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Abstract—The goal of re-identification (re-ID) is to find an
object (e.g., person or vehicle) of interest across cameras. In
re-ID, designing suitable and effective loss functions plays an
essential and imperative role in learning identifiable features.
Regardless of the significant success achieved by using retrieval-
or verification-based loss functions due to re-ID can be formulated
as a retrieval or verification task, the model performance might
be degraded owing to the inconsistency between the loss functions
and evaluation metrics. Moreover, current hand-designed loss
functions based on evaluation metrics require great expertise and
a significant workforce, which is often sub-optimal and laborious.
To this end, we propose to automatically design loss functions
with specific evaluation metrics for re-ID. Specifically, we propose
Parameterized Retrieval & Verification (RV) Loss, which jointly
optimizes RV tasks while introducing parameterized functions to
replace non-differentiable operations in RV evaluation metrics.
Different evaluation metric approximations are thus represented
in a single formula by a family of parameterized functions. Then,
an automated parameter search algorithm is used to conduct the
parameter search. Experimental results indicate that the proposed
Parameterized RV Loss can improve the performance of the state-
of-the-art re-ID methods, thus demonstrating its effectiveness and
superiority over other relevant loss functions on the public person
re-ID and vehicle re-ID benchmarks.

Index Terms—Re-identification, Deep metric learning, Loss
function search

I. INTRODUCTION

RE-IDENTIFICATION (re-ID) attempts to find the same
identity of object (e.g., person/vehicle) in the surveillance

systems [1]–[3]. With the powerful capability of deep neural
networks, the past decade has witnessed the significant break-
through in re-ID. In particular, the design of loss functions with
task-specific heuristics plays an inevitable role in model training.
Meanwhile, re-ID is usually investigated as a retrieval task [4],
[5] or a verification task (also called binary classification
task) [6]–[8]. Therefore, the retrieval- or verification-based
loss functions are directly adopted to train the re-ID models.

However, there are still some limitations when using retrieval-
or verification-based loss functions alone. Listed below are the
main reasons: 1) For the retrieval-based loss, it is inevitably
challenging to find a true positive with a less similarity [5], [9]
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Figure 1. Motivation of the proposed Parameterized RV Loss. Solid circles with
same color represent the same class. (a) indicates that re-ID is formulated as a
retrieval task. (b) is another manner, i.e., verification task (only negative/positive
pairs connected to the first sample are shown). (c) is our solution that combine
both the strengths of retrieval and verification tasks (only top-1 samples in
ranking list connected to the query are represented). Noteworthy, green and
red edges represent whether the sample pair depicts the same identity or not.
Dotted edges represent implicit relationships and solid edges represent explicit
relationships. Differently, our Parameterized RV Loss combines the strengths
of the two tasks. Best viewed in color.

(Figure 1(b)); 2) For the verification-based loss, it may result
in a local optimum for the learned model [6], [7] (Figure 1(a)).
Unlike these works, recent efforts have been proposed to take
both retrieval and verification tasks into account in re-ID [10]–
[15], i.e., jointly optimizing Retrieval & Verification (RV) tasks
simultaneously (Figure 1(c)). For the first limitation, Chen et
al. [10] potentially rectified this problem by introducing the
retrieval-based loss function (i.e., triplet loss). Meanwhile, there
is an obvious and easily neglected problem, i.e., the sample
pairs are prejudicial, with far more negative sample pairs than
positive ones. To tackle the imbalance of sample pairs, a re-
weighting strategy derived from the triplet loss was proposed
to improve the popular verification loss [13]. For the second
limitation, Khatun et al. [11], [16] introduced a verification loss
function to improve the generalization of the re-ID methods
by jointly optimizing both RV tasks. As these two tasks deal
with re-ID from different perspectives, impressive results have
been achieved by optimizing both the retrieval- and verification-
based loss functions in training re-ID models according to their
own advantages [10], [11], [13], [16], further demonstrating
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Figure 2. Illustration of comparison between existing loss functions and our Parameterized RV Loss. Different from existing loss functions, we take the
retrieval task and the verification task into account. Our Parameterized RV Loss is to constitute a compact search space as well as provide the consistency
between training objectives and evaluation metrics from the evaluation metric perspective.

their joint benefit and mutual complementary effects.

In our previous works, we focused on improving the
generalization ability of the re-ID model from both global
and local features together [17], and investigated two strategies
of sampling and re-weighting frames for unsupervised video
person re-ID [18]. Although the above-discussed methods and
our previous efforts have yielded progressive results, the model
performance might be degraded owing to the inconsistency
between the loss functions and evaluation metrics [19], [20].
To mitigate this inconsistency problem, a direct and effective
solution is to approximate re-ID evaluation metrics (e.g.,
commonly used Average Precision (AP)) during the model
training. Because the AP metric is non-differentiable, many
works have manually designed smooth AP approximations
according to the mathematical formulation of AP metric [21]–
[23]. Besides, we alleviated positive-negative class imbalance
during re-ID training process by designing a rank-in-rank loss
based on AP [1]. Despite the improvements, these methods
of simultaneously optimizing RV tasks are built upon two
independent loss functions (see Figure 2). Meanwhile, they
depend on hand-designed heuristics that require tremendous
effort from the professional experts to exploit the expansive
loss function design space, which is often sub-optimal and
extremely laborious in practice [24]–[28].

In recent years, with the development of AutoML, its
powerful capability of automatically learning has surpassed
the hand-designed methods in many fields, such as data
augmentation [29]–[31] and networks architecture [32]–[34].
In particular, AutoML-based loss function search methods have
emerged and attracted attention recently. Existing AutoML-
based loss function search methods can be divided into two
categories depending on whether the fixed form of the loss
function can be obtained. In the first category, only the final
trained model needs to be cared about, instead of directly
searching for the fixed form of the loss function [24]–[26].
As a result, these methods are highly coupled to the model
and dataset, i.e., the expensive search procedure needs to
be repeated when the model or dataset changes. The second
category of methods is to search for the loss function, through
some primitive operations [27], [28], [35] or the surrogate
loss function with parameterized functions [36], [37]. More
importantly, the second category of methods can be transferable
for models and datasets in similar tasks, without repeating the

search procedure. The second category of methods meets our
goal, and AutoLoss-GM [27] is the first work to search the
generalized margin-based softmax (GMS) loss function with
a fixed form for person re-ID. Although AutoLoss-GM [27]
has achieved good results, it essentially searches for better loss
functions in the GMS loss function space. It is worth noting
that the GMS loss function is also hand-designed, which is the
approximation for evaluation metrics. Therefore, there exists the
above-mentioned inconsistency between the loss functions and
evaluation metrics, and this issue remains under-investigated.

In this paper, we propose Parameterized Retrieval & Verifica-
tion (RV) Loss (shown in Figure 2) for re-ID, which is built on
the retrieval and verification evaluation metrics to alleviate the
inconsistency between training and evaluation objectives. The
core idea is that the search space is constructed according
to the evaluation metrics with the help of parameterized
functions, which enables the automatic search of the optimal
parameters. Specifically, the first step is to reformulate the
retrieval and verification evaluation metrics for re-ID as a RV
function of retrieval and verification scores. Then we employ
the parameterized functions to replace the non-differential
operations in above reformulated functions. Finally, we search
the parameters via a reinforcement learning-based search
process to maximize the RV score on the evaluation set for
obtaining the loss function with optimal parameters.

To summarize, the main contributions are listed as follows:

• To the best of our knowledge, we are the first to propose
a novel AutoML-based loss (i.e., Parameterized RV Loss)
from the evaluation metric perspective for re-ID, which
jointly optimizes both retrieval and verification tasks.

• We design a novel verification metric named verification
precision (VP) that is constructed with precision and recall,
which is integrated into AP to form the RV function
by simply replacing the summation region. Instead of
hand-designing smooth surrogate losses or approximated
ranking step functions, our method automatically searches
for the optimal parameters (i.e., parameter-free) via the
differentiable parameterized substitutions.

• Our method achieves competitive performance on public
person re-ID and vehicle re-ID datasets, showing its
effectiveness and superiority over other relevant methods.

The rest of this paper is organized as follows: §II briefly
reviews related works. Then, §III introduces the notations
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definition used in this paper, and overviews evaluation metrics
for re-ID. Next, we introduce our method in §IV. In §V, we
show extensive experiments to compare with related state-of-
the-art methods and comprehensively study important modules
in the ablation study. Finally, we make the corresponding
conclusions and summaries of this work in §VI.

II. RELATED WORK

In this section, we provide a brief overview of related
research in five fields: hand-designed loss functions for re-ID,
hand-designed loss functions for evaluation metrics, searching
loss functions for re-ID, direct optimization for the evaluation
metric, and hyper-parameter optimization.

A. Hand-designed Loss Functions for Re-ID

Designing effective loss functions has attracted extensive
interests in re-ID for a long time. Identity loss [38], triplet
loss [39], and verification loss [6] are widely used. The identity
loss investigates re-ID as a classification task. It is usually used
with the label smoothing [40], [41] to avoid overfitting to
over-confident annotated labels. To learn discriminative and
view-invariant features, the attention mechanism [42], [43] and
the adversarial training [44] are developed to learn more robust
metrics by combining with identity loss, triplet loss, etc [45],
which can ultimately enhance the robustness of the learned re-
ID model. Moreover, there have been many efforts to improve
identity loss and achieve better results, e.g., SphereReID [46],
CircleLoss [47], and etc. The identity loss can be combined
with retrieval- or verification-based loss functions to optimize
the re-ID model. It is also worth noting that re-ID is usually
viewed as a retrieval or verification task. Therefore, many works
have been done to design the appropriate loss functions from
the perspective of these two tasks. For the retrieval task, the
triplet loss and its variants (e.g., quadruplet loss [48]) propose to
keep a pre-defined margin of the distance between the positive
pair and the negative pair. For the verification task, to optimize
the pairwise relationship, the contrastive loss [6] optimizes the
distance between pairwise samples, and the binary verification
loss [7] determine whether the input sample pair has the same
identity or different identities. Considering the strengths and
weaknesses of retrieval and verification tasks, some works [10]–
[15] have proposed to build a more comprehensive re-ID
solution by jointly optimizing the two tasks simultaneously,
which obtains impressive results. It is easy to ignore that the loss
functions for these two tasks are trained separately, and these
loss functions are not aligned with the re-ID evaluation metrics.
Consequently, such joint combined optimization may degrade
the model performance. Meanwhile, these loss functions are all
hand-designed that require great expertise and human energy,
which may be usually sub-optimal.

B. Hand-designed Loss Functions for Evaluation Metrics

Loss functions play a prominent role in model training.
Recent years have witnessed the remarkable success of loss
functions for many tasks, including object detection [20], [49],
image retrieval [21], [22], [50], [51], and re-ID [1], [2]. For

object detection, cross entropy loss [38] and L1 loss [49]
are widely used for classification and location, while the
corresponding evaluation metrics are precision/recall and
IoU respectively. For image retrieval and re-ID, cross entropy
loss [38] and triplet loss [39] are commonly used for model
training, while the AP metric is the standard evaluation metric
for measuring retrieval performance. In summary, these loss
functions are all hand-designed, i.e., heavily relying on careful
design and human expertise. Specifically, these hand-designed
loss functions contain some hyper-parameters or weights to
be tuned, which require a lot of time and labor costs for
tuning the hyper-parameters before effective model training.
Therefore, the extensibility of hand-designed loss functions is
restricted. Meanwhile, since these hand-designed loss functions
are essentially approximate objectives for specific evaluation
metrics in various tasks, there thus exists an inconsistency
problem between the loss functions and evaluation metrics.
This inconsistency between model training and evaluation
leads to suboptimization, resulting in the degradation of model
performance. To tackle this issue, many hand-designed loss
functions have been proposed for evaluation metrics. The
key idea of these hand-designed loss functions is to hand-
design differentiable approximations or surrogates of evaluation
metrics [1], [20]–[22], [49]–[51] (detailed analysis in §II-C).
The most relevant work is our proposed DRSL loss [1] for
re-ID, which is to minimize the distance between samples of
the same category along with the angle between them based on
the AP metric. Although the above-mentioned hand-designed
loss functions have achieved some success, they rely heavily
on human experience to analyze the characteristics of the
evaluation metrics for the specific task before completing the
design. In contrast, we propose Parameterized RV Loss to
automatically search suitable loss functions based on evaluation
metrics, to reduce human labor in re-ID tasks.

C. Direct Optimization for Evaluation Metrics

There have already been many tasks in which the direct
optimization for non-differentiable evaluation metrics were
investigated, e.g., information retrieval [52], [53], object
detection [20], [49], and image retrieval [21], [22], [50],
[51]. There are four groups of studies. First, it is to design
smooth surrogate loss functions for evaluation metrics. The
most commonly used surrogate loss functions contain cross
entropy loss [38], triplet loss [39], contrastive loss [6], and etc.
These methods suffer from inconsistency between training and
evaluation objectives, and need specific analysis and tricks to
be effective. Second, the smooth structured hinge-loss upper
bound is designed to optimize the upper bound to the loss
functions based on evaluation metrics. Several works are based
on the structured SVM model [54], [55] to carry out the
investigation. However, the construction with a linear SVM
model is restricted, so the performance is limited. Approximate
gradient methods [56], [57] are proposed to calculate the
loss functions with the loss-augmented inference, which has
high computational complexity and requires a task-specific
design. Using a blackbox optimization [58] to approximate
the calculation of loss functions requires careful design and
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may be challenging. Third, the error-driven learning scheme
is adopted to update the non-differentiable components in
evaluation metrics. Recently, [20], [49], [59], [60] have achieved
significant gains using error-driven learning for target detection,
but one weakness of such methods is that they are restricted by
specific scenarios. Fourth, there are some solutions to explore
the approximation of loss functions by designing smooth
differentiable approximation of the ranking function. [21], [50]
apply soft-binning techniques to approximate the loss functions
of evaluation metrics. Another methods try to approximate the
non-differentiable ranking function in evaluation metrics with
LSTM networks [61] or sigmoid functions [1], [22], [23], [51],
which may have vanishing gradients and easily fall into local
optimum. Although the aforementioned four groups of methods
provide consistency between loss functions and evaluation
metrics, it is laborious for them to demand a tailored human
design of evaluation metrics.

D. Searching Loss Functions for Re-ID

AutoML for automatic search has long been investigated in
many fields (e.g., data augmentation [29]–[31] and networks
architecture [32]–[34]) and has achieved incredible results.
AutoReID [62] and CDNet [63] propose to automatically search
neural network structures (NAS) for re-ID via reinforcement
learning. However, the final output of such methods is the
network model rather than the loss function. In recent years,
AutoML-based loss function search methods have attracted the
interest of researchers. There are some attempts to perform
loss function search for re-ID [24]–[27]. In these methods,
the final loss functions obtained by AM-LFS [24], Search-
Softmax [25], and LFS-ReID [26] are all optimal constructions
by searching hand-designed cross entropy loss and its variants.
However, there are no fixed forms for the loss functions
searched by these methods, so it is difficult to directly transfer
and apply the gained loss functions to different networks or
datasets. Therefore, AutoLoss-GMS [27] utilizes some primitive
operations to search the loss functions that have a fixed form for
re-ID. AutoLoss-GMS is the first work to automatically search
the generalized margin-based softmax (GMS) loss function, and
it achieves exciting success. Meanwhile, it could have different
effective forms of loss functions (e.g., five loss functions
explored in [27]) according to different settings. Although
it can obtain a fixed form of the loss functions, this approach
requires enough primitive mathematical operations defined by
humans and remains inconsistency between the loss functions
and evaluation metrics. In this paper, we propose to provide
consistency between training and evaluation objectives by
combining evaluation metrics while also ensuring that the
loss functions of the final searched result have a fixed form.

E. Hyper-Parameter Optimization

Hyper-parameter optimization (HPO) has been studied to
automatically assist search in the machine learning setting
for hyper-parameter configurations over the last 20 to 30
years. Random search and grid search [64] are widely used
methods for handling hierarchical search spaces. Because
the search space has become diverse and complex, various

HPO methods have been proposed to perform an effective
search. Bayesian Optimization [65]–[68] uses the historical
evaluation results to build an evaluation model, which is then
used to evaluate and optimize the hyper-parameters. Currently,
evolutionary algorithms [69], [70] are widely used to evolve
the optimal hyper-parameters through evolutionary models.
Notably, reinforcement learning [71] has also been studied to
optimize the search space with the specific sampling policy.
This paper proposes to search for optimal parameters by
employing reinforcement learning, due to its simplicity and
efficiency. Alternatively, other effective HPO techniques can
also be applied to optimize the search space.

III. REVISITING EVALUATION METRICS

In this section, we first give notations definition used in this
paper, and provide an overview of re-ID evaluation metrics.
Because re-ID can be studied as either a verification or retrieval
task, two groups of evaluation metrics are included, i.e.,
verification-based and retrieval-based.

A. Notations

Some notations definitions used in this paper are as follows.
Given a query qi ∈ Q, the re-ID systems need to rank all
elements in a gallery set G. Note that the retrieval set Ω =
{xi}Ni=1 with N elements consists of M queries Q = {qi}Mi=1

and G with N −M elements, i.e., Ω = Q∪G. Meanwhile, for
a query qi ∈ Q, each element in G is assigned a relevant label
yj ∈ {1, 0}, i.e., yj = 1 if xi is relevant to qi, and otherwise
yj = 0. Therefore, the retrieval set Ω can be divided into
Pi = {xi ∈ Ω|yj = 1} and Ni = {xi ∈ Ω|yj = 0} according
to whether it is relevant to query qi. For each element xi, it can
be encoded to a feature vector with d dimensions vi ∈ Rd, i.e.,
V = {vi}Ni=1. In this paper, we use the cosine similarity, and
the similarity score between each query qi and each element

xj in Ω is computed by s (qi,xj) =
vT
qi

vj

||vqi
||2||vj ||2 .

B. Verification-based evaluation metrics

Precision and Recall: Re-ID can be studied as a verification
task, i.e., determining whether two elements have the same
identity. This task usually requires a threshold to obtain four
kinds of values: True-Positive (TP ), False-Positive (FP ),
True-Negative (TN ) and False-Negative (FN ). Similar to the
classification task, two evaluation metrics are used for the
validation task: precision [72] and recall [73]:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(1)

C. Retrieval-based evaluation metrics

CMC and mAP: With the proposal of large datasets
containing multiple cameras, re-ID is also investigated as a
retrieval task. Cumulative Match Characteristic (CMC) [74]
curve and mean Average Precision (mAP) [75] are the two
most widely used evaluation metrics for retrieval task. For each
query qi ∈ Q, any element xj ∈ G is ranked according to the
similarity s (qi,xj). CMC is calculated if the query identity
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appears in the top-k ranked gallery items. The right match’s
rank position is indicated as Rj

i . CMC@k can be defined as:

CMC@k =

∑M
i=1 1(R

j
i ≤ k)

M
, (2)

where 1 is the indicator function which equals to 1 only if
Rj

i ≤ k, otherwise 0. The area under the Precision-Recall
curve is the average precision (AP) [75]. Thus AP is calculated
as

APi =
∑
k

precisionk
i (recall

k
i − recallk−1

i ) (3)

where precisionk
i and recallki represent precision and recall

respectively with respect to query qi in the top-k ranked gallery
items. Then, mAP evaluates the overall performance:

mAP =
1

M

M∑
i=1

APi (4)

IV. METHODOLOGY

In this section, we present the key components which are
included in the parameterized RV loss. The proposed method
jointly learns the retrieval and verification tasks in an integrated
manner. The framework of our proposed method is illustrated
in Figure 3. Firstly, the training set Dtrain and the validation
set Dval are randomly divided for training and validation
respectively. Then in each epoch, the network models Mt(Θ)
(i.e., B network models initialized from {M(Θ)it}Bi=1 are
trained with the hyper-parameters set {Θi

t}Bi=1 sampled through
Θ ∼ T N [0,1](µt, σ

2I) on Dtrain. Next, after finishing the
above epoch training, B rewards are evaluated by B trained
network models on Dval. In this way, we can use these rewards
to update the parameters of the parameter sampling strategy
Θ ∼ T N [0,1](µt, σ

2I). After the above steps are completed,
it means that the parameterized search process is finished
once. Below, we first introduce the evaluation metrics for
the design of loss function. Then we introduce the proposed
Parameterized RV Loss, including the design of RV function
and the differentiable approximation of RV function. Finally,
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we describe the parameterized function and the parameter
optimization used in our method.

A. Average Precision & Verification Precision

Average Precision (AP). AP is a common evaluation metric
for measuring the retrieval performance of the re-ID model.
The AP metric is defined as follows.

APi =
1

|Pi|
∑
k∈Pi

precisionk
i (5)

where precisionk
i is the precision for the k-th relevant element

xk, whose the similarity score is larger than that of i-th element.
Following [22], [51], Equ. 5 can be further calculated as
follows.

APi =
1

|Pi|
∑
k∈Pi

precisionk
i =

1

|Pi|
∑
k∈Pi

Rank(k,Pi)

Rank(k,Ω)

=
1

|Pi|
∑
k∈Pi

Rank(k,Pi)

Rank(k,Pi) +Rank(k,Ni)

=
1

|Pi|
∑
k∈Pi

1 +
∑

j∈Pi,j ̸=k 1{sj−sk>0}

1 +
∑

j∈Ω,j ̸=k 1{sj−sk>0}

(6)

where Rank(k,Pi) and Rank(k,Ni) represent the ranking
position of the image xk in Pi and Ni, and Rank(k,Ω) =
Rank(k,Pi)+Rank(k,Ni). 1 is the indicator function which
equals to 1 only if sj − sk > 0, otherwise 0.

Verification Precision (VP). Re-ID can be also investigated
as a verification task, i.e., discriminating whether or not two
input images have the same identity. The verification task usu-
ally needs a special threshold Λ, i.e., Λ = {λ|s (qi,xj) ≥ λ}.
precision and recall are the most widely used evaluation
metrics for evaluating the verification performance of the re-ID
model. In this paper, to keep the trade-off between precision
and recall, we proposed to define a novel verification evalu-
ation metric, i.e., verification precision (VP). The VP under
threshold λ can be defined as.

VPi,λ =
recalli,λ∗ precisioni,λ

recalli,λ+precisioni,λ− recalli,λ∗precisioni,λ
(7)

where precisioni,λ and recalli,λ denote the precision and
recall under the threshold λ with respect to the query qi.
With a further extension, the V P can also be formulated as
follows.

VPi,λ =
Rank(Pi;λ)

Rank(Ni;λ) + |Pi|
(8)

where Rank(Pi;λ) and Rank(Ni;λ) are the ranking posi-
tion of the image xj in Pi and Ni under the threshold λ,
respectively.

B. Retrieval & Verification Function

One of the major differences from previous works is that
we propose to take the retrieval and verification tasks into
account, and we introduce the retrieval-based and verification-
based metrics as the training objective. In particular, we
propose a unified parameterized formulation (i.e., our proposed
Parameterized RV Loss) to denote the approximation of the
various potential re-ID metrics. Specifically, the steps of our

proposed Parameterized RV Loss are as follows. Firstly, the
AP metric is transformed to a new form, and our designed VP
metric is integrated into the new form of AP to ultimately
produce the final Retrieval & Verification (RV) function.
Secondly, the non-differentiable indicator functions in the RV
function are replaced by parameterized functions, which makes
the optimization objective to be a differentiable approximation
of the RV function, enabling the network to be back-propagated
and trained to perform the optimization of the loss function.

Retrieval & Verification Function. Since Equ. 6 only
assesses the retrieval scores of re-ID, it requires to be further
reformulated as the function that takes the verification score into
account. Based on this key insight, It drives us to reformulate
the AP by obviously incorporating the verification evaluation
metric. Before reformulating the AP metric with our designed
VP metric, we first transform Equ. 6 to a new form as follows.

APi =
1

|Pi|
∑
k∈Pi

1−
∑

j∈Ni,j ̸=k 1{sj−sk>0}

1 +
∑

j∈Ω,j ̸=k 1{sj−sk>0}
(9)

Next, we deliberate on how to integrate the VP metric into
the AP metric. In Equ. 9, it can be noted that the part associated
with the verification task is the summation region (i.e., Pi and
Ni), thus it inspires us to further replace the summation region
in Equ. 9 using Equ. 8. After this substitution operation, we
can obtain the final reformulated function including retrieval
and verification scores for re-ID, i.e., Retrieval & Verification
function RVi,λ.

RVi,λ =
1

|Pi|
∑
k∈Ω

1{VPi,λ(k)>0}−

∑
j∈Ω,j ̸=k 1{sj−sk>0}∗

(
1−1{VPi,λ(j)>0}

)
1+
∑

j∈Ω,j ̸=k 1{sj−sk>0}
∗ 1{VPi,λ(k)>0}

(10)

where 1{VPi,λ(·)>0} is the indicator function with the verifica-
tion score as judgment condition, which represents whether the
top ranked samples have the same identity with respect to the
query qi under the threshold λ. And VPi,λ(k) is computed as.

VPi,λ(k) =

{
Rank(k,Pi;λ)

Rank(k,Ni;λ)+|Pi| k ∈ Pi

0 k ∈ Ni

(11)

where Rank(k,Pi;λ) and Rank(k,Ni;λ) represent the rank-
ing position of the image xk in Pi and Ni under the threshold λ.
Finally, we multiply each summation term by the approximation
of the indicator function to replace the summation region in
Equ. 10.

C. Differentiable Parameterized RV Approximations

To provide a suitable approximation of the RV function
in Equ. 10, we need to introduce a differentiable approxi-
mated substitution to supersede the non-differentiable indicator
function 1. The essence of such an operation is ultimately to
ensure the consistency between model training and evaluation.
To address this problem, there have been many peer efforts
to attempt to hand-design some efficient solutions, such as
well-designed error-driven update scheme [49], [76], smooth
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approximation of the rank function [22], [58], [61] and so on.
However, these hand-designed methods may unavoidably lead
to local optimization of the training process due to the heavy
dependence on tedious priors and experiences.

Different from existing hand-designed methods, parameter-
ized functions are proposed to take place the non-differentiable
operations in the indicator functions, which is to guide the
training process in the optimal direction. Thus, our overall
Parameterized RV Loss LRV is averaged over all queries:

LRV (Θ) = 1− 1

M

M∑
i=1

RVi,λ (Θ) (12)

where Θ represents the model parameters, and RVi,λ (Θ)
denotes that RV function is parameterized by Θ, i.e., the
indicator function 1 substituted with parameterized functions.
Obviously, our goal is to minimize the Parameterized RV Loss
LRV for each query qi in the gallery set Ω. And RVi,λ (Θ)
can be further computed as follows.

RVi,λ (Θ) =
1

|Pi|
∑
k∈Ω

fθ1 (VPi,λ(k))−

∑
j∈Ω,j ̸=k fθ2 (sj−sk)∗(1−fθ3 (VPi,λ(j)))

1+
∑

j∈Ω,j ̸=k fθ4 (sj−sk)
∗ fθ5 (VPi,λ(k))

(13)

where fθ(x) parameterized by θ in Equ. 13 is used to replace
the non-differentiable indicator function in Equ. 10. It worth
noting that we adopt different parameters Θ = {θ}5i=1 in
Equ. 13, and we normalize the input and output ranges of fθ(x)
to [0, 1] in unit norm (see the implementation details in §V-B).
The former utilizes different parameters to replace different
indicator functions in Equ. 8, which makes the Parameterized
RV Loss more flexible and scalable; the latter plays the role of
keeping the output value of fθ(x) and the indicator function
consistent. Experimentally, this separated parameterization
has been demonstrated to perform better than that of shared
parameters for different indicator functions in §V.

D. Parameterized Function.

Note that the parameterized function fθ(x) can be one of
any differentiable functions. The most commonly used param-
eterized functions are piecewise Bézier curve and piecewise
linear functions, respectively. The piecewise Bézier curve is an
important parameterized curve in computer graphics, and its
shape is determined by control points. In contrast, the piecewise
linear function is a simple yet effective parameterized curve
verified in [36], and its shape is controlled by the divided points.
Furthermore, the number of divided points in the piecewise
linear function is twice less than the number of piecewise
Bézier curve in the same settings. Importantly, the searched
loss functions parameterized with piecewise linear functions
can achieve very similar performance with that of using the
piecewise Bézier curve for the parameterization in [36].

Therefore, for simplicity, we adopt the piecewise linear
function in this paper. In detail, given a positive integer M

′
, we

divide the input domain [0, 1] into M
′

different sized intervals,
corresponding measure ∆x = {δx1 , δx2 , . . . , δxM

′ } and ∆y =
{δy1

, δy2
, . . . , δy

M
′ }. From left to right, each coordinate of

these points can be denoted by {(xm′ , ym′ )}0≤m′≤M ′ , where

xm′ =
∑m

′

i=1 δxi
and ym′ =

∑m
′

j=1 δyj
, and the two end points

are (x0, y0) = (0, 0) and (xM ′ , yM ′ ) = (1, 1). To regularize
the search space, the parameter constraints for the rest point
coordinates are listed as follows.

0 ≤
δx

m
′∑M ′

i=m′ δxi

< 1 & 0 ≤
δy

m
′∑M ′

j=m′ δyj

< 1 (14)

Therefore, the parameterized function fθ(x) has M
′

parts,
its m

′
part is formulated as follows.

fm
′

θ (x) =
δy

m
′
+1

δx
m

′
+1

· (x− xm′ ) + ym′

xm′ ≤ x < xm′+1, m
′
= 0, . . . ,M

′
− 1

(15)

The parameterized function fθ(x) is ultimately constrained by
the coordinates of these divided points, and the corresponding

parameters θ = {(
δx

m
′∑M

′

i=m
′ δxi

,
δy

m
′∑M

′

j=m
′ δyj

)}0≤m′<M ′ are inde-

pendent between each other, making the search process easier.

E. Parameter Optimization

In this subsection, we describe the search process of param-
eter optimization in our Parameterized RV Loss. Suppose we
have a network model M(Θ) parameterized by the parameter
set Θ. In the search process of parameter optimization, the
training set is divided into two parts: Dtrain for training
and Dval for validation respectively. The search process of
parameter optimization can be investigated as a standard bi-
level optimization problem, and its formulation is as follows.

max
Θ

R(Θ) = RV (ω∗(Θ);Dval)

s.t. ω∗(Θ) = min
ω

LRV (ω (Θ) ;Dtrain )
(16)

where RV (ω∗(Θ);Dval) calculate the RV metric for the model
with weights ω∗(Θ) on on the validation dataset Dval, and
LRV is our proposed Parameterized RV Loss with the hyper-
parameter set Θ. In detail, we trained the model weights
ω(Θ) by minimizing the Parameterized RV Loss LRV (Θ) for
each epoch at the inner level. At the outer level, the process
will search a optimal loss function hyper-parameters Θ to
make the model weights ω∗(Θ) for maximizing the reward
RV (ω∗(Θ);Dval) on the validation dataset Dval.

In this paper, following [71], popular hyper-parameter search
algorithm is often used to search for the optimal loss function
parameters. Specifically, the PPO2 algorithm [77] is applied
to optimize the hyper-parameters in training process. And
B sets of hyper-parameters {Θi

t}Bi=1 are sampled from a
independent truncated Gaussian distribution [78], denoted as
Θ ∼ T N [0,1](µt, σ

2I) (e.g., µt and σ2 are the mean and
variance values, respectively), where B indicates the total
number of sampled parameter sets, and the truncated range
of T N is [0, 1] for satisfying the range constraint of the
independent parameters θ.

Suppose we trained the network model M(Θ) with T
epochs. In the t-th epoch, for i-th sample of parameter set,
the corresponding reward is R(θit) at the inner level, and
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Algorithm 1 Parameterized RV Loss
Input: Training dataset Dtrain, validation dataset Dval, ini-

tialized the network model weights ω0, initial parameter
set distribution (µ0, σ

2I), training epochs T , and sampling
number B.

Output: Final hyper-parameter set Θ∗

1: for t = 1 to T do
2: for b = 1 to B do
3: Initialization of the sampled hyper-parameter set Θb

t

through T N [0,1]

(
µt, σ

2I
)
;

4: Inner-level model training initialized with the model
weights ω0, ω∗(Θ) = minω LRV (ω (Θ) ;Dtrain );

5: Evaluate the corresponding reward, maxΘ R(Θ) =
RV (ω∗(Θ);Deval );

6: end for
7: Outer-level distribution update, updating µt+1 using

Equ. 17;
8: end for
9: return Θ∗ = argmaxΘ R

(
Θi

t

)

for the next t+1-th epoch, we can update the mean value
of the truncated Gaussian distribution Θ ∼ T N [0,1](µt, σ

2I)
by PPO2 algorithm as follows.

µt+1 = argmax
µ

1

B

B∑
i=1

R̃i
t

(
µ, µt,Θ

i
t

)
(17)

where the rewardR̃i
t

(
µ, µt,Θ

i
t

)
is computed as follows.

R̃i
t

(
µ, µt,Θ

i
t

)
= min

(
p(Θi

t;µ,σ
2I)

p(Θi
t;µt,σ2I)

Ri
t,CLIP

(
p(Θi

t;µ,σ
2I)

p(Θi
t;µt,σ2I)

; 1− ϵ, 1 + ϵ

)
Ri

t

)
(18)

where p
(
Θi

t;µt, σ
2I
)

is the PDF of T N [0,1](µt, σ
2I), and the

CLIP function described in PPO2 [77] trims the input value
between 1− ϵ and 1 + ϵ for more stable and efficient search.
The training procedure of our proposed Parameterized RV Loss
is summarized in Algorithm 1.

V. EXPERIMENTS AND COMPARISONS

A. Experimental Setups

1) Benchmarks: To verify the effectiveness of our Param-
eterized RV Loss, we comprehensively conduct experiments
on four large-scale re-ID datasets (see Table I), i.e., 1) three
person re-ID datasets: Market-1501 [75], MSMT17 [79]
and CUHK03 [80]; 2) two vehicle re-ID datasets: VeRi-
776 [81] and VehicleID [82]. Market1501 dataset contains
1,501 identities, 19,732 gallery images and 12,936 training
images captured from 6 different cameras by the DPM detector.
MSMT17 dataset contains 126,411 person images with 4,101
identities obtained by 15 different camera views. CUHK03
dataset contains 26,264 images of 1367 identities as the training
set, and 1928 images of 100 identities as the testing set. We
use the novel training/testing protocol proposed in [83], and we
compare the dataset in the detected mode of CUHK03 in our
experiments. VeRi-776 dataset contains 776 identities, 37,778
images for training and 11,579 images for testing captured in
20 cameras. VehicleID dataset contains 221,736 vehicle images
with 26,267 identities obtained in 12 cameras.

Table I
STATISTICS OF TRAINING/TESTING SET ON PERSON RE-ID AND VEHICLE
RE-ID DATASETS. THE TOP PART IS THE PERSON RE-ID DATASETS, AND

THE BOTTOM PART IS THE VEHICLE RE-ID DATASETS.

Benchmarks Training Testing
# IDs # Imges # Query # Gallery

Market-1501 [75] 751 12,936 3,368 19,732
CUHK03 [80] 767 14,733 2,800 10,660
MSMT17 [79] 1,041 30,248 11,659 82,161

VeRi-776 [81] 576 30,118 1,678 11,579
VehicleID [82] 13,164 100,182 17,638 2,400

2) Evaluation Metrics: We use three kinds of evaluation
metrics. Following standard testing protocol, we adopt mean
Average Precision (mAP) [75], Cumulative Matching Charac-
teristics (CMC) [74], and precision [72] / recall [73] (P/R) as
our evaluation metrics to evaluate the model performance on
the testing set.

B. Implementation Details

As described in §IV-E, we first randomly split 95% of
the images from the original training set as Dtrain and the
other images as Dval. Since our Parameterized RV Loss is
investigated as a standard bi-level optimization problem, our
implementation settings can be divided into inner level and
outer level. In the inner level, we utilize the Adam optimizer
to optimize the re-ID model weights ω(Θ) according to
Algorithm 1 in each epoch training. In the outer level, B = 4
samples are sampled during each epoch, the number of search
rounds is set to T = 40, and the total number of training
epoch is set to 120. we maintain all experimental settings,
such as warm-up, learning rate, batch size, etc., consistent
with the corresponding original baseline methods on all re-ID
benchmarks. Here, we describe the detailed experimental setup
in the following three aspects.

Preparation for Calculating Loss. The input values of
the parameterized functions fθ(x) are normalized to range
[0, 1]. For retrieval score differences sj − sk, their range is
[−1, 1], thus we use min-max re-scaling to map in the range
of [0, 1]. For the verification score, it is measured with our
defined VP in this paper, and its range is [0, 1], so it does
not need normalization. The threshold λ is set to 0.3. And we
set the number of segments M

′
to 5. In the experiments, the

whole retrieval set Ω consists of all training samples during the
current mini-batch, thus the rest positive set Pi and negative
set Ni are determined by the given query qi.

Setting of Parameter Optimization. The initial mean value
µ0 of the truncated Gaussian distribution is initialized with
fθ(x) = x. The variance σ is initialized as 0.2, which always
decays linearly to 0 during the search process. In Equ. 18, each
module value of Θ is constrained using the trimming operation.
Following PPO2 [77] algorithm, the trimming value ϵ is set
to 0.1. And the warm-up strategy is utilized to bootstrap the
model for enhancing performance. Specifically, in the first 10
epochs, linearly increasing the learning rate from 3.5× 10−5

to 3.5× 10−4. The learning rate is decayed to 3.5× 10−5 and
3.5× 10−6 at 40-th and 70-th epochs, respectively.
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Table II
PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART METHODS ARE PERFORMED ON THE MARKET-1501, MSMT17 AND CUHK03 DATASETS. THE
ABOVE TWO PARTS ARE THE METHODS BASED ON THE RETRIEVAL-BASED LOSS, THE VERIFICATION-BASED LOSS, OR THEIR IMPROVED VARIANT. AND THE
BELOW TWO PARTS ARE THE METHODS BASED ON THE NEURAL ARCHITECTURE SEARCH (NAS) AND THE LOSS FUNCTION SEARCH (LFS). R1 REPRESENTS

THE CMC AT RANK-1 ACCURACY. THE BOLD FONT INDICATES THE BEST PERFORMANCE. WE REPORT R1 (%) AND MAP (%).

Methods Reference Loss Market-1501 MSMT17 CUHK03
R1 mAP R1 mAP R1 mAP

IV-reID [7] TOMM’17 Softmax+Verification 79.5 44.6 – – – –
TriNet [4] arXiv’17 Triplet 84.9 69.1 56.9 26.9 – –
Support Neighbor [84] ACMMM’18 Separation+Squeeze 88.3 73.4 – – – –
SphereReID [46] JVCIR’19 Sphere-Softmax 94.4 83.6 – – – –
PCB + RPP [85] ECCV’18 Softmax 93.8 81.6 – – 63.7 57.5
DATRL-ReID [86] TCSVT’19 Labels Interval Extension Loss+Group Loss 94.4 81.5 74.2 45.3 66.4 60.6
FGSAM [87] TIP’20 Focal Triplet Loss 91.5 85.4 – – – –
ResNet50 + CircleLoss [88] CVPR’20 CircleLoss 94.2 84.9 76.3 50.2 – –
AutoReID [62] ICCV’19 Softmax+Triplet 94.5 85.1 78.2 52.5 73.3 69.3
CDNet [63] CVPR’21 Softmax+Triplet 95.1 86.0 78.9 54.7 – –
SphereReID + AM-LFS [24] ICCV’19 AM-LFS 94.4 85.0 – – – –
ResNet50 + Search-Softmax [25] ICML’20 Search-Softmax 94.4 85.7 – – 65.8 63.1
ResNet50 + AutoLoss-GMS-A [27] CVPR’22 AutoLoss-GMS 94.7 87.0 79.5 55.1 70.4 68.3
ResNet50 + LFS-ReID [26] PR’22 LFS-ReID 95.2 87.4 79.9 56.4 75.4 72.3
ResNet50 + Parameterized RV Loss This work Parameterized RV Loss 96.3 88.3 81.2 58.1 78.2 74.3

Table III
PERFORMANCE COMPARISON ON THE VERI-776 DATASET (%). WE REPORT

R1 (%) AND MAP (%). THE BEST RESULTS OF PERFORMANCE ARE
INDICATED IN BOLD.

Methods Reference Loss VeRi-776
R1 mAP

BagofTricks [41] TMM’20 Softmax+Triplet 90.2 67.6
VOC-ReID [89] CVPRW’20 Circle+Triplet 95.9 78.6
VANet [90] ICCV’19 Triplet 89.8 66.3
DMML [38] ICCV’17 Softmax 90.2 70.1
PAMTRI(ALL) [91] CVPR’19 Softmax+Triplet 92.8 71.8
PRReID [92] CVPR’19 Softmax 93.3 72.5
UMTS [93] AAAI’20 Softmax+UA-KDL 95.8 75.9
PGAN [94] TITS’20 Softmax+Triplet 96.5 79.3
SAVER [95] ECCV’20 Softmax+Triplet 96.4 79.6
CFVMNet [96] ACMMM’20 Softmax+Triplet 95.3 77.1
SGFD [97] ICCV’21 Softmax+Triplet 96.7 81.0

Our This work Parameterized RV Loss 97.3 81.2

Training Details. After the parameter optimization, i.e., the
parameter search of loss function, we need to retrain our model
with the search Parameterized RV Loss on Dtrain, and evaluate
the model performance on Dval. In all experiments, our
implementation is based on Bagoftricks [41] using ResNet50
pretrained on ImageNet [98]. The total batch size is 64.
Each mini-batch is formed by sampling K identities and
|P | per identity, where K = 16 and |P | = 4 in the
following experiments. Our method is implemented based on
the Bagoftricks [41]. All the experiments are conducted on
four RTX 2080Ti GPUs.

C. Comparison with State-of-the-Art Methods

In Tables II, III, IV, and V, our Parameterized RV Loss is
compared with state-of-the-art methods on five benchmarks
including person re-ID and vehicle re-ID datasets, respectively.

Results on Person re-ID. We compare with various state-
of-the-art person re-ID methods, i.e., deep metric learning
methods [4], [7], [46], [85]–[88], neural architecture search
(NAS) methods [62], [63], and loss function (LFS) search

Table IV
PERFORMANCE COMPARISON ON THE VECHICLEID DATASET (%). WE

REPORT R1 (%) AND R5 (%). THE BEST RESULTS OF PERFORMANCE ARE
INDICATED IN BOLD.

Methods
VehicleID

Small Medium Large
R1 R5 R1 R5 R1 R5

Divide [99] 87.7 92.9 85.7 90.4 82.9 90.2
MIC [100] 86.9 93.4 – – 82.0 91.0
FastAP [21] 91.9 96.8 90.6 95.9 87.5 95.1
Cont. w/M [101] 94.7 96.8 93.7 95.8 93.0 95.8
Smooth-AP [22] 94.9 97.6 93.3 96.4 91.9 96.2
PNP-Dq [23] 95.5 97.8 94.2 96.9 93.2 96.6

Our 96.3 98.1 94.8 97.3 93.9 97.0

methods [24]–[26]. The experimental results are shown in
Table II. As shown in Table II, we can observe that Parameter-
ized RV Loss achieves state-of-the-art results on three person
re-ID benchmarks. On Market-1501, Parametrized RV Loss
outperforms the previous state-of-the-art methods by a relatively
small margin (+1.1% R1 and +0.9% mAP). On MSMT17
and CUHK03, Parametrized RV Loss achieves significant
performance improvement (+1.3%/+2.8% R1 and +1.7%/+2.0%
mAP). Compared with the hand-designed losses, our method
can obtain about 2.0/3.0 R1/mAP score gain on Market-1501. It
should be noted that NAS (i.e., AutoReID [62] and CDNet [63])
and LFS (i.e., AM-LFS [24], Search-Softmax [25], and LFS-
ReID [26]) methods based on AutoML network architectures
and AutoML-based loss functions, respectively, which can
achieve better performance. Compared with NAS-based and
LFS-based methods, our method obtain significant improvement
over them. In addition, to assess the verification performance of
our method, Table V shows the corresponding results on Market-
1501. It is obvious that our method maintains comparable
Precision/Recall score performance before the threshold 0.5.

Results on Vehicle re-ID. We demonstrate the effectiveness
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Table V
COMPARISONS WITH THE STATE-OF-THE-ART RE-ID MODELS ON THE MARKET1501 AND VERI-776 DATASETS (%). THE RESULTS IN BOLD INDICATE THE

BEST PERFORMANCE. WE REPORT THE RESULTS OF PRECISION (P) AND RECALL (R) TO EVALUATE THE VERIFICATION PERFORMANCE.

Methods
Market-1501

Methods
VeRi-776

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
P/R P/R P/R P/R P/R P/R P/R P/R P/R P/R

BagofTricks [41] 58.4/22.4 7.9/94.1 0.2/99.8 0.1/100.0 0.1/100.0 BagofTricks [41] 62.1/25.1 6.2/95.1 0.1/99.9 0.1/100.0 0.0/100.0
AGW [102] 2.0/0.3 64.6/31.5 62.0/79.8 1.3/97.8 0.1/100.0 AGW [102] 8.9/4.3 68.7/36.8 64.9/81.3 0.7/99.8 0.1/100.0

Our 60.3/34.3 65.2/98.6 64.8/100.0 0.1/100.0 0.1/100.0 Our 65.4/28.1 71.5/95.3 64.6/83.7 0.3/99.9 0.0/100.0

Table VI
EFFECT OF DIFFERENT SUBSTITUTIONS FOR 1, INCLUDING

HAND-DESIGNED SUBSTITUTIONS (i.e., SIGMOID, SQRT, LINEAR, AND
SQUARE) AND OUR SEARCHED PARAMETERIZED FUNCTION.

Differentiable Market-1501 VeRi-776
Substitution R1 mAP R1 mAP

Sigmoid 64.5 48.6 76.4 42.6
Sqrt 61.5 39.4 70.8 38.1

Linear 76.8 50.3 81.6 49.2
Square 90.5 81.3 92.4 73.8

Searched 96.3 88.3 97.3 81.2

of our Parameterized RV Loss on vehicle re-ID benchmarks,
i.e., VeRi-776 [81] and VehicleID [82]. We compare with
current state-of-the-art methods on both datasets to show
our performance advantage. Tables III and IV present the
experimental results on VeRi-776 and VechicleID, respectively.
We report CMC at Rank-1 and mAP on VeRi-776 dataset,
as well as CMC at Rank-1 and Rank-5 on VehicleID dataset.
From the numbers, we can observe that Parameterized RV Loss
achieves state-of-the-art results on two vehicle re-ID bench-
marks, especially on the challenging and large-scale VechicleID
dataset where the performance improvement is significant.
On VeRi-776, Parameterized RV Loss reaches 97.3%/81.2%
R1/mAP surpassing SGFD by 0.6%/0.2% R1/mAP. We also
conduct experiments on VechicleID in Table IV. It can
be observed that our method also achieves state-of-the-art
performance on challenging VechicleID. In detail, our method
outperforms PNP-Dq by 0.7% R1 for large protocol. These
results demonstrate that our method is significantly effective.
Like person re-ID, we also conducted experiments to verify the
verification performance on VeRi-776. As Shown in Table V,
we can observe that our method shows the performance
advantage over the other two respective baseline methods.

Summary. In this section, we conduct relevant comparative
experiments on person re-ID and vehicle re-ID datasets from
the retrieval task and the verification task in Tables II, III, IV,
and V. The experimental results demonstrate the effectiveness
and superiority of our Parameterized RV Loss for the re-ID
task. Meanwhile, these results demonstrate that our method
can provide the consistency between training and evaluation,
hence boosting performance consistently. It is worth noting
that since we are the first time to investigate the retrieval and
verification tasks simultaneously, the exploration we have done
is still in the preliminary stage.

Table VII
EFFECT OF CORRELATION BETWEEN DIFFERENT INDICATOR FUNCTION 1.

WE CONDUCTED EXPERIMENTS INCLUDING SHARED AND SEPARATE
PARAMETERS.

Parameters Market-1501 VeRi-776
R1 mAP R1 mAP

Shared 94.7 84.3 95.1 77.2
Separate 96.3 88.3 97.3 81.2

D. Ablation Study

To study the effectiveness of different experimental designs
and hyper-parameter setups, we conducted a series of ablation
experiments on the Market-1501 and VeRi-776 datasets to
verify the influence of each module or hyper-parameter in this
section. In all the following experiments, we only varied one
parameter of each ablation experiment at a time and other
settings were kept the same for providing a fair understanding
of these hyper-parameters.

Ablation Study of Indicator Function. To verify the
superiority of the searched parameterized function fθ(·),
we selected some commonly used carefully hand-designed
differentiable substitutions in Table VI, including sigmoid,
sqrt, linear, and square functions. The results show that the
searched parameterized function achieves significantly better
performance than the hand-designed substitutions, which also
denotes that the hand-designed substitution does not guarantee
the optimal results. Also note that although we use linear
functions for optimization, there is a further performance
improvement after imposing a searched parameterized func-
tion (i.e., our designed parameterized function), which also
demonstrates that the parameterized search process is effective.

Ablation Study of Correlation between Different In-
dicator Function 1. Table VII shows that using separate
parameters for the indicator function 1 can have a 1.6%/2.2%
R1 and 4.0%/4.0% mAP improvement over shared parameters
on Market-1501 and VeRi-776, respectively. These results
show that separate parameters is very flexible and different
components of Equ. 13 used to search for the parameterized
function can be closer to the desired loss function.

Ablation Study of Different Measurements for Verifica-
tion Score. Table VIII shows the results of using Precision,
Recall, and VP function for the verification score. Precision
and Recall have similar results, and both have appropriate
performance improvements with respect to Baseline (i.e.,
ResNet50). Particularly, using our VP outperforms that of using
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Table VIII
EFFECT OF DIFFERENT MEASUREMENTS FOR THE VERIFICATION SCORE.
WE SELECTED THREE MEASUREMENTS: PRECISION, RECALL, AND VP

DEFINED IN THIS PAPER.

Measurement Market-1501 VeRi-776
R1 mAP R1 mAP

Precision 95.7 85.9 96.4 78.6
Recall 94.2 85.1 95.8 78.2

VP 96.3 88.3 97.3 81.2

Table IX
EFFECT OF DIFFERENT NUMBER OF SEGMENTS IN THE PIECEWISE

FUNCTION fθ(·).

Segments Market-1501 VeRi-776
R1 mAP R1 mAP

3 90.6 83.6 91.4 75.4
4 94.9 87.6 96.6 78.7
5 96.3 88.3 97.3 81.2
6 96.1 88.1 96.9 80.8
7 95.7 87.6 96.4 80.1

Table X
EFFECT OF DIFFERENT BATCH SIZE DURING TRAINING. THE NUMBER OF

BATCH SIZE BY SETTING AS 32, 64, 128, 256 ON MARKET-15 AND
VERI-776.

Batch Size Market-1501 VeRi-776
R1 mAP R1 mAP

32 95.7 87.8 96.7 80.2
64 96.3 88.3 97.3 81.2
128 96.2 88.4 97.1 81.0
256 96.4 88.4 97.5 81.4

Precision or Recall, which is that VP combines the advantages
of Precision and Recall.

Ablation Study of Different Number of Segments in
fθ(·). To explore the impact of different number of segments
on performance, the results are shown in Table IX. On the one
hand, too less segments will lead to restricted expression of
the diversity of fθ(·), dropping the performance significantly.
On the other hand, too many segments may increase the search
complexity, leading to performance shake. Experiments show
that 5 is the optimal number of segments.

Ablation Study of Different Batch Size during Training.
Table X shows that compared to other numbers, 64 is the
optimal batch size to achieve optimal performance. It also
shows that the performance of the model has reached saturation
when the batch size is 64 rather than larger. This is expected,
as the larger the batch size, the more diverse the samples in
the min-batch, which increase the probability of getting hard-
negative samples in the batch. In Table X, there have achieved
the best results when the batch size is 256. It can be noticed
that the performance of a batch size of 256 has only a slight
improvement compared to 64, i.e., +0.1%/+0.1% R1/mAP on
Market-1501 and 0.2%/0.2% R1/mAP VeRi-776, respectively.
From the comprehensive perspective of performance and
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Figure 4. Ablation study of different HPO algorithms including PPO2 and
random search on Market-1501. Each curve shows the highest average RV
reward score up to the t-th round during one search procedure. We conducted
the search process four times in total.

Table XI
COMPARISON OF THE COMPUTATIONAL COST (RTX 2080TI GPU) ON

MARKET-1501 AND VERI-776 USING THE RESNET50 BACKBONE.

Datasets Methods Number of GPU Total Time

Market-1501

AM-LFS [24] 1 16.26 hours
Search-Softmax [25] 1 16.44 hours

AutoLoss-GMS-A [27] 5 61.44 hours
Our 4 15.12 hours

VeRi-776

AM-LFS [24] 1 37.38 hours
Search-Softmax [25] 1 37.80 hours

AutoLoss-GMS-A [27] 5 163.44 hours
Our 4 34.74 hours

computer resource utilization, the paper chooses a batch size
of 64 to conduct experiments and comparisons.

Ablation Study of Different Search Algorithm. As shown
in Figure 4, PPO2 achieves better parameters compared to
random search, which confirms that searching the loss function
is difficult, but reinforcement learning can speed up the loss
function search process.

E. Further Analysis

Analysis of computational cost. Table XI gives the com-
parison of the computational cost with three AutoML-based
loss functions on Market-1501 and VeRi-776, including AM-
LFS [24], Search-Softmax [25] and AutoLoss-GMS-A [27].
The backbone of the compared methods are all used ResNet50
and the experimental hardware resources keep the same as
our method. We can observe that the computational cost on
Market-1501 is less than that on VeRi-776, due to the fact that
VeRi-776 has more training data than Market-1501. Among
them, the computational cost of AutoLoss-GMS-A [27] is the
largest, 61.44 hours and 163.44 hours on Market-1501 and
VeRi-776, respectively. In addition, AutoLoss-GMS-A uses a
total of 5 GPUs. Compared to the rest of the AutoML-based
methods, it can be observed that the computational cost is
similar. Although the total time of our method is the shortest
compared to other methods, our method requires 4 GPUs. The
main reason is that our method needs to search for better
parameters in the search space, which requires more hardware
resources like AutoLoss-GMS-A.
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Figure 5. Convergence analysis: Illustration of Parameterized RV Loss curves
on Market-1501 and VeRi-776, repectively.
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Figure 6. Inconsistency analysis: Comparison of training error and evaluation
error on Market-1501. We have selected commonly used softmax loss and
triplet loss in re-ID versus our proposed Parameterized RV Loss.

Analysis of convergence. We also study the convergence
of Parameterized RV Loss. It can be seen from Figure 5 that
Parameterized RV Loss tends to be close to 0, which indicates
that our method is well trained on both Market-1501 and
VeRi-776. We can conclude that our designed Parameterized
Loss matches the re-ID task, and it is able to be fully trained
and finally converged. Therefore, Figure 5 indicates that our
searched parametric RV loss can be effectively adapted to the
re-ID task, which provides a new insight for re-ID studies.

Analysis of inconsistency. To depict that the inconsistency of
existing loss functions may lead to performance degradation, we
conduct the inconsistency analysis following [19]. Specifically,
we have selected the commonly used softmax loss [38] and

triplet loss [39] in re-ID, and compared the training and
evaluation errors together with our Parameterized RV Loss
on the training set Dtrain and the validation set Dval, as
shown in Figure 6. Compared to softmax loss and triplet
loss, the corresponding training and evaluation errors of
Parameterized RV Loss are the minimum. It can be seen that
our Parameterized RV Loss improves the training error and
the evaluation error, which demonstrates that Parameterized
RV Loss indeed mitigates the inconsistency between the loss
functions and evaluation metrics. Therefore, it can significantly
improve the discrimination of the learned feature.

VI. CONCLUSION

In this paper, we propose a novel AutoML-based loss named
Parameterized RV Loss for re-ID, which jointly optimizes both
RV tasks and alleviates the inconsistency between the loss func-
tions and evaluation metrics. Parameterized RV Loss achieves
the automatic searching of loss functions, i.e., parameter-
free. Parameterized RV loss is a single unified loss function
taking both retrieval and verification tasks into account, and
it consistently outperforms existing loss functions on several
re-ID methods, including some hand-designed loss functions
and loss function search-based loss functions. Although we
have demonstrated that the parameterized search process is
effective, the piecewise linear functions used in our work are
not necessarily optimal differentiable substitution functions.
Meanwhile, there are still open problems worth studying, such
as the design of evaluation metrics and the optimization of
searching strategy, which are interesting and challenging works
in the future.
Limitations. With the experimental results, it can be observed
that Parameterized RV Loss still requires lots of time and
hardware resources for searching better parameters, and the
model performance may degrade without enough search time.
Future work may explore more efficient HPO methods to reduce
the search time. We will also plan to design and optimize the
searching framework on more relevant tasks to further verify
the effectiveness of our method.
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deep net to learn ranking loss surrogates,” in IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2019, pp. 10 792–10 801.

[62] R. Quan, X. Dong, Y. Wu, L. Zhu, and Y. Yang, “Auto-reid: Searching
for a part-aware convnet for person re-identification,” in Int. Conf.
Comput. Vis. (ICCV), 2019, pp. 3750–3759.

[63] H. Li, G. Wu, and W.-S. Zheng, “Combined depth space based
architecture search for person re-identification,” in IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR), 2021, pp. 6729–6738.

[64] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res. (JMLR), vol. 13, no. 2, pp. 281–305,
2012.

[65] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Annu. Conf. Neur. Inform. Process.
Syst. (NeurIPS), 2011, pp. 1–9.

[66] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
Conference on Learning and Intelligent Optimization, 2011, pp. 507–
523.

[67] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-
mization of machine learning algorithms,” in Annu. Conf. Neur. Inform.
Process. Syst. (NeurIPS), 2012, pp. 1–9.

[68] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter, “Bayesian
optimization with robust bayesian neural networks,” in Annu. Conf.
Neur. Inform. Process. Syst. (NeurIPS), 2016, pp. 1–9.

[69] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in Int.
Conf. Mach. Learn. (ICML), 2017, pp. 2902–2911.

[70] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” arXiv preprint
arXiv:1804.09081, 2018.

[71] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,
T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas et al., “Magnetic
control of tokamak plasmas through deep reinforcement learning,”
Nature, vol. 602, no. 7897, pp. 414–419, 2022.

[72] Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith,
“Learning locally-adaptive decision functions for person verification,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2013, pp. 3610–3617.

[73] R. Kushwaha and N. Nain, “Pug-fb: Person-verification using geometric
and haralick features of footprint biometric,” Multimedia Tools and
Applications, vol. 79, no. 3, pp. 2671–2701, 2020.

[74] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models for
recognition, reacquisition, and tracking,” in PETS, 2007, pp. 1–7.

[75] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in Int. Conf. Comput. Vis.
(ICCV), 2015, pp. 1116–1124.

[76] K. Chen, J. Li, W. Lin, J. See, J. Wang, L. Duan, Z. Chen, C. He, and
J. Zou, “Towards accurate one-stage object detection with ap-loss,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2019, pp. 5119–5127.

[77] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[78] J. Burkardt, “The truncated normal distribution,” Department of
Scientific Computing Website, Florida State University, vol. 1, p. 35,
2014.

[79] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer gan to bridge
domain gap for person re-identification,” in IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2018, pp. 79–88.

[80] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2014, pp. 152–159.

[81] X. Liu, W. Liu, T. Mei, and H. Ma, “A deep learning-based approach
to progressive vehicle re-identification for urban surveillance,” in Eur.
Conf. Comput. Vis. (ECCV), 2016, pp. 869–884.

[82] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance
learning: Tell the difference between similar vehicles,” in IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2016, pp. 2167–2175.

[83] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-
identification with k-reciprocal encoding,” in IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2017, pp. 1318–1327.

[84] K. Li, Z. Ding, K. Li, Y. Zhang, and Y. Fu, “Support neighbor loss for
person re-identification,” in ACM Int. Conf. Multimedia (ACM MM),
2018, pp. 1492–1500.

[85] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part models:
Person retrieval with refined part pooling (and a strong convolutional
baseline),” in Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 480–496.

[86] Y. Huang, Y. Huang, H. Hu, D. Chen, and T. Su, “Deeply associative
two-stage representations learning based on labels interval extension
loss and group loss for person re-identification,” IEEE Trans. Circ. Syst.
Video Technol. (TCSVT), vol. 30, no. 12, pp. 4526–4539, 2019.

[87] Q. Zhou, B. Zhong, X. Lan, G. Sun, Y. Zhang, B. Zhang, and R. Ji,
“Fine-grained spatial alignment model for person re-identification with
focal triplet loss,” IEEE Trans. Image Process. (TIP), vol. 29, pp. 7578–
7589, 2020.

[88] Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, and Y. Wei,
“Circle loss: A unified perspective of pair similarity optimization,” in
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2020, pp. 6398–6407.

[89] X. Zhu, Z. Luo, P. Fu, and X. Ji, “Voc-reid: Vehicle re-identification
based on vehicle-orientation-camera,” in IEEE Conf. Comput. Vis.
Pattern Recog. Worksh. (CVPRW), 2020, pp. 602–603.

[90] R. Chu, Y. Sun, Y. Li, Z. Liu, C. Zhang, and Y. Wei, “Vehicle
re-identification with viewpoint-aware metric learning,” in Int. Conf.
Comput. Vis. (ICCV), 2019, pp. 8282–8291.

[91] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang,
R. Kumar, D. Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale
benchmark for multi-target multi-camera vehicle tracking and re-
identification,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
2019, pp. 8797–8806.

[92] B. He, J. Li, Y. Zhao, and Y. Tian, “Part-regularized near-duplicate
vehicle re-identification,” in IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2019, pp. 3997–4005.

[93] X. Jin, C. Lan, W. Zeng, and Z. Chen, “Uncertainty-aware multi-shot
knowledge distillation for image-based object re-identification,” in AAAI
Conf. Artif. Intell. (AAAI), 2020, pp. 11 165–11 172.

[94] X. Zhang, R. Zhang, J. Cao, D. Gong, M. You, and C. Shen, “Part-
guided attention learning for vehicle instance retrieval,” IEEE Trans.
Intell. Transp. Syst. (TITS), vol. 23, no. 4, pp. 3048–3060, 2020.

[95] P. Khorramshahi, N. Peri, J.-c. Chen, and R. Chellappa, “The devil is
in the details: Self-supervised attention for vehicle re-identification,” in
Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 369–386.

[96] Z. Sun, X. Nie, X. Xi, and Y. Yin, “Cfvmnet: A multi-branch network
for vehicle re-identification based on common field of view,” in ACM
Int. Conf. Multimedia (ACM MM), 2020, pp. 3523–3531.

[97] M. Li, X. Huang, and Z. Zhang, “Self-supervised geometric features
discovery via interpretable attention for vehicle re-identification and
beyond,” in Int. Conf. Comput. Vis. (ICCV), 2021, pp. 194–204.

[98] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2009, pp. 248–255.

[99] A. Sanakoyeu, V. Tschernezki, U. Buchler, and B. Ommer, “Divide
and conquer the embedding space for metric learning,” in IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2019, pp. 471–480.

[100] K. Roth, B. Brattoli, and B. Ommer, “Mic: Mining interclass character-
istics for improved metric learning,” in Int. Conf. Comput. Vis. (ICCV),
2019, pp. 8000–8009.

[101] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch memory
for embedding learning,” in IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2020, pp. 6388–6397.

[102] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi, “Deep learning
for person re-identification: A survey and outlook,” IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI), vol. 44, no. 6, pp. 2872–2893, 2022.

This article has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2023.3250989

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on May 25,2023 at 07:42:33 UTC from IEEE Xplore.  Restrictions apply. 


