2024/file/580c4ec4738ff61d5862a122cdf139b6-Paper-Conference.pdf.

645

646 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
 647 message passing for Quantum chemistry. In *Proceedings of the 34th International Conference on*
Machine Learning, volume 70 of *ICML'17*, pp. 1263–1272. JMLR.org, 2017.

648 Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++: Enhanc-
 649 ing topological message passing. *arXiv preprint arXiv:2306.03561*, 2023.
 650

651 Daniel Glickman and Eran Yahav. Diffusing graph attention. *arXiv preprint arXiv:2303.00613*, 2023.
 652

653 M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In *Proceedings.*
 654 *2005 IEEE International Joint Conference on Neural Networks, 2005.*, volume 2, pp. 729–734.
 655 IEEE, 2005.

656 Alessio Gravina and Davide Bacciu. Deep Learning for Dynamic Graphs: Models and Benchmarks.
 657 *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–14, 2024. doi: 10.1109/
 658 TNNLS.2024.3379735.
 659

660 Alessio Gravina, Jennifer L. Wilson, Davide Bacciu, Kevin J. Grimes, and Corrado Priami. Control-
 661 ling astrocyte-mediated synaptic pruning signals for schizophrenia drug repurposing with deep
 662 graph networks. *PLOS Computational Biology*, 18(5):1–19, 05 2022. doi: 10.1371/journal.pcbi.
 663 1009531.

664 Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable architecture
 665 for Deep Graph Networks. In *The Eleventh International Conference on Learning Representations*,
 666 2023. URL <https://openreview.net/forum?id=J3Y7cgZ0OS>.
 667

668 Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schönlieb.
 669 On oversquashing in graph neural networks through the lens of dynamical systems. In *The 39th*
 670 *Annual AAAI Conference on Artificial Intelligence*, 2025.

671 Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio
 672 parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. *J.*
 673 *Chem. Phys.*, 132:154104, 2010. doi: 10.1063/1.3382344.

674 M. Michael Gromiha and S. Selvaraj. Importance of long-range interactions in protein folding.
 675 *Biophysical Chemistry*, 77(1):49–68, 1999. ISSN 0301-4622. doi: [https://doi.org/10.1016/S0301-4622\(99\)00010-1](https://doi.org/10.1016/S0301-4622(99)00010-1).
 676

677 Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
 678 Dynamically rewired message passing with delay. In *International Conference on Machine*
 679 *Learning*, pp. 12252–12267. PMLR, 2023.

680 Thomas A. Halgren. Merck molecular force field. i. basis, form, scope, parameterization, and
 681 performance of mmff94. *Journal of Computational Chemistry*, 17(5-6):490–519, 1996. doi: [https://doi.org/10.1002/\(SICI\)1096-987X\(199604\)17:5/6<490::AID-JCC1>3.0.CO;2-P](https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P). URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-987X%28199604%2917%3A5/6%3C490%3A%3AAID-JCC1%3E3.0.CO%3B2-P>.
 682

683 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 684 In *Proceedings of the 31st International Conference on Neural Information Processing Systems*,
 685 NIPS’17, pp. 1025–1035. Curran Associates Inc., 2017. ISBN 9781510860964.
 686

687 Ali Hariri and Pierre Vandergheynst. Graph learning for capturing long-range dependencies in
 688 protein structures. In David A Knowles and Sara Mostafavi (eds.), *Proceedings of the 19th*
 689 *Machine Learning in Computational Biology meeting*, volume 261 of *Proceedings of Machine*
 690 *Learning Research*, pp. 117–128. PMLR, 05–06 Sep 2024. URL <https://proceedings.mlr.press/v261/hariri24a.html>.
 691

692 Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann Lecun, and Xavier Bresson. A
 693 generalization of ViT/MLP-mixer to graphs. In Andreas Krause, Emma Brunskill, Kyunghyun
 694 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th*
 695 *International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*
 696 *Research*, pp. 12724–12745. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/he23a.html>.
 697

702 Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu. Port-
 703 Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks. In
 704 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=03EkqSCKuO>.

705
 706 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
 707 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
 708 graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-*
 709 *vances in Neural Information Processing Systems*, volume 33, pp. 22118–22133. Curran As-
 710 *sociates, Inc.*, 2020a. URL <https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf>.

711
 712 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
 713 Strategies for Pre-training Graph Neural Networks. In *International Conference on Learning*
 714 *Representations*, 2020b. URL <https://openreview.net/forum?id=HJ1WWJSFDH>.

715
 716 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
 717 Strategies for pre-training graph neural networks. In *International Conference on Learning*
 718 *Representations*, 2020c. URL <https://openreview.net/forum?id=HJ1WWJSFDH>.

719
 720 Frank Jensen. *Introduction to Computational Chemistry*. John Wiley & Sons, 3 edition, 2017.

721
 722 Bharti Khemani, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. A review of graph neural net-
 723 works: concepts, architectures, techniques, challenges, datasets, applications, and future directions.
 724 *Journal of Big Data*, 11(1):18, Jan 2024. ISSN 2196-1115. doi: 10.1186/s40537-023-00876-4.

725
 726 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua Bengio
 727 and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR 2015,*
 728 *San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015.

729
 730 Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
 731 Networks. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

732
 733 Tsz Wai Ko, Jonas A. Finkler, Stefan Goedecker, and Jörg Behler. A fourth-generation high-
 734 dimensional neural network potential with accurate electrostatics including non-local charge
 735 transfer. *Nature Communications*, 12(1):398, Jan 2021. ISSN 2041-1723. doi: 10.1038/s41467-020-20427-2.

736
 737 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirsberger, Meire Fortunato, Ferran
 738 Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan
 739 Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and
 740 Peter Battaglia. Learning skillful medium-range global weather forecasting. *Science*, 382(6677):
 741 1416–1421, 2023. doi: 10.1126/science.adi2336. URL <https://www.science.org/doi/abs/10.1126/science.adi2336>.

742
 743 Huidong Liang, Haitz Sáez de Ocáriz Borde, Baskaran Sripathmanathan, Michael Bronstein, and
 744 Xiaowen Dong. Towards quantifying long-range interactions in graph machine learning: a large
 745 graph dataset and a measurement. *arXiv preprint arXiv:2503.09008*, 2025.

746
 747 Guixiang Ma, Vy A. Vo, Theodore L. Willke, and Nesreen K. Ahmed. Augmenting recurrent
 748 graph neural networks with a cache. In *Proceedings of the 29th ACM SIGKDD Conference on*
 749 *Knowledge Discovery and Data Mining*, KDD ’23, pp. 1608–1619, New York, NY, USA, 2023a.
 750 Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599260.
 751 URL <https://doi.org/10.1145/3580305.3599260>.

752
 753 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
 754 Philip H.S. Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message
 755 passing. In *Proceedings of the 40th International Conference on Machine Learning*, ICML’23.
 JMLR.org, 2023b.

756 Gaspard Michel, Giannis Nikolentzos, Johannes F. Lutzeyer, and Michalis Vazirgiannis. Path neural
 757 networks: Expressive and accurate graph neural networks. In Andreas Krause, Emma Brunskill,
 758 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of
 759 the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine
 760 Learning Research*, pp. 24737–24755. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/michel23a.html>.

761

762 Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. *IEEE Transac-
 763 tions on Neural Networks*, 20(3):498–511, 2009.

764

765 Frank Neese. Software update: the orca program system, version 5.0. *WIREs Comput. Mol. Sci.*, 12
 766 (1):e1606, 2022. doi: 10.1002/wcms.1606.

767 Frank Neese. The shark integral generation and digestion system. *J. Comput. Chem.*, 44:381–396,
 768 2023. doi: 10.1002/jcc.26942.

769

770 Frank Neese, Frank Wenmohs, Ute Becker, and Christoph Riplinger. The ORCA quantum chemistry
 771 program package. *The Journal of Chemical Physics*, 152(22):224108, June 2020. ISSN 1089-7690.
 772 doi: 10.1063/5.0004608.

773 Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution graph transformers and wavelet
 774 positional encoding for learning long-range and hierarchical structures. *The Journal of Chemical
 775 Physics*, 159(3), July 2023. ISSN 1089-7690. doi: 10.1063/5.0152833. URL <http://dx.doi.org/10.1063/5.0152833>.

776

777 Noel M. O’Boyle, Chris Morley, and Geoffrey R. Hutchison. Pybel: A Python wrapper for the
 778 OpenBabel cheminformatics toolkit. *Chemistry Central Journal*, 2(1):5, March 2008. ISSN
 779 1752-153X. doi: 10.1186/1752-153X-2-5.

780

781 Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and Geof-
 782 frey R. Hutchison. Open Babel: An open chemical toolbox. *Journal of Cheminformatics*, 3(1):33,
 783 October 2011. ISSN 1758-2946. doi: 10.1186/1758-2946-3-33.

784

785 Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power for
 786 Node Classification. In *International Conference on Learning Representations*, 2020. URL
 787 <https://openreview.net/forum?id=S1ldO2EFPr>.

788

789 Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 790 minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. *Advances in Neural
 791 Information Processing Systems*, 35, 2022.

792

793 T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
 Graph-coupled oscillator networks. In *International Conference on Machine Learning*, pp. 18888–
 794 18909. PMLR, 2022.

795

796 T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmoothing in
 Graph Neural Networks. *arXiv preprint arXiv:2303.10993*, 2023.

797

798 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. *Random Features Strengthen Graph Neural
 799 Networks*, pp. 333–341. 2021. doi: 10.1137/1.9781611976700.38.

800

801 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

802

803 Yusuf Shaidu, Samuel A. Guba, Alexandre Tkatchenko, and Matthias Gastegger. Incorporating
 804 long-range electrostatics in neural network potentials via variational charge equilibration from
 805 shortsighted ingredients. *npj Computational Materials*, 10:47, 2024.

806

807 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 808 of Graph Neural Network Evaluation. *Relational Representation Learning Workshop, NeurIPS
 809 2018*, 2018.

810

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
 GNNs: Current Methods, Benchmarks and Challenges, 2023.

810 Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked Label
 811 Prediction: Unified Message Passing Model for Semi-Supervised Classification. In *Proceedings of*
 812 *the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*, pp. 1548–1554.
 813 International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
 814 ijcai.2021/214. URL <https://doi.org/10.24963/ijcai.2021/214>.

815 Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
 816 Exphormer: Sparse transformers for graphs. In *International Conference on Machine Learning*,
 817 pp. 31613–31632. PMLR, 2023.

818 Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
 819 learning algorithms. In *Proceedings of the 26th International Conference on Neural Information
 820 Processing Systems - Volume 2*, NIPS’12, pp. 2951–2959, Red Hook, NY, USA, 2012. Curran
 821 Associates Inc.

822 Alessandro Sperduti. Encoding labeled graphs by labeling raam. *Advances in Neural Information
 823 Processing Systems*, 6, 1993.

824 Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for everyone. *Journal of Chemical
 825 Information and Modeling*, 55(11):2324–2337, Nov 2015. ISSN 1549-9596. doi: 10.1021/acs.jcim.5b00559.
 826 URL <https://doi.org/10.1021/acs.jcim.5b00559>.

827 Attila Szabo and Neil S. Ostlund. *Modern Quantum Chemistry: Introduction to Advanced Electronic
 828 Structure Theory*. Dover Publications, 1989. ISBN 978-0-486-69186-2.

829 Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
 830 the long-range graph benchmark. In *The Second Learning on Graphs Conference*, 2023. URL
 831 <https://openreview.net/forum?id=rIUjwxc51j>.

832 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
 833 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International
 834 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=7UmjRGzp-A>.

835 Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound retrieval
 836 and classification. In *Sixth International Conference on Data Mining (ICDM’06)*, pp. 678–689,
 837 2006. doi: 10.1109/ICDM.2006.39.

838 Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
 839 sequence modeling with selective state spaces. *arXiv preprint arXiv:2402.00789*, 2024.

840 David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
 841 ology and encoding rules. *Journal of Chemical Information and Computer Sciences*, 28(1):31–36,
 842 February 1988. ISSN 0095-2338. doi: 10.1021/ci00057a005.

843 Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
 844 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learning.
 845 *arXiv preprint arXiv:1703.00564*, 2018.

846 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
 847 Networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

848 Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett,
 849 Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, Maria Paula Magarinos,
 850 Nicolas Bosc, Ricardo Arcila, Tevfik Kizilören, Anna Gaulton, A Patrícia Bento, Melissa F Adasme,
 851 Peter Monecke, Gregory A Landrum, and Andrew R Leach. The ChEMBL Database in 2023: A
 852 drug discovery platform spanning multiple bioactivity data types and time periods. *Nucleic Acids
 853 Research*, 52(D1):D1180–D1192, January 2024. ISSN 0305-1048. doi: 10.1093/nar/gkad1004.

854 Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car,
 855 et al. A deep potential model with long-range electrostatic interactions. *The Journal of Chemical
 856 Physics*, 156(12), 2022.

864 Dongzhuoran Zhou, Evgeny Kharlamov, and Egor V. Kostylev. GLora: A benchmark to evaluate
865 the ability to learn long-range dependencies in graphs. In *The Thirteenth International Confer-
866 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=2jf5x5XoYk>.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **A LLMS USAGE**
919920 Large Language Models (LLMs) were used as general-purpose assistive tools to improve the writing
921 quality of this paper. Specifically, we used LLMs to help with grammar correction, rephrasing for
922 clarity, and suggesting some improvements to the overall structure of the text. All LLM-generated
923 text was carefully reviewed and edited by the authors to ensure that it accurately reflects the authors'
924 intentions and scientific content. No LLMs were used to generate scientific content, including but
925 not limited to research direction, hypothesis formulation, experimental design, data analysis, or
926 interpretation of results.
927928 **B DISCUSSION ON LRGB**
929930 One of the most widely used benchmark for assessing the long-range propagation capabilities of GNNs
931 is the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). The benchmark proposes five
932 tasks: two molecular property prediction tasks (Peptides-func and Peptides-struct), one molecular
933 bond prediction task (PCQM-Contact), and two computer vision tasks (PascalVOC-SP and COCO-
934 SP). However, despite initial rapid improvements, performance on LRGB has plateaued. Since its
935 introduction in 2022, there has been a noticeable deceleration in progress. Considering a set of 30
936 models on the Peptides-func task, we observe a performance improvement by 6.5% in the first year,
937 but only by 1.3% in the second, and no significant gain in the third year (Gravina et al., 2025; Heilig
938 et al., 2025; Errica et al., 2024; Gutteridge et al., 2023; Dwivedi et al., 2022; Tönshoff et al., 2023;
939 Giusti et al., 2023; Ma et al., 2023a; Shirzad et al., 2023; Behrouz & Hashemi, 2024; Wang et al.,
940 2024; Eliasof et al., 2025; Ding et al., 2024; Ma et al., 2023b; Cai et al., 2023; Glickman & Yahav,
941 2023; He et al., 2023; Rampášek et al., 2022; Ngo et al., 2023; Michel et al., 2023; Geisler et al.,
942 2024; Choi et al., 2024). A similar trend exists for the other benchmark tasks as well.
943944 Furthermore, a recent analysis on LRGB (Bamberger et al., 2025b), as well as the benchmark's
945 sensitivity to hyperparameter tuning (Tönshoff et al., 2023), raises additional concerns about the
946 long-range nature of its tasks. The analysis reveals that only a subset of tasks genuinely require longer
947 interactions, while the peptides tasks are effectively local. This highlights the need for more focused
948 benchmarks that explicitly and systematically test long-range propagation capabilities of GNNs.
949950 **C CHEMICAL SIMULATION TECHNICAL INFORMATION**
951952 This appendix provides detailed information on the computational pipeline used to derive partial
953 atomic charges in the ECHO-Charge dataset and total energies in ECHO-Energy. The pipeline
954 comprises three primary stages: (i) 3D structure generation from SMILES, (ii) quantum chemical
955 computation of partial charges, and (iii) geometry optimization.
956957 **3D Structure Generation from SMILES.** Since subsequent charge optimization steps require
958 pre-optimized 3D coordinates, all structures were geometry-optimized prior to simulation using Open
959 Babel (O'Boyle et al., 2011) and its Python interface, Pybel (O'Boyle et al., 2008). Initial molecular
960 geometries were generated from SMILES strings using the General AMBER Force Field (GAFF)
961 (Grimme et al., 2010). GAFF was chosen over alternatives such as MMFF94 (Halgren, 1996) due
962 to its favorable trade-off between accuracy and computational cost, and its strong performance in
963 predicting both energies and geometries. The optimization procedure involved 100 steps of coarse
964 minimization followed by 500 steps of local refinement for each molecule. The SMILES strings were
965 converted into 3D conformers, which were then minimized to yield low-energy structures. These
966 structures were exported in SDF format for subsequent compatibility. The average time required for
967 3D structure generation per molecule—considering only those satisfying the ECHO-Charge and
968 ECHO-Energy dataset diameter criteria—was **562 ± 124 ms**.
969970 **Quantum Chemical Computations with ORCA.** To compute partial atomic charges and total
971 energies, we employed the ORCA quantum chemistry software suite (version 6.0.1) (Neese, 2022;
972 2023; Neese et al., 2020). All calculations were performed using the B3LYP a hybrid density
973 functional (DFT) method that mixes Hartree-Fock exchange with Becke's exchange and Lee-Yang-Parr
974 correlation functionals to balance accuracy and efficiency in quantum chemical calculations (Argaman
975 & Makov, 2000).
976

972
 973 Table 3: Mean time required for computation of partial charges of a single molecule with differ-
 974 ent configuration of the ORCA tool. Variance is computed over 30 random molecules from the
 ECHO-Charge/ECHO-Energy dataset. *Denotes the chosen basis set for DFT computation.
 975

976 Method	977 Setting	978 Times (s)
979 HF-3C	980 LooseSCF	981 10.4 ± 1.3
982 HF-3C	983 TightSCF	984 28.1 ± 4.3
985 B3LYP def2-TZVP* (DFT)	986 LooseSCF	987 146.5 ± 10.1
988 B3LYP def2-TZVP* (DFT)	989 TightSCF	990 634.5 ± 21.3

983 We provide a summary of required times for computation with both full DFT computations and HF
 984 methods in Table 3. Under our configuration, the average runtime for a single quantum chemical
 985 calculation was 634.5 ± 21.3 seconds per molecule requiring ≈ 2 months of computational time
 986 on our hardware configuration. Simulation were run exploiting full thread parallelism provided by
 987 ORCA.

988 **Self-Consistent Field (SCF) Convergence Settings.** To further improve the accuracy of the simula-
 989 tions, we employed the **TightSCF** setting in ORCA, which enforces tighter convergence thresholds
 990 in the self-consistent field (SCF) procedure, thereby reducing numerical errors in the electronic
 991 structure calculation.

992 **Charge Extraction.** Atomic partial charges were extracted using the Löwdin Szabo & Ostlund
 993 (1989) population analysis method. These charges were used as supervision signals in our dataset
 994 generation pipeline.

996 D HARDWARE RESOURCES

999 All quantum chemistry simulations were conducted on a dual-socket Intel Xeon 6780E machine
 1000 with a total of 288 physical cores (144 cores per socket, 1 thread per core). Each socket is equipped
 1001 with 108MiB of L3 cache, for a combined 216MiB of shared L3 cache, along with 288MiB of L2
 1002 and 27MiB of L1 (data + instruction) cache across the system. The CPUs support AVX2 and FMA
 1003 instruction sets, enabling efficient linear algebra operations, which are critical for electronic structure
 1004 methods.

1005 The machine is configured with two NUMA nodes, each associated with one of the sockets. Each
 1006 NUMA node has over 500GiB of local RAM for a total of approximately 1TiB of RAM. The high
 1007 memory capacity and bandwidth are critical for quantum chemistry workloads, particularly those
 1008 using density functional theory (DFT) or correlated wavefunction methods, which require extensive
 1009 memory for large basis sets and integral evaluations.

1010 The large number of physical cores allowed us to parallelize over both molecular batches and
 1011 internal basis function evaluations, providing efficient scaling for density functional theory (DFT)
 1012 and semi-empirical calculations.

1013 For model training and inference, we used a separate compute node equipped with 8 NVIDIA H100
 1014 GPUs.

1016 E ADDITIONAL DATASET INFORMATION

1018 We report in Table 4 the detailed statistics of the proposed datasets. In Table 5 we provide a summary
 1019 of the input and target features used in the ECHO-Synth, ECHO-Charge, and ECHO-Energy
 1020 datasets. [Figures 4, 5 and 6 report detailed statistics on the structural properties of the graphs in the](#)
 1021 [datasets, including distributions of the number of nodes, number of edges, average node degree, graph](#)
 1022 [diameter, and node eccentricity.](#) Additionally, Figure 7 illustrates the correlation between the number
 1023 of nodes and the graph diameter, highlighting structural differences between real and synthetic data.
 1024 These insights support the design choices for model evaluation across diverse graph regimes.

Table 4: Statistics of the proposed dataset.

Dataset	# Graphs	Avg Nodes	Avg Deg.	Avg Edges	Avg Diam	# Node Feat	# Edge Feat	# Tasks
ECHO-Synth	10,080	83.69 ± 66.24	2.53 ± 1.19	211.63 ± 209.39	28.50 ± 6.92	2	None	3
line	1,680	75.60 ± 27.32	2.37 ± 0.10	90.10 ± 33.89	28.50 ± 6.92	2	None	3
ladder	1,680	56.52 ± 13.82	2.92 ± 0.02	82.54 ± 20.72	28.50 ± 6.92	2	None	3
grid	1,680	193.10 ± 93.10	2.95 ± 0.12	288.32 ± 145.29	28.50 ± 6.92	2	None	3
tree	1,680	60.42 ± 17.17	1.96 ± 0.01	59.42 ± 17.17	28.50 ± 6.92	2	None	3
caterpillar	1,680	34.71 ± 7.96	1.94 ± 0.02	33.71 ± 7.96	28.50 ± 6.92	2	None	3
lobster	1,680	81.79 ± 25.46	1.97 ± 0.01	80.79 ± 25.46	28.50 ± 6.92	2	None	3
ECHO-Charge	170,367	72.49 ± 12.48	2.09 ± 0.04	151.32 ± 25.16	23.54 ± 2.54	2	2	1
ECHO-Energy	196,528	73.73 ± 13.22	2.09 ± 0.04	153.84 ± 26.58	23.61 ± 2.59	2	2	1

Table 5: Summary of dataset properties.

Dataset	Node Features	Edge Features	Target
ECHO-Synth	Random scalar, source indicator for sssp	None	diam, sssp, ecc
ECHO-Charge	Atomic number, distance from center of mass	Bond type, bond length	Partial charges
ECHO-Energy	Atomic number, distance from center of mass	Bond type, bond length	Total energy

Figure 4: Statistics of the ECHOS dataset. The top panel shows dataset-level statistics across splits, and the bottom plot shows the overall node eccentricity distribution.

Figure 5: Statistics of the ECHO-Charge

Figure 6: Statistics of the ECHO-Energy

(a) Correlation in ECHO-Synth.

(b) Correlation in ECHO-Charge.

(c) Correlation in ECHO-Energy.

1170
 1171
 1172 Figure 7: Correlation between number of nodes and graph diameter in ECHO-Synth,
 1173 ECHO-Charge and ECHO-Energy.

1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **F HYPERPARAMETER SELECTION**
11891190 Tables 6 to 16 report the hyperparameter search space and the best values selected for each task
1191 (diam, ecc, sssp, ECHO-Charge, and ECHO-Energy) across the different GNN architectures
1192 we considered. For details on specific hyperparameters, we refer the reader to the original papers.
1193 Each table includes the name of the hyperparameter, its search range or categorical options, and the
1194 optimal value obtained for each task, as identified through hyperparameter tuning on the validation
1195 set.1196 Another strong evidence supporting the long-range nature of the ECHO benchmark, implicitly comes
1197 from our hyperparameter optimization process. Specifically, Bayesian Optimization consistently
1198 selected configurations with a large number of GNN layers. This suggests that, even without explicit
1199 guidance, the hyperparameter optimization procedure identifies deeper models as necessary to
1200 minimize validation error, further reinforcing the notion that the task demands long-range information
1201 propagation.1202 Table 6: Hyperparameters and their best values across tasks for A-DGN.
12031204
1205

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	27	28	40	34	16
Hidden dimension	[16 – 256]	68	65	45	130	216
Learning rate	[10^{-5} – 10^{-2}]	0.00101	0.00229	0.00473	0.00072	0.0085223
Weight decay	[10^{-8} – 10^{-3}]	0.00098	0.00000	0.00003	0.00001	0.00044851
ϵ	[0.001 – 0.5]	0.19254	0.32934	0.10560	0.25667	0.4215
γ	[0.001 – 0.5]	0.41827	0.46803	0.21252	0.19499	0.15304
Graph convolution	[NaiveAggr, GCN]	NaiveAggr	NaiveAggr	NaiveAggr	GCN	NaiveAggr

1213 Table 7: Hyperparameters and their best values across tasks for DRew.
12141215
1216

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers ⁴	[1 – 4]	4	4	4	4	3
k-hop	[1 – 10]	10	10	10	10	10
Hidden dimension	[16 – 256]	249	78	119	232	241
Learning rate	[10^{-5} – 10^{-2}]	0.00037	0.00797	0.00126	0.00036	0.00023597
Weight decay	[10^{-8} – 10^{-3}]	0.00068	0.00011	0.00003	0.0	0.00001099
Employ delay	[True, False]	False	False	False	True	True

1223 Table 8: Hyperparameters and their best values across tasks for GCNII.
12241225
1226

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[10 – 40]	32	39	30	37	21
Hidden dimension	[16 – 256]	81	40	64	33	103
Learning rate	[10^{-5} – 10^{-2}]	0.00260	0.00032	0.00005	0.00345	0.0047014
Weight decay	[10^{-8} – 10^{-3}]	0.00000	0.00009	0.00009	0.00002	0.000035227
α	[0.0 – 0.9]	0.70544	0.07902	0.04742	0.17158	0.10116

1233
1234
1235
1236
1237
1238
1239
1240 ⁴While the layer search goes up to 4 layers, DRew performs multi-hop aggregation (up to 10 hops per layer),
1241 yielding an effective receptive field of $4 \times 10 = 40$ hops, comparable to the ranges explored by the other
architectures.

1242

Table 9: Hyperparameters and their best values across tasks for GCN.

1243

1244

1245

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	26	40	26	8	9
Hidden dimension	[16 – 256]	48	42	40	109	160
Learning rate	[10^{-5} – 10^{-2}]	0.00007	0.00004	0.00023	0.00079	0.00052181
Weight decay	[10^{-8} – 10^{-3}]	0.00007	0.00009	0.00002	0.00002	0.000043613

1246

1247

1248

1249

1250

1251

1252

Table 10: Hyperparameters and their best values across tasks for GIN.

1253

1254

1255

1256

1257

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[10 – 40]	29	34	25	11	19
Hidden dimension	[16 – 256]	58	170	78	197	90
Learning rate	[10^{-5} – 10^{-2}]	0.00002	0.00003	0.00006	0.00002	0.000046134
Weight decay	[10^{-8} – 10^{-3}]	0.00003	0.00036	0.00091	0.00069	0.00046213

1258

1259

1260

1261

1262

1263

1264

1265

1266

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	–	–	–	22	31
Hidden dimension	[16 – 256]	–	–	–	85	33
Learning rate	[10^{-5} – 10^{-2}]	–	–	–	0.00014	0.0005028
Weight decay	[10^{-8} – 10^{-3}]	–	–	–	0.00004	0.00033338

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	17	26	17	36	26
Hidden dimension	[16 – 256]	40	56	162	216	192
Learning rate	[10^{-5} – 10^{-2}]	0.00004	0.00031	0.00034	0.00005	0.000024067
Weight decay	[10^{-8} – 10^{-3}]	0.00015	0.00029	0.00007	0.00005	0.00038179
GNN Backbone	[GCN]	GCN	GCN	GCN	GCN	GCN
Number of Backbone Layers	[1]	1	1	1	1	1
Number of attention heads	[2]	2	2	2	2	2

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	37	25	19	35	32
Hidden dimension	[16 – 256]	63	72	151	144	96
Learning rate	[10^{-5} – 10^{-2}]	0.00088	0.00013	0.00007	0.00292	0.00032
Weight decay	[10^{-8} – 10^{-3}]	0.00038	0.00001	0.00001	0.00026	0.00059
ϵ	[0.001 – 1.0]	0.57880	0.95470	0.98433	0.78163	0.82108

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	32	40	32	N/A	N/A
Hidden dimension	[16 – 256]	256	128	128	N/A	N/A
Learning rate	[10^{-5} – 10^{-2}]	0.00082	0.00048	0.00003	N/A	N/A
Weight decay	[10^{-8} – 10^{-3}]	0.00032	0.00047	0.00001	N/A	N/A
Attention dropout	[0 – 0.5]	0.433	0.008	0.014	N/A	N/A
Number of attention heads	[2]	2	2	2	N/A	N/A

1296

1297

1298

1299

1300

1301

1302

1303

Table 15: Hyperparameters and their best values across tasks PH-DGN.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	17	37	21	14	10
Hidden dimension	[16 – 256]	28	66	120	103	166
Learning rate	[10^{-5} – 10^{-2}]	0.00150	0.00178	0.00037	0.00033	0.0038211
Weight decay	[10^{-8} – 10^{-3}]	0.00054	0.00082	0.00081	0.00063	0.00044422
ϵ	[0.001 – 1.0]	0.34977	0.16491	0.36140	0.68993	0.40992
α	[0.01 – 1.0]	0.47190	0.90892	0.63323	0.87607	0.15544
β	[0.01 – 1.0]	0.70474	0.92918	0.99675	0.91251	0.11011
p conv mode	[NaiveAggr, GCN]	GCN	GCN	GCN	GCN	NaiveAggr
q conv mode	[NaiveAggr, GCN]	GCN	GCN	GCN	NaiveAggr	NaiveAggr
Doubled dimension	[True, False]	False	False	True	True	false
Final state	[p, q, pq] [param,	pq	p	pq	pq	q
Dampening mode	param+, MLP4ReLU, DGNReLU,]	param+	DGNReLU	param	param+	param+
External mode	[MLP4Sin, DGNtanh]	MLP4Sin	MLP4Sin	MLP4Sin	MLP4Sin	MLP4Sin

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

Table 16: Hyperparameters and their best values across tasks for SWAN.

Hyperparameter	Search interval	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Number of layers	[1 – 40]	28	40	32	38	25
Hidden dimension	[16 – 256]	167	97	195	163	217
Learning rate	[10^{-5} – 10^{-2}]	0.00040	0.00107	0.00086	0.00063	0.00012157
Weight decay	[10^{-8} – 10^{-3}]	0.00057	0.00011	0.00010	0.00016	0.00028686
ϵ	[0.001 – 1.0]	0.54847	0.45462	0.07451	0.38229	0.67265
γ	[0.001 – 0.5]	0.41480	0.28342	0.45928	0.07794	0.3156
β	[-1.0 – 1.0]	0.34233	-0.20976	0.37682	-0.36245	-0.67256
Graph convolution	[AntiSymNaiveAggr (ASNA), BoundedGCNConv (BGC), BoundedNaiveAggr (BNA)]	ASNA	BNA	BNA	ASNA	BNA
Attention	[True, False]	True	False	False	False	True

1344

1345

1346

1347

1348

1349

1350 **G ADDITIONAL EXPERIMENTAL ANALYSIS**
1351

1352 In this section, we investigate how the radius of the explored neighborhood influences the performance
1353 of each method, as well as how the models perform across graphs with varying diameters. **We also**
1354 **analyze how the performance of the models change across different graph topologies and the influence**
1355 **of the readout depth in ECHO-Synth.**
1356

1357 **G.1 LAYER-WISE PERFORMANCE ANALYSIS**
1358

1359 In Figure 8, we evaluate the impact of the radius of the explored neighborhood (i.e., the number of
1360 GNN layers) on test MAE across all tasks. We divide the results into three regimes: shallow (< 10
1361 layers), medium (10–17 layers), and deep (> 17 layers). Therefore, in the shallow regime, GNNs
1362 perform short-range propagation; in the medium regime, they capture medium-range dependencies;
1363 and in the deep regime, they are able to model long-range interactions. A consistent pattern emerges
1364 across most tasks: deeper networks, especially those tailored for long-range propagation, tend to
1365 perform better, thus confirming the long-range nature of the proposed benchmarks. Specifically:
1366

1367

1368 - On the `diam` task (Figure 8a), performance trends are model-dependent. Long-range models
1369 such as DRew and A-DGN remain stable or slightly improve, others like PH-DGN exhibit
1370 a large performance improvement moving from shallow to medium depth regime. This
1371 task, being graph-level and heavily reliant on global information by design, clearly benefits
1372 from increased depth and non-dissipative architectures which are able to perform many
1373 message-passing steps across multiple hops.
1374 - For the `ecc` task (Figure 8b), we observe a consistent performance gain with increasing
1375 depth across nearly all models. Again, long-range architectures like A-DGN and SWAN, or
1376 the multi-hop GNN, DRew, show strong improvements in the deep regime, outperforming
1377 the others. This aligns with the intuition that eccentricity, being a node-level but globally-
1378 informed property, benefits from many message-passing layers to capture distant context,
1379 highlighting the strength of long-range architectures.
1380 - In the case of `sssp` (Figure 8c) we again observe strong depth-related improvements, with
1381 the exception of GraphCON. Notably, SWAN, GPS, and DRew achieve large gains in the
1382 deep regime. Traditional models such as GCN and GIN or GraphCON exhibit plateau or
1383 degradation, revealing limited depth scalability.
1384 - Finally, on the ECHO-Charge task (Figure 8d), the behavior differs. This task involves
1385 precise regression of atomic partial charges, where small errors matter. Most models show
1386 stable MAE across depths, except for GCN and GIN, which degrade significantly in the deep
1387 regime. Importantly, models with explicit long-range message-passing capabilities (A-DGN,
1388 SWAN, PH-DGN, GPS, and DRew) retain high accuracy even at > 17 layers. This suggests
1389 their robustness in fine-grained, long-range molecular prediction tasks. We do not include
1390 ECHO-Energy in this ablation, as it exhibited very similar behavior to ECHO-Charge.
1391

1392 Overall, the observed patterns reveal a clear correlation between the number of message-passing
1393 layers and performance: models require many layers to perform well, confirming the long-range
1394 nature of these benchmarks. Remarkably, architectures explicitly designed to support many message-
1395 passing steps consistently outperform others, further confirming the long-range nature of our proposed
1396 benchmarks.
1397

1398 **G.2 PERFORMANCE ACROSS GRAPH DIAMETERS**
1399

1400 Figure 9 reports, for the best configuration of each model (as selected during model selection), the
1401 test MAE across varying graph diameters for all tasks. This analysis highlights how different models
1402 handle increasingly long-range dependencies.
1403

1404 For the `diam` task (Figure 9a), most models show robust performance for small to moderate diameters,
1405 with a slight increase in MAE for very large diameters. Notably, GCN, GraphCON and GCNII
1406 architectures exhibits substantial degradation as diameter increases, suggesting poor scalability in
1407 capturing global structure on many message-passing steps. Again, non-dissipative architectures
1408 (i.e., A-DGN, PH-DGN, and SWAN), DRew and GPS remain consistently accurate across all graph
1409

Figure 8: Test MAE at different numbers of GNN layers across tasks.

diameters, demonstrating their capacity to generalize across different graph scales. Finally, we observe that models with lower generalization capabilities tend to bias their predictions towards the statistical mean of the dataset. Consequently, these models achieve low error rates in the central range, where the ground truth aligns with the mean, but show high errors at the tails, as they fail to distinguish graphs with extreme diameters from the average case.

The ecc task (Figure 9b) reveals a characteristic U-shaped curve. Performance improves as diameter increases from small to moderate values, and deteriorates again for very large graphs. Here, all models follow a similar trend, although A-DGN and GPS tend to dominate in the optimal range. This pattern is highly correlated with the node eccentricity distribution depicted in Figure 4, as it follows a non-uniform distribution, creating an inverse relationship between sample frequency and error. In particular, in the center of the plot, it is possible to see the GNNs that learn the dominant pattern; in addition, simply predicting values close to the statistical mean minimizes the expected loss in this dense region, and results in a lower error. Conversely, graphs exhibiting lower eccentricities are statistically less frequent, leading to a noticeable degradation of the performance across extreme values.

In the sssp task (Figure 9c), increasing graph diameter consistently correlates with rising MAE. Model performance divides into three groups, with GraphCON exhibiting the worst performance

Figure 9: Test MAE for the best configuration of each model (as selected during model selection) at different graph diameters across synthetic and molecular tasks.

both in terms of overall MAE and degradation with increasing diameter. GCN, GCNII, and GIN show similar values across the task and similar degradation trends. Finally, non-dissipative models, GPS Transformer and DRew, once again demonstrate remarkable and consistent performance even on difficult graphs. This trend reinforces the long-range nature of the task, where deeper or more expressive models are required to maintain strong performance.

On the molecular ECHO-Charge task (Figure 9d), test MAE consistent across all ranges, but subtle trends emerge. Models like DRew and GPS show stability and even slight improvements for larger molecular graphs, while GCN and GIN degrade more noticeably, confirming their limited capacity to manage increasing molecular complexity. Interestingly, GINE performs substantially better than its counterpart GIN, suggesting that edge-level attributes play a crucial role in the ECHO-Charge regression task. Similarly to the previous ablation study, we do not include ECHO-Energy, as it exhibited very similar behavior to ECHO-Charge. Additionally, we note that all models exhibit a general performance drop when processing molecular graphs with a diameter greater than 35. We attribute this behavior to the original ChEMBL dataset’s distribution, which includes fewer graphs with diameters in the 35–40 range. This also impacts our ECHO-Charge dataset as illustrated in Figure 5. As a result, models have limited opportunity to learn effective representations for such large graphs, which likely contributes to the observed degradation.

Overall, this complementary diameter-wise analysis underlines the necessity for architectures capable of handling variable and large receptive fields. It also highlights that while shallow models may perform competitively on small graphs, their limitations become apparent in regimes requiring long-range reasoning.

G.3 IMPACT OF READOUT LAYER DEPTH

To examine the impact of the readout depth, we conducted an experiment varying the depth of the readout (from 1 to 3 layers) on the ECHO-Synth tasks. Table 17 presents the performance of a GCN with varying readout layers. The results indicate that increasing the readout depth to three layers does not improve GCN performance on the synthetic tasks. Therefore, the final performance appears to be independent of the readout depth. Since the additional layer does not yield measurable benefits, we consider the increased model complexity unjustified. For this reason, we retain a two-layer readout to prioritize computational efficiency and performance.

Table 17: **Ablation study on Readout Depth for GCN on ECHO-Synth tasks.** Metrics are reported as Mean Absolute Error (MAE) \pm Standard Deviation.

Model	diam \downarrow	ecc \downarrow	sssp \downarrow
GCN (1 layer readout)	6.219 ± 0.387	5.493 ± 0.007	2.367 ± 0.083
GCN (2 layers readout)	3.832 ± 0.262	5.233 ± 0.034	2.102 ± 0.094
GCN (3 layers readout)	5.743 ± 0.009	5.172 ± 0.091	2.075 ± 0.545

G.4 PERFORMANCE ACROSS DIFFERENT GRAPH TOPOLOGIES

In this section we analyze the models' performance on different graph topologies in ECHO-Synth. Figures 10, 11 and 12 show respectively diam, ecc and sssp. The results show that although absolute performance varies slightly with the underlying graph topology (e.g., GPS performs better on lobster graphs than on tree-like topologies in SSSP), the relative ranking of models remains consistent, reinforcing the robustness of our findings. Interestingly, we observe that the line topology is consistently the most challenging one. This is expected: in a line graph, every message must pass through a sequence of intermediate nodes, making each node a critical bottleneck for information propagation and amplifying the need for long-range communication.

Figure 10: Results by different topologies on diam task.

Figure 11: Results by different topologies on ecc task.

Figure 12: Results by different topologies on sssp task.

H EXTENDED RESULTS

In Table 18 we report additional result on ECHO-Synth benchmark. In particular we report MAE, MSE and loss (defined as $\log_{10}(\text{MSE})$) obtained on the test set. Similarly, we report the same metrics for ECHO-Charge and ECHO-Energy in Table 19 and Table 20, respectively.

1620

1621

1622 Table 18: Test performance (mean \pm std) of different models across ECHO-Synth tasks. Lower is
1623 better. In bold the best model.

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Model	Test Loss \downarrow	Test MSE \downarrow	Test MAE \downarrow
diam			
A-DGN	-2.531 ± 0.010	4.818 ± 0.108	1.151 ± 0.038
DRew	-2.635 ± 0.020	3.756 ± 0.170	1.243 ± 0.047
GCN	-1.848 ± 0.051	22.872 ± 2.766	3.832 ± 0.262
GCNII	-2.227 ± 0.026	9.696 ± 0.568	2.005 ± 0.093
GIN	-2.356 ± 0.066	7.238 ± 1.153	1.630 ± 0.161
GPS	-2.192 ± 0.025	10.454 ± 0.610	2.160 ± 0.098
GraphCON	-1.995 ± 0.037	16.427 ± 1.419	2.969 ± 0.189
PH-DGN	-2.416 ± 0.181	6.699 ± 2.728	1.627 ± 0.398
SWAN	-2.517 ± 0.023	4.950 ± 0.265	1.121 ± 0.070
ecc			
A-DGN	-1.649 ± 0.006	35.967 ± 0.492	4.981 ± 0.037
DRew	-1.696 ± 0.002	32.247 ± 0.148	4.651 ± 0.020
GCN	-1.606 ± 0.005	39.706 ± 0.460	5.233 ± 0.034
GCNII	-1.603 ± 0.006	39.911 ± 0.518	5.241 ± 0.030
GIN	-1.668 ± 0.015	34.454 ± 1.201	4.869 ± 0.092
GPS	-1.682 ± 0.003	33.346 ± 0.226	4.758 ± 0.021
GraphCON	-1.566 ± 0.001	43.505 ± 0.017	5.474 ± 0.001
PH-DGN	-1.630 ± 0.017	37.510 ± 1.416	5.068 ± 0.126
SWAN	-1.671 ± 0.007	34.208 ± 0.578	4.840 ± 0.045
sssp			
A-DGN	-2.566 ± 0.089	4.425 ± 0.879	1.176 ± 0.140
DRew	-2.386 ± 0.001	6.589 ± 0.015	1.279 ± 0.011
GCN	-2.217 ± 0.033	9.743 ± 0.757	2.102 ± 0.094
GCNII	-2.213 ± 0.177	10.369 ± 3.575	2.128 ± 0.429
GIN	-2.138 ± 0.090	11.868 ± 2.689	2.234 ± 0.271
GPS	-3.115 ± 0.040	1.255 ± 0.113	0.472 ± 0.050
GraphCON	-1.488 ± 0.000	52.104 ± 0.016	5.734 ± 0.011
PH-DGN	-2.616 ± 0.317	4.656 ± 3.013	1.323 ± 0.485
SWAN	-2.782 ± 0.205	2.905 ± 1.556	0.896 ± 0.232

1658 Table 19: Test performance (mean \pm std) of different models across the ECHO-Charge task. Lower
1659 is better. In bold the best model. Test loss ($\log_{10}(\text{MSE})$) is computed on the normalized dataset,
1660 while test MSE and test MAE are reported on the original (non-scaled) data.

Model	Test Loss \downarrow	Test MSE $\times 10^4 \downarrow$	Test MAE $\times 10^3 \downarrow$
A-DGN	-3.840 ± 0.009	1.456 ± 0.032	6.543 ± 0.146
DRew	-3.444 ± 0.054	3.669 ± 0.459	9.086 ± 0.473
GCN	-3.508 ± 0.086	3.126 ± 0.263	8.421 ± 0.512
GCNII	-3.462 ± 0.019	3.490 ± 0.147	8.829 ± 0.021
GIN	-3.245 ± 0.038	5.750 ± 0.239	10.784 ± 0.059
GINE	-3.648 ± 0.020	2.284 ± 0.402	7.176 ± 0.371
GPS	-3.821 ± 0.018	1.620 ± 0.065	6.182 ± 0.219
GraphCON	-2.879 ± 0.009	13.256 ± 0.265	19.629 ± 0.195
PH-DGN	-3.595 ± 0.024	2.562 ± 0.144	7.915 ± 0.269
SWAN	-3.907 ± 0.027	1.251 ± 0.029	6.109 ± 0.103

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693

1694 Table 20: Test performance (mean \pm std) of different models across the ECHO-Energy task. Lower
 1695 is better. In bold the best model. Test loss ($\log_{10}(\text{MSE})$) is computed on the normalized dataset,
 1696 while test MSE and test MAE are reported on the original (non-scaled) data.
 1697

Model	Test Loss \downarrow	Test MSE $\times 10^3 \downarrow$	Test MAE $\times 10^2 \downarrow$
A-DGN	-4.857 \pm 0.083	1.415 \pm 0.799	0.125 \pm 0.016
DRew	-5.007\pm0.231	1.281 \pm 0.733	0.113 \pm 0.024
GCN	-4.210 \pm 0.010	4.561\pm0.176	0.281 \pm 0.012
GCNII	-4.884 \pm 0.196	1.560 \pm 0.653	0.132 \pm 0.026
GIN	-3.800 \pm 0.160	12.215 \pm 2.878	0.479 \pm 0.102
GINE	-4.418 \pm 0.265	5.225 \pm 2.536	0.236 \pm 0.076
GPS	-5.786\pm0.118	0.180\pm0.045	0.053\pm0.008
GraphCON	-4.817 \pm 0.089	0.975 \pm 0.242	0.143 \pm 0.008
PH-DGN	-4.717 \pm 0.046	1.359 \pm 0.408	0.161 \pm 0.011
SWAN	-4.825 \pm 0.107	2.652 \pm 2.257	0.126 \pm 0.012

1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728 I RUNTIMES

1730 To assess the computational efficiency and predictive performance of all models, we report both
 1731 training and inference runtimes measured on a NVIDIA H100 GPU, as well as the mean absolute
 1732 error (MAE) across tasks in the ECHO benchmark (see Table 21). Training time is measured as the
 1733 average per-epoch duration over 10 epochs, while inference time is computed as the average forward
 1734 pass duration over 10 independent runs on the test set, using a batch size of 512. The three metrics
 1735 correspond to the best hyperparameter configuration selected for each model. This comprehensive
 1736 evaluation allows a direct comparison of models not only in terms of accuracy but also with respect to
 1737 their scalability and practical deployability. We note that DRew’s reported runtime does not include
 1738 the preprocessing step, which involves computing the Floyd–Warshall algorithm (Cormen et al.,
 1739 2009), a procedure with cubic time complexity in the number of nodes.

1740 Table 21 highlights that while transformer-based models like GPS achieve strong performance on
 1741 long-range tasks, particularly on the real-world ECHO-Charge/ECHO-Energy dataset, they do so
 1742 at the cost of significantly higher computational overhead. In contrast, architectures such as SWAN
 1743 and A-DGN strike a more favorable balance between efficiency and accuracy, suggesting the potential
 1744 of non-dissipative DE-GNNs in overcoming the limitations of standard message passing.

1745 Table 21: Training and inference runtime (in seconds, mean \pm standard deviation) on the ECHO Bench-
 1746 mark. Results for ECHO-Synth were measured on an NVIDIA H100 GPU, while ECHO-Charge
 1747 and ECHO-Energy were measured on an NVIDIA L40S GPU. Training time refers to the average
 1748 time per epoch computed over 10 epochs. Inference time refers to the forward pass on the test
 1749 set, computed over 10 independent runs. In both cases the batch size is set to 256. For each task,
 1750 the reported values correspond to the best configuration of each model as selected during model
 1751 selection. To ease comparison, we also report the performance of each model alongside its runtime.
 1752 Note that ECHO-Charge MAE values should be multiplied by $\times 10^{-3}$ for correct interpretation.
 1753 DRew’s reported runtime does not include the pre-processing step, which involves computing the
 1754 Floyd–Warshall algorithm, a procedure with cubic time complexity in the number of nodes.

Metric	Model	diam	sssp	ecc	ECHO-Charge	ECHO-Energy
Training (s)	A-DGN	1.430 \pm 0.100	1.460 \pm 0.130	1.710 \pm 0.070	12.847 \pm 0.543	36.476 \pm 0.409
Inference (s)		0.028 \pm 0.002	0.018 \pm 0.001	0.027 \pm 0.001	0.191 \pm 0.193	2.124 \pm 0.197
MAE		1.151 \pm 0.038	1.176 \pm 0.140	4.981 \pm 0.037	6.543 \pm 0.146	12.486 \pm 1.621
Training (s)	DRew	1.920 \pm 0.050	1.880 \pm 0.060	1.760 \pm 0.100	17.648 \pm 0.325	17.318 \pm 1.061
Inference (s)		0.100 \pm 0.001	0.043 \pm 0.001	0.057 \pm 0.002	0.606 \pm 0.557	0.847 \pm 0.563
Pre-processing (s)		48.108 \pm 0.943	48.108 \pm 0.943	48.108 \pm 0.943	345.379 \pm 1.592	404.337 \pm 1.601
MAE		1.243 \pm 0.047	1.279 \pm 0.011	4.651 \pm 0.020	9.086 \pm 0.473	11.325 \pm 2.394
Training (s)	GCNII	1.700 \pm 0.050	1.830 \pm 0.020	1.620 \pm 0.110	19.013 \pm 0.286	23.039 \pm 0.89
Inference (s)		0.071 \pm 0.002	0.062 \pm 0.001	0.059 \pm 0.001	0.829 \pm 0.728	1.466 \pm 0.982
MAE		2.005 \pm 0.093	2.128 \pm 0.429	5.241 \pm 0.030	8.829 \pm 0.021	13.235 \pm 2.630
Training (s)	GCN	1.480 \pm 0.060	1.790 \pm 0.060	1.450 \pm 0.100	9.418 \pm 0.388	8.976 \pm 0.49
Inference (s)		0.048 \pm 0.001	0.065 \pm 0.003	0.046 \pm 0.002	0.376 \pm 0.472	0.385 \pm 0.388
MAE		3.832 \pm 0.262	2.102 \pm 0.004	5.233 \pm 0.034	8.421 \pm 0.512	28.112 \pm 1.239
Training (s)	GIN	1.410 \pm 0.220	1.370 \pm 0.060	1.340 \pm 0.040	9.066 \pm 0.509	10.259 \pm 0.471
Inference (s)		0.020 \pm 0.001	0.019 \pm 0.001	0.016 \pm 0.001	0.065 \pm 0.043	0.550 \pm 0.769
MAE		1.630 \pm 0.161	2.234 \pm 0.271	4.869 \pm 0.092	10.784 \pm 0.059	47.851 \pm 10.154
Training (s)	GINE	N/A	N/A	N/A	18.978 \pm 0.778	13.615 \pm 0.619
Inference (s)		N/A	N/A	N/A	0.138 \pm 0.003	1.311 \pm 1.834
MAE		N/A	N/A	N/A	7.176 \pm 0.371	23.558 \pm 7.568
Training (s)	GPS	9.720 \pm 0.070	14.580 \pm 0.210	11.960 \pm 0.050	513.908 \pm 0.777	383.794 \pm 1.975
Inference (s)		4.536 \pm 0.006	7.026 \pm 0.001	6.235 \pm 0.076	34.264 \pm 2.416	89.699 \pm 5.476
MAE		2.160 \pm 0.098	0.472\pm0.050	4.758 \pm 0.021	6.182 \pm 0.219	5.257\pm0.842
Training (s)	GraphCON	0.990 \pm 0.120	0.920 \pm 0.040	0.940 \pm 0.190	7.471 \pm 0.429	9.037 \pm 0.79
Inference (s)		0.006 \pm 0.001	0.004 \pm 0.001	0.006 \pm 0.001	0.146 \pm 0.218	0.188 \pm 0.218
MAE		2.969 \pm 0.189	5.734 \pm 0.011	5.474 \pm 0.001	19.629 \pm 0.195	14.295 \pm 0.807
Training (s)	PH-DGN	2.840 \pm 0.060	4.480 \pm 0.060	3.010 \pm 0.060	39.405 \pm 1.753	49.099 \pm 1.186
Inference (s)		0.180 \pm 0.011	0.375 \pm 0.002	0.299 \pm 0.006	1.218 \pm 0.535	2.311 \pm 0.560
MAE		1.627 \pm 0.398	1.323 \pm 0.485	5.068 \pm 0.126	7.915 \pm 0.269	16.080 \pm 1.123
Training (s)	SWAN	2.330 \pm 0.120	2.130 \pm 0.050	2.090 \pm 0.110	40.771 \pm 0.317	20.520 \pm 0.468
Inference (s)		0.203 \pm 0.002	0.099 \pm 0.001	0.168 \pm 0.001	0.595 \pm 0.520	1.873 \pm 0.101
MAE		1.121\pm0.070	0.896 \pm 0.232	4.840 \pm 0.045	6.109\pm0.103	12.629 \pm 0.807

Figure 13: Visualization of the first-layer GPS attention scores in `sssp` for the Ladder and Lobster topologies, averaged across all heads. The top 40 attention-weighted node pairs are highlighted in color, while the original graph topology is shown in black.

J VISUALIZATION OF GPS ATTENTION PATTERNS

In this section, we analyze the attention patterns of the GPS model within the `sssp` task. These patterns are illustrated in Figure 13. We observed that, starting from the first layer, the highest attention scores are often assigned to pairs of nodes that are not directly connected and that are usually far apart in the underlying graph. Notably, the model appears to identify one or a few nodes as central hubs that aggregate and redistribute information from these distant nodes. This mechanism effectively reduces the maximal traversal distance to only few hops, allowing distant nodes to communicate more easily. Therefore, this mechanism effectively reveals how the model routes long-range communication through structural shortcuts, thus confirming the long-range nature of the proposed tasks.

K EVALUATING `ECC` LONG-RANGEDNESS WITH LIANG ET AL. (2025) METRIC

In Figure 14 we tested the metric for evaluating the long-rangedness proposed in (Liang et al., 2025) on `ecc`, which shares the same objective as (Liang et al., 2025), and it is long-range by design. We found that the same model configuration produces substantially different measures of long-rangedness when evaluated with trained versus randomly initialized weights. This variability suggests that, while the metric can be used to measure the relative long-rangedness between different models when the dataset is fixed, it may not be used, per-se, to measure the absolute long-rangedness of a specific dataset (and to confront it with others).

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 14: ADGN’s total influences computed for the ecc task with trained and random weights, `max_hops = 17`