
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PANDA: A PRETRAINED FORECAST MODEL FOR
CHAOTIC DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Chaotic systems are intrinsically sensitive to small errors, challenging efforts to con-
struct predictive data-driven models of real-world dynamical systems such as fluid
flows or neuronal activity. Prior efforts comprise either specialized models trained
separately on individual time series, or foundation models trained on vast time
series databases with little underlying dynamical structure. Motivated by dynamical
systems theory, we present Panda, Patched Attention for Nonlinear DynAmics.
We train Panda on a novel synthetic, extensible dataset of 2 × 104 chaotic dy-
namical systems that we discover using an evolutionary algorithm. Trained purely
on simulated data, Panda exhibits emergent properties: zero-shot forecasting of
unseen chaotic systems preserving both short-term pointwise accuracy and distri-
butional measures. Despite having been trained only on low-dimensional ordinary
differential equations, Panda spontaneously develops the ability to predict partial
differential equations without retraining. We also demonstrate a neural scaling
law for differential equations, underscoring the potential of pretrained models for
probing abstract mathematical domains like nonlinear dynamics.

1 INTRODUCTION

Nonlinear dynamical systems test the limits of scientific machine learning (SciML). When an
approximate model is constructed of a chaotic nonlinear system, any small error grows exponentially
over time, precluding long-term forecasting. This intrinsic property underscores the practical difficulty
of accurately forecasting systems like weather fronts, neural activity, or economic markets (Li et al.,
2022; Mikhaeil et al., 2022; Price et al., 2025).

Recent empirical studies show surprising progress on the classical problem of forecasting chaos,
including the ability to predict these systems well-beyond the classical predictability timescale for
nonlinear systems (Gilpin, 2021; 2023; Pathak et al., 2018). These approaches construct local forecast
models trained on past observations of a single dynamical system, and then forecast future, unseen
states of the same system. For dynamical systems, this represents an in-domain generalization task,
because future timepoints are drawn from the same underlying differential equations. This problem
thus reduces to learning the numerical propagator for the true underlying governing equations.

However, a frontier in SciML is out-of-domain generalization (Göring et al., 2024; Wang et al., 2022):

Can a dynamics model effectively forecast unseen dynamical systems?

This task requires a global forecast model, which combines training on a large body of background
knowledge with local adaptation to generate meaningful forecasts of unseen systems (Sen et al.,
2019). Moreover, what kind of data is required to train a forecasting model for dynamical systems in
order to achieve generalization? A global nonlinear forecast model has intrinsic theoretical interest
in SciML, which has long questioned the degree to which complexity can be "transformed out" i.e.
whether the predictability of a system is determined by its intrinsic properties or by the choice of
measurement coordinates (Brunton et al., 2022; Mezić, 2013).

*Equal contribution. †Corresponding author.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Nonergodic

Quasiperiodic

Recombine
(skew product)

Mutate
(parameter jitter)

Rejected

Novel System
Unstable

102 Human-curated ODE B

C

A

104 Discovered ODE

Input Tokenize PANDA

Generate

Dynamic Mode Embedding Cross-Channel
Transformer

Polynomial

Patch Rand. Fourier

Takens Delays

Patch
Embedding

Multivariate Trajectory (C, T) Patches (C, T//P, P)

Masked Completions (C, T//P, P)

Forecasts (C, H)

Select
(chaoticity)

Temporal Attention

C
hannel

Attention

Head
Stack

Figure 1: A large-scale chaotic dynamics dataset and dynamics-informed forecast model. (A)
Evolutionary creation of a large dataset of chaotic ODEs through mutation and recombination of
known systems. (B) Patch model architecture with forecasting and masked completion output modes.
(C) The dynamics-informed time series embedding and attention modules.

To address these questions, we introduce Panda1 — Patched Attention for Nonlinear DynAmics. Our
key contributions are as follows:

1. We introduce a framework for generating novel chaotic dynamical systems, allowing us
to create a dataset of ∼ 2× 104 ODEs, algorithmically-discovered based on evolutionary
recombination of 129 chaotic systems such as the Lorenz attractor, double pendulum, etc.

2. We pretrain a global forecast model for nonlinear dynamics purely on chaotic trajectories
integrated from our dataset. Our model exhibits competitive zero-shot forecasts for real
systems including mechanical motion of C. Elegans, electronic circuits, and turbulent flows.

3. We demonstrate the effectiveness of features motivated by dynamical systems theory: (a)
masked pretraining for dynamical continuity (b) channel attention for dynamical coupling,
(c) kernelized patch embeddings based on dynamic mode decomposition.

4. Despite being trained only on low-dimensional ODEs, Panda develops emergent ability to
zero-shot forecast high-dimensional PDEs.

2 RELATED WORK

Machine learning for dynamical systems. Machine learning models for dynamical systems (MLDS)
leverage as inductive biases the unique properties of dynamical systems, relative to traditional time
series. These include: (1) Strong channel coupling: The evolution of system variables is governed
by deterministic differential or difference equations, implying coupled functional dependencies
among variables rather than statistically correlations. Several MLDS approaches perform large-
scale multivariate dynamical modeling, or infer interactions networks among measurement channels
(Bhaskar et al., 2024; Brunton et al., 2022; Chen et al., 2018; Li et al., 2022). (2) Invariant statistical
measures: Ergodic dynamical systems possess invariant probability measures supported on non-
wandering sets, such as limit cycles or strange attractors, resulting in well-defined long-term statistical
distributions for all observables. Recent works incorporate these properties as inductive biases in
modern methods in MLDS settings (Cheng et al., 2025; Koppe et al., 2019; Pedersen et al., 2025).

1Code available: https://anonymous.4open.science/r/anonymous_panda-3AE0

2

https://anonymous.4open.science/r/anonymous_panda-3AE0

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

A B C

Figure 2: Panda zero-shot forecasts unseen nonlinear dynamics. (A) Example zero-shot forecasts
on novel chaotic skew-systems. (B) sMAPE and MAE of Panda compared to zero-shot time series
models over a 128 timepoint prediction horizon. (C) Error versus forecast horizon. Error ranges
correspond to median and semi-interquartile range across 9.3× 103 held-out dynamical systems, 6
forecasts per system. Note: † indicates some NaNs present in forecasts (more examples in Appendix
C; dataset description in Section 3). See Table 7 in Appendix D for statistical significance tests.

Discovering new dynamical systems. Small datasets of dynamical systems have previously been
curated from the published literature (Gilpin, 2021; 2023; La Cava et al., 2021). Several pretrained
models, particularly for partial differential equations (PDE), generate new equations for training by
randomly-perturbing parameters or initial conditions from known systems (Chen et al., 2024; Herde
et al., 2024; Sun et al., 2025; Tripura & Chakraborty, 2023). Others construct de novo systems by
combining terms from a fixed function library (Ziegler et al., 2024), or leveraging language models
to create candidate symbolic expressions (d’Ascoli et al., 2023; Du et al., 2024). However, these
approaches do not address the harder task of sampling based on whether a system exhibits a unique
dynamical attractor. Richer sampling requires post–hoc analysis of candidate dynamics, akin to
intrinsically-motivated discovery previously used in domains such as cellular automata and coupled
oscillators (Crutchfield & Mitchell, 1995; Falk et al., 2024; Kumar et al., 2024; Reinke et al., 2020).
Some foundation models generate synthetic time series using stochastic dynamics like Gaussian
processes (Ansari et al., 2024; Das et al., 2024), or simulated physics environments (Lin et al., 2025;
Wang et al., 2024).

Pretrained models for SciML. Pretrained foundation models for dynamics enable transfer learning
and zero-shot inference. One study trains transformers across diverse PDEs to create a shared
multiphysics embedding space (McCabe et al., 2024). Another study proposes supervised pretraining
to enable out-of-domain generalization for scientific foundation models, and derives scaling laws
for transfer learning on PDEs (Subramanian et al., 2023). Several recent studies evaluate the zero-
shot performance of time series and language models in MLDS, and observe performance only
comparable to standard time series tasks (Liu et al., 2024; Zhang & Gilpin, 2025b). Several studies
apply pretrained transformers to control or symbolic equation discovery tasks (Becker et al., 2023;
d’Ascoli et al., 2023; Lee et al., 2023; Zhang et al., 2024). One work generates pretraining data
by randomizing the parameters of four named ODE (Song et al., 2024), similar to the first step
of our evolutionary algorithm described below, with a small founder pool. Another work samples
systems from a fixed function space, selecting based on total variation over time (Ziegler et al.,
2024), while another study uses latent ODE as a prior for zero-shot imputation (Seifner et al., 2025).
A contemporaneous work to our study, DynaMix, is a multivariate mixture-of-experts model for
zero-shot dynamical systems reconstruction (Hemmer & Durstewitz, 2025), built from Almost-Linear
RNN experts and trained on the founder pool for our dataset (Brenner et al., 2024). Our work is
distinguished by (1) a rich data generation process, which discovers novel chaotic flows with diverse
properties, and (2) a multivariate patched-based architecture which demonstrates emergent forecasting
capabilities like zero-shot PDE inference.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 DATASET

Evolutionary search. We discover 2 × 104 novel chaotic ODEs (schematic in Fig. 1A, example
systems in Appendix A). 1. Founding population: We start from a human-curated dataset of 129
previously-published low-dimensional chaotic systems (Gilpin, 2021), consisting of curated ODEs
from the literature (e.g. the Lorenz equations or blinking vortex flow) of the form ẋ = fθ(x, t). The
default parameters of each system θ and initial conditions x(0) were hand-tuned to the chaotic regime,
and the integration timescales were standardized based on calculations of invariant mathematical
properties of the underlying equations, such as the largest Lyapunov exponent. 2. Mutation: We
randomly sample pairs of systems fa, fb. For each ODE’s default system parameters, we add random
Gaussian noise, θ′a ∼ N (θa, σ), θ′b ∼ N (θb, σ). 3. Recombination: We combine the mutated
parents using an additive skew-product coupling:

ẋ = fa(x, t) (1)
ẏ = κbfb(y, t) + κa fa(x, t) (2)

This coupling between flows is asymmetric, and thus we refer to fa as the driver and fb as the
response. In general, skew-product coupling maps can be symmetric and nonlinear, but may be harder
to integrate as a result. This particular recombination scheme, for appropriate scale factors, preserves
chaoticity because the response system either synchronizes to the chaotic driver or continues to
exhibit chaotic dynamics (Gilpin, 2025; Pecora & Carroll, 1990). For the scale factors, we compute
the inverse RMS norm κ = 1/

√
E||f(x, t)||2 for each individual flow over a representative trajectory.

4. Selection: We integrate trajectories from multiple initial conditions using a 5th order implicit
Runge-Kutta integrator (see Appendix A), and use a suite of attractor tests to cull systems that
fail to exhibit chaotic behavior. First, transient systems that converge to a fixed point or diverge to
infinity are filtered. Then, we apply the chaos 0-1 test, which distinguishes quasiperiodic dynamics
from true chaos (Falconer et al., 2007). We also apply a near-recurrence test to reject limit cycles, a
power spectrum test to reject trajectories with only a few distinct sharp peaks, and the data-driven
Rosenstein estimator (Rosenstein et al., 1993) to ensure a positive maximum Lyapunov exponent.
Finally, we filter for stationarity using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Kwiatkowski
et al., 1992) and augmented Dickey–Fuller (ADF) (Dickey & Fuller, 1979) statistical tests.

Augmentations. On top of the integrated trajectories, we expand the training data by applying
dynamics-inspired augmentations that preserve the property that the transformed timeseries arise
from a closed nonlinear dynamical system. Our augmentations are: Random time-delay embedding
xi(t)→ xi(t− τi), τi ∼ U (1, dembed). This augmentation produces dynamics diffeomorphic to the
original trajectory due to Takens’ embedding theorem (Packard et al., 1980; Takens, 1981). Given
X ∈ RC×T and d ∼ U (dmin, dmax), Convex combinations take random linear combinations of
coordinates with coefficients sampled from a Dirichlet distribution: X ← MX ∈ Rd×T ; M ∈
Rd×C , Mi,: ∼ Dir(α1C). Affine transforms implement X ← AX+b, [A b] ∈ Rd×(c+1), [A b]ij ∼
N (0, σ2)/

√
d. We set dmin = 3, dmax = 10, and dembed = 10 for our experiments.

Standardization. For all trajectories, we apply instance-normalization to standardize the scales
per channel. For integration, we standardize the integration horizon and granularity based on the
number of timepoints (4096) and dominant timescale; note, however, that the numerical integrator
ultimately dictates the stepsizes (Gilpin, 2021; Rosenstein et al., 1993). We observe no decrease in the
range of invariant properties (maximum Lyapunov exponents, fractal dimension) across generations,
suggesting that the starting population is sufficiently large and diverse (see Appendix A more details).

Held-out systems. For our zero-shot test metrics, we evaluate on an unseen set of 9.3× 103 systems.
We form the test set by holding out a random subset of 20 systems from the 129 founding system
population and ensure that none of these systems or their descendants (systems where the parent is
the driver or response) appear in the training set. We then evolve these systems into the test set and
include all skew product systems descended from these held-out systems.

4 MODEL ARCHITECTURE

Dynamical systems differ from traditional time series, and so we introduce a novel architecture
motivated by dynamical systems theory (Fig. 1B). Time series foundation models with causal
decoders that tokenize time series on a per-observation basis tend to parrot motifs from their context,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

leading to over-confident predictions on out-of-domain tasks (Olsson et al., 2022; Zhang & Gilpin,
2025a;b). Parroting is a useful emergent inductive bias when modeling invariant properties in long
forecasts is prioritized over accuracy — otherwise known as forecasting the climate. However, we
opt for an encoder-only, fixed prediction horizon forecast model that maximizes short-term pointwise
accuracy, known as predicting the weather in SciML.

Panda generalizes PatchTST, a transformer for univariate forecasting that tokenizes timeseries on a
per-patch basis (Nie et al., 2022). Section 5.2 shows that univariate-only architectures underperform
on dynamical systems, motivating channel attention. Moreover, patching admits an inductive bias for
dynamical systems due to Takens’ theorem which states that time-delayed copies of a low-dimensional
measurement of a dynamical system result in a multivariate time series that preserves key topological
features of the true attractor (Packard et al., 1980; Takens, 1981).

Patching. We tokenize a length T trajectory T ∈ RC×T by patching it into a token sequence of size
P patches with stride S so that in general, TP,S ∈ RC×(⌊T−P

S ⌋+1)×P . We choose stride S = P so
that the token sequences are TP ∈ RC×(T/P)×P . We choose P = 16, unless stated otherwise.

Dynamics Embedding. We lift the patched multivariate timeseries to a higher-dimensional em-
bedding space (dmodel) by concatenating each patch token P ∈ RC×P with random polyno-
mial and random Fourier features. For random polynomial features with degree d, we sam-
ple a fixed index set I ⊂ {1, . . . , P}d of |I| = Npoly (number of features) d-tuples such that
for I ∈ I: Φc,i(P) := Πd

j=1Pc,Ij = Pc,I1 · . . . · Pc,Id . The random Fourier features sam-
ple parameters W ∈ RP×(Nrff/2), b ∈ RNrff/2 such that Wij , bi ∼ N (0, σ2) and F(P) :=
[sin(PW + b) cos(PW + b)] ∈ RC×Nrff , where b added across channels (Rahimi & Recht, 2007).
The overall patch embedding is E(P) := [P Φ(P) F(P)] ∈ RC×(P+Npoly+Nrff). We use degrees
d ∈ {2, 3} and choose Npoly and Nrff such that dmodel = P + Npoly + Nrff = 512. The use of
polynomial and Fourier features as a lifted dynamics embedding is motivated by prior approximations
of the Koopman operator via extended dynamic mode decomposition (eDMD) (Kutz et al., 2016;
Williams et al., 2015) and next-generation reservoir computers, which use polynomial features to
forecast chaotic systems (Gauthier et al., 2021). See Appendix B for our choices of hyperparameters.

Temporal Attention. We mix information over the temporal dimension by taking the channel
dimension as a batch dimension and performing self-attention with p-RoPE (Barbero et al., 2025) (a
modification of rotary positional encoding, RoPE (Su et al., 2023)) over the T/P univariate patches
of dimension dmodel. For all experiments, we use a RoPE wavelength of 500 and p = 75%.

Multivariate Attention. Several time series foundation models are univariate, and thus, channel-
independent; they solely employ temporal attention for information mixing (Nie et al., 2022).
However, chaotic dynamical systems exhibit strong channel coupling. We demonstrate this em-
pirically for the electronic circuits dataset in Fig. 4D, where we show the benefit of channel
attention as the coupling strength increases. We interleave channel attention layers without po-
sitional encoding after each temporal attention layer. Each layer transposes the token sequence,
treating the token dimension as a batch dimension and the channels as a set before self-attention
ChannelAttention(TP) := SelfAttention(T ⊤

P), T ⊤
P ∈ RT/P×C×dmodel . Temporal attention is fol-

lowed by a feedforward residual network, GeLU activations (Hendrycks & Gimpel, 2016), and
RMSNorm (Zhang & Sennrich, 2019). In the prediction head, processed tokens are aggregated along
the sequence dimension T/P and mapped with a linear layer into a length H channel-wise forecast.
The architecture is further described in Appendix B.

5 RESULTS

5.1 Panda ZERO-SHOT FORECASTS UNSEEN NONLINEAR DYNAMICS

To evaluate the quality of the generated forecasts, we measure (1) short-term forecast accuracy via
mean squared error (MSE), mean absolute error (MAE), symmetric mean absolute percentage error
(sMAPE), and Spearman correlation, as well as (2) attractor reconstrution accuracy via correlation
dimension, spectral Hellinger distance, and Kullback-Leibler (KL) divergence from the ground-truth
attractor. For brevity, we report only the sMAPE and MAE (short-term), and KL divergence and
spectral Hellinger distance (global) in the main text; the other metrics show similar results and are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

included in the Appendix D and Appendix C. We compute all metrics for forecasts generated from
zeroshot (held-out) systems never seen during training. Specifically, these are Ntest = 9.3 × 103

unique skew-product dynamical systems found using the methodology described in section 3. We
additionally include results for scaling up model size and training dataset size in Appendix K.

Comparison to baseline models. We train Panda with 21M parameters and evaluate against several
time series foundation models of comparable or larger scale: Chronos 20M, a causal univariate
model which was recently shown to produce competitive forecasts of chaos systems (Ansari et al.,
2024; Zhang & Gilpin, 2025b). Chronos 20M SFT: Chronos supervised-finetuned on our entire
chaotic systems dataset (Section 3). Time MOE 50M: A 50M parameter univariate model based
on sparse mixture of experts (Shi et al., 2024). TimesFM 200M: A patch-based 200M parameter
decoder-only univariate model (Das et al., 2024). DynaMix: A multivariate pretrained dynamical
systems model based on RNNs trained with teacher-forcing, enabling efficiency (10k parameters)
(Hemmer & Durstewitz, 2025). For univariate baselines, each dimension is forecast independently.

Across 9.3 × 103 held-out systems, we find Panda outperforms the baselines across a variety of
prediction horizons and error metrics (Fig. 2). While we train our model exclusively on d = 3-
dimensional dynamical systems, the evaluation set includes arbitrary dimension systems, indicating
that channel attention enables multivariate generalization. Moreover, we use window autoregression
to extend our evaluation forecast horizon well beyond the forecast horizon used during training.
Our model maintains its performance advantage, indicating that it learns an effective dynamical
propagator independent of a single timescale. In Appendix D, we show that our results are robust to
the choice of metric (see Fig. 15).

Figure 3: Ablations of key architectural fea-
tures of Panda: MLM pretraining, chan-
nel attention (Chattn), and components of
the dynamics embedding (RFF denotes ran-
dom Fourier features and PolyEmbed includes
polynomial features).

Ablations. We also ablate several features of Panda,
in order to verify the contributions of our dynamics-
based architectural choices. These include (1) Chan-
nel Attention, (2) Dynamics Embedding, and (3)
Masked Language Modeling (MLM) Pretraining.

We observe a significant improvement due to chan-
nel attention and MLM pretraining (See Section E
for example zero-shot completions). However, the
combined effect of the MLM with the dynamics em-
bedding appears to be more complex: with no MLM,
the dynamics embedding helps, but with MLM, it
reduces performance. Moreover, the dynamics em-
bedding improves the error on autoregressive rollout,
whereas MLM reduces performance on rollout. We
conclude that using the dynamics embedding with
polynomial features (PolyEmbed) gives us the best
model for long prediction horizons.

We include additional forecast metrics in Fig. 16 in
Appendix D. We continue the discussion and evalua-
tion of MLM on the completions task in Appendix E.
In particular, we compare the correlation dimension
of the completions against that of the ground truth
trajectories (Fig. 18) and show a strong match. Fur-
thermore, we investigate the effect of patch size on
Panda’s performance in Appendix J.

5.2 Panda ZERO-SHOT FORECASTS EXPERIMENTAL DATA

We next show that Panda generalizes to experimental time series from real-world dynamical systems.
These experimental datasets have nonstationarity, missing values, noise, and other complexities not
seen during training. Following prior works, we select systems in which the experimental data is
known to have an underlying dynamical process generating it: the positions and momenta of the
tips of the two rods in an experimental recording of a double pendulum (Asseman et al., 2018), the
leading independent components of body posture from a light microscopy video of C. elegans worms
crawling on agar gel (Ahamed et al., 2021), and voltage recordings from networks of 28 randomly

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Double Pendulum EigenWorms Electronic Circuit

Figure 4: Zero-shot forecasts of experimental data from (a) Double Pendulum (Asseman et al.,
2018), (b) Eigenworms (Ahamed et al., 2021), and (c) Electronic Circuit (Vera-Ávila et al.,
2020). (d) Relative change in forecast error for Panda compared to Chronos-SFT (as measured
in log (sMAPEPanda/sMAPEChronos-SFT), showing the advantage of our approach as the coupling
strength between variables increases, for various prediction horizons.

.

connected electrical oscillators (Vera-Ávila et al., 2020). In all cases, the zero-shot performance of
Panda outperforms Chronos-SFT (Fig. 4a).

For the circuit dataset in particular, we find that as the experimental coupling strength increases,
the relative advantage of Panda over Chronos-SFT increases (red regions), particularly at long
prediction horizons—leading to a visible Pareto front between the two models (Fig. 4b). This finding
underscores the importance of channel attention for capturing nonlinear couplings typical in real
world dynamical systems.

5.3 Panda EXHIBITS A DYNAMICAL SYSTEMS SCALING LAW

Figure 5: Scaling laws in zero-shot forecast error as the
number of unique dynamical systems increases. The
total amount of training timepoints is held constant.

We create eight independent pretraining
datasets that are subsets of the 2 ×
104 unique systems generated using our
methodology in Section 3. Across these
eight datasets, we maintain a constant num-
ber of total timepoints while taking, at one
extreme, a single trajectory (one initial con-
dition) from each unique system, and at the
other extreme, several trajectories (multiple
initial conditions) from only a few unique
systems. These datasets thus allow us to
measure how dynamical diversity (unique
systems versus initial conditions) affects
generalization. We repeat our zero-shot
evaluations on our set of 9.3 × 103 held-
out systems for each model trained on the
eight datasets.

In particular, let Nics be the number of
sampled initial conditions and Nsys the
number of unique systems. Keeping Nics × Nsys fixed, our eight dataset splits are constructed
as {

(
Nsys ≈ 2× 104, Nics = 1

)
,
(
Nsys ≈ 104, Nics = 2

)
, . . . , (Nsys ≈ 156, Nics = 128)},

where each subsequent split uses a strict subset of the systems of the previous split, but with double
the number of sampled initial conditions Nics.

We observe clear scaling of zero-shot performance on unseen systems with the number of new
dynamical systems encountered. We emphasize that this scaling law is distinct from traditional
neural scaling laws for total training data, because we hold the number of timepoints constant while

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

controlling the diversity of the data (Kaplan et al., 2020). These results highlight the advantages
of scaling with diverse synthetic data. This finding accords with classical nonlinear dynamics
theory: additional on-attractor trajectories continuously produce new information about that particular
attractor’s measure (a result of Pesin’s theorem), but beyond a certain point they fail to provide new
topological information about winding, voids, etc (Gilmore, 1998; Pesin, 1977). The distinction
between these information types partly explains the gap between in-domain and out-of-domain
generalization in MLDS (Göring et al., 2024).

5.4 Panda EXHIBITS EMERGENT PDE FORECASTING CAPABILITY

von Kármán Vortex StreetKuramoto Sivashinsky
A B C

Figure 6: (A) Zero-shot forecasts of the Kuramoto-Sivashinsky equation. The time axis t = 25 to
t ≈ 44 contains 768 timepoints (512 context + 256 prediction): solid black line marks end of context
window, and dashed gray line marks length 128 prediction horizon. (B) Zero-shot forecasts of the von
Kármán vortext street. (C) The horizoned MAE (with standard errors bars) compared to baselines.
We show point-wise MAE, due to sMAPE’s saturation at the upper bound. We include two baselines,
Fourier Neural Operators and DeepONet (black traces) fully-trained on the context (see Appendix H).

Partial differential equations (PDEs) are dynamical systems on continuous domains, with diverse
applications in weather prediction or materials science (Kochkov et al., 2024). Conceptually, PDEs
may be seen as coupled ordinary differential equations evolving in an infinite-dimensional space.
We apply our trained model to the problem of forecasting two weakly-turbulent PDEs representing
standard SciML benchmarks: the Von-Karman vortex street (VKVS) describes the unsteady motion
of flow past a cylinder, and the Kuramoto-Sivashinksy (KS) models a laminar flame front (Cvitanović
et al., 2010). More details on the PDE evaluation setup can be found in Appendix H.

Surprisingly, Panda outperforms baselines in zero-shot forecasting these systems (Fig. 6), despite
having never encountered PDE during training. Unlike baselines, our model predicts nonlinear
phenomena like merging of flame fronts in the KS equation or vortex pinchoff in the VKVS. While
prior works require specially-trained models to forecast chaotic PDEs (Pathak et al., 2018), our zero-
shot approach does not require extensive in-distribution training data, highlighting the advantages of
cross-channel attention and multivariate training in generalization.

5.5 Panda DEVELOPS INTERPRETABLE INTERNAL REPRESENTATIONS OF COMPLEX DYNAMICS

To probe the role of channel attention in Panda, we feed two-tone sinusoids into the model and
measure the response. The frequencies f1, f2 are each swept out over the range [2π, 5π]. Let Ã
denote the attention rollout (Abnar & Zuidema, 2020) of the temporal attention matrices. Since Ã is
the product of row-stochastic matrices, Ã remains row-stochastic. Thus, we can measure the response

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

A B C

Figure 7: (A) Nonlinear resonance structure measured by average row-wise entropy of temporal
attention rollout matrices. (B) Mean row-wise entropy of the final layer during training. (C) Lack of
nonlinear resonance structure in the temporal attention rollout entropy for our univariate ablation.

from "shaking" the model at frequency mixtures f1, f2 by measuring the average of the rowwise
entropies of Ã (c.f. Fig. 7A). The attention maps exhibit complex, multiscale structure indicating
nonlinear resonance, a phenomenon in dynamical systems where a physical system (such as a kicked
rotor or forced pendulum) exhibits gain with nonlinear dependence on the input frequencies. As a
control, the frequency response of an equally trained univariate model does not exhibit the same
nonlinear multiscale structure (Fig. 7C).

We next analyze Panda’s attention maps to probe its underlying forecast strategy. The attention maps
largely concentrate mass away from the diagonals, which indicates that Panda effectively uses the
context. In contrast, a model implementing a purely local rule (like a numerical integrator) would
exhibit predominant diagonal structure, indicating that Panda performs more complex operations
than few-step integration. For example, some attention maps form recurrence maps, which encode
large-scale attractor geometry in classical nonlinear dynamics (Donner et al., 2010; Gilpin, 2025).
Other layers show banding and circulant structure (Fig. 8), consistent with global integral transforms
like Fourier series.

Figure 8: Temporal attention maps from Panda on context from different chaotic systems, showing
Toeplitz, block, selector, and hybrid/combined structures (left to right). Appendix G further discusses
spatiotemporal coupling and cross-channel maps (Fig. 22).

5.6 LIMITATION: REGRESSION TO THE MEAN

Divergence of error is inevitable when forecasting chaos with finite precision. Eventually, the
prediction error grows to the point where a point forecast is useless, but invariant and geometric
properties of the chaotic system can still be estimated in the long horizon regime. We quantify the
utility of long horizon forecasts by measuring the geometry of forecasts much farther than 4× the
training prediction horizon. Specifically, we compute: the maximum Lyapunov exponents (Appendix
F.6); the forward KL divergence (Table 1) between the attractor and the predictions (Hess et al.,
2023); and the spectral Hellinger distance (Table 2), an f -divergence between power spectra of the
attractor and predictions (Mikhaeil et al., 2022).

For these experiments, we include Dynamix, a much smaller (∼10K parameters) autoregressive
dynamical systems foundation model that excels in capturing long term geometry (Hemmer &

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Durstewitz, 2025). For Tables 1 and 2, we report mean ± std. dev. across all test systems, averaged
over 5 context windows for prediction horizons Lpred ∈ {512, 1024, 2048, 3072}. Only one context
window is available for evaluating Lpred = 3584, as our dataset contains trajectories of length 4096.

DKL (Ground Truth(Lpred)||Model Prediction(Lpred))

Model Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Panda 3.93± 3.51 4.72± 3.64 5.63± 3.71 6.14± 3.68 6.39± 3.90

Chronos 20M SFT 4.72± 5.00 5.09± 4.90 5.62± 4.86 5.93± 4.84 6.05± 5.34
Chronos 20M 5.99± 5.07 6.19± 4.85 6.51± 4.76 6.76± 4.74 6.94± 5.41
Chronos 200M 5.12± 5.25 5.49± 5.22 6.05± 5.30 6.36± 5.28 6.47± 5.67

DynaMix 4.75± 5.70 4.90± 5.65 5.22± 5.72 5.40± 5.70 5.51± 6.13

∆%(↑) +16.7% +3.7% −7.9% −13.7% −16.0%

Table 1: KL divergence between ground truth and model predictions. ∆% denotes percentage gain
of Panda over the best baseline. See Table 12 for per-system differences, and Appendix F.1 for
implementation details.

Average H2(SGround Truth (Lpred)||S Model Prediction (Lpred))

Model Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Panda 0.25± 0.14 0.25± 0.12 0.25± 0.11 0.25± 0.11 0.26± 0.12

Chronos 20M SFT 0.29± 0.17 0.29± 0.16 0.29± 0.16 0.30± 0.16 0.30± 0.18
Chronos 20M 0.37± 0.16 0.36± 0.16 0.37± 0.16 0.38± 0.16 0.38± 0.17
Chronos 200M 0.28± 0.16 0.28± 0.15 0.29± 0.15 0.30± 0.15 0.30± 0.17

DynaMix 0.36± 0.19 0.34± 0.19 0.33± 0.19 0.33± 0.19 0.32± 0.21

∆%(↑) +10.7% +10.7% +13.8% +16.7% +13.3%

Table 2: Average per-dimension spectral Hellinger distance between ground truth and model predic-
tions. ∆% denotes percentage improvement of Panda over the next closest baseline. See Table 13 for
per-system differences. We use Welch’s method for estimating the PSD.

Surprisingly, we observe competitive performance in the KL divergence up to 8× the training
prediction horizon, and an across the board advantage on spectral Hellinger distance. However, we
visually confirm that Panda tends to regress to the mean of the context when rolling out far past the
training horizon in Appendix M. We can quantify this failure mode by computing the distributional
metrics on the tail forecasts in Appendix F.5 which confirms the failure of mean regression as a long
term forecaster. In contrast, Chronos exhibits parroting for long horizons (Fig. 31, 33, 32) which
serves as a decent surrogate for long term attractor geometry due to forecasting periodic orbits. We
report additional distributional metrics and computed invariant quantities in Appendix F.

6 CONCLUSION AND FUTURE DIRECTIONS

Our work demonstrates the feasibility of pretrained models in discovering generalizable properties of
dynamical systems, mathematical objects of intrinsic interest to the SciML and forecasting communi-
ties. Our model’s emergent ability to predict higher-dimensional partial differential equations, and
the scaling of its performance with the diversity of dynamical systems, show that its generalization
signal stems from unique properties of dynamics relative to time series.

A limitation of our work stems from our focus on low-dimensional dynamical systems. We argue
that low-dimensional dynamics are the building block for higher-dimensional systems like weather
front or spiking neurons, because they capture essential properties like bifurcations that become more
complex in extended systems. A future variant of our approach for high-dimensional dynamics could
exploit the structure of coupling such as sparsity or blocks typical in these systems by allowing the
channel attention layers to receive custom attention masks. Another limitation is the degradation
of rollout performance from MLM pretraining. Future work will investigate the question of what
pretraining task is most natural for modeling dynamical systems. We believe this is a basic question
that necessitates further progress in SciML.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers, 2020. URL
https://arxiv.org/abs/2005.00928.

Tosif Ahamed, Antonio C Costa, and Greg J Stephens. Capturing the continuous complexity of
behaviour in caenorhabditis elegans. Nature Physics, 17(2):275–283, 2021.

Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
et al. Chronos: Learning the language of time series. Transactions on Machine Learning Research,
2024.

Alexis Asseman, Tomasz Kornuta, and Ahmet Ozcan. Learning beyond simulated physics. In
Modeling and Decision-making in the Spatiotemporal Domain Workshop, 2018. URL https:
//openreview.net/pdf?id=HylajWsRF7.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Velicković.
Round and round we go! what makes rotary positional encodings useful? In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=GtvuNrk58a.

Sören Becker, Michal Klein, Alexander Neitz, Giambattista Parascandolo, and Niki Kilbertus.
Predicting ordinary differential equations with transformers. In International conference on
machine learning, pp. 1978–2002. PMLR, 2023.

Dhananjay Bhaskar, Daniel Sumner Magruder, Matheo Morales, Edward De Brouwer, Aarthi Venkat,
Frederik Wenkel, Guy Wolf, and Smita Krishnaswamy. Inferring dynamic regulatory interaction
graphs from time series data with perturbations. In Learning on Graphs Conference, pp. 22–1.
PMLR, 2024.

Manuel Brenner, Christoph Jürgen Hemmer, Zahra Monfared, and Daniel Durstewitz. Almost-linear
rnns yield highly interpretable symbolic codes in dynamical systems reconstruction. Advances in
Neural Information Processing Systems, 37:36829–36868, 2024.

Steven L Brunton, Marko Budisić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 64(2):229–340, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W
Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.
Advances in Neural Information Processing Systems, 37:6213–6245, 2024.

Xiaoyuan Cheng, Yi He, Yiming Yang, Xiao Xue, Sibo Chen, Daniel Giles, Xiaohang Tang, and
Yukun Hu. Learning chaos in a linear way. In The Thirteenth International Conference on Learning
Representations, 2025.

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. Time series feature
extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocomputing, 307:
72–77, 2018.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical
data. SIAM Review, 51(4):661–703, November 2009. ISSN 1095-7200. doi: 10.1137/070710111.
URL http://dx.doi.org/10.1137/070710111.

James P Crutchfield and Melanie Mitchell. The evolution of emergent computation. Proceedings of
the National Academy of Sciences, 92(23):10742–10746, 1995.

Predrag Cvitanović, Ruslan L Davidchack, and Evangelos Siminos. On the state space geometry
of the kuramoto–sivashinsky flow in a periodic domain. SIAM Journal on Applied Dynamical
Systems, 9(1):1–33, 2010.

11

https://arxiv.org/abs/2005.00928
https://openreview.net/pdf?id=HylajWsRF7
https://openreview.net/pdf?id=HylajWsRF7
https://openreview.net/forum?id=GtvuNrk58a
https://openreview.net/forum?id=GtvuNrk58a
http://dx.doi.org/10.1137/070710111

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Stéphane d’Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, and Niki Kilbertus.
Odeformer: Symbolic regression of dynamical systems with transformers. arXiv preprint
arXiv:2310.05573, 2023.

David A. Dickey and Wayne A. Fuller. Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American Statistical Association, 74(366):427–431, 1979. ISSN
01621459, 1537274X. URL http://www.jstor.org/stable/2286348.

Reik V Donner, Yong Zou, Jonathan F Donges, Norbert Marwan, and Jürgen Kurths. Recurrence
networks—a novel paradigm for nonlinear time series analysis. New Journal of Physics, 12(3):
033025, 2010.

Mengge Du, Yuntian Chen, Zhongzheng Wang, Longfeng Nie, and Dongxiao Zhang. Large language
models for automatic equation discovery of nonlinear dynamics. Physics of Fluids, 36(9), 2024.

Ian Falconer, Georg A Gottwald, Ian Melbourne, and Kjetil Wormnes. Application of the 0-1 test for
chaos to experimental data. SIAM Journal on Applied Dynamical Systems, 6(2):395–402, 2007.

Martin J Falk, Finnegan D Roach, William Gilpin, and Arvind Murugan. Curiosity-driven search for
novel nonequilibrium behaviors. Physical Review Research, 6(3):033052, 2024.

Daniel J Gauthier, Erik Bollt, Aaron Griffith, and Wendson AS Barbosa. Next generation reservoir
computing. Nature communications, 12(1):1–8, 2021.

Robert Gilmore. Topological analysis of chaotic dynamical systems. Reviews of Modern Physics, 70
(4):1455, 1998.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling.
NeurIPS, 34, 2021.

William Gilpin. Model scale versus domain knowledge in statistical forecasting of chaotic systems.
Phys. Rev. Research, 5(4):043252, 2023.

William Gilpin. Recurrences reveal shared causal drivers of complex time series. Physical Review X,
15(1):011005, 2025.

Niclas Alexander Göring, Florian Hess, Manuel Brenner, Zahra Monfared, and Daniel Durstewitz.
Out-of-domain generalization in dynamical systems reconstruction. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 16071–16114. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/goring24a.html.

Peter Grassberger and Itamar Procaccia. Characterization of strange attractors. Phys. Rev. Lett.,
50:346–349, Jan 1983a. doi: 10.1103/PhysRevLett.50.346. URL https://link.aps.org/
doi/10.1103/PhysRevLett.50.346.

Peter Grassberger and Itamar Procaccia. Estimation of the kolmogorov entropy from a chaotic
signal. Phys. Rev. A, 28:2591–2593, Oct 1983b. doi: 10.1103/PhysRevA.28.2591. URL https:
//link.aps.org/doi/10.1103/PhysRevA.28.2591.

Christoph Jürgen Hemmer and Daniel Durstewitz. True zero-shot inference of dynamical systems
preserving long-term statistics. Advances in Neural Information Processing Systems, 38, 2025.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances in
Neural Information Processing Systems, 37:72525–72624, 2024.

12

http://www.jstor.org/stable/2286348
https://proceedings.mlr.press/v235/goring24a.html
https://link.aps.org/doi/10.1103/PhysRevLett.50.346
https://link.aps.org/doi/10.1103/PhysRevLett.50.346
https://link.aps.org/doi/10.1103/PhysRevA.28.2591
https://link.aps.org/doi/10.1103/PhysRevA.28.2591

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Florian Hess, Zahra Monfared, Manuel Brenner, and Daniel Durstewitz. Generalized teacher forcing
for learning chaotic dynamics. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation models for
weather and climate. Nature, 632(8027):1060–1066, 2024.

Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. Identifying
nonlinear dynamical systems via generative recurrent neural networks with applications to fmri.
PLoS computational biology, 15(8):e1007263, 2019.

Jean Kossaifi, Nikola Kovachki, Zongyi Li, Davit Pitt, Miguel Liu-Schiaffini, Robert Joseph George,
Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, and Anima Anandkumar. A library for
learning neural operators, 2024.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O Stanley, Phillip Isola, and David Ha.
Automating the search for artificial life with foundation models. arXiv preprint arXiv:2412.17799,
2024.

Jose Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode
Decomposition : Data-Driven Modeling of Complex Systems. SIAM, 2016. ISBN 9781611974492
1611974496. URL http://www.dmdbook.com/.

Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. Testing the null
hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1-3):
159–178, 1992.

William La Cava, Bogdan Burlacu, Marco Virgolin, Michael Kommenda, Patryk Orzechowski,
Fabrício Olivetti de França, Ying Jin, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. Advances in neural information processing systems, 2021
(DB1):1, 2021.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. In-context decision-making from supervised pretraining. In ICML Workshop on New
Frontiers in Learning, Control, and Dynamical Systems, 2023.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics in chaotic
systems. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, pp. 16768–16781, 2022.

Yixin Lin, Jan Humplik, Sandy H Huang, Leonard Hasenclever, Francesco Romano, Stefano Saliceti,
Daniel Zheng, Jose Enrique Chen, Catarina Barros, Adrian Collister, et al. Proc4gem: Foundation
models for physical agency through procedural generation. arXiv preprint arXiv:2503.08593,
2025.

Toni JB Liu, Nicolas Boullé, Raphaël Sarfati, and Christopher J Earls. Llms learn governing principles
of dynamical systems, revealing an in-context neural scaling law. arXiv preprint arXiv:2402.00795,
2024.

Edward Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130–148,
1963.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, 2021. doi: 10.1137/19M1274067.

13

http://www.dmdbook.com/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Michael McCabe, Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer, Alberto Bietti,
Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al. Multiple physics
pretraining for spatiotemporal surrogate models. Advances in Neural Information Processing
Systems, 37:119301–119335, 2024.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018.

Igor Mezić. Analysis of fluid flows via spectral properties of the koopman operator. Annual review of
fluid mechanics, 45(1):357–378, 2013.

Jonas M. Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic
dynamics with rnns. In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2022.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Edward Ott. Strange attractors and chaotic motions of dynamical systems. Rev. Mod. Phys., 53:
655–671, Oct 1981. doi: 10.1103/RevModPhys.53.655. URL https://link.aps.org/
doi/10.1103/RevModPhys.53.655.

Norman H Packard, James P Crutchfield, J Doyne Farmer, and Robert S Shaw. Geometry from a
time series. Physical review letters, 45(9):712, 1980.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing approach. Physical
review letters, 120(2):024102, 2018.

Louis M Pecora and Thomas L Carroll. Synchronization in chaotic systems. Physical review letters,
64(8):821, 1990.

Chris Pedersen, Laure Zanna, and Joan Bruna. Thermalizer: Stable autoregressive neural emulation
of spatiotemporal chaos. arXiv preprint arXiv:2503.18731, 2025.

Ya B Pesin. Characteristic lyapunov exponents and smooth ergodic theory. Russian Mathematical
Surveys, 32(4):55, 1977.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
weather forecasting with machine learning. Nature, 637(8044):84–90, 2025.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural In-
formation Processing Systems, volume 20. Curran Associates, Inc., 2007. URL
https://proceedings.neurips.cc/paper_files/paper/2007/file/
013a006f03dbc5392effeb8f18fda755-Paper.pdf.

Chris Reinke, Mayalen Etcheverry, and Pierre-Yves Oudeyer. Intrinsically motivated discovery of di-
verse patterns in self-organizing systems. In International Conference on Learning Representations,
2020.

Michael T. Rosenstein, James J. Collins, and Carlo J. De Luca. A practical method for calculating
largest lyapunov exponents from small data sets. Phys. D, 65(1–2):117–134, May 1993. ISSN
0167-2789. doi: 10.1016/0167-2789(93)90009-P. URL https://doi.org/10.1016/
0167-2789(93)90009-P.

14

https://link.aps.org/doi/10.1103/RevModPhys.53.655
https://link.aps.org/doi/10.1103/RevModPhys.53.655
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/0167-2789(93)90009-P

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

David Ruelle and Floris Takens. On the nature of turbulence. Communications in Mathematical
Physics, 20(3):167 – 192, 1971.

Patrick Seifner, Kostadin Cvejoski, Antonia Körner, and Ramses J Sanchez. Zero-shot imputation with
foundation inference models for dynamical systems. In The Thirteenth International Conference
on Learning Representations, 2025.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
moe: Billion-scale time series foundation models with mixture of experts, 2024. URL https:
//arxiv.org/abs/2409.16040.

Zezheng Song, Jiaxin Yuan, and Haizhao Yang. Fmint: Bridging human designed and data pretrained
models for differential equation foundation model. arXiv preprint arXiv:2404.14688, 2024.

Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.
09864.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
terizing scaling and transfer behavior. Advances in Neural Information Processing Systems, 36:
71242–71262, 2023.

Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation model for
partial differential equations: Multioperator learning and extrapolation. Physical Review E, 111(3):
035304, 2025.

Floris Takens. Dynamical systems and turbulence. Warwick, 1980, pp. 366–381, 1981.

Tapas Tripura and Souvik Chakraborty. A foundational neural operator that continuously learns
without forgetting. arXiv preprint arXiv:2310.18885, 2023.

VP Vera-Ávila, Ricardo Sevilla-Escoboza, AA Lozano-Sánchez, RR Rivera-Durón, and Javier M
Buldú. Experimental datasets of networks of nonlinear oscillators: Structure and dynamics during
the path to synchronization. Data in brief, 28:105012, 2020.

Rui Wang, Robin Walters, and Rose Yu. Data augmentation vs. equivariant networks: A theory of
generalization on dynamics forecasting. arXiv preprint arXiv:2206.09450, 2022.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zackory
Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for automated
robot learning via generative simulation. In International Conference on Machine Learning, pp.
51936–51983. PMLR, 2024.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25:1307–1346, 2015.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

Xiangyuan Zhang, Weichao Mao, Haoran Qiu, and Tamer Başar. Decision transformer as a foundation
model for partially observable continuous control. arXiv preprint arXiv:2404.02407, 2024.

15

https://arxiv.org/abs/2409.16040
https://arxiv.org/abs/2409.16040
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Yuanzhao Zhang and William Gilpin. Context parroting: A simple but tough-to-beat baseline for
foundation models in scientific machine learning. arXiv preprint arXiv:2505.11349, 2025a.

Yuanzhao Zhang and William Gilpin. Zero-shot forecasting of chaotic systems. In The Thirteenth
International Conference on Learning Representations, 2025b. URL https://arxiv.org/
abs/2409.15771.

Martin Ziegler, Andres Felipe Posada-Moreno, Friedrich Solowjow, and Sebastian Trimpe. On foun-
dation models for dynamical systems from purely synthetic data. arXiv preprint arXiv:2412.00395,
2024.

16

https://arxiv.org/abs/2409.15771
https://arxiv.org/abs/2409.15771

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A GENERATION OF A NOVEL CHAOTIC SYSTEMS DATASET

A.1 SKEW-PRODUCT SYSTEMS

We algorithmically discover skew-product systems following the methodology described in Section 3.
Here, we present a subset of 30 of these systems, out of a total of 2× 104 in our training set.

Figure 9: Examples of novel chaotic skew-product systems discovered via evolutionary search.
Shaded regions correspond to two-dimensional projections onto the corresponding axes.

Our starting point is a hand-curated, crowdsourced public dataset of 129 chaotic low-dimensional
dynamical systems from the nonlinear dynamics literature (Gilpin, 2021; 2023; Zhang & Gilpin,
2025b). Each entry comprises a set of coupled ordinary differential equations with dimensionality
between three and ten. The parameters and initial conditions for each system have been hand-tuned
into the chaotic regime, based on values used in previously-published studies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.2 MUTATION OF BASE SYSTEMS

We also generate new instances of the base 129 chaotic systems by perturbing the ODE parameters.

Figure 10: Examples of parameter perturbations of base systems. Top row Unperturbed original
systems. Botton rows Parameter perturbations of the top row systems.

A.3 NUMERICAL INTEGRATION

For all ODEs, we integrate trajectories of 4096 timesteps with an integration time-span dictated
by a system’s characteristic timescale based off the dominant modes in the power spectrum. We
thus call this timescale the period of the system and set the integration time-span to be [0, Np × φ]
where Np is the number of periods, and φ is the "period" measured from integrating test trajectories
of the base system; for skew systems we take the period to be the maximum period between the
driver and response systems. For all experiments in the main text, we take Np = 40, but use a larger
mixed-period dataset in our scaled up experiments (Appendix K).

The numerical integration timestep is controlled via adaptive step-sizing from the Radau solver, a 5th
order implicit Runge Kutta Scheme. For high quality trajectory data, we integrate using a relative
tolerance 1 × 10−9 and an absolute tolerance of 1 × 10−10. The initial conditions for discovered
systems are obtained by integrating a test trajectory at a lower tolerance (rtol = 1e−6, atol = 1e−7)
and sampling a point from the coarse trajectory which approximates starting at a point on attractor.

A.4 ATTRACTOR SELECTION

The only general way to identify properties about chaotic dynamical systems is to integrate them.
This fundamental fact makes the system discovery process described in Section 3 very expensive at
scale. To effectively reduce the number of incoming candidates for chaoticity selection and validation,
we employ callbacks during integration that will immediately kill the process and prune that system
candidate. Specifically, we terminate integration whenever the step size falls below 10−10, any
bounded (non-driving dimension) coordinate exceeds 104 in value, and whenever the integration
time exceeds 5 minutes. The surviving systems will finish integration and move on to the chaoticity
selection phase (see the overview of our selection for chaoticity in Section 3).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.5 DATASET PROPERTIES

We verify that our integrated trajectories exhibit chaotic dynamics by measuring the average number
of Lyapunov times in various prediction horizons. A chaotic flow separates nearby initial conditions
according to |δ(t)| ≈ exp(λ1t)|δ(0)|where δ is the time dependent separation and λ1 is the maximum
Lyapunov exponent. Thus, a Lyapunov time is defined to be TLyap := 1/λ1. Given an arbitrary time
series with timestep δt, the Lyapunov times per N timepoints is then λ1 × δt×N . Since we rely on
an implicit integrator with adaptive step-sizing, we compute the average timestep over the integration
timespan and estimate the maximum Lyapunov exponent using the Rosenstein estimator (Rosenstein
et al., 1993) to compute the distribution of Lyapunov times per horizon length in Fig. 12a where it is
clear that we are predicting in the chaotic regime most of the time.

To ensure consistency between the founder population and offspring, we featurize all pretraining time
series using the same procedure as previous works reporting chaotic systems datasets (Gilpin, 2021;
2023). For each channel of a D-dimensional multivariate time series (4096 timepoints, 100 points per
dominant Fourier period) we compute a vector of 749 standard time-shift invariant time series features
like wavelet modes, signal power, reversion rate, etc. using the tsfresh library (Christ et al., 2018).
We average the D feature vectors for each system to produce a single channel-permutation invariant
feature vector for each skew-product system. We then project all 2× 104 pretraining skew-product
systems into 2D using UMAP, a nonlinear embedding algorithm that preserves the local neighbors
of each point from the high dimensional space (distances, however, are not necessarily preserved)
(McInnes et al., 2018). We next featurize and embed the 135 parent systems from the founder
population into the same space. We observe broad dispersion of the parent systems across the child
population, implying the absence of mode collapse or strong distribution shift between the parents
and offspring (Fig. 11). We interpret this result as the absence of strong founder or inbreeding effects
in the offspring generation.

4 6 8 10 12 14
UMAP 1

2

0

2

4

6

8

10

UM
AP

 2

Offspring
Parent
Lorenz

Figure 11: A low-dimensional embedding of the 2× 104 skew-product systems (gray), as well as
the 135 founding parent systems (magenta) from which these offspring systems are evolved. The
well-known chaotic Lorenz attractor is starred on the plot.

Additionally, for all trajectories in the test set, we measure the empirical stiffness score defined as
S := log10 (maxt |∆t|/Et|∆t|), where ∆t is the finite difference (forward or backward) at time
t. Fig. 12b shows that most test systems have at least an order of magnitude scaling between the
largest observation jump compared to the average change per channel. This distribution suggests that
the dataset generation algorithm generates stiff systems and reinforces the fact that the integrated
trajectories exhibit non-trivial dynamics.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

0 5 10 15 20 25 30 35

100

101

102

103

Co
un

t

Lyapunov Times
Lpred = 128 (73% TLyap)
Lpred = 256 (82% TLyap)
Lpred = 512 (87% TLyap)

(a)

0.5 1.0 1.5 2.0 2.5 3.0

100

101

102

Co
un

t

Stiffness Score

(b)

Figure 12: Dynamical properties of systems in the test set. (a) Distribution of Lyapunov times within
Lpred timepoints; annotated with the proportion of systems which exceed 1 Lyapunov time in the
horizon. (b) Distribution of sitffness scores (log-ratio of largest delta compared to the average delta).

1.5 2.0 2.5 3.0 3.5
GP Dim

100

101

102

103

Co
un

t

Base Systems
Skew Systems

Figure 13: Distribution of correlation
dimension (Grassberger-Procaccia) of
skew systems and their founder (base)
systems.

System GP Dim (mean ± std)

Base Systems 2.09± 0.27
Skew Systems 2.11± 0.23

Table 3: Correlation dimension for Base
(Founder) systems and Skew (Children) systems.

As shown in Fig. 13, our skew-product generation preserves the distribution of the correlation
dimension, an invariant quantity used as a proxy for fractal dimension. This suggests that our dataset
does not suffer from a "founder effect" that would kill off diversity. Table 4 further presents a
comparison of the Kullback Leibler divergence between the invariant measures of the attractors, for
skew systems: with the same parents; with different parents; with one parent shared; and between
parent (Base) and child (Skew) systems.

Metric mean ± std Ncombos

DKL(Skew || Response) 5.35± 5.81 10,000
DKL(Skew || Driver) 8.46± 6.58 10,000
DKL(Skew || Non-Parent) 9.01± 6.64 10,000

DKL(Skew Intra) 3.39± 5.11 10,000
DKL(Skew Inter) 7.07± 6.58 10,000

DKL(Base Intra) 2.54± 4.13 6,000
DKL(Base Inter) 8.24± 6.48 6,000

Table 4: DKL between skew systems and: 1) param perts of response; 2) param perts of driver; 3)
param perts of non-parent system in the founder pool. (Skew Intra) DKL between param perts of
skew systems with the same parents. (Skew Inter) DKL between param perts of skew systems with
different parents. (Base Intra) DKL between parameter perturbations of the same founder system.
(Base Inter): DKL between parameter perturbations of different founder systems.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 5: Model Architecture

Parameter Value
Context length 512
Prediction length 128
Hidden layers 8
dmodel 512
FFN dimension 512
Attention heads 8
Activation gelu
Pre-norm True
Normalization RMSNorm
Init std 0.02

Table 6: Model Architecture (Continued)

Parameter Value
Patch length / stride 16 / 16
Rope percent 0.75
Max wavelength 500
Poly features 120
Poly degrees 2
RFF count 256
RFF scale 1.0

B TRAINING DETAILS

A technical difficulty of training a global multivariate model is forming batches of trajectories with
mixed channel dimensions. We look to dynamical systems theory and note that it is well known that
at least 3 coupled dynamical variables are necessary for a system to exhibit deterministic chaos in
continuous-time (Strogatz, 2018). To this end, we fix the dimensions of each input trajectory to 3
only during training by randomly sampling 3 channels from each multivariate trajectory to enable
efficient batching. During inference time, we process the full multivariate trajectories. For the 21.3M
parameter Panda model we use dmodel = dffn = 512, Nheads = Nlayers = 8, Npoly = 120 with degree
2, and Nrff = 256. For the 41.5M parameter model (Appendix K), we use dmodel = dffn = 640,
Nheads = Nlayers = 10, Npoly = 156 with degree 2, and Nrff = 312. And for the 71.5M parameter
Panda-72M (Appendix K), we use dmodel = dffn = 768, Nheads = Nlayers = 12, Npoly = 188 with
degree 2, and Nrff = 376. Additionally, data augmentations (Section 3) are uniformly randomly
applied to 20% of the training trajectories.

We use a patch size (and patch stride) of 16. All models are trained with a context length of
512, which corresponds to 32 patches, and use a non-causal transformer encoder with 8 layers,
each with dmodel = 512 and 8 heads. Each attention block maps a (batch size, channels,
patches, hidden) sized hidden state H via:

H ← H + RopeTemporalAttention ◦ RMSNorm(H)

H ← H + ChannelAttention ◦ RMSNorm(H)⊤

H ← H + FFN ◦ RMSNorm(H)

Where the transpose is applied to the channel and patch (sequence) dimension.

For models optimized with masked language modeling (MLM) style pretraining (masking and
reconstructing intermediate patch tokens), a linear head is used to infill masked patches. For the
forecasting model, a prediction head aggregates the encoder hidden states via a mean along the
sequence (patch) dimension and a linear layer maps this representation to a fixed-length 128 forecast
for all models. All models are trained with MSE loss and the AdamW optimizer with a maximum
learning rate 1× 10−3 on a cosine schedule with a 10% warmup. Additionally, we train with gradient
norm clipping at a value of 1.0. See Tables 5, 6 for comprehensive details about model architecture.

The 20M Panda MLM models are trained for 200K iterations (∼52 wallclock hours across 4 GPUs or
∼208 GPU hours) with a batch size of 1024 with 50% of tokens randomly masked out each batch.

The forecast models are trained for 100K iterations with a batch size of 1024 and are optionally
initialized with a pretrained encoder from an MLM model (Section 5.1). The 20M parameter
forecasting checkpoints are trained for ∼26 wallclock hours or ∼104 GPU hours. The Chronos-SFT
models use considerably more memory during training - permitting a batch size of 160 for 300K
training iterations which required ∼48 wallclock hours or ∼192 GPU hours.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

C FORECASTS

Figure 14: Examples of zero-shot forecasts (Lpred = 256) on held-out chaotic dynamical systems.

For additional forecasts, see Appendix L (Figs. 28, 29, and 30). All forecasts plotted are with
prediction length Lpred = 256.

D ADDITIONAL FORECAST METRICS

Table 7 shows statistical significance testing of Panda metrics against other baselines. Note that we
do not report results for TimeMoE due to the presence of NaNs, and instead test against a 200M
Chronos baseline in greedy decoding and probabilistic mode. Panda clearly achieves lower error
across the board; the gap closes with Chronos 20M SFT but still remains statistically significant.

In Fig. 2 we presented the sMAPE and MAE comparison for Panda versus our baseline models. We
now present more zero-shot forecast metrics, but using the probabilistic forecasting mode for Chronos
and Chronos-SFT. When finetuning Chronos 20M on our dataset (i.e. Chronos 20M SFT), we used
the default top-k and top-p (nucleus sampling) and temperature settings. We use these same settings,
top-k = 50, top-p = 1.0, temperature = 1.0 for the Chronos probabilistic forecasting, aggregating
our metrics over 10 sample forecasts per context window per system.

Table 8 highlights the efficiency of Panda against Chronos. This ≈ 60x speedup is largely due to the
fact that Chronos represents time series tokens as quantized individual points, whereas Panda relies
on patches.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 7: Wilcoxon Signed Ranked test for Panda errors vs. baseline errors (Holm–Sidák adjusted
p-values)

Model Prediction MSE MAE sMAPE

Horizon p-value statistic p-value statistic p-value statistic

Chronos 20M SFT L = 128 5.96× 10−48 13 484 9.01× 10−51 12 153 6.35× 10−3 49 421
L = 512 8.24× 10−50 12 275 3.07× 10−54 10 432 3.34× 10−2 51 252

Chronos 200M L = 128 5.84× 10−49 12 778 6.88× 10−57 9182 1.20× 10−28 23 770
L = 512 5.33× 10−48 13 233 1.45× 10−56 9323 1.36× 10−7 41 310

Chronos 20M SFT Prob L = 128 6.93× 10−41 16 851 3.09× 10−33 21 198 1.30× 10−5 44 464
L = 512 3.83× 10−41 16 513 1.18× 10−35 19 657 3.26× 10−1 54 730

Chronos 200M Prob L = 128 2.91× 10−49 12 577 1.22× 10−56 9290 5.69× 10−31 22 353
L = 512 2.37× 10−38 18 024 1.83× 10−49 12 541 7.73× 10−11 37 624

TimesFM 200M L = 128 4.05× 10−55 9863 1.67× 10−69 3863 4.89× 10−77 972
L = 512 2.50× 10−38 18 103 1.59× 10−59 7949 2.66× 10−70 3588

Time MOE 50M L = 128 1.03× 10−41 14 499 9.66× 10−58 7320 1.68× 10−76 170
L = 512 2.58× 10−29 21 152 3.14× 10−52 9639 3.13× 10−75 589

DynaMix L = 128 1.46× 10−23 26 724 3.03× 10−35 19 399 1.86× 10−40 16 533
L = 512 4.54× 10−8 39 970 7.00× 10−22 27 602 1.83× 10−27 23 592

Figure 15: Zero-shot forecast metrics for our baselines, using probabilistic (10 samples) forecasts for
the Chronos models. †Dash-dotted lines indicate presence of NaNs for some systems (4 - 12% of
systems for Spearman).

Time per Forecast (s)
Model Time (mean ± std)

Panda 0.031 ± 0.001
TimeMOE 50M 0.336 ± 0.060
DynaMix 0.526 ± 0.016
TimesFM 200M 0.605 ± 0.032
Chronos 20M 1.880 ± 0.041
Chronos 200M 4.233 ± 0.121

Table 8: Inference time per forecast (Lpred = 512), computed over N = 1000 calls to each model,
on a single H100 GPU. Each model call uses context length 512 timesteps, from our multivariate
data, which has variable number of channels (at least 3). The univariate models (Chronos, TimesFM,
TimeMOE) treat the channels as batch dimension, for each call.

We also provide median forecast metrics with IQR for the metrics in Fig. 2 over multiple prediction
horizons for the best baselines in Tables 9, 10.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

sMAPE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 27.6 [18.5, 39.3] 36.7 [26.2, 47.6] 46.3 [37.0, 57.0]

Chronos 20M SFT 30.3 [21.9, 40.0] 40.1 [30.3, 48.3] 48.8 [37.3, 56.8]
Chronos 200M 36.0 [26.4, 44.6] 44.6 [34.6, 52.9] 53.5 [42.8, 60.8]

Chronos 20M SFT Probabilistic 29.7 [21.3, 40.7] 39.4 [29.3, 48.7] 48.3 [37.8, 57.1]
Chronos 200M Probabilistic 36.4 [26.7, 44.7] 45.0 [34.2, 53.1] 53.8 [42.8, 60.6]

DynaMix 47.1 [37.9, 57.9] 54.7 [46.8, 62.6] 60.8 [53.9, 65.8]

Table 9: Median sMAPE and interquartile range [P25, P75].

MAE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 0.35 [0.22, 0.54] 0.49 [0.35, 0.70] 0.65 [0.48, 0.84]

Chronos 20M SFT 0.56 [0.34, 0.80] 0.85 [0.52, 1.26] 1.25 [0.72, 2.14]
Chronos 200M 0.61 [0.41, 0.80] 0.86 [0.58, 1.18] 1.07 [0.75, 1.83]

Chronos 20M SFT Probabilistic 0.46 [0.29, 0.69] 0.65 [0.43, 0.93] 0.85 [0.57, 1.34]
Chronos 200M Probabilistic 0.55 [0.38, 0.73] 0.71 [0.51, 0.91] 0.84 [0.63, 1.12]

DynaMix 0.79 [0.60, 0.94] 0.94 [0.76, 1.06] 1.02 [0.88, 1.15]

Table 10: Median MAE and interquartile range [P25, P75].

D.0.1 ADDITIONAL METRICS FOR MODEL ABLATIONS

In Fig. 3 we presented a sMAPE comparison for several key ablations of our model. Here, we provide
additional zero-shot forecast metrics for these ablations, supporting our conclusion that our dynamics
embedding with polynomial features (PolyEmbed) is best for long-horizon forecasting via rollouts.

Figure 16: Zero-shot forecast metrics for our ablation experiments.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

E MLM COMPLETIONS

Figure 17: Examples of zero-shot completions on held-out chaotic dynamical systems. Each com-
pletion plotted was with a context length of 512 time points, with half the patches (patch length 16)
randomly masked out in a channel-inconsistent manner. These plots show Panda MLM, our 20M
parameter checkpoint, completing the masked-out trajectories i.e. 256 time points. See Appendix N
for more examples from Panda MLM and from our scaled-up model Panda MLM-66M.

We present examples of Panda MLM completions on our held-out test set in Fig. 17. For more
examples of zero-shot completions, see Appendix N.

For the completions task, we randomly mask out half of patches for each coordinate dimension
separately i.e. channel-independent masking. We trained Panda MLM with patch length 16 and
context length 512, so each context window has 32 patches on the time axis. But we can generate
completions with any context length. We refer to the masked-out portions of the trajectory as the
erasures. We seek to measure how the model learns the cross-channel coupling relationships and
statistical dependencies.

In future work, we hope to investigate more sophisticated masking strategies, such as masking out
contiguous blocks of patches and investigating channel-dependent masking, which is closer to a
forecasting task. Recall from our discussion of Fig. 3 that MLM pretraining reduces performance on
autoregressive rollout (c.f. Fig. 16). Determining the optimal MLM pretraining objective for long
horizon forecasts on autoregressive rollout remains an intriguing area to investigate.

To quantify the performance of our MLM checkpoint on the completion task, we compute the
correlation dimension (Fig. 18) of completions versus ground truth trajectories using the Grassberger-
Procaccia algorithm (Grassberger & Procaccia, 1983a;b). This algorithm was developed to quantify
the strangeness (Lorenz, 1963; Ott, 1981; Ruelle & Takens, 1971) of chaotic attractors via a com-
putable metric related to the fractal (Hausdorff) dimension and information entropy. For the result in
Fig. 18, we take the entire length 4096 trajectory for each of our 9.3× 103 held-out systems and we
randomly mask out (erase) half of the patches (patch length 16) in a channel-inconsistent manner.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
Ground Truth

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Co
m

pl
et

io
ns

Correlation Dimension (Panda MLM-66M)

y = 0.84x + 0.41 (R² = 0.91)
y = x

Figure 18: Correlation dimension comparison
on held-out systems. Computed for ground
truth and completions from Panda MLM-66M
using the Grassberger-Procaccia method, av-
eraged over 8 independent masks for each
trajectory, using context length 4096 with
half the patches (patch length 16) randomly
masked out in a channel-inconsistent manner.

Let {xi}Ti=1 ⊂ RD be a time series of T points in D
dimensions. First, we compute pairwise Euclidean
distances (excluding i = j):

R :=
{
rij = ∥xi − xj∥2

∣∣ 1 ≤ i, j ≤ T, i ̸= j
}

Next, we select the scaling region. Let r(5%) and
r(50%) denote the empirical 5th and 50th percentiles
ofR. Then truncate to:

R∗ =
{
r ∈ R

∣∣ r(5%) < r < r(50%)

}
Now denote n := |R∗| and rmin := minr∈R∗ r.

Following Clauset. Shalizi, and Newman (Clauset
et al., 2009), we identify a power law fit using
maximum likelihood estimation (MLE). Assume for
r ≥ rmin that the distances follow p(r) = Z r−α,
where Z is the normalizing constant. Then,

α̂ = 1 +
n∑

r∈R∗
ln
(

r
rmin

)
In the Grassberger–Procaccia method one examines
a correlation integral with unbiased estimator:

C(r) = 2

T (T − 1)

∑
i<j

H
(
r − ∥xi − xj∥2

)
, C(r) ∼ rD2 (r → 0),

so that D2 = d ln C(r)
d ln r . Fitting C(r) ∝ rD2 is equivalent to fitting the distribution of pairwise distances

to a power law, yielding D2 ≈ α̂ as the estimated correlation dimension.

Panda MLM, with 20M parameters, shows promise in recovering the correlation dimension, a
statistical invariant of the attractor, even when given much longer context (length 4096) than seen
during traning (recall the context length for training was 512), and with half of the timesteps masked
out (in patches) per dimension. We also trained a scaled-up checkpoint, Panda MLM-66M (with
details in Appendix K), which demonstrates improved performance (Fig. 18).

In 11, we present the comparison against interpolation baselines. For polynomial in-
terpolation, we use numpy.polyfit to fit a polynomial to the unmasked timesteps,
and evaluate with numpy.polyval at masked positions. For linear interpolation,
we use scipy.interpolate.interp1d, with extrapolation for timesteps out-
side the range of known values. For the piecewise cubic spline baseline, we use
scipy.interpolate.make_interp_spline with k = 3 (cubic spline).

Comparison with Baselines for Completions Task
Method Lcontext = 4096, with 50% Erasure (in patches)

Panda MLM-66M 0.91
Panda MLM 0.78
Piecewise Cubic Spline 0.71
Linear Interpolation 0.61
Polynomial Interpolation (Deg 3) 0.21

Table 11: Coefficient of Determination (R2) between the correlation dimension (via Grassberger-
Procaccia) computed on the completions versus the full length 4096 ground truth trajectories. For
each of our 9347 held-out test systems, we average across 8 random seeds, which determine the
timestep masks for each trajectory (in patches of length 16). See Appendix N for further discussion.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

F MORE DISTRIBUTIONAL METRICS AND INVARIANT QUANTITIES

F.1 IMPLEMENTATION DETAILS: KL DIVERGENCE VIA GMMS

Algorithm 1 presents our implementation of the Kullback Leibler divergence between ground truth
and model predictions. This is the implementation we use for our main evaluations (Tables 1 and
12), although in Subsection F.3 we also present results using an alternative implementation found in
the literature. In particular, we construct GMMs by fitting Gaussians to each point, with local scale
parameter determined by the simplex neighbors algorithm.

Algorithm 1 KL Divergence Estimation via Gaussian Mixture Models

Require: Ground Truth X = {xt}Tt=1, Generated Predictions Y = {yt}Tt=1, Number of Monte
Carlo Samples ns, small ε > 0 and tol > 0

1: Function ESTIMATEKLDIVERGENCE(X,Y, ns, ε)
// Step 1: Local bandwidth (scale) estimation

2: σX ← SIMPLEXNEIGHBORS(X, k = 10)
3: σY ← SIMPLEXNEIGHBORS(Y, k = 10)

// Step 2: Construct Gaussian Mixture Models
4: p̂ ← GAUSSIANMIXTURE(means = X, covariances = σX)
5: q̂ ← GAUSSIANMIXTURE(means = Y, covariances = σY)

// Step 3: Monte Carlo KLD Estimate
6: {zi}ns

i=1 ← p̂.SAMPLE(ns)
7: for i = 1 to ns do
8: pi ← p̂(zi)
9: qi ← q̂(zi)

10: qi ← max(qi, ε)
11: ri ← log(pi/qi)
12: end for
13: return K̂LD =

1

ns

∑ns

i=1 ri

14: Function SIMPLEXNEIGHBORS(Z, k)
15: Let Z = {zi}ni=1 with zi ∈ Rd

16: Build a (k+1)-nearest neighbor search structure on Z (e.g., using Euclidean distance)
17: for i = 1 to n do
18: Query (k+1) nearest neighbors of zi, including itself
19: Discard the self-neighbor to obtain neighbors {zi,j}kj=1 with distances di,j
20: σi ← FINDSIGMA((di,1, . . . , di,k), k) ▷ Estimate local scale parameter
21: Let ρi ← minj di,j
22: end for
23: return σ = (σi)

n
i=1

24: Function FINDSIGMA(d, k) ▷ d = (d1, . . . , dk) are distances to k nearest neighbors
25: ρ← minj dj
26: Define ∆j ← max(dj − ρ, 0) for j = 1, . . . , k ▷ ReLU on shifted distances
27: Define objective

ϕ(σ) =

 k∑
j=1

exp(−∆j/(σ + tol))− log2(k)

2

, σ > 0

28: Minimize ϕ(σ) using 1D optimization (e.g., root-finding in log σ with initial guess ρ).
29: Let σ∗ be the resulting positive solution
30: return σ∗

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

F.2 PER-SYSTEM DIFFERENCES IN DISTRIBUTIONAL METRICS

We report mean ± std. dev. of per-system differences across all test systems, averaged over 5 context
windows for prediction horizons Lpred ∈ {512, 1024, 2048, 3072}.

Per-system Difference in DKL (Ground Truth(Lpred)||Model Prediction(Lpred)) between Baselines
Comparison Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Chronos 20M SFT – Panda 0.79 ± 4.60 0.36 ± 5.03 -0.01 ± 5.14 -0.22 ± 5.09 -0.33 ± 5.84
DynaMix – Panda 0.81 ± 5.12 0.18 ± 5.58 -0.42 ± 5.59 -0.75 ± 5.52 -0.88 ± 6.07

Chronos 20M – Chronos 20M SFT 1.27± 4.64 1.09± 5.39 0.89± 5.50 0.84± 5.53 0.89± 6.62
Chronos 200M – Chronos 20M SFT 0.39± 4.35 0.41± 5.36 0.43± 5.61 0.44± 5.73 0.42± 6.59

Table 12: The (mean± std) of per-system diff. in KL divergence between models, a fine-grained view
of Table 1. DynaMix and Chronos 20M SFT outperform Panda on very long prediction horizons.

Per-System Difference in Average H2(SGround Truth (Lpred)||S Model Prediction (Lpred)) between Baselines

Comparison Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Chronos 20M SFT – Panda 0.04± 0.19 0.04± 0.18 0.04± 0.18 0.04± 0.18 0.04± 0.20
DynaMix – Panda 0.11± 0.22 0.09± 0.22 0.08± 0.21 0.07± 0.21 0.07± 0.24

Chronos 20M – Chronos 20M SFT 0.08± 0.20 0.08± 0.20 0.08± 0.20 0.08± 0.20 0.08± 0.23
Chronos 200M – Chronos 20M SFT 0.00± 0.20 0.00± 0.20 0.00± 0.20 0.00± 0.20 0.00± 0.23

Table 13: The (mean ± std) of per-system differences in average spectral Hellinger distance between
models, a fine-grained view of Table 2 showing that Panda outperforms the baselines.

F.3 AN ALTERNATIVE KL DIVERGENCE IMPLEMENTATION (GEOMETRIC MISALIGNMENT)

In addition to our GMM-based KL divergence implementation (Tables 1 and 12), we also use the
implementation of (Hemmer & Durstewitz, 2025) based on geometric misalignment.

DKL (Ground Truth(Lpred)||Model Prediction(Lpred)) via Geometric Misalignment
Model Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Panda 2.82± 2.67 3.29± 2.79 3.88± 2.85 4.26± 2.88 4.44± 3.14

Chronos 20M SFT 2.52± 2.63 2.81± 2.94 3.09± 3.16 3.25± 3.28 3.34± 3.72
Chronos 20M 4.33± 3.20 4.67± 3.53 5.03± 3.76 5.24± 3.88 5.37± 4.40
Chronos 200M 2.96± 2.86 3.19± 3.15 3.47± 3.37 3.64± 3.49 3.73± 4.01

DynaMix 3.06± 4.07 3.15± 4.42 3.24± 4.68 3.30± 4.81 3.37± 5.40

∆%(↑) −11.9% −17.1% −25.6% −31.1% −32.9%

Table 14: KL divergence between the ground truth and model predictions. ∆% denotes percentage
gain of Panda over the best baseline. See Table 15 for per-system differences. Here, we use the
implementation of (Hemmer & Durstewitz, 2025).

Per-system Difference in DKL (Ground Truth(Lpred)||Model Prediction(Lpred)) between Baselines
Comparison Lpred = 512 Lpred = 1024 Lpred = 2048 Lpred = 3072 Lpred = 3584

Chronos 20M SFT – Panda −0.30± 3.50 −0.49± 3.75 −0.79± 3.95 −1.00± 4.01 −1.09± 4.54
DynaMix – Panda 0.23± 4.71 −0.14± 5.06 −0.64± 5.25 −0.96± 5.38 −1.07± 6.01

Chronos 20M – Chronos 20M SFT 1.82± 3.60 1.86± 3.93 1.94± 4.25 1.99± 4.33 2.03± 5.14
Chronos 200M – Chronos 20M SFT 0.44± 3.33 0.39± 3.66 0.38± 4.01 0.39± 4.10 0.38± 4.88

Table 15: The (mean± std) of per-system diff. in KL divergence between models, a fine-grained view
of Table 14. DynaMix and Chronos 20M SFT outperform Panda on very long prediction horizons.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

F.4 VISUALIZATION OF METRICS DISTRIBUTION ACROSS ALL TEST SYSTEMS

As seen in Figure 19, Dynamix has a failure mode for a large group of systems for which it performs
badly in KL. However, we emphasize that a direct comparison is not fair because Dynamix is much
smaller, trained on fewer systems, cannot handle systems with > 3 dimensions, and likely has train
data leakage on our test set.

Figure 19: KL divergence (via geometric misalignment) between ground truth (Lpred) and model
predictions (Lpred). See Table 14 for aggregate values. Note that Lpred = 3584 is 28x the prediction
length used in training Panda.

Figure 20: Average spectral Hellinger distance, between the power spectra of ground truth (Lpred)
and model predictions (Lpred). See Table 2 for aggregate values.

F.5 QUANTIFYING MEAN REGRESSION ON VERY LONG HORIZONS

Mean regression is a common failure mode for TSFMs on very long prediction horizons. To quantify
this failure mode, we compute the distributional metrics at Lpred = 3584, which is the longest possible
horizon for evaluation, since our dataset contains trajectories of 4096 timepoints. However, we cut off
the first Ncutoff = 1536 timepoints of model predictions and ground truth, to compute the metrics on
the last 2048 timepoints - solidly within the mean regression regime.

Metrics on tpred = [1536, 3584] (Cut Off First 1536 Timepoints)
Model KL Divergence (Geometric Misalignment) Spectral Hellinger Distance

Panda 15.25± 2.46 0.49± 0.11
Chronos 20M SFT 7.00± 5.63 0.34± 0.18
Chronos 20M 9.68± 6.12 0.48± 0.18
Chronos 200M 7.37± 6.05 0.36± 0.19
DynaMix 3.50± 5.44 0.35± 0.22

Table 16: Metrics between ground truth and model predictions after cutting off the first 1536 time-
points of Lpred = 3584 (keeping only the last 2048). We present (mean ± std) across test systems.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

F.6 MAXIMUM LYAPUNOV EXPONENT

Figure 21: Distributional comparison of the maximum Lyapunov exponents estimated from the
ground truth (Lpred) versus estimates from the model predictions (Lpred) of Panda and of DynaMix.
Note that the y-axis is on a log scale.

We compute the maximum Lyapunov exponents for long prediction horizons, using the data-driven
Rosenstein estimator. In Fig. 21, we compare the distribution of estimated (λmax) for Panda versus
that of DynaMix at prediction lengths Lpred = 1024, 2048, 3200. Note that DynaMix was trained
pointwise autoregressively for a prediction horizon of 550 points. Despite Panda being trained
non-autoregressively for a 78× shorter prediction horizon, it is capable of producing forecasts which
maintain the characteristic Lyapunov exponent out to 25× the prediction horizon it was trained on.

We do observe that Panda struggles to capture systems with λmax > 6 in Fig. 21. This is likely due
to the failure mode of mean regression over long enough prediction horizons.

G IMPLICIT SPATIO-TEMPORAL COUPLING

Temporal attention and channel attention layers independently mix information along the patch and
channel dimensions. For a system like the Lorenz attractor with coupled phase coordinates [x, y, z],
we would ideally want information to mix across space and time. We will show that by composing
temporal and channel attention in sequence, Panda implicitly performs spatio-temporal coupling.

Let WQ,WK ,WV denote the learned projections for temporal attention and WQ,WK ,WV for
channel attention. For simplicity, we will focus on the linear attention setting without the row-wise
softmax. Let P ∈ RN×C×dmodel be a stack of N , dmodel-dimensional patch embeddings with C

channels, and p
(c)
i ∈ Rdmodel an individual patch embedding for patch i and channel c. The linear

attention output is (PWQW
⊤
KP)PWV . In vector form,

(TA) : ϕ(·)
i =

T∑
j=1

〈
W⊤

Q p
(·)
i ,W⊤

Kp
(·)
j

〉
W⊤

V p
(·)
j =

T∑
j=1

〈
p
(·)
i , ATA, p

(·)
j

〉
W⊤

V p
(·)
j (3)

(CA) : ϕ(k)

i =

c∑
ℓ=1

〈
W

⊤
Qϕ

(k)
i ,W

⊤
Kϕ

(ℓ)
i

〉
W

⊤
V ϕ

(ℓ)
i =

c∑
ℓ=1

〈
ϕ
(k)
i , ACA, ϕ

(ℓ)
i

〉
︸ ︷︷ ︸

Mkℓ
i

W
⊤
V ϕ

(ℓ)
i (4)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Where TA denotes temporal attention and CA channel attention, and ATA := WQW
⊤
K and ACA :=

WQW
⊤
K . Looking at an element of the 3-tensor Mkℓ

i we see that:

Mkℓ =

〈
T∑

j=1

〈
p
(k)
i , ATAp

(k)
j

〉
W⊤

V p
(k)
j , ACA

T∑
j′=1

〈
p
(ℓ)
i , ATAp

(ℓ)
j′

〉
W⊤

V p
(ℓ)
j′

〉
(5)

=

T∑
j,j′=1

〈〈
p
(k)
i , ATAp

(k)
j

〉
W⊤

V p
(k)
j ,

〈
p
(ℓ)
i , ATAp

(ℓ)
j′

〉
ACAW

⊤
V p

(ℓ)
j′

〉
(6)

=

T∑
j,j′=1

〈
p
(k)
i , ATAp

(k)
j

〉〈
p
(ℓ)
i , ATAp

(ℓ)
j′

〉〈
p
(k)
j ,

(
WV ACAW

T
V

)︸ ︷︷ ︸
ÃCA

p
(ℓ)
j′

〉
(7)

Where ÃCA prescribes how patches from different channels attend to each other. In matrix form,

Mkℓ
i = (p

(k)
TA)⊤


〈
p
(k)
1 , ÃCAp

(ℓ)
1

〉
. . .

〈
p
(k)
1 , ÃCAp

(ℓ)
T

〉
...

. . .
...〈

p
(k)
T , ÃCAp

(ℓ)
1

〉
. . .

〈
p
(k)
T , ÃCAp

(ℓ)
T

〉


︸ ︷︷ ︸
Cross-Channel Mixing Map

p
(ℓ)
TA , p

(k)
TA :=


〈
p
(k)
i , ATAp

(k)
1

〉
...〈

p
(k)
i , ATAp

(k)
T

〉


Figure 22: Cross-channel mixing maps across patches for different channels from different held-out
systems. Each mixing map is max-scaled to the range [−1, 1].

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

H FORECASTS ON PDES

Other than foundation models, we include a Fourier neural operator (FNO) baseline that was trained
using the neuraloperator framework (Kossaifi et al., 2024; Kovachki et al., 2021), and a
DeepONet baseline trained with the deepxde framework (Lu et al., 2021). Unless otherwise
specified, experiment parameters follow the default values in these libraries. For both operator
learning baselines, we tune the parameters for each PDE and use the best training checkpoint
according to the validation loss. Both operator learning baselines are trained (on a single MI100X
GPU) for one-step-ahead prediction on length 512 context windows and rolled out for 512 prediction
steps for each evaluation window in Fig. 6c.

For the Kuramoto-Shivashinsky (KS) PDE, we integrate the equations pseudospectrally with 64
Fourier modes and the spatial length parameter L = 100. We use an explicit eighth-order Dormand-
Prince scheme (DOP853) to integrate the discretized PDE with a relative and absolute tolerance of
1e-8 from t = 0 to t = 100 save the trajectory at 4096 uniformly spaced timepoints. We sample 40
initial conditions from ui ∼ N (0, ε2I64×64) where we choose ε = 0.1 and use the length 512 context
window starting at the 1024-th timepoint for training and the following 512 for prediction/rollout for
each sample to produce the error bars in Fig. 6c. See Tables 17 for comprehensive details.

For the Von-Karman vortex street (VKVS) data, we use 4600 timepoints of velocity field data in
the domain Ω = [0, 2] × [0, 1] on a 256 × 128 grid simulated via a Lattice Boltzmann simula-
tion at a Reynolds number of 450. We then compute the vorticity field via second-order finite
difference and reduce the dimensionality by keeping the top 512 principal components. For eval-
uation in Fig. 6c, we train on length 512 training context windows starting at the time indices
{0, 1024, 2048, 3072} and cross-validate on the length 512 prediction windows starting at the time
indices {512, 1536, 2560, 3584} (avoiding train-set leakage) to produce the error bars in Fig. 6c. See
Tables 18 for comprehensive details on the operator learning baselines.

Component Specification
Model Fourier Neural Operator (FNO)
Modes 256
Hidden Channels 256
Layers 6
Activation GELU
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Epochs 5000
Batch Size 512
Loss Function L2

(a) FNO configuration

Component Specification
Model DeepONet
Branch Net [128, 256× 6]
Trunk Net [1, 256× 6]
Activation tanh
Initializer He normal
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Iterations 2× 106

Batch Size 512
Metric Mean relative L2 error

(b) DeepONet configuration

Table 17: Kuramoto-Shivashinsky PDE Operator Learning Configurations.

Component Specification
Model Fourier Neural Operator (FNO)
Modes 512
Hidden Channels 256
Layers 5
Activation GELU
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Epochs 5000
Batch Size 512
Loss Function L2

(a) FNO configuration

Component Specification
Model DeepONet
Branch Net [512, 512× 5]
Trunk Net [1, 512× 5]
Activation tanh
Initializer He normal
Optimizer AdamW
Learning Rate 1× 10−3

LR Scheduler Cosine decay
Iterations 1× 106

Batch Size 512
Metric Mean relative L2 error

(b) DeepONet configuration

Table 18: Von-Karman PDE Operator Learning Configurations.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Compared to the foundation models, the operator learning baselines under-perform mostly since they
are limited to a context and prediction length of 1 for one-step-ahead prediction in contrast to the
much larger context and prediction lengths of foundation models. We do not claim that foundation
models are superior operator learning methods, but merely aim to provide a baseline for the PDE
problems. The dash-dotted lines in Fig. 6 indicate that these methods are not directly comparable.

I COMPUTING AND HARDWARE REQUIREMENTS

All training runs were conducted on 4× AMD MI100X GPUs, each with 32 GB of HBM2 memory.
Inference was performed on a single AMD MI100X GPU.

J EFFECT OF PATCH LENGTH

To investigate the effect of patch length on our model’s performance, we conduct an ablation study in
which we train a version of our model with various patch lengths. To isolate the effect of patch size,
we remove our dynamics embedding for these ablations. This is because each patch gets embedded
to dimension dmodel, making the dynamics embedding incomparable between models using different
patch lengths. Keeping a fixed compute budget, we also must halve the batch size every time we
halve the patch length, as a tradeoff patch length ∝ 1/batch size exists between the two quantities:
half the patch length implies twice as many patches, all embedded to dimension dmodel. In the tables
below, ∆% denotes percentage improvement of the best ablation over the next closest.

sMAPE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Patch 4 26.6 [17.5, 37.4] 36.2 [26.5, 47.5] 48.1 [39.0, 58.4]
Patch 8 28.6 [19.6, 40.2] 37.7 [27.7, 48.8] 48.2 [39.9, 58.7]
Patch 12 28.9 [19.4, 40.6] 37.8 [27.9, 49.5] 47.9 [39.6, 59.0]
Patch 16 29.1 [19.7, 41.1] 37.6 [27.8, 49.4] 47.7 [38.5, 58.7]
Patch 24 30.1 [20.6, 41.4] 37.9 [27.9, 49.5] 47.0 [38.7, 58.3]
Patch 32 30.1 [20.3, 42.2] 37.7 [28.2, 49.3] 46.6 [38.1, 57.4]

∆%(↑) +7.0% +3.7% +0.9%

Table 19: Median sMAPE and interquartile range [P25, P75] for various patch lengths.

MAE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Patch 4 0.321 [0.198, 0.509] 0.472 [0.329, 0.685] 0.642 [0.481, 0.824]
Patch 8 0.359 [0.224, 0.543] 0.498 [0.359, 0.710] 0.668 [0.502, 0.860]
Patch 12 0.364 [0.234, 0.559] 0.501 [0.366, 0.711] 0.662 [0.490, 0.859]
Patch 16 0.380 [0.246, 0.561] 0.507 [0.365, 0.724] 0.656 [0.486, 0.846]
Patch 24 0.382 [0.245, 0.578] 0.519 [0.375, 0.729] 0.668 [0.495, 0.857]
Patch 32 0.382 [0.248, 0.584] 0.519 [0.376, 0.722] 0.664 [0.492, 0.852]

∆%(↑) +10.7% +5.2% +2.1%

Table 20: Median MAE and interquartile range [P25, P75] for various patch lengths.

1− ρ (Spearman distance) Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Patch 4 0.219 [0.117, 0.349] 0.322 [0.197, 0.464] 0.480 [0.326, 0.612]
Patch 8 0.244 [0.138, 0.376] 0.350 [0.229, 0.485] 0.495 [0.350, 0.637]
Patch 12 0.246 [0.139, 0.384] 0.357 [0.225, 0.507] 0.496 [0.338, 0.640]
Patch 16 0.261 [0.138, 0.412] 0.360 [0.221, 0.504] 0.486 [0.341, 0.644]
Patch 24 0.264 [0.150, 0.408] 0.361 [0.235, 0.512] 0.492 [0.348, 0.643]
Patch 32 0.268 [0.150, 0.413] 0.364 [0.230, 0.513] 0.485 [0.342, 0.644]

∆%(↑) +10.2% +8.0% +1.0%

Table 21: Median 1− ρ and interquartile range [P25, P75] for various patch lengths.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

K SCALING UP

We scale up our model parameters and training to investigate the improvement in performance. Our
21M, 42M, and 72M parameter models have values of (nheads, nlayers, dmodel) set to (8, 8, 512), (10,
10, 640), and (12, 12, 768) respectively. For the scaled-up training, we had (Niters, batch size per
device, number of GPUs) set to (400K, 1024, 4), (400K, 512, 6), and (800K, 384, 6) respectively.

We also scaled up our MLM checkpoint to create Panda MLM-66M with (nheads, nlayers, dmodel) set to
(12, 12, 768), trained for 800K iterations, with batch size 192, and on 6 GPUs.

Figure 23: Zero-shot metrics for scaled-up checkpoints of Panda with increasing number of parame-
ters. Here, Panda 21M is our original model presented in the main body. For Panda 21M improved,
we trained for 400K iterations (compared to the 100K iterations for our original Panda 21M), and
on an improved dataset with ≈ 20% more systems, which we also use for the Panda 42M training.
For Panda 72M, we trained on a larger version of our improved dataset with 8 initial conditions per
system and with mixed periods. For presentation, bars show a semi-interquartile range (40th to 60th
percentile); for numerical values of medians and interquartile ranges, see Tables 22, 23, 24.

K.1 SCALED-UP BASELINES

We also scaled up the model parameters for Chronos as well as the training for the Chronos SFT
baseline. Hardware limitations prevented us from fine-tuning Chronos 200M and larger model classes.
We observe that our model continues to beat the baselines.

For our scaled-up training of Chronos 46M SFT, we used (Niters = 400K, batch size per device =
100, number of GPUs = 6).

For Panda 72M and for Panda MLM-66M, we trained on a larger dataset with 8 initial conditions per
system and with mixed periods.

Figure 26: Zero-shot forecast metrics for scaled-up baselines, using probabilistic forecasts for
Chronos and Chronos SFT. Dash-dotted lines indicate presence of NaNs for some systems (4% of
systems for Spearman).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Panda 21M Forecasts

Panda 72M Forecasts

Scaled up training
mixed period + multiple IC

Figure 24: Comparison of sample zero-shot forecasts between the Panda 21M model (8 heads, 8
layers), and the Panda 72M model (12 heads, 12 layers), with the latter trained on a larger dataset
with 8 initial conditions and mixed periods. As reflected in the metrics of Fig. 23, the scaled-up
model forecasts appear to decrease error and capture higher-frequency details.

Figure 25: Zero-shot forecast metrics for scaled-up baselines, using deterministic forecasts for
Chronos and Chronos SFT. For Panda 72M, we trained on a larger dataset with 8 initial conditions per
system and with mixed periods. Spearman correlation is not shown because of the high proportion of
NaNs for the Chronos deterministic forecasts, which we attribute to mean regression.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

We present the metrics shown in Fig. 25 and Fig. 26 in tabular form in Tables 22, 23, 24.

sMAPE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 72M 20.6 [12.4, 32.9] 29.4 [20.0, 41.4] 39.9 [30.9, 50.6]
Panda 42M 26.2 [16.6, 37.8] 33.9 [24.4, 45.7] 43.5 [35.0, 54.9]

Chronos 46M SFT 27.0 [18.2, 36.9] 36.0 [26.2, 45.5] 44.4 [32.7, 54.3]
Chronos 200M 36.0 [26.3, 44.7] 44.6 [34.6, 52.9] 53.5 [42.7, 60.8]
Chronos 46M 38.2 [28.8, 47.1] 47.2 [38.6, 54.6] 56.0 [46.9, 61.8]

Chronos 46M SFT Probabilistic 26.4 [18.0, 37.3] 35.8 [26.0, 46.0] 45.1 [33.8, 54.1]
Chronos 200M Probabilistic 36.4 [26.7, 44.7] 45.0 [34.2, 53.1] 53.8 [42.8, 60.6]
Chronos 46M Probabilistic 38.3 [28.6, 46.6] 47.5 [37.9, 54.7] 55.9 [47.2, 61.6]

Table 22: Median sMAPE and interquartile range [P25, P75] for scaled-up models.

MAE Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 72M 0.26 [0.14, 0.45] 0.41 [0.26, 0.60] 0.57 [0.41, 0.78]
Panda 42M 0.34 [0.20, 0.55] 0.48 [0.33, 0.71] 0.64 [0.46, 0.85]

Chronos 46M SFT 0.49 [0.28, 0.72] 0.78 [0.45, 1.17] 1.15 [0.61, 1.95]
Chronos 200M 0.61 [0.41, 0.80] 0.86 [0.58, 1.18] 1.07 [0.75, 1.83]
Chronos 46M 0.66 [0.46, 0.85] 0.91 [0.63, 1.23] 1.15 [0.81, 1.95]

Chronos 46M SFT Probabilistic 0.41 [0.25, 0.64] 0.60 [0.37, 0.89] 0.77 [0.50, 1.21]
Chronos 200M Probabilistic 0.55 [0.38, 0.73] 0.71 [0.51, 0.91] 0.84 [0.63, 1.12]
Chronos 46M Probabilistic 0.58 [0.41, 0.75] 0.74 [0.54, 0.93] 0.86 [0.69, 1.17]

Table 23: Median MAE and interquartile range [P25, P75] for scaled-up models.

1− ρ (Spearman distance) Median [P25, P75]
Model Lpred = 128 Lpred = 256 Lpred = 512

Panda 72M 0.16 [0.07, 0.29] 0.26 [0.14, 0.40] 0.40 [0.26, 0.56]
Panda 42M 0.23 [0.11, 0.39] 0.33 [0.20, 0.48] 0.47 [0.32, 0.62]

Chronos 46M SFT Probabilistic 0.25 [0.14, 0.40] 0.40 [0.25, 0.54] 0.54 [0.36, 0.68]
Chronos 200M Probabilistic 0.41 [0.25, 0.55] 0.53 [0.35, 0.67] 0.65 [0.48, 0.79]
Chronos 46M Probabilistic 0.45 [0.28, 0.60] 0.57 [0.40, 0.71] 0.70 [0.55, 0.82]

Table 24: Median 1− ρ and interquartile range [P25, P75] for scaled-up models.

K.2 DATASET WITH MULTIPLE INITIAL CONDITIONS AND MIXED PERIODS

For our scaled-up training, we used larger dataset of multiple initial conditions and mixed periods.
We present a sample of this dataset in Fig. 27. We vary the number of periods (on Fourier timescale),
from 20 to 100 to produce multiple periods, and carry out the numerical integration with up to 16
different initial conditions (although we only use 8 initial conditions per system for training, due to
compute budget restrictions). We integrate the same set of 2× 104 systems used in our training set.
The scaled-up training thus allows us to assess the effect of varying the timescales present in our
training data.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Figure 27: Examples of systems from our mixed period multi-IC training dataset. Each subplot shows
multiple (4) initial conditions for a single system (integrated with different timescale).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

L ADDITIONAL FORECASTS

In Appendix C, we presented a sample of forecasts from Panda on our held-out test set. Here, we
provide more forecasts. As done previously, we keep the prediction length fixed at Lpred = 256 for
consistency and clearer visibility. Our model was trained with Lpred = 128, so these forecasts include
an autoregressive rollout. Fig. 30 presents more forecasts, and Appendix Section M presents failure
modes and comparison against baseline models.

Figure 28: Examples of zero-shot forecasts (Lpred = 256) on held-out chaotic dynamical systems.

Figure 29: Examples of zero-shot forecasts (Lpred = 256) on held-out base systems (from the founder
pool, parents of the skew-product systems).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Figure 30: Examples of zero-shot forecasts (Lpred = 256) on held-out chaotic dynamical systems.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

M COMPARISON WITH BASELINE MODEL FORECASTS AND FAILURE MODES

We compare long-term (Lpred = 512) forecasts between Panda and the Chronos SFT and Chronos
baselines. The following plots highlight some failure modes of each model, and also emphasize the
advantage of our multivariate approach. Clearly, a univariate model can do well on a single channel
(dimension) but fail to respect the attractor geometry. The coupling between channels encodes
important information.

Figure 31: Long-term zero-shot forecasts (Lpred = 512) on held-out chaotic dynamical systems.
Comparison between Panda (Red), Chronos SFT (Blue), and Chronos (Purple).

Figure 32: Comparison (Lpred = 512) between Panda (Red), Chronos SFT (Blue), and Chronos
(Purple). An illustrative example of a held-out system where Chronos appears to parrot (limit cycle),
Chronos SFT does not respect the attractor geometry, and Panda mean regresses.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213 Figure 33: Long-term zero-shot forecasts (Lpred = 512) on held-out chaotic dynamical systems.

Comparison between Panda (Red), Chronos SFT (Blue), and Chronos (Purple).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

N ADDITIONAL COMPLETIONS

In Appendix E, we presented a sample of completions from our Panda MLM checkpoint on our
held-out test set. Here, we provide more completions from Panda MLM (Fig. 34) and long-context
completions from our scaled-up checkpoint Panda MLM-66M (Fig. 36). We also provide qualitative
comparison between Panda MLM completions and piecewise cubic spline interpolation (Fig. 35) to
further demonstrate the advantage of our method.

Figure 34: Examples of zero-shot completions on held-out chaotic dynamical systems. Each com-
pletion plotted was with a context length of 512 time points, with half the patches (patch length 16)
randomly masked out in a channel-inconsistent manner. These plots show Panda MLM, our 20M
parameter checkpoint, completing the masked-out trajectories i.e. 256 time points.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Piecewise Cubic Spline

Panda MLM

Figure 35: Qualitative comparison between completions generated by Panda MLM (with 20M
parameters) and by piecewise cubic splines. First (leftmost) panel provides an example with context
length 512 for clearer presentation; all other panels show context length 2048. Shaded red regions
show the difference from the ground truth. Piecewise cubic spline interpolation is the most successful
naive baseline, and although it achieves near competitive performance on preserving the correlation
dimension (Table 11), it is not competitive with respect to pointwise error or attractor geometry.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Figure 36: Examples of zero-shot completions on held-out chaotic dynamical systems. Each com-
pletion plotted was with a context length of 4096 time points, with half the patches (patch length
16) randomly masked out in a channel-inconsistent manner. These plots show Panda MLM-66M,
completing the masked-out trajectories i.e. 2048 time points, despite only being trained on context
length 512.

44

