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ABSTRACT

Chaotic systems are intrinsically sensitive to small errors, challenging efforts to con-
struct predictive data-driven models of real-world dynamical systems such as fluid
flows or neuronal activity. Prior efforts comprise either specialized models trained
separately on individual time series, or foundation models trained on vast time
series databases with little underlying dynamical structure. Motivated by dynamical
systems theory, we present Panda, Patched Attention for Nonlinear DynAmics.
We train Panda on a novel synthetic, extensible dataset of 2 × 104 chaotic dy-
namical systems that we discover using an evolutionary algorithm. Trained purely
on simulated data, Panda exhibits emergent properties: zero-shot forecasting of
unseen chaotic systems preserving both short-term pointwise accuracy and distri-
butional measures. Despite having been trained only on low-dimensional ordinary
differential equations, Panda spontaneously develops the ability to predict partial
differential equations without retraining. We also demonstrate a neural scaling
law for differential equations, underscoring the potential of pretrained models for
probing abstract mathematical domains like nonlinear dynamics.

1 INTRODUCTION

Nonlinear dynamical systems test the limits of scientific machine learning (SciML). When an
approximate model is constructed of a chaotic nonlinear system, any small error grows exponentially
over time, precluding long-term forecasting. This intrinsic property underscores the practical difficulty
of accurately forecasting systems like weather fronts, neural activity, or economic markets (Li et al.,
2022; Mikhaeil et al., 2022; Price et al., 2025).

Recent empirical studies show surprising progress on the classical problem of forecasting chaos,
including the ability to predict these systems well-beyond the classical predictability timescale for
nonlinear systems (Gilpin, 2021; 2023; Pathak et al., 2018). These approaches construct local forecast
models trained on past observations of a single dynamical system, and then forecast future, unseen
states of the same system. For dynamical systems, this represents an in-domain generalization task,
because future timepoints are drawn from the same underlying differential equations. This problem
thus reduces to learning the numerical propagator for the true underlying governing equations.

However, a frontier in SciML is out-of-domain generalization (Göring et al., 2024; Wang et al., 2022):

Can a dynamics model effectively forecast unseen dynamical systems?

This task requires a global forecast model, which combines training on a large body of background
knowledge with local adaptation to generate meaningful forecasts of unseen systems (Sen et al.,
2019). Moreover, what kind of data is required to train a forecasting model for dynamical systems in
order to achieve generalization? A global nonlinear forecast model has intrinsic theoretical interest
in SciML, which has long questioned the degree to which complexity can be "transformed out" i.e.
whether the predictability of a system is determined by its intrinsic properties or by the choice of
measurement coordinates (Brunton et al., 2022; Mezić, 2013).

*Equal contribution. †Corresponding author.
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Figure 1: A large-scale chaotic dynamics dataset and dynamics-informed forecast model. (A)
Evolutionary creation of a large dataset of chaotic ODEs through mutation and recombination of
known systems. (B) Patch model architecture with forecasting and masked completion output modes.
(C) The dynamics-informed time series embedding and attention modules.

To address these questions, we introduce Panda1 — Patched Attention for Nonlinear DynAmics. Our
key contributions are as follows:

1. We introduce a framework for generating novel chaotic dynamical systems, allowing us
to create a dataset of ∼ 2× 104 ODEs, algorithmically-discovered based on evolutionary
recombination of 129 chaotic systems such as the Lorenz attractor, double pendulum, etc.

2. We pretrain a global forecast model for nonlinear dynamics purely on chaotic trajectories
integrated from our dataset. Our model exhibits competitive zero-shot forecasts for real
systems including mechanical motion of C. Elegans, electronic circuits, and turbulent flows.

3. We demonstrate the effectiveness of features motivated by dynamical systems theory: (a)
masked pretraining for dynamical continuity (b) channel attention for dynamical coupling,
(c) kernelized patch embeddings based on dynamic mode decomposition.

4. Despite being trained only on low-dimensional ODEs, Panda develops emergent ability to
zero-shot forecast high-dimensional PDEs.

2 RELATED WORK

Machine learning for dynamical systems. Machine learning models for dynamical systems (MLDS)
leverage as inductive biases the unique properties of dynamical systems, relative to traditional time
series. These include: (1) Strong channel coupling: The evolution of system variables is governed
by deterministic differential or difference equations, implying coupled functional dependencies
among variables rather than statistically correlations. Several MLDS approaches perform large-
scale multivariate dynamical modeling, or infer interactions networks among measurement channels
(Bhaskar et al., 2024; Brunton et al., 2022; Chen et al., 2018; Li et al., 2022). (2) Invariant statistical
measures: Ergodic dynamical systems possess invariant probability measures supported on non-
wandering sets, such as limit cycles or strange attractors, resulting in well-defined long-term statistical
distributions for all observables. Recent works incorporate these properties as inductive biases in
modern methods in MLDS settings (Cheng et al., 2025; Koppe et al., 2019; Pedersen et al., 2025).

1Code available: https://anonymous.4open.science/r/anonymous_panda-3AE0
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Figure 2: Panda zero-shot forecasts unseen nonlinear dynamics. (A) Example zero-shot forecasts
on novel chaotic skew-systems. (B) sMAPE and MAE of Panda compared to zero-shot time series
models over a 128 timepoint prediction horizon. (C) Error versus forecast horizon. Error ranges
correspond to median and semi-interquartile range across 9.3× 103 held-out dynamical systems, 6
forecasts per system. Note: † indicates some NaNs present in forecasts (more examples in Appendix
C; dataset description in Section 3). See Table 7 in Appendix D for statistical significance tests.

Discovering new dynamical systems. Small datasets of dynamical systems have previously been
curated from the published literature (Gilpin, 2021; 2023; La Cava et al., 2021). Several pretrained
models, particularly for partial differential equations (PDE), generate new equations for training by
randomly-perturbing parameters or initial conditions from known systems (Chen et al., 2024; Herde
et al., 2024; Sun et al., 2025; Tripura & Chakraborty, 2023). Others construct de novo systems by
combining terms from a fixed function library (Ziegler et al., 2024), or leveraging language models
to create candidate symbolic expressions (d’Ascoli et al., 2023; Du et al., 2024). However, these
approaches do not address the harder task of sampling based on whether a system exhibits a unique
dynamical attractor. Richer sampling requires post–hoc analysis of candidate dynamics, akin to
intrinsically-motivated discovery previously used in domains such as cellular automata and coupled
oscillators (Crutchfield & Mitchell, 1995; Falk et al., 2024; Kumar et al., 2024; Reinke et al., 2020).
Some foundation models generate synthetic time series using stochastic dynamics like Gaussian
processes (Ansari et al., 2024; Das et al., 2024), or simulated physics environments (Lin et al., 2025;
Wang et al., 2024).

Pretrained models for SciML. Pretrained foundation models for dynamics enable transfer learning
and zero-shot inference. One study trains transformers across diverse PDEs to create a shared
multiphysics embedding space (McCabe et al., 2024). Another study proposes supervised pretraining
to enable out-of-domain generalization for scientific foundation models, and derives scaling laws
for transfer learning on PDEs (Subramanian et al., 2023). Several recent studies evaluate the zero-
shot performance of time series and language models in MLDS, and observe performance only
comparable to standard time series tasks (Liu et al., 2024; Zhang & Gilpin, 2025b). Several studies
apply pretrained transformers to control or symbolic equation discovery tasks (Becker et al., 2023;
d’Ascoli et al., 2023; Lee et al., 2023; Zhang et al., 2024). One work generates pretraining data
by randomizing the parameters of four named ODE (Song et al., 2024), similar to the first step
of our evolutionary algorithm described below, with a small founder pool. Another work samples
systems from a fixed function space, selecting based on total variation over time (Ziegler et al.,
2024), while another study uses latent ODE as a prior for zero-shot imputation (Seifner et al., 2025).
A contemporaneous work to our study, DynaMix, is a multivariate mixture-of-experts model for
zero-shot dynamical systems reconstruction (Hemmer & Durstewitz, 2025), built from Almost-Linear
RNN experts and trained on the founder pool for our dataset (Brenner et al., 2024). Our work is
distinguished by (1) a rich data generation process, which discovers novel chaotic flows with diverse
properties, and (2) a multivariate patched-based architecture which demonstrates emergent forecasting
capabilities like zero-shot PDE inference.
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3 DATASET

Evolutionary search. We discover 2 × 104 novel chaotic ODEs (schematic in Fig. 1A, example
systems in Appendix A). 1. Founding population: We start from a human-curated dataset of 129
previously-published low-dimensional chaotic systems (Gilpin, 2021), consisting of curated ODEs
from the literature (e.g. the Lorenz equations or blinking vortex flow) of the form ẋ = fθ(x, t). The
default parameters of each system θ and initial conditions x(0) were hand-tuned to the chaotic regime,
and the integration timescales were standardized based on calculations of invariant mathematical
properties of the underlying equations, such as the largest Lyapunov exponent. 2. Mutation: We
randomly sample pairs of systems fa, fb. For each ODE’s default system parameters, we add random
Gaussian noise, θ′a ∼ N (θa, σ), θ′b ∼ N (θb, σ). 3. Recombination: We combine the mutated
parents using an additive skew-product coupling:

ẋ = fa(x, t) (1)
ẏ = κbfb(y, t) + κa fa(x, t) (2)

This coupling between flows is asymmetric, and thus we refer to fa as the driver and fb as the
response. In general, skew-product coupling maps can be symmetric and nonlinear, but may be harder
to integrate as a result. This particular recombination scheme, for appropriate scale factors, preserves
chaoticity because the response system either synchronizes to the chaotic driver or continues to
exhibit chaotic dynamics (Gilpin, 2025; Pecora & Carroll, 1990). For the scale factors, we compute
the inverse RMS norm κ = 1/

√
E||f(x, t)||2 for each individual flow over a representative trajectory.

4. Selection: We integrate trajectories from multiple initial conditions using a 5th order implicit
Runge-Kutta integrator (see Appendix A), and use a suite of attractor tests to cull systems that
fail to exhibit chaotic behavior. First, transient systems that converge to a fixed point or diverge to
infinity are filtered. Then, we apply the chaos 0-1 test, which distinguishes quasiperiodic dynamics
from true chaos (Falconer et al., 2007). We also apply a near-recurrence test to reject limit cycles, a
power spectrum test to reject trajectories with only a few distinct sharp peaks, and the data-driven
Rosenstein estimator (Rosenstein et al., 1993) to ensure a positive maximum Lyapunov exponent.
Finally, we filter for stationarity using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Kwiatkowski
et al., 1992) and augmented Dickey–Fuller (ADF) (Dickey & Fuller, 1979) statistical tests.

Augmentations. On top of the integrated trajectories, we expand the training data by applying
dynamics-inspired augmentations that preserve the property that the transformed timeseries arise
from a closed nonlinear dynamical system. Our augmentations are: Random time-delay embedding
xi(t)→ xi(t− τi), τi ∼ U (1, dembed). This augmentation produces dynamics diffeomorphic to the
original trajectory due to Takens’ embedding theorem (Packard et al., 1980; Takens, 1981). Given
X ∈ RC×T and d ∼ U (dmin, dmax), Convex combinations take random linear combinations of
coordinates with coefficients sampled from a Dirichlet distribution: X ← MX ∈ Rd×T ; M ∈
Rd×C , Mi,: ∼ Dir(α1C). Affine transforms implement X ← AX+b, [A b] ∈ Rd×(c+1), [A b]ij ∼
N (0, σ2)/

√
d. We set dmin = 3, dmax = 10, and dembed = 10 for our experiments.

Standardization. For all trajectories, we apply instance-normalization to standardize the scales
per channel. For integration, we standardize the integration horizon and granularity based on the
number of timepoints (4096) and dominant timescale; note, however, that the numerical integrator
ultimately dictates the stepsizes (Gilpin, 2021; Rosenstein et al., 1993). We observe no decrease in the
range of invariant properties (maximum Lyapunov exponents, fractal dimension) across generations,
suggesting that the starting population is sufficiently large and diverse (see Appendix A more details).

Held-out systems. For our zero-shot test metrics, we evaluate on an unseen set of 9.3× 103 systems.
We form the test set by holding out a random subset of 20 systems from the 129 founding system
population and ensure that none of these systems or their descendants (systems where the parent is
the driver or response) appear in the training set. We then evolve these systems into the test set and
include all skew product systems descended from these held-out systems.

4 MODEL ARCHITECTURE

Dynamical systems differ from traditional time series, and so we introduce a novel architecture
motivated by dynamical systems theory (Fig. 1B). Time series foundation models with causal
decoders that tokenize time series on a per-observation basis tend to parrot motifs from their context,
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leading to over-confident predictions on out-of-domain tasks (Olsson et al., 2022; Zhang & Gilpin,
2025a;b). Parroting is a useful emergent inductive bias when modeling invariant properties in long
forecasts is prioritized over accuracy — otherwise known as forecasting the climate. However, we
opt for an encoder-only, fixed prediction horizon forecast model that maximizes short-term pointwise
accuracy, known as predicting the weather in SciML.

Panda generalizes PatchTST, a transformer for univariate forecasting that tokenizes timeseries on a
per-patch basis (Nie et al., 2022). Section 5.2 shows that univariate-only architectures underperform
on dynamical systems, motivating channel attention. Moreover, patching admits an inductive bias for
dynamical systems due to Takens’ theorem which states that time-delayed copies of a low-dimensional
measurement of a dynamical system result in a multivariate time series that preserves key topological
features of the true attractor (Packard et al., 1980; Takens, 1981).

Patching. We tokenize a length T trajectory T ∈ RC×T by patching it into a token sequence of size
P patches with stride S so that in general, TP,S ∈ RC×(⌊T−P

S ⌋+1)×P . We choose stride S = P so
that the token sequences are TP ∈ RC×(T/P )×P . We choose P = 16, unless stated otherwise.

Dynamics Embedding. We lift the patched multivariate timeseries to a higher-dimensional em-
bedding space (dmodel) by concatenating each patch token P ∈ RC×P with random polyno-
mial and random Fourier features. For random polynomial features with degree d, we sam-
ple a fixed index set I ⊂ {1, . . . , P}d of |I| = Npoly (number of features) d-tuples such that
for I ∈ I: Φc,i(P) := Πd

j=1Pc,Ij = Pc,I1 · . . . · Pc,Id . The random Fourier features sam-
ple parameters W ∈ RP×(Nrff/2), b ∈ RNrff/2 such that Wij , bi ∼ N (0, σ2) and F(P) :=
[sin(PW + b) cos(PW + b)] ∈ RC×Nrff , where b added across channels (Rahimi & Recht, 2007).
The overall patch embedding is E(P) := [P Φ(P) F(P)] ∈ RC×(P+Npoly+Nrff). We use degrees
d ∈ {2, 3} and choose Npoly and Nrff such that dmodel = P + Npoly + Nrff = 512. The use of
polynomial and Fourier features as a lifted dynamics embedding is motivated by prior approximations
of the Koopman operator via extended dynamic mode decomposition (eDMD) (Kutz et al., 2016;
Williams et al., 2015) and next-generation reservoir computers, which use polynomial features to
forecast chaotic systems (Gauthier et al., 2021). See Appendix B for our choices of hyperparameters.

Temporal Attention. We mix information over the temporal dimension by taking the channel
dimension as a batch dimension and performing self-attention with p-RoPE (Barbero et al., 2025) (a
modification of rotary positional encoding, RoPE (Su et al., 2023)) over the T/P univariate patches
of dimension dmodel. For all experiments, we use a RoPE wavelength of 500 and p = 75%.

Multivariate Attention. Several time series foundation models are univariate, and thus, channel-
independent; they solely employ temporal attention for information mixing (Nie et al., 2022).
However, chaotic dynamical systems exhibit strong channel coupling. We demonstrate this em-
pirically for the electronic circuits dataset in Fig. 4D, where we show the benefit of channel
attention as the coupling strength increases. We interleave channel attention layers without po-
sitional encoding after each temporal attention layer. Each layer transposes the token sequence,
treating the token dimension as a batch dimension and the channels as a set before self-attention
ChannelAttention(TP ) := SelfAttention(T ⊤

P ), T ⊤
P ∈ RT/P×C×dmodel . Temporal attention is fol-

lowed by a feedforward residual network, GeLU activations (Hendrycks & Gimpel, 2016), and
RMSNorm (Zhang & Sennrich, 2019). In the prediction head, processed tokens are aggregated along
the sequence dimension T/P and mapped with a linear layer into a length H channel-wise forecast.
The architecture is further described in Appendix B.

5 RESULTS

5.1 Panda ZERO-SHOT FORECASTS UNSEEN NONLINEAR DYNAMICS

To evaluate the quality of the generated forecasts, we measure (1) short-term forecast accuracy via
mean squared error (MSE), mean absolute error (MAE), symmetric mean absolute percentage error
(sMAPE), and Spearman correlation, as well as (2) attractor reconstrution accuracy via correlation
dimension, spectral Hellinger distance, and Kullback-Leibler (KL) divergence from the ground-truth
attractor. For brevity, we report only the sMAPE and MAE (short-term), and KL divergence and
spectral Hellinger distance (global) in the main text; the other metrics show similar results and are
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included in the Appendix D and Appendix C. We compute all metrics for forecasts generated from
zeroshot (held-out) systems never seen during training. Specifically, these are Ntest = 9.3 × 103

unique skew-product dynamical systems found using the methodology described in section 3. We
additionally include results for scaling up model size and training dataset size in Appendix K.

Comparison to baseline models. We train Panda with 21M parameters and evaluate against several
time series foundation models of comparable or larger scale: Chronos 20M, a causal univariate
model which was recently shown to produce competitive forecasts of chaos systems (Ansari et al.,
2024; Zhang & Gilpin, 2025b). Chronos 20M SFT: Chronos supervised-finetuned on our entire
chaotic systems dataset (Section 3). Time MOE 50M: A 50M parameter univariate model based
on sparse mixture of experts (Shi et al., 2024). TimesFM 200M: A patch-based 200M parameter
decoder-only univariate model (Das et al., 2024). DynaMix: A multivariate pretrained dynamical
systems model based on RNNs trained with teacher-forcing, enabling efficiency (10k parameters)
(Hemmer & Durstewitz, 2025). For univariate baselines, each dimension is forecast independently.

Across 9.3 × 103 held-out systems, we find Panda outperforms the baselines across a variety of
prediction horizons and error metrics (Fig. 2). While we train our model exclusively on d = 3-
dimensional dynamical systems, the evaluation set includes arbitrary dimension systems, indicating
that channel attention enables multivariate generalization. Moreover, we use window autoregression
to extend our evaluation forecast horizon well beyond the forecast horizon used during training.
Our model maintains its performance advantage, indicating that it learns an effective dynamical
propagator independent of a single timescale. In Appendix D, we show that our results are robust to
the choice of metric (see Fig. 15).

Figure 3: Ablations of key architectural fea-
tures of Panda: MLM pretraining, chan-
nel attention (Chattn), and components of
the dynamics embedding (RFF denotes ran-
dom Fourier features and PolyEmbed includes
polynomial features).

Ablations. We also ablate several features of Panda,
in order to verify the contributions of our dynamics-
based architectural choices. These include (1) Chan-
nel Attention, (2) Dynamics Embedding, and (3)
Masked Language Modeling (MLM) Pretraining.

We observe a significant improvement due to chan-
nel attention and MLM pretraining (See Section E
for example zero-shot completions). However, the
combined effect of the MLM with the dynamics em-
bedding appears to be more complex: with no MLM,
the dynamics embedding helps, but with MLM, it
reduces performance. Moreover, the dynamics em-
bedding improves the error on autoregressive rollout,
whereas MLM reduces performance on rollout. We
conclude that using the dynamics embedding with
polynomial features (PolyEmbed) gives us the best
model for long prediction horizons.

We include additional forecast metrics in Fig. 16 in
Appendix D. We continue the discussion and evalua-
tion of MLM on the completions task in Appendix E.
In particular, we compare the correlation dimension
of the completions against that of the ground truth
trajectories (Fig. 18) and show a strong match. Fur-
thermore, we investigate the effect of patch size on
Panda’s performance in Appendix J.

5.2 Panda ZERO-SHOT FORECASTS EXPERIMENTAL DATA

We next show that Panda generalizes to experimental time series from real-world dynamical systems.
These experimental datasets have nonstationarity, missing values, noise, and other complexities not
seen during training. Following prior works, we select systems in which the experimental data is
known to have an underlying dynamical process generating it: the positions and momenta of the
tips of the two rods in an experimental recording of a double pendulum (Asseman et al., 2018), the
leading independent components of body posture from a light microscopy video of C. elegans worms
crawling on agar gel (Ahamed et al., 2021), and voltage recordings from networks of 28 randomly
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Double Pendulum EigenWorms Electronic Circuit

Figure 4: Zero-shot forecasts of experimental data from (a) Double Pendulum (Asseman et al.,
2018), (b) Eigenworms (Ahamed et al., 2021), and (c) Electronic Circuit (Vera-Ávila et al.,
2020). (d) Relative change in forecast error for Panda compared to Chronos-SFT (as measured
in log (sMAPEPanda/sMAPEChronos-SFT), showing the advantage of our approach as the coupling
strength between variables increases, for various prediction horizons.

.

connected electrical oscillators (Vera-Ávila et al., 2020). In all cases, the zero-shot performance of
Panda outperforms Chronos-SFT (Fig. 4a).

For the circuit dataset in particular, we find that as the experimental coupling strength increases,
the relative advantage of Panda over Chronos-SFT increases (red regions), particularly at long
prediction horizons—leading to a visible Pareto front between the two models (Fig. 4b). This finding
underscores the importance of channel attention for capturing nonlinear couplings typical in real
world dynamical systems.

5.3 Panda EXHIBITS A DYNAMICAL SYSTEMS SCALING LAW

Figure 5: Scaling laws in zero-shot forecast error as the
number of unique dynamical systems increases. The
total amount of training timepoints is held constant.

We create eight independent pretraining
datasets that are subsets of the 2 ×
104 unique systems generated using our
methodology in Section 3. Across these
eight datasets, we maintain a constant num-
ber of total timepoints while taking, at one
extreme, a single trajectory (one initial con-
dition) from each unique system, and at the
other extreme, several trajectories (multiple
initial conditions) from only a few unique
systems. These datasets thus allow us to
measure how dynamical diversity (unique
systems versus initial conditions) affects
generalization. We repeat our zero-shot
evaluations on our set of 9.3 × 103 held-
out systems for each model trained on the
eight datasets.

In particular, let Nics be the number of
sampled initial conditions and Nsys the
number of unique systems. Keeping Nics × Nsys fixed, our eight dataset splits are constructed
as {

(
Nsys ≈ 2× 104, Nics = 1

)
,
(
Nsys ≈ 104, Nics = 2

)
, . . . , (Nsys ≈ 156, Nics = 128)},

where each subsequent split uses a strict subset of the systems of the previous split, but with double
the number of sampled initial conditions Nics.

We observe clear scaling of zero-shot performance on unseen systems with the number of new
dynamical systems encountered. We emphasize that this scaling law is distinct from traditional
neural scaling laws for total training data, because we hold the number of timepoints constant while

7
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controlling the diversity of the data (Kaplan et al., 2020). These results highlight the advantages
of scaling with diverse synthetic data. This finding accords with classical nonlinear dynamics
theory: additional on-attractor trajectories continuously produce new information about that particular
attractor’s measure (a result of Pesin’s theorem), but beyond a certain point they fail to provide new
topological information about winding, voids, etc (Gilmore, 1998; Pesin, 1977). The distinction
between these information types partly explains the gap between in-domain and out-of-domain
generalization in MLDS (Göring et al., 2024).

5.4 Panda EXHIBITS EMERGENT PDE FORECASTING CAPABILITY

von Kármán Vortex StreetKuramoto Sivashinsky
A B C

Figure 6: (A) Zero-shot forecasts of the Kuramoto-Sivashinsky equation. The time axis t = 25 to
t ≈ 44 contains 768 timepoints (512 context + 256 prediction): solid black line marks end of context
window, and dashed gray line marks length 128 prediction horizon. (B) Zero-shot forecasts of the von
Kármán vortext street. (C) The horizoned MAE (with standard errors bars) compared to baselines.
We show point-wise MAE, due to sMAPE’s saturation at the upper bound. We include two baselines,
Fourier Neural Operators and DeepONet (black traces) fully-trained on the context (see Appendix H).

Partial differential equations (PDEs) are dynamical systems on continuous domains, with diverse
applications in weather prediction or materials science (Kochkov et al., 2024). Conceptually, PDEs
may be seen as coupled ordinary differential equations evolving in an infinite-dimensional space.
We apply our trained model to the problem of forecasting two weakly-turbulent PDEs representing
standard SciML benchmarks: the Von-Karman vortex street (VKVS) describes the unsteady motion
of flow past a cylinder, and the Kuramoto-Sivashinksy (KS) models a laminar flame front (Cvitanović
et al., 2010). More details on the PDE evaluation setup can be found in Appendix H.

Surprisingly, Panda outperforms baselines in zero-shot forecasting these systems (Fig. 6), despite
having never encountered PDE during training. Unlike baselines, our model predicts nonlinear
phenomena like merging of flame fronts in the KS equation or vortex pinchoff in the VKVS. While
prior works require specially-trained models to forecast chaotic PDEs (Pathak et al., 2018), our zero-
shot approach does not require extensive in-distribution training data, highlighting the advantages of
cross-channel attention and multivariate training in generalization.

5.5 Panda DEVELOPS INTERPRETABLE INTERNAL REPRESENTATIONS OF COMPLEX DYNAMICS

To probe the role of channel attention in Panda, we feed two-tone sinusoids into the model and
measure the response. The frequencies f1, f2 are each swept out over the range [2π, 5π]. Let Ã
denote the attention rollout (Abnar & Zuidema, 2020) of the temporal attention matrices. Since Ã is
the product of row-stochastic matrices, Ã remains row-stochastic. Thus, we can measure the response
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Figure 7: (A) Nonlinear resonance structure measured by average row-wise entropy of temporal
attention rollout matrices. (B) Mean row-wise entropy of the final layer during training. (C) Lack of
nonlinear resonance structure in the temporal attention rollout entropy for our univariate ablation.

from "shaking" the model at frequency mixtures f1, f2 by measuring the average of the rowwise
entropies of Ã (c.f. Fig. 7A). The attention maps exhibit complex, multiscale structure indicating
nonlinear resonance, a phenomenon in dynamical systems where a physical system (such as a kicked
rotor or forced pendulum) exhibits gain with nonlinear dependence on the input frequencies. As a
control, the frequency response of an equally trained univariate model does not exhibit the same
nonlinear multiscale structure (Fig. 7C).

We next analyze Panda’s attention maps to probe its underlying forecast strategy. The attention maps
largely concentrate mass away from the diagonals, which indicates that Panda effectively uses the
context. In contrast, a model implementing a purely local rule (like a numerical integrator) would
exhibit predominant diagonal structure, indicating that Panda performs more complex operations
than few-step integration. For example, some attention maps form recurrence maps, which encode
large-scale attractor geometry in classical nonlinear dynamics (Donner et al., 2010; Gilpin, 2025).
Other layers show banding and circulant structure (Fig. 8), consistent with global integral transforms
like Fourier series.

Figure 8: Temporal attention maps from Panda on context from different chaotic systems, showing
Toeplitz, block, selector, and hybrid/combined structures (left to right). Appendix G further discusses
spatiotemporal coupling and cross-channel maps (Fig. 22).

5.6 LIMITATION: REGRESSION TO THE MEAN

Divergence of error is inevitable when forecasting chaos with finite precision. Eventually, the
prediction error grows to the point where a point forecast is useless, but invariant and geometric
properties of the chaotic system can still be estimated in the long horizon regime. We quantify the
utility of long horizon forecasts by measuring the geometry of forecasts much farther than 4× the
training prediction horizon. Specifically, we compute: the maximum Lyapunov exponents (Appendix
F.6); the forward KL divergence (Table 1) between the attractor and the predictions (Hess et al.,
2023); and the spectral Hellinger distance (Table 2), an f -divergence between power spectra of the
attractor and predictions (Mikhaeil et al., 2022).

For these experiments, we include Dynamix, a much smaller (∼10K parameters) autoregressive
dynamical systems foundation model that excels in capturing long term geometry (Hemmer &

9
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Durstewitz, 2025). For Tables 1 and 2, we report mean ± std. dev. across all test systems, averaged
over 5 context windows for prediction horizons Lpred ∈ {512, 1024, 2048, 3072}. Only one context
window is available for evaluating Lpred = 3584, as our dataset contains trajectories of length 4096.

DKL (Ground Truth(Lpred)||Model Prediction(Lpred))

Model Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Panda 3.93± 3.51 4.72± 3.64 5.63± 3.71 6.14± 3.68 6.39± 3.90

Chronos 20M SFT 4.72± 5.00 5.09± 4.90 5.62± 4.86 5.93± 4.84 6.05± 5.34
Chronos 20M 5.99± 5.07 6.19± 4.85 6.51± 4.76 6.76± 4.74 6.94± 5.41
Chronos 200M 5.12± 5.25 5.49± 5.22 6.05± 5.30 6.36± 5.28 6.47± 5.67

DynaMix 4.75± 5.70 4.90± 5.65 5.22± 5.72 5.40± 5.70 5.51± 6.13

∆%(↑) +16.7% +3.7% −7.9% −13.7% −16.0%

Table 1: KL divergence between ground truth and model predictions. ∆% denotes percentage gain
of Panda over the best baseline. See Table 12 for per-system differences, and Appendix F.1 for
implementation details.

Average H2(SGround Truth (Lpred)||S Model Prediction (Lpred))

Model Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Panda 0.25± 0.14 0.25± 0.12 0.25± 0.11 0.25± 0.11 0.26± 0.12

Chronos 20M SFT 0.29± 0.17 0.29± 0.16 0.29± 0.16 0.30± 0.16 0.30± 0.18
Chronos 20M 0.37± 0.16 0.36± 0.16 0.37± 0.16 0.38± 0.16 0.38± 0.17
Chronos 200M 0.28± 0.16 0.28± 0.15 0.29± 0.15 0.30± 0.15 0.30± 0.17

DynaMix 0.36± 0.19 0.34± 0.19 0.33± 0.19 0.33± 0.19 0.32± 0.21

∆%(↑) +10.7% +10.7% +13.8% +16.7% +13.3%

Table 2: Average per-dimension spectral Hellinger distance between ground truth and model predic-
tions. ∆% denotes percentage improvement of Panda over the next closest baseline. See Table 13 for
per-system differences. We use Welch’s method for estimating the PSD.

Surprisingly, we observe competitive performance in the KL divergence up to 8× the training
prediction horizon, and an across the board advantage on spectral Hellinger distance. However, we
visually confirm that Panda tends to regress to the mean of the context when rolling out far past the
training horizon in Appendix M. We can quantify this failure mode by computing the distributional
metrics on the tail forecasts in Appendix F.5 which confirms the failure of mean regression as a long
term forecaster. In contrast, Chronos exhibits parroting for long horizons (Fig. 31, 33, 32) which
serves as a decent surrogate for long term attractor geometry due to forecasting periodic orbits. We
report additional distributional metrics and computed invariant quantities in Appendix F.

6 CONCLUSION AND FUTURE DIRECTIONS

Our work demonstrates the feasibility of pretrained models in discovering generalizable properties of
dynamical systems, mathematical objects of intrinsic interest to the SciML and forecasting communi-
ties. Our model’s emergent ability to predict higher-dimensional partial differential equations, and
the scaling of its performance with the diversity of dynamical systems, show that its generalization
signal stems from unique properties of dynamics relative to time series.

A limitation of our work stems from our focus on low-dimensional dynamical systems. We argue
that low-dimensional dynamics are the building block for higher-dimensional systems like weather
front or spiking neurons, because they capture essential properties like bifurcations that become more
complex in extended systems. A future variant of our approach for high-dimensional dynamics could
exploit the structure of coupling such as sparsity or blocks typical in these systems by allowing the
channel attention layers to receive custom attention masks. Another limitation is the degradation
of rollout performance from MLM pretraining. Future work will investigate the question of what
pretraining task is most natural for modeling dynamical systems. We believe this is a basic question
that necessitates further progress in SciML.
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model for partially observable continuous control. arXiv preprint arXiv:2404.02407, 2024.

15

https://arxiv.org/abs/2409.16040
https://arxiv.org/abs/2409.16040
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Yuanzhao Zhang and William Gilpin. Context parroting: A simple but tough-to-beat baseline for
foundation models in scientific machine learning. arXiv preprint arXiv:2505.11349, 2025a.

Yuanzhao Zhang and William Gilpin. Zero-shot forecasting of chaotic systems. In The Thirteenth
International Conference on Learning Representations, 2025b. URL https://arxiv.org/
abs/2409.15771.

Martin Ziegler, Andres Felipe Posada-Moreno, Friedrich Solowjow, and Sebastian Trimpe. On foun-
dation models for dynamical systems from purely synthetic data. arXiv preprint arXiv:2412.00395,
2024.

16

https://arxiv.org/abs/2409.15771
https://arxiv.org/abs/2409.15771


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A GENERATION OF A NOVEL CHAOTIC SYSTEMS DATASET

A.1 SKEW-PRODUCT SYSTEMS

We algorithmically discover skew-product systems following the methodology described in Section 3.
Here, we present a subset of 30 of these systems, out of a total of 2× 104 in our training set.

Figure 9: Examples of novel chaotic skew-product systems discovered via evolutionary search.
Shaded regions correspond to two-dimensional projections onto the corresponding axes.

Our starting point is a hand-curated, crowdsourced public dataset of 129 chaotic low-dimensional
dynamical systems from the nonlinear dynamics literature (Gilpin, 2021; 2023; Zhang & Gilpin,
2025b). Each entry comprises a set of coupled ordinary differential equations with dimensionality
between three and ten. The parameters and initial conditions for each system have been hand-tuned
into the chaotic regime, based on values used in previously-published studies.
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A.2 MUTATION OF BASE SYSTEMS

We also generate new instances of the base 129 chaotic systems by perturbing the ODE parameters.

Figure 10: Examples of parameter perturbations of base systems. Top row Unperturbed original
systems. Botton rows Parameter perturbations of the top row systems.

A.3 NUMERICAL INTEGRATION

For all ODEs, we integrate trajectories of 4096 timesteps with an integration time-span dictated
by a system’s characteristic timescale based off the dominant modes in the power spectrum. We
thus call this timescale the period of the system and set the integration time-span to be [0, Np × φ]
where Np is the number of periods, and φ is the "period" measured from integrating test trajectories
of the base system; for skew systems we take the period to be the maximum period between the
driver and response systems. For all experiments in the main text, we take Np = 40, but use a larger
mixed-period dataset in our scaled up experiments (Appendix K).

The numerical integration timestep is controlled via adaptive step-sizing from the Radau solver, a 5th
order implicit Runge Kutta Scheme. For high quality trajectory data, we integrate using a relative
tolerance 1 × 10−9 and an absolute tolerance of 1 × 10−10. The initial conditions for discovered
systems are obtained by integrating a test trajectory at a lower tolerance (rtol = 1e−6, atol = 1e−7)
and sampling a point from the coarse trajectory which approximates starting at a point on attractor.

A.4 ATTRACTOR SELECTION

The only general way to identify properties about chaotic dynamical systems is to integrate them.
This fundamental fact makes the system discovery process described in Section 3 very expensive at
scale. To effectively reduce the number of incoming candidates for chaoticity selection and validation,
we employ callbacks during integration that will immediately kill the process and prune that system
candidate. Specifically, we terminate integration whenever the step size falls below 10−10, any
bounded (non-driving dimension) coordinate exceeds 104 in value, and whenever the integration
time exceeds 5 minutes. The surviving systems will finish integration and move on to the chaoticity
selection phase (see the overview of our selection for chaoticity in Section 3).
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A.5 DATASET PROPERTIES

We verify that our integrated trajectories exhibit chaotic dynamics by measuring the average number
of Lyapunov times in various prediction horizons. A chaotic flow separates nearby initial conditions
according to |δ(t)| ≈ exp(λ1t)|δ(0)|where δ is the time dependent separation and λ1 is the maximum
Lyapunov exponent. Thus, a Lyapunov time is defined to be TLyap := 1/λ1. Given an arbitrary time
series with timestep δt, the Lyapunov times per N timepoints is then λ1 × δt×N . Since we rely on
an implicit integrator with adaptive step-sizing, we compute the average timestep over the integration
timespan and estimate the maximum Lyapunov exponent using the Rosenstein estimator (Rosenstein
et al., 1993) to compute the distribution of Lyapunov times per horizon length in Fig. 12a where it is
clear that we are predicting in the chaotic regime most of the time.

To ensure consistency between the founder population and offspring, we featurize all pretraining time
series using the same procedure as previous works reporting chaotic systems datasets (Gilpin, 2021;
2023). For each channel of a D-dimensional multivariate time series (4096 timepoints, 100 points per
dominant Fourier period) we compute a vector of 749 standard time-shift invariant time series features
like wavelet modes, signal power, reversion rate, etc. using the tsfresh library (Christ et al., 2018).
We average the D feature vectors for each system to produce a single channel-permutation invariant
feature vector for each skew-product system. We then project all 2× 104 pretraining skew-product
systems into 2D using UMAP, a nonlinear embedding algorithm that preserves the local neighbors
of each point from the high dimensional space (distances, however, are not necessarily preserved)
(McInnes et al., 2018). We next featurize and embed the 135 parent systems from the founder
population into the same space. We observe broad dispersion of the parent systems across the child
population, implying the absence of mode collapse or strong distribution shift between the parents
and offspring (Fig. 11). We interpret this result as the absence of strong founder or inbreeding effects
in the offspring generation.
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Figure 11: A low-dimensional embedding of the 2× 104 skew-product systems (gray), as well as
the 135 founding parent systems (magenta) from which these offspring systems are evolved. The
well-known chaotic Lorenz attractor is starred on the plot.

Additionally, for all trajectories in the test set, we measure the empirical stiffness score defined as
S := log10 (maxt |∆t|/Et|∆t|), where ∆t is the finite difference (forward or backward) at time
t. Fig. 12b shows that most test systems have at least an order of magnitude scaling between the
largest observation jump compared to the average change per channel. This distribution suggests that
the dataset generation algorithm generates stiff systems and reinforces the fact that the integrated
trajectories exhibit non-trivial dynamics.
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Figure 12: Dynamical properties of systems in the test set. (a) Distribution of Lyapunov times within
Lpred timepoints; annotated with the proportion of systems which exceed 1 Lyapunov time in the
horizon. (b) Distribution of sitffness scores (log-ratio of largest delta compared to the average delta).
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Figure 13: Distribution of correlation
dimension (Grassberger-Procaccia) of
skew systems and their founder (base)
systems.

System GP Dim (mean ± std)

Base Systems 2.09± 0.27
Skew Systems 2.11± 0.23

Table 3: Correlation dimension for Base
(Founder) systems and Skew (Children) systems.

As shown in Fig. 13, our skew-product generation preserves the distribution of the correlation
dimension, an invariant quantity used as a proxy for fractal dimension. This suggests that our dataset
does not suffer from a "founder effect" that would kill off diversity. Table 4 further presents a
comparison of the Kullback Leibler divergence between the invariant measures of the attractors, for
skew systems: with the same parents; with different parents; with one parent shared; and between
parent (Base) and child (Skew) systems.

Metric mean ± std Ncombos

DKL(Skew || Response) 5.35± 5.81 10,000
DKL(Skew || Driver) 8.46± 6.58 10,000
DKL(Skew || Non-Parent) 9.01± 6.64 10,000

DKL(Skew Intra) 3.39± 5.11 10,000
DKL(Skew Inter) 7.07± 6.58 10,000

DKL(Base Intra) 2.54± 4.13 6,000
DKL(Base Inter) 8.24± 6.48 6,000

Table 4: DKL between skew systems and: 1) param perts of response; 2) param perts of driver; 3)
param perts of non-parent system in the founder pool. (Skew Intra) DKL between param perts of
skew systems with the same parents. (Skew Inter) DKL between param perts of skew systems with
different parents. (Base Intra) DKL between parameter perturbations of the same founder system.
(Base Inter): DKL between parameter perturbations of different founder systems.
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Table 5: Model Architecture

Parameter Value
Context length 512
Prediction length 128
Hidden layers 8
dmodel 512
FFN dimension 512
Attention heads 8
Activation gelu
Pre-norm True
Normalization RMSNorm
Init std 0.02

Table 6: Model Architecture (Continued)

Parameter Value
Patch length / stride 16 / 16
Rope percent 0.75
Max wavelength 500
Poly features 120
Poly degrees 2
RFF count 256
RFF scale 1.0

B TRAINING DETAILS

A technical difficulty of training a global multivariate model is forming batches of trajectories with
mixed channel dimensions. We look to dynamical systems theory and note that it is well known that
at least 3 coupled dynamical variables are necessary for a system to exhibit deterministic chaos in
continuous-time (Strogatz, 2018). To this end, we fix the dimensions of each input trajectory to 3
only during training by randomly sampling 3 channels from each multivariate trajectory to enable
efficient batching. During inference time, we process the full multivariate trajectories. For the 21.3M
parameter Panda model we use dmodel = dffn = 512, Nheads = Nlayers = 8, Npoly = 120 with degree
2, and Nrff = 256. For the 41.5M parameter model (Appendix K), we use dmodel = dffn = 640,
Nheads = Nlayers = 10, Npoly = 156 with degree 2, and Nrff = 312. And for the 71.5M parameter
Panda-72M (Appendix K), we use dmodel = dffn = 768, Nheads = Nlayers = 12, Npoly = 188 with
degree 2, and Nrff = 376. Additionally, data augmentations (Section 3) are uniformly randomly
applied to 20% of the training trajectories.

We use a patch size (and patch stride) of 16. All models are trained with a context length of
512, which corresponds to 32 patches, and use a non-causal transformer encoder with 8 layers,
each with dmodel = 512 and 8 heads. Each attention block maps a (batch size, channels,
patches, hidden) sized hidden state H via:

H ← H + RopeTemporalAttention ◦ RMSNorm(H)

H ← H + ChannelAttention ◦ RMSNorm(H)⊤

H ← H + FFN ◦ RMSNorm(H)

Where the transpose is applied to the channel and patch (sequence) dimension.

For models optimized with masked language modeling (MLM) style pretraining (masking and
reconstructing intermediate patch tokens), a linear head is used to infill masked patches. For the
forecasting model, a prediction head aggregates the encoder hidden states via a mean along the
sequence (patch) dimension and a linear layer maps this representation to a fixed-length 128 forecast
for all models. All models are trained with MSE loss and the AdamW optimizer with a maximum
learning rate 1× 10−3 on a cosine schedule with a 10% warmup. Additionally, we train with gradient
norm clipping at a value of 1.0. See Tables 5, 6 for comprehensive details about model architecture.

The 20M Panda MLM models are trained for 200K iterations (∼52 wallclock hours across 4 GPUs or
∼208 GPU hours) with a batch size of 1024 with 50% of tokens randomly masked out each batch.

The forecast models are trained for 100K iterations with a batch size of 1024 and are optionally
initialized with a pretrained encoder from an MLM model (Section 5.1). The 20M parameter
forecasting checkpoints are trained for ∼26 wallclock hours or ∼104 GPU hours. The Chronos-SFT
models use considerably more memory during training - permitting a batch size of 160 for 300K
training iterations which required ∼48 wallclock hours or ∼192 GPU hours.
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C FORECASTS

Figure 14: Examples of zero-shot forecasts (Lpred = 256) on held-out chaotic dynamical systems.

For additional forecasts, see Appendix L (Figs. 28, 29, and 30). All forecasts plotted are with
prediction length Lpred = 256.

D ADDITIONAL FORECAST METRICS

Table 7 shows statistical significance testing of Panda metrics against other baselines. Note that we
do not report results for TimeMoE due to the presence of NaNs, and instead test against a 200M
Chronos baseline in greedy decoding and probabilistic mode. Panda clearly achieves lower error
across the board; the gap closes with Chronos 20M SFT but still remains statistically significant.

In Fig. 2 we presented the sMAPE and MAE comparison for Panda versus our baseline models. We
now present more zero-shot forecast metrics, but using the probabilistic forecasting mode for Chronos
and Chronos-SFT. When finetuning Chronos 20M on our dataset (i.e. Chronos 20M SFT), we used
the default top-k and top-p (nucleus sampling) and temperature settings. We use these same settings,
top-k = 50, top-p = 1.0, temperature = 1.0 for the Chronos probabilistic forecasting, aggregating
our metrics over 10 sample forecasts per context window per system.

Table 8 highlights the efficiency of Panda against Chronos. This ≈ 60x speedup is largely due to the
fact that Chronos represents time series tokens as quantized individual points, whereas Panda relies
on patches.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 7: Wilcoxon Signed Ranked test for Panda errors vs. baseline errors (Holm–Sidák adjusted
p-values)

Model Prediction MSE MAE sMAPE

Horizon p-value statistic p-value statistic p-value statistic

Chronos 20M SFT L = 128 5.96× 10−48 13 484 9.01× 10−51 12 153 6.35× 10−3 49 421
L = 512 8.24× 10−50 12 275 3.07× 10−54 10 432 3.34× 10−2 51 252

Chronos 200M L = 128 5.84× 10−49 12 778 6.88× 10−57 9182 1.20× 10−28 23 770
L = 512 5.33× 10−48 13 233 1.45× 10−56 9323 1.36× 10−7 41 310

Chronos 20M SFT Prob L = 128 6.93× 10−41 16 851 3.09× 10−33 21 198 1.30× 10−5 44 464
L = 512 3.83× 10−41 16 513 1.18× 10−35 19 657 3.26× 10−1 54 730

Chronos 200M Prob L = 128 2.91× 10−49 12 577 1.22× 10−56 9290 5.69× 10−31 22 353
L = 512 2.37× 10−38 18 024 1.83× 10−49 12 541 7.73× 10−11 37 624

TimesFM 200M L = 128 4.05× 10−55 9863 1.67× 10−69 3863 4.89× 10−77 972
L = 512 2.50× 10−38 18 103 1.59× 10−59 7949 2.66× 10−70 3588

Time MOE 50M L = 128 1.03× 10−41 14 499 9.66× 10−58 7320 1.68× 10−76 170
L = 512 2.58× 10−29 21 152 3.14× 10−52 9639 3.13× 10−75 589

DynaMix L = 128 1.46× 10−23 26 724 3.03× 10−35 19 399 1.86× 10−40 16 533
L = 512 4.54× 10−8 39 970 7.00× 10−22 27 602 1.83× 10−27 23 592

Figure 15: Zero-shot forecast metrics for our baselines, using probabilistic (10 samples) forecasts for
the Chronos models. †Dash-dotted lines indicate presence of NaNs for some systems (4 - 12% of
systems for Spearman).

Time per Forecast (s)
Model Time (mean ± std)

Panda 0.031 ± 0.001
TimeMOE 50M 0.336 ± 0.060
DynaMix 0.526 ± 0.016
TimesFM 200M 0.605 ± 0.032
Chronos 20M 1.880 ± 0.041
Chronos 200M 4.233 ± 0.121

Table 8: Inference time per forecast (Lpred = 512), computed over N = 1000 calls to each model,
on a single H100 GPU. Each model call uses context length 512 timesteps, from our multivariate
data, which has variable number of channels (at least 3). The univariate models (Chronos, TimesFM,
TimeMOE) treat the channels as batch dimension, for each call.

We also provide median forecast metrics with IQR for the metrics in Fig. 2 over multiple prediction
horizons for the best baselines in Tables 9, 10.
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sMAPE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 27.6 [18.5, 39.3] 36.7 [26.2, 47.6] 46.3 [37.0, 57.0]

Chronos 20M SFT 30.3 [21.9, 40.0] 40.1 [30.3, 48.3] 48.8 [37.3, 56.8]
Chronos 200M 36.0 [26.4, 44.6] 44.6 [34.6, 52.9] 53.5 [42.8, 60.8]

Chronos 20M SFT Probabilistic 29.7 [21.3, 40.7] 39.4 [29.3, 48.7] 48.3 [37.8, 57.1]
Chronos 200M Probabilistic 36.4 [26.7, 44.7] 45.0 [34.2, 53.1] 53.8 [42.8, 60.6]

DynaMix 47.1 [37.9, 57.9] 54.7 [46.8, 62.6] 60.8 [53.9, 65.8]

Table 9: Median sMAPE and interquartile range [P25, P75].

MAE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 0.35 [0.22, 0.54] 0.49 [0.35, 0.70] 0.65 [0.48, 0.84]

Chronos 20M SFT 0.56 [0.34, 0.80] 0.85 [0.52, 1.26] 1.25 [0.72, 2.14]
Chronos 200M 0.61 [0.41, 0.80] 0.86 [0.58, 1.18] 1.07 [0.75, 1.83]

Chronos 20M SFT Probabilistic 0.46 [0.29, 0.69] 0.65 [0.43, 0.93] 0.85 [0.57, 1.34]
Chronos 200M Probabilistic 0.55 [0.38, 0.73] 0.71 [0.51, 0.91] 0.84 [0.63, 1.12]

DynaMix 0.79 [0.60, 0.94] 0.94 [0.76, 1.06] 1.02 [0.88, 1.15]

Table 10: Median MAE and interquartile range [P25, P75].

D.0.1 ADDITIONAL METRICS FOR MODEL ABLATIONS

In Fig. 3 we presented a sMAPE comparison for several key ablations of our model. Here, we provide
additional zero-shot forecast metrics for these ablations, supporting our conclusion that our dynamics
embedding with polynomial features (PolyEmbed) is best for long-horizon forecasting via rollouts.

Figure 16: Zero-shot forecast metrics for our ablation experiments.
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E MLM COMPLETIONS

Figure 17: Examples of zero-shot completions on held-out chaotic dynamical systems. Each com-
pletion plotted was with a context length of 512 time points, with half the patches (patch length 16)
randomly masked out in a channel-inconsistent manner. These plots show Panda MLM, our 20M
parameter checkpoint, completing the masked-out trajectories i.e. 256 time points. See Appendix N
for more examples from Panda MLM and from our scaled-up model Panda MLM-66M.

We present examples of Panda MLM completions on our held-out test set in Fig. 17. For more
examples of zero-shot completions, see Appendix N.

For the completions task, we randomly mask out half of patches for each coordinate dimension
separately i.e. channel-independent masking. We trained Panda MLM with patch length 16 and
context length 512, so each context window has 32 patches on the time axis. But we can generate
completions with any context length. We refer to the masked-out portions of the trajectory as the
erasures. We seek to measure how the model learns the cross-channel coupling relationships and
statistical dependencies.

In future work, we hope to investigate more sophisticated masking strategies, such as masking out
contiguous blocks of patches and investigating channel-dependent masking, which is closer to a
forecasting task. Recall from our discussion of Fig. 3 that MLM pretraining reduces performance on
autoregressive rollout (c.f. Fig. 16). Determining the optimal MLM pretraining objective for long
horizon forecasts on autoregressive rollout remains an intriguing area to investigate.

To quantify the performance of our MLM checkpoint on the completion task, we compute the
correlation dimension (Fig. 18) of completions versus ground truth trajectories using the Grassberger-
Procaccia algorithm (Grassberger & Procaccia, 1983a;b). This algorithm was developed to quantify
the strangeness (Lorenz, 1963; Ott, 1981; Ruelle & Takens, 1971) of chaotic attractors via a com-
putable metric related to the fractal (Hausdorff) dimension and information entropy. For the result in
Fig. 18, we take the entire length 4096 trajectory for each of our 9.3× 103 held-out systems and we
randomly mask out (erase) half of the patches (patch length 16) in a channel-inconsistent manner.
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Figure 18: Correlation dimension comparison
on held-out systems. Computed for ground
truth and completions from Panda MLM-66M
using the Grassberger-Procaccia method, av-
eraged over 8 independent masks for each
trajectory, using context length 4096 with
half the patches (patch length 16) randomly
masked out in a channel-inconsistent manner.

Let {xi}Ti=1 ⊂ RD be a time series of T points in D
dimensions. First, we compute pairwise Euclidean
distances (excluding i = j):

R :=
{
rij = ∥xi − xj∥2

∣∣ 1 ≤ i, j ≤ T, i ̸= j
}

Next, we select the scaling region. Let r(5%) and
r(50%) denote the empirical 5th and 50th percentiles
ofR. Then truncate to:

R∗ =
{
r ∈ R

∣∣ r(5%) < r < r(50%)

}
Now denote n := |R∗| and rmin := minr∈R∗ r.

Following Clauset. Shalizi, and Newman (Clauset
et al., 2009), we identify a power law fit using
maximum likelihood estimation (MLE). Assume for
r ≥ rmin that the distances follow p(r) = Z r−α,
where Z is the normalizing constant. Then,

α̂ = 1 +
n∑

r∈R∗
ln
(

r
rmin

)
In the Grassberger–Procaccia method one examines
a correlation integral with unbiased estimator:

C(r) = 2

T (T − 1)

∑
i<j

H
(
r − ∥xi − xj∥2

)
, C(r) ∼ rD2 (r → 0),

so that D2 = d ln C(r)
d ln r . Fitting C(r) ∝ rD2 is equivalent to fitting the distribution of pairwise distances

to a power law, yielding D2 ≈ α̂ as the estimated correlation dimension.

Panda MLM, with 20M parameters, shows promise in recovering the correlation dimension, a
statistical invariant of the attractor, even when given much longer context (length 4096) than seen
during traning (recall the context length for training was 512), and with half of the timesteps masked
out (in patches) per dimension. We also trained a scaled-up checkpoint, Panda MLM-66M (with
details in Appendix K), which demonstrates improved performance (Fig. 18).

In 11, we present the comparison against interpolation baselines. For polynomial in-
terpolation, we use numpy.polyfit to fit a polynomial to the unmasked timesteps,
and evaluate with numpy.polyval at masked positions. For linear interpolation,
we use scipy.interpolate.interp1d, with extrapolation for timesteps out-
side the range of known values. For the piecewise cubic spline baseline, we use
scipy.interpolate.make_interp_spline with k = 3 (cubic spline).

Comparison with Baselines for Completions Task
Method Lcontext = 4096, with 50% Erasure (in patches)

Panda MLM-66M 0.91
Panda MLM 0.78
Piecewise Cubic Spline 0.71
Linear Interpolation 0.61
Polynomial Interpolation (Deg 3) 0.21

Table 11: Coefficient of Determination (R2) between the correlation dimension (via Grassberger-
Procaccia) computed on the completions versus the full length 4096 ground truth trajectories. For
each of our 9347 held-out test systems, we average across 8 random seeds, which determine the
timestep masks for each trajectory (in patches of length 16). See Appendix N for further discussion.
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F MORE DISTRIBUTIONAL METRICS AND INVARIANT QUANTITIES

F.1 IMPLEMENTATION DETAILS: KL DIVERGENCE VIA GMMS

Algorithm 1 presents our implementation of the Kullback Leibler divergence between ground truth
and model predictions. This is the implementation we use for our main evaluations (Tables 1 and
12), although in Subsection F.3 we also present results using an alternative implementation found in
the literature. In particular, we construct GMMs by fitting Gaussians to each point, with local scale
parameter determined by the simplex neighbors algorithm.

Algorithm 1 KL Divergence Estimation via Gaussian Mixture Models

Require: Ground Truth X = {xt}Tt=1, Generated Predictions Y = {yt}Tt=1, Number of Monte
Carlo Samples ns, small ε > 0 and tol > 0

1: Function ESTIMATEKLDIVERGENCE(X,Y, ns, ε)
// Step 1: Local bandwidth (scale) estimation

2: σX ← SIMPLEXNEIGHBORS(X, k = 10)
3: σY ← SIMPLEXNEIGHBORS(Y, k = 10)

// Step 2: Construct Gaussian Mixture Models
4: p̂ ← GAUSSIANMIXTURE(means = X, covariances = σX)
5: q̂ ← GAUSSIANMIXTURE(means = Y, covariances = σY )

// Step 3: Monte Carlo KLD Estimate
6: {zi}ns

i=1 ← p̂.SAMPLE(ns)
7: for i = 1 to ns do
8: pi ← p̂(zi)
9: qi ← q̂(zi)

10: qi ← max(qi, ε)
11: ri ← log(pi/qi)
12: end for
13: return K̂LD =

1

ns

∑ns

i=1 ri

14: Function SIMPLEXNEIGHBORS(Z, k)
15: Let Z = {zi}ni=1 with zi ∈ Rd

16: Build a (k+1)-nearest neighbor search structure on Z (e.g., using Euclidean distance)
17: for i = 1 to n do
18: Query (k+1) nearest neighbors of zi, including itself
19: Discard the self-neighbor to obtain neighbors {zi,j}kj=1 with distances di,j
20: σi ← FINDSIGMA((di,1, . . . , di,k), k) ▷ Estimate local scale parameter
21: Let ρi ← minj di,j
22: end for
23: return σ = (σi)

n
i=1

24: Function FINDSIGMA(d, k) ▷ d = (d1, . . . , dk) are distances to k nearest neighbors
25: ρ← minj dj
26: Define ∆j ← max(dj − ρ, 0) for j = 1, . . . , k ▷ ReLU on shifted distances
27: Define objective

ϕ(σ) =

 k∑
j=1

exp(−∆j/(σ + tol))− log2(k)

2

, σ > 0

28: Minimize ϕ(σ) using 1D optimization (e.g., root-finding in log σ with initial guess ρ).
29: Let σ∗ be the resulting positive solution
30: return σ∗

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

F.2 PER-SYSTEM DIFFERENCES IN DISTRIBUTIONAL METRICS

We report mean ± std. dev. of per-system differences across all test systems, averaged over 5 context
windows for prediction horizons Lpred ∈ {512, 1024, 2048, 3072}.

Per-system Difference in DKL (Ground Truth(Lpred)||Model Prediction(Lpred)) between Baselines
Comparison Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Chronos 20M SFT – Panda 0.79 ± 4.60 0.36 ± 5.03 -0.01 ± 5.14 -0.22 ± 5.09 -0.33 ± 5.84
DynaMix – Panda 0.81 ± 5.12 0.18 ± 5.58 -0.42 ± 5.59 -0.75 ± 5.52 -0.88 ± 6.07

Chronos 20M – Chronos 20M SFT 1.27± 4.64 1.09± 5.39 0.89± 5.50 0.84± 5.53 0.89± 6.62
Chronos 200M – Chronos 20M SFT 0.39± 4.35 0.41± 5.36 0.43± 5.61 0.44± 5.73 0.42± 6.59

Table 12: The (mean± std) of per-system diff. in KL divergence between models, a fine-grained view
of Table 1. DynaMix and Chronos 20M SFT outperform Panda on very long prediction horizons.

Per-System Difference in Average H2(SGround Truth (Lpred)||S Model Prediction (Lpred)) between Baselines

Comparison Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Chronos 20M SFT – Panda 0.04± 0.19 0.04± 0.18 0.04± 0.18 0.04± 0.18 0.04± 0.20
DynaMix – Panda 0.11± 0.22 0.09± 0.22 0.08± 0.21 0.07± 0.21 0.07± 0.24

Chronos 20M – Chronos 20M SFT 0.08± 0.20 0.08± 0.20 0.08± 0.20 0.08± 0.20 0.08± 0.23
Chronos 200M – Chronos 20M SFT 0.00± 0.20 0.00± 0.20 0.00± 0.20 0.00± 0.20 0.00± 0.23

Table 13: The (mean ± std) of per-system differences in average spectral Hellinger distance between
models, a fine-grained view of Table 2 showing that Panda outperforms the baselines.

F.3 AN ALTERNATIVE KL DIVERGENCE IMPLEMENTATION (GEOMETRIC MISALIGNMENT)

In addition to our GMM-based KL divergence implementation (Tables 1 and 12), we also use the
implementation of (Hemmer & Durstewitz, 2025) based on geometric misalignment.

DKL (Ground Truth(Lpred)||Model Prediction(Lpred)) via Geometric Misalignment
Model Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Panda 2.82± 2.67 3.29± 2.79 3.88± 2.85 4.26± 2.88 4.44± 3.14

Chronos 20M SFT 2.52± 2.63 2.81± 2.94 3.09± 3.16 3.25± 3.28 3.34± 3.72
Chronos 20M 4.33± 3.20 4.67± 3.53 5.03± 3.76 5.24± 3.88 5.37± 4.40
Chronos 200M 2.96± 2.86 3.19± 3.15 3.47± 3.37 3.64± 3.49 3.73± 4.01

DynaMix 3.06± 4.07 3.15± 4.42 3.24± 4.68 3.30± 4.81 3.37± 5.40

∆%(↑) −11.9% −17.1% −25.6% −31.1% −32.9%

Table 14: KL divergence between the ground truth and model predictions. ∆% denotes percentage
gain of Panda over the best baseline. See Table 15 for per-system differences. Here, we use the
implementation of (Hemmer & Durstewitz, 2025).

Per-system Difference in DKL (Ground Truth(Lpred)||Model Prediction(Lpred)) between Baselines
Comparison Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Chronos 20M SFT – Panda −0.30± 3.50 −0.49± 3.75 −0.79± 3.95 −1.00± 4.01 −1.09± 4.54
DynaMix – Panda 0.23± 4.71 −0.14± 5.06 −0.64± 5.25 −0.96± 5.38 −1.07± 6.01

Chronos 20M – Chronos 20M SFT 1.82± 3.60 1.86± 3.93 1.94± 4.25 1.99± 4.33 2.03± 5.14
Chronos 200M – Chronos 20M SFT 0.44± 3.33 0.39± 3.66 0.38± 4.01 0.39± 4.10 0.38± 4.88

Table 15: The (mean± std) of per-system diff. in KL divergence between models, a fine-grained view
of Table 14. DynaMix and Chronos 20M SFT outperform Panda on very long prediction horizons.
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F.4 VISUALIZATION OF METRICS DISTRIBUTION ACROSS ALL TEST SYSTEMS

As seen in Figure 19, Dynamix has a failure mode for a large group of systems for which it performs
badly in KL. However, we emphasize that a direct comparison is not fair because Dynamix is much
smaller, trained on fewer systems, cannot handle systems with > 3 dimensions, and likely has train
data leakage on our test set.

Figure 19: KL divergence (via geometric misalignment) between ground truth (Lpred) and model
predictions (Lpred). See Table 14 for aggregate values. Note that Lpred = 3584 is 28x the prediction
length used in training Panda.

Figure 20: Average spectral Hellinger distance, between the power spectra of ground truth (Lpred)
and model predictions (Lpred). See Table 2 for aggregate values.

F.5 QUANTIFYING MEAN REGRESSION ON VERY LONG HORIZONS

Mean regression is a common failure mode for TSFMs on very long prediction horizons. To quantify
this failure mode, we compute the distributional metrics at Lpred = 3584, which is the longest possible
horizon for evaluation, since our dataset contains trajectories of 4096 timepoints. However, we cut off
the first Ncutoff = 1536 timepoints of model predictions and ground truth, to compute the metrics on
the last 2048 timepoints - solidly within the mean regression regime.

Metrics on tpred = [1536, 3584] (Cut Off First 1536 Timepoints)
Model KL Divergence (Geometric Misalignment) Spectral Hellinger Distance

Panda 15.25± 2.46 0.49± 0.11
Chronos 20M SFT 7.00± 5.63 0.34± 0.18
Chronos 20M 9.68± 6.12 0.48± 0.18
Chronos 200M 7.37± 6.05 0.36± 0.19
DynaMix 3.50± 5.44 0.35± 0.22

Table 16: Metrics between ground truth and model predictions after cutting off the first 1536 time-
points of Lpred = 3584 (keeping only the last 2048). We present (mean ± std) across test systems.
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F.6 MAXIMUM LYAPUNOV EXPONENT

Figure 21: Distributional comparison of the maximum Lyapunov exponents estimated from the
ground truth (Lpred) versus estimates from the model predictions (Lpred) of Panda and of DynaMix.
Note that the y-axis is on a log scale.

We compute the maximum Lyapunov exponents for long prediction horizons, using the data-driven
Rosenstein estimator. In Fig. 21, we compare the distribution of estimated (λmax) for Panda versus
that of DynaMix at prediction lengths Lpred = 1024, 2048, 3200. Note that DynaMix was trained
pointwise autoregressively for a prediction horizon of 550 points. Despite Panda being trained
non-autoregressively for a 78× shorter prediction horizon, it is capable of producing forecasts which
maintain the characteristic Lyapunov exponent out to 25× the prediction horizon it was trained on.

We do observe that Panda struggles to capture systems with λmax > 6 in Fig. 21. This is likely due
to the failure mode of mean regression over long enough prediction horizons.

G IMPLICIT SPATIO-TEMPORAL COUPLING

Temporal attention and channel attention layers independently mix information along the patch and
channel dimensions. For a system like the Lorenz attractor with coupled phase coordinates [x, y, z],
we would ideally want information to mix across space and time. We will show that by composing
temporal and channel attention in sequence, Panda implicitly performs spatio-temporal coupling.

Let WQ,WK ,WV denote the learned projections for temporal attention and WQ,WK ,WV for
channel attention. For simplicity, we will focus on the linear attention setting without the row-wise
softmax. Let P ∈ RN×C×dmodel be a stack of N , dmodel-dimensional patch embeddings with C

channels, and p
(c)
i ∈ Rdmodel an individual patch embedding for patch i and channel c. The linear

attention output is (PWQW
⊤
KP )PWV . In vector form,

(TA) : ϕ(·)
i =

T∑
j=1

〈
W⊤

Q p
(·)
i ,W⊤

Kp
(·)
j

〉
W⊤

V p
(·)
j =

T∑
j=1

〈
p
(·)
i , ATA, p

(·)
j

〉
W⊤

V p
(·)
j (3)

(CA) : ϕ(k)

i =

c∑
ℓ=1

〈
W

⊤
Qϕ

(k)
i ,W

⊤
Kϕ

(ℓ)
i

〉
W

⊤
V ϕ

(ℓ)
i =

c∑
ℓ=1

〈
ϕ
(k)
i , ACA, ϕ

(ℓ)
i

〉
︸ ︷︷ ︸

Mkℓ
i

W
⊤
V ϕ

(ℓ)
i (4)
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Where TA denotes temporal attention and CA channel attention, and ATA := WQW
⊤
K and ACA :=

WQW
⊤
K . Looking at an element of the 3-tensor Mkℓ

i we see that:

Mkℓ =

〈
T∑

j=1

〈
p
(k)
i , ATAp

(k)
j

〉
W⊤

V p
(k)
j , ACA

T∑
j′=1

〈
p
(ℓ)
i , ATAp

(ℓ)
j′

〉
W⊤

V p
(ℓ)
j′

〉
(5)

=

T∑
j,j′=1

〈〈
p
(k)
i , ATAp

(k)
j

〉
W⊤

V p
(k)
j ,

〈
p
(ℓ)
i , ATAp

(ℓ)
j′

〉
ACAW

⊤
V p

(ℓ)
j′

〉
(6)

=

T∑
j,j′=1

〈
p
(k)
i , ATAp

(k)
j

〉〈
p
(ℓ)
i , ATAp

(ℓ)
j′

〉〈
p
(k)
j ,

(
WV ACAW

T
V

)︸ ︷︷ ︸
ÃCA

p
(ℓ)
j′

〉
(7)

Where ÃCA prescribes how patches from different channels attend to each other. In matrix form,

Mkℓ
i = (p

(k)
TA )⊤


〈
p
(k)
1 , ÃCAp

(ℓ)
1

〉
. . .

〈
p
(k)
1 , ÃCAp

(ℓ)
T

〉
...

. . .
...〈

p
(k)
T , ÃCAp

(ℓ)
1

〉
. . .

〈
p
(k)
T , ÃCAp

(ℓ)
T

〉


︸ ︷︷ ︸
Cross-Channel Mixing Map

p
(ℓ)
TA , p

(k)
TA :=


〈
p
(k)
i , ATAp

(k)
1

〉
...〈

p
(k)
i , ATAp

(k)
T

〉


Figure 22: Cross-channel mixing maps across patches for different channels from different held-out
systems. Each mixing map is max-scaled to the range [−1, 1].
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H FORECASTS ON PDES

Other than foundation models, we include a Fourier neural operator (FNO) baseline that was trained
using the neuraloperator framework (Kossaifi et al., 2024; Kovachki et al., 2021), and a
DeepONet baseline trained with the deepxde framework (Lu et al., 2021). Unless otherwise
specified, experiment parameters follow the default values in these libraries. For both operator
learning baselines, we tune the parameters for each PDE and use the best training checkpoint
according to the validation loss. Both operator learning baselines are trained (on a single MI100X
GPU) for one-step-ahead prediction on length 512 context windows and rolled out for 512 prediction
steps for each evaluation window in Fig. 6c.

For the Kuramoto-Shivashinsky (KS) PDE, we integrate the equations pseudospectrally with 64
Fourier modes and the spatial length parameter L = 100. We use an explicit eighth-order Dormand-
Prince scheme (DOP853) to integrate the discretized PDE with a relative and absolute tolerance of
1e-8 from t = 0 to t = 100 save the trajectory at 4096 uniformly spaced timepoints. We sample 40
initial conditions from ui ∼ N (0, ε2I64×64) where we choose ε = 0.1 and use the length 512 context
window starting at the 1024-th timepoint for training and the following 512 for prediction/rollout for
each sample to produce the error bars in Fig. 6c. See Tables 17 for comprehensive details.

For the Von-Karman vortex street (VKVS) data, we use 4600 timepoints of velocity field data in
the domain Ω = [0, 2] × [0, 1] on a 256 × 128 grid simulated via a Lattice Boltzmann simula-
tion at a Reynolds number of 450. We then compute the vorticity field via second-order finite
difference and reduce the dimensionality by keeping the top 512 principal components. For eval-
uation in Fig. 6c, we train on length 512 training context windows starting at the time indices
{0, 1024, 2048, 3072} and cross-validate on the length 512 prediction windows starting at the time
indices {512, 1536, 2560, 3584} (avoiding train-set leakage) to produce the error bars in Fig. 6c. See
Tables 18 for comprehensive details on the operator learning baselines.

Component Specification
Model Fourier Neural Operator (FNO)
Modes 256
Hidden Channels 256
Layers 6
Activation GELU
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Epochs 5000
Batch Size 512
Loss Function L2

(a) FNO configuration

Component Specification
Model DeepONet
Branch Net [ 128, 256× 6 ]
Trunk Net [ 1, 256× 6 ]
Activation tanh
Initializer He normal
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Iterations 2× 106

Batch Size 512
Metric Mean relative L2 error

(b) DeepONet configuration

Table 17: Kuramoto-Shivashinsky PDE Operator Learning Configurations.

Component Specification
Model Fourier Neural Operator (FNO)
Modes 512
Hidden Channels 256
Layers 5
Activation GELU
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Epochs 5000
Batch Size 512
Loss Function L2

(a) FNO configuration

Component Specification
Model DeepONet
Branch Net [ 512, 512× 5 ]
Trunk Net [ 1, 512× 5 ]
Activation tanh
Initializer He normal
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Iterations 1× 106

Batch Size 512
Metric Mean relative L2 error

(b) DeepONet configuration

Table 18: Von-Karman PDE Operator Learning Configurations.
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Compared to the foundation models, the operator learning baselines under-perform mostly since they
are limited to a context and prediction length of 1 for one-step-ahead prediction in contrast to the
much larger context and prediction lengths of foundation models. We do not claim that foundation
models are superior operator learning methods, but merely aim to provide a baseline for the PDE
problems. The dash-dotted lines in Fig. 6 indicate that these methods are not directly comparable.

I COMPUTING AND HARDWARE REQUIREMENTS

All training runs were conducted on 4× AMD MI100X GPUs, each with 32 GB of HBM2 memory.
Inference was performed on a single AMD MI100X GPU.

J EFFECT OF PATCH LENGTH

To investigate the effect of patch length on our model’s performance, we conduct an ablation study in
which we train a version of our model with various patch lengths. To isolate the effect of patch size,
we remove our dynamics embedding for these ablations. This is because each patch gets embedded
to dimension dmodel, making the dynamics embedding incomparable between models using different
patch lengths. Keeping a fixed compute budget, we also must halve the batch size every time we
halve the patch length, as a tradeoff patch length ∝ 1/batch size exists between the two quantities:
half the patch length implies twice as many patches, all embedded to dimension dmodel. In the tables
below, ∆% denotes percentage improvement of the best ablation over the next closest.

sMAPE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Patch 4 26.6 [17.5, 37.4] 36.2 [26.5, 47.5] 48.1 [39.0, 58.4]
Patch 8 28.6 [19.6, 40.2] 37.7 [27.7, 48.8] 48.2 [39.9, 58.7]
Patch 12 28.9 [19.4, 40.6] 37.8 [27.9, 49.5] 47.9 [39.6, 59.0]
Patch 16 29.1 [19.7, 41.1] 37.6 [27.8, 49.4] 47.7 [38.5, 58.7]
Patch 24 30.1 [20.6, 41.4] 37.9 [27.9, 49.5] 47.0 [38.7, 58.3]
Patch 32 30.1 [20.3, 42.2] 37.7 [28.2, 49.3] 46.6 [38.1, 57.4]

∆%(↑) +7.0% +3.7% +0.9%

Table 19: Median sMAPE and interquartile range [P25, P75] for various patch lengths.

MAE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Patch 4 0.321 [0.198, 0.509] 0.472 [0.329, 0.685] 0.642 [0.481, 0.824]
Patch 8 0.359 [0.224, 0.543] 0.498 [0.359, 0.710] 0.668 [0.502, 0.860]
Patch 12 0.364 [0.234, 0.559] 0.501 [0.366, 0.711] 0.662 [0.490, 0.859]
Patch 16 0.380 [0.246, 0.561] 0.507 [0.365, 0.724] 0.656 [0.486, 0.846]
Patch 24 0.382 [0.245, 0.578] 0.519 [0.375, 0.729] 0.668 [0.495, 0.857]
Patch 32 0.382 [0.248, 0.584] 0.519 [0.376, 0.722] 0.664 [0.492, 0.852]

∆%(↑) +10.7% +5.2% +2.1%

Table 20: Median MAE and interquartile range [P25, P75] for various patch lengths.

1− ρ (Spearman distance) Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Patch 4 0.219 [0.117, 0.349] 0.322 [0.197, 0.464] 0.480 [0.326, 0.612]
Patch 8 0.244 [0.138, 0.376] 0.350 [0.229, 0.485] 0.495 [0.350, 0.637]
Patch 12 0.246 [0.139, 0.384] 0.357 [0.225, 0.507] 0.496 [0.338, 0.640]
Patch 16 0.261 [0.138, 0.412] 0.360 [0.221, 0.504] 0.486 [0.341, 0.644]
Patch 24 0.264 [0.150, 0.408] 0.361 [0.235, 0.512] 0.492 [0.348, 0.643]
Patch 32 0.268 [0.150, 0.413] 0.364 [0.230, 0.513] 0.485 [0.342, 0.644]

∆%(↑) +10.2% +8.0% +1.0%

Table 21: Median 1− ρ and interquartile range [P25, P75] for various patch lengths.
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K SCALING UP

We scale up our model parameters and training to investigate the improvement in performance. Our
21M, 42M, and 72M parameter models have values of (nheads, nlayers, dmodel) set to (8, 8, 512), (10,
10, 640), and (12, 12, 768) respectively. For the scaled-up training, we had (Niters, batch size per
device, number of GPUs) set to (400K, 1024, 4), (400K, 512, 6), and (800K, 384, 6) respectively.

We also scaled up our MLM checkpoint to create Panda MLM-66M with (nheads, nlayers, dmodel) set to
(12, 12, 768), trained for 800K iterations, with batch size 192, and on 6 GPUs.

Figure 23: Zero-shot metrics for scaled-up checkpoints of Panda with increasing number of parame-
ters. Here, Panda 21M is our original model presented in the main body. For Panda 21M improved,
we trained for 400K iterations (compared to the 100K iterations for our original Panda 21M), and
on an improved dataset with ≈ 20% more systems, which we also use for the Panda 42M training.
For Panda 72M, we trained on a larger version of our improved dataset with 8 initial conditions per
system and with mixed periods. For presentation, bars show a semi-interquartile range (40th to 60th
percentile); for numerical values of medians and interquartile ranges, see Tables 22, 23, 24.

K.1 SCALED-UP BASELINES

We also scaled up the model parameters for Chronos as well as the training for the Chronos SFT
baseline. Hardware limitations prevented us from fine-tuning Chronos 200M and larger model classes.
We observe that our model continues to beat the baselines.

For our scaled-up training of Chronos 46M SFT, we used (Niters = 400K, batch size per device =
100, number of GPUs = 6).

For Panda 72M and for Panda MLM-66M, we trained on a larger dataset with 8 initial conditions per
system and with mixed periods.

Figure 26: Zero-shot forecast metrics for scaled-up baselines, using probabilistic forecasts for
Chronos and Chronos SFT. Dash-dotted lines indicate presence of NaNs for some systems (4% of
systems for Spearman).
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Panda 21M Forecasts

Panda 72M Forecasts

Scaled up training
mixed period + multiple IC

Figure 24: Comparison of sample zero-shot forecasts between the Panda 21M model (8 heads, 8
layers), and the Panda 72M model (12 heads, 12 layers), with the latter trained on a larger dataset
with 8 initial conditions and mixed periods. As reflected in the metrics of Fig. 23, the scaled-up
model forecasts appear to decrease error and capture higher-frequency details.

Figure 25: Zero-shot forecast metrics for scaled-up baselines, using deterministic forecasts for
Chronos and Chronos SFT. For Panda 72M, we trained on a larger dataset with 8 initial conditions per
system and with mixed periods. Spearman correlation is not shown because of the high proportion of
NaNs for the Chronos deterministic forecasts, which we attribute to mean regression.
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We present the metrics shown in Fig. 25 and Fig. 26 in tabular form in Tables 22, 23, 24.

sMAPE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 72M 20.6 [12.4, 32.9] 29.4 [20.0, 41.4] 39.9 [30.9, 50.6]
Panda 42M 26.2 [16.6, 37.8] 33.9 [24.4, 45.7] 43.5 [35.0, 54.9]

Chronos 46M SFT 27.0 [18.2, 36.9] 36.0 [26.2, 45.5] 44.4 [32.7, 54.3]
Chronos 200M 36.0 [26.3, 44.7] 44.6 [34.6, 52.9] 53.5 [42.7, 60.8]
Chronos 46M 38.2 [28.8, 47.1] 47.2 [38.6, 54.6] 56.0 [46.9, 61.8]

Chronos 46M SFT Probabilistic 26.4 [18.0, 37.3] 35.8 [26.0, 46.0] 45.1 [33.8, 54.1]
Chronos 200M Probabilistic 36.4 [26.7, 44.7] 45.0 [34.2, 53.1] 53.8 [42.8, 60.6]
Chronos 46M Probabilistic 38.3 [28.6, 46.6] 47.5 [37.9, 54.7] 55.9 [47.2, 61.6]

Table 22: Median sMAPE and interquartile range [P25, P75] for scaled-up models.

MAE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 72M 0.26 [0.14, 0.45] 0.41 [0.26, 0.60] 0.57 [0.41, 0.78]
Panda 42M 0.34 [0.20, 0.55] 0.48 [0.33, 0.71] 0.64 [0.46, 0.85]

Chronos 46M SFT 0.49 [0.28, 0.72] 0.78 [0.45, 1.17] 1.15 [0.61, 1.95]
Chronos 200M 0.61 [0.41, 0.80] 0.86 [0.58, 1.18] 1.07 [0.75, 1.83]
Chronos 46M 0.66 [0.46, 0.85] 0.91 [0.63, 1.23] 1.15 [0.81, 1.95]

Chronos 46M SFT Probabilistic 0.41 [0.25, 0.64] 0.60 [0.37, 0.89] 0.77 [0.50, 1.21]
Chronos 200M Probabilistic 0.55 [0.38, 0.73] 0.71 [0.51, 0.91] 0.84 [0.63, 1.12]
Chronos 46M Probabilistic 0.58 [0.41, 0.75] 0.74 [0.54, 0.93] 0.86 [0.69, 1.17]

Table 23: Median MAE and interquartile range [P25, P75] for scaled-up models.

1− ρ (Spearman distance) Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 72M 0.16 [0.07, 0.29] 0.26 [0.14, 0.40] 0.40 [0.26, 0.56]
Panda 42M 0.23 [0.11, 0.39] 0.33 [0.20, 0.48] 0.47 [0.32, 0.62]

Chronos 46M SFT Probabilistic 0.25 [0.14, 0.40] 0.40 [0.25, 0.54] 0.54 [0.36, 0.68]
Chronos 200M Probabilistic 0.41 [0.25, 0.55] 0.53 [0.35, 0.67] 0.65 [0.48, 0.79]
Chronos 46M Probabilistic 0.45 [0.28, 0.60] 0.57 [0.40, 0.71] 0.70 [0.55, 0.82]

Table 24: Median 1− ρ and interquartile range [P25, P75] for scaled-up models.

K.2 DATASET WITH MULTIPLE INITIAL CONDITIONS AND MIXED PERIODS

For our scaled-up training, we used larger dataset of multiple initial conditions and mixed periods.
We present a sample of this dataset in Fig. 27. We vary the number of periods (on Fourier timescale),
from 20 to 100 to produce multiple periods, and carry out the numerical integration with up to 16
different initial conditions (although we only use 8 initial conditions per system for training, due to
compute budget restrictions). We integrate the same set of 2× 104 systems used in our training set.
The scaled-up training thus allows us to assess the effect of varying the timescales present in our
training data.
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Figure 27: Examples of systems from our mixed period multi-IC training dataset. Each subplot shows
multiple (4) initial conditions for a single system (integrated with different timescale).
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L ADDITIONAL FORECASTS

In Appendix C, we presented a sample of forecasts from Panda on our held-out test set. Here, we
provide more forecasts. As done previously, we keep the prediction length fixed at Lpred = 256 for
consistency and clearer visibility. Our model was trained with Lpred = 128, so these forecasts include
an autoregressive rollout. Fig. 30 presents more forecasts, and Appendix Section M presents failure
modes and comparison against baseline models.

Figure 28: Examples of zero-shot forecasts (Lpred = 256) on held-out chaotic dynamical systems.

Figure 29: Examples of zero-shot forecasts (Lpred = 256) on held-out base systems (from the founder
pool, parents of the skew-product systems).
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Figure 30: Examples of zero-shot forecasts (Lpred = 256) on held-out chaotic dynamical systems.
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M COMPARISON WITH BASELINE MODEL FORECASTS AND FAILURE MODES

We compare long-term (Lpred = 512) forecasts between Panda and the Chronos SFT and Chronos
baselines. The following plots highlight some failure modes of each model, and also emphasize the
advantage of our multivariate approach. Clearly, a univariate model can do well on a single channel
(dimension) but fail to respect the attractor geometry. The coupling between channels encodes
important information.

Figure 31: Long-term zero-shot forecasts (Lpred = 512) on held-out chaotic dynamical systems.
Comparison between Panda (Red), Chronos SFT (Blue), and Chronos (Purple).

Figure 32: Comparison (Lpred = 512) between Panda (Red), Chronos SFT (Blue), and Chronos
(Purple). An illustrative example of a held-out system where Chronos appears to parrot (limit cycle),
Chronos SFT does not respect the attractor geometry, and Panda mean regresses.
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2213 Figure 33: Long-term zero-shot forecasts (Lpred = 512) on held-out chaotic dynamical systems.

Comparison between Panda (Red), Chronos SFT (Blue), and Chronos (Purple).
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N ADDITIONAL COMPLETIONS

In Appendix E, we presented a sample of completions from our Panda MLM checkpoint on our
held-out test set. Here, we provide more completions from Panda MLM (Fig. 34) and long-context
completions from our scaled-up checkpoint Panda MLM-66M (Fig. 36). We also provide qualitative
comparison between Panda MLM completions and piecewise cubic spline interpolation (Fig. 35) to
further demonstrate the advantage of our method.

Figure 34: Examples of zero-shot completions on held-out chaotic dynamical systems. Each com-
pletion plotted was with a context length of 512 time points, with half the patches (patch length 16)
randomly masked out in a channel-inconsistent manner. These plots show Panda MLM, our 20M
parameter checkpoint, completing the masked-out trajectories i.e. 256 time points.
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Piecewise Cubic Spline

Panda MLM

Figure 35: Qualitative comparison between completions generated by Panda MLM (with 20M
parameters) and by piecewise cubic splines. First (leftmost) panel provides an example with context
length 512 for clearer presentation; all other panels show context length 2048. Shaded red regions
show the difference from the ground truth. Piecewise cubic spline interpolation is the most successful
naive baseline, and although it achieves near competitive performance on preserving the correlation
dimension (Table 11), it is not competitive with respect to pointwise error or attractor geometry.
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Figure 36: Examples of zero-shot completions on held-out chaotic dynamical systems. Each com-
pletion plotted was with a context length of 4096 time points, with half the patches (patch length
16) randomly masked out in a channel-inconsistent manner. These plots show Panda MLM-66M,
completing the masked-out trajectories i.e. 2048 time points, despite only being trained on context
length 512.
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