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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) provides non-invasive access to
dynamic brain activity by measuring blood oxygen level-dependent (BOLD) sig-
nals over time. However, the resource-intensive nature of fMRI acquisition lim-
its the availability of high-fidelity samples required for data-driven brain anal-
ysis models. While modern generative models can synthesize fMRI data, they
often remain challenging in replicating their inherent non-stationarity, intricate
spatiotemporal dynamics, and physiological variations of raw BOLD signals. To
address these challenges, we propose Dual-Spectral Flow Matching (DSFM), a
novel fMRI generative framework that cascades dual frequency representation
of BOLD signals with spectral flow matching. Specifically, our framework first
converts BOLD signals into a wavelet decomposition map via a discrete wavelet
transform (DWT) to capture globalized transient and multi-scale variations, and
projects into the discrete cosine transform (DCT) space across brain regions and
time to exploit localized energy compaction of low-frequency dominant BOLD
coefficients. Subsequently, a spectral flow matching model is trained to gener-
ate class-conditioned cosine-frequency representation. The generated samples are
reconstructed through inverse DCT and inverse DWT operations to recover phys-
iologically plausible time-domain BOLD signals. This dual-transform approach
imposes structured frequency priors and preserves key physiological brain dynam-
ics. Ultimately, we demonstrate the efficacy of our approach through improved
downstream fMRI-based brain network classification.

1 INTRODUCTION

Recent advances in deep generative modeling have shown promising capability in synthesizing real-
istic yet diverse variations of neuroimaging modalities (Yap et al., 2024). Among available modali-
ties, functional MRI (fMRI) signals offer a non-invasive view of neuronal activity, critical for diag-
nosing neuropsychiatric and neurodevelopmental disorders (Noman et al., 2022; 2024). However,
fMRI data collection is costly and yields limited, often imbalanced datasets (Tan et al., 2024a).
These shortcomings limit the generalizability of data-driven brain analysis models, ultimately af-
fecting the reliability of computer-aided clinical tools for neurological and psychiatric conditions
(Bollmann & Barth, 2021; Ting et al., 2022). To address these challenges, generative models have
been explored for fMRI signal synthesis to support data augmentation and downstream applications
(Power et al., 2014; Tan et al., 2023).

Most existing approaches generate brain connectivity directly in the functional connectivity (FC)
space, where BOLD signal dependencies are summarized by a single correlation matrix (Biswal
& Uddin, 2025). For instance, Tan et al. (2024b) proposes a DCGAN that preserves connectomic
structure and improves the performance of downstream FC classifiers. Similarly, BrainFC-CGAN
jointly trains adversarial and supervised loss components to preserve the subject identity of real
FC on synthetic samples (Tan et al., 2024a). However, such FC representations encode static pair-
wise relations into dyads and do not effectively capture transient network states within human brain
networks (Shabestari et al., 2025).
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Recent works have revisited time-domain modeling of fMRI as an alternative to correlation-based
functional connectivity (FC). Yuan & Qiao (2024) designs diffusion-TS, a denoising diffusion prob-
abilistic model (DDPM) for fMRI time series data generation, showing improved robustness over
GANs and (Variational Autoencoder) VAE-based generative models. Hu et al. (2024) proposes FM-
TS that accelerates the sampling step yet provides quality synthetic samples via a flow matching
framework. While these methods shift focus from traditional FC to time-series data generation, their
feasibility and effectiveness for neuroimaging tasks remain largely unexplored. We argue that limit-
ing generative modeling to FC matrices or the raw time series is inadequate to faithfully reproduce
the brain’s transient state, multiscale oscillations, and cross-frequency interactions due to difficul-
ties in disentangling physiologically driven fluctuations (e.g., cardiac pulsation, respiratory cycles,
motion-induced artifacts) (Biswal & Uddin, 2025). In contrast, a time-frequency/scale representa-
tion that captures time and spectral BOLD information can fully reproduce the rich spatiotemporal
dynamics of BOLD signals. Motivated by T2I-Diff and ImagenTime, both of which frame time-
series signals as an image-generation task (Tew et al., 2025; Naiman et al., 2024). T2I-Diff specifi-
cally remodeled and validated the feasibility of this time-frequency image-based approach for gener-
ating BOLD signals. Crucially, the performance gains were modest due to the fixed-resolution STFT
representation, which neglects fine-grained transients and attenuates frequency amplitude modula-
tions, leading to artifacts during the image-to-signal reconstruction (Tew et al., 2025).

To address these issues, in this paper, we propose Dual-Spectral Flow Matching (DSFM), an fMRI
generation framework that cascades two spectral transformations of BOLD signals and integrates
a spectral flow matching for generative modeling. Our framework first decomposed BOLD signals
using the discrete wavelet transform (DWT) to form multiresolution time-scale scalogram images.
Subsequently, we compute a discrete cosine transform (DCT) that exploits low-frequency BOLD
coefficients. These transforms produce a dual-spectral view in which local and global dynamics
are jointly represented. Additionally, our framework introduces a spectral-domain flow matching
for efficient and high-fidelity generation of the time-scale fMRI scalograms conditioned on subject
classes. The generated time-frequency scalograms are then reverted to BOLD signals via image-to-
time series transforms. Our main contributions are summarized as follows:

1. Our proposed DSFM framework is the first to jointly leverage DWT and DCT, forming a
unified dual-spectral image transform to capture both global and local spatiotemporal and
spectral features for fMRI BOLD signal generation and brain disorder classification.

2. We develop a spectral flow matching to model a heat dissipation process in the DCT domain
to achieve efficient, coarse-to-fine generation aligned with the frequency hierarchy of the
dual-spectral representation. This enables DSFM to leverage the spectral sparsity inherent
in fMRI signals to effectively capture diverse brain profiles.

3. Our results show that DSFM demonstrates strong performance on unconditional and con-
ditional spectral image synthesis, and achieves improvement in brain disorder (MDD) clas-
sification compared to recent time-series and fMRI generation baselines.

2 METHODS

2.1 DISCRETE WAVELET TRANSFORM AND ITS INVERSION

Fig. 1 provides an overview of our proposed framework. Given high-dimensional fMRI signals
from S subjects, denoted as X = {xs}Ss=1, where each subject xs ∈ RD×T consists of D regions
of interest (ROIs) recorded over T time points, our objective is to learn the underlying real data
distribution pdata(X ) and generate a synthetic distribution pθ(X ) that is statistically indistinguishable
from the real data. Unlike conventional time-series generative tasks that operate exclusively in the
time domain, our approach transforms fMRI time series into time-scale images using the DWT,
defined as follows:

W (k, j) =

N∑
n=1

x(n)ψj,k[n], (1)

where xs(n) is the BOLD signal at local time index n ∈ {1, 2, . . . , N}. Here, ψj,k[n] =

2−k/2ψ[2kn−j] is the dyadic wavelet basis function, where scale k ∈ {1, 2, . . . , ⌊log2N⌋} controls
the frequency resolution, and translation index j ∈ {1, 2, . . . , N/2k} determines the time location,
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Figure 1: The pipeline of DSFM. ROI-based BOLD time series are first extracted, followed by DWT-
based multiresolution decomposition and blockwise 2D DCT for localized spectral encoding. U-ViT
is used to model the velocity field in the DCT domain for ODE-based sampling. The reconstructed
signals (via IDCT and IDWT) are then used for data augmentation, FC matrix construction, and
classification. Finally, fidelity and downstream performance are evaluated.

derived from the mother wavelet ψj,k[n]. To construct a wavelet decomposition map, we upsam-
ple each wavelet subband to the original time length and stack them along the scale axis, form-
ing a multiresolution wavelet decomposition map. Thus forming a full wavelet coefficient tensor
W (i, j, k) ∈ RD×Tψ×C , where Tψ = N/2C and C = ⌊log2N⌋, that captures both low-frequency
trends and high-frequency transients in the fMRI BOLD signals. We further perform component-
wise normalization to accentuate the difference between high and low coefficients over brain regions
and time. As shown in Fig. 2, this allows the time-series signals to be represented as multichannel
images with preserved spectral-temporal characteristics.

To reconstruct the original signals from the generated scalogram representation, we first denormal-
ize the predicted wavelet components Ŵ (i)(j, k) ∈ RT×C of each ith ROI. The coefficients are
then downsampled according to their corresponding dyadic scales and computed the inverse DWT
(IDWT) to obtain the fMRI BOLD signals as follows:

x̂(n) =
1

N

C∑
k=1

T∑
j=1

W (i)(j, k)ψj,k[n]. (2)

Finally, these wavelet subbands are reconstructed through a hierarchical combination of approxima-
tion and detail components across all scales to obtain the reconstructed time-domain signal x̂s for
each subject. This process ensures that the inherited spectral-temporal characteristics of the original
fMRI BOLD signals are well-preserved.

2.2 DISCRETE COSINE TRANSFORM FOR BOLD SIGNALS

To extract localized energy compactions of low-frequency spontaneous BOLD coefficients. We
divide each subband map Ŵ (k)(i, j) ∈ RD×Tψ of each kth wavelet scale into non-overlapping 2D
blocks of size B ×B, resulting in a set of blocks (patches):

W (k) ≡
{
W (k)
p (x, y) ∈ RB×B

}P
p=1

, (3)

3
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Figure 2: Original (Rows 1&3) vs. synthetic BOLD signals (Rows 2 &4) and generated normalized
scalograms. Our framework generates new synthetic BOLD signals as opposed to correlation matri-
ces or functional connectivity, with distributional statistics that closely match the original samples.

where P is the number of blocks per subband image and B is the block size. Each block is then
transformed via 2D type-II DCT, as follows:

D(k)(u, v) = α(u)α(v)

B∑
x=1

B∑
y=1

W (k)(x, y) cos

[
(2x+ 1)uπ

2B

]
cos

[
(2y + 1)vπ

2B

]
, (4)

where α(u) =
√

1
B if u = 0, and α(u) =

√
2
B otherwise. The resulting D(k)(u, v) ∈ RB×B at

each scale k represents the DCT coefficients within each block.

To recover the full image representation, we apply the inverse 2D DCT (IDCT) to each block
D(k)(u, v). The signal block is reconstructed via the following inverse transform:

Ŵ (k)(x, y) =

B∑
u=1

B∑
v=1

α(u)α(v)D(k)(u, v) cos

[
(2x+ 1)uπ

2B

]
cos

[
(2y + 1)vπ

2B

]
. (5)

Once all blocks have been transformed back into the original spatial domain, we stitch the patches
to recover the full subband map. Since the DCT is applied to non-overlapping blocks, the recon-
struction involves simply tiling the inverse-transformed blocks back into their original positions
within the subband image. This blockwise DCT preserves localized low-frequency structure in the
ROI–time space while discarding high-frequency noise components. The resulting set of filtered
subbands can then be passed back into the IDWT to recover the time-domain fMRI BOLD signal
x̂s(n), ensuring global and local spectral characteristics are retained.

2.3 SPECTRAL FLOW MATCHING IN DCT DOMAIN

Recent studies have empirically demonstrated that pixel-based diffusion models exhibit approximate
autoregressive behavior in the frequency domain (Dieleman, 2024; Falck et al., 2025). Specifically,
diffusion models (Ho et al., 2020; Song et al., 2021) tend to eliminate high-frequency components
early in the forward process, followed by progressively lower-frequency components as the diffusion
timestep advances. While prior studies focus on the Fourier basis, this property also holds in the
DCT domain (Skorokhodov et al., 2025; Ning et al., 2025), which offers practical advantages: real-
valued orthogonality, energy compaction in low-frequency bands, and compatibility with block-wise
architectures.

Modeling diffusion directly in the frequency domain enables the exploitation of spectral sparsity
for designing frequency-aware noise schedules. However, existing frequency-domain generative
models (Hoogeboom & Salimans, 2023; Rissanen et al., 2023) remain constrained to the diffusion

4
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framework, which relies on stochastic differential equation (SDE) sampling and typically requires
hundreds to thousands of steps for high-quality synthesis. In contrast, flow-matching approaches
based on ordinary differential equations (ODEs) provide a deterministic alternative with significantly
lower sampling complexity. In this work, we introduce a spectral flow-matching framework that
extends frequency-based generative modeling beyond the diffusion paradigm. Our approach enables
coarse-to-fine generation aligned with the spectral structure of natural images, while achieving high-
fidelity synthesis with significantly fewer sampling steps.

To achieve this, we formulate a spectral flow-matching loss that learns the velocity field of a prob-
ability flow directly in the DCT domain. First, consider a forward-time heat dissipation process
(Rissanen et al., 2023) as an alternative to the conventional isotropic diffusion, described by the
following stochastic partial differential equation (SPDE):

dxt(c) = η(t)∆c xt(c) dt+G(t) dW (t), (6)

where xt : R2×R+ → R is an idealized continuous-space representation of a single image channel
at time t ∈ [0, 1], and ∆c = ∇c · ∇c is the Laplace operator with respect to the spatial image
coordinates c; η(t) andG(t) are time-dependent scalar drift and matrix-valued diffusion coefficients,
respectively. The corresponding reverse-time probability flow ODE (Song et al., 2021) is given by:

dxt
dt

= η(t)∆c xt(c)−
1

2
G(t)G(t)T ∇xt log p(xt). (7)

Subsequently, define the forward and inverse DCT transforms formally as

zt = V Txt = DCT(xt), xt = V zt = IDCT(zt), (8)

where V denotes the matrix of orthonormal DCT basis eigenvectors. It then follows that the Lapla-
cian operator in equation 6 can be diagonalized via the eigendecomposition ∆c = V ΛV T , where
Λ denotes the diagonal matrix of DCT mode-specific Laplacian eigenvalues. Applying DCT to the
forward-time SPDE equation 6 yields

dzt = −η(t) Λ zt dt+G(t) dW (t), (9)

where W (t) is a standard Wiener process, but in the DCT domain. Moreover, given that V is
orthonormal, the following change-of-variables holds for any differentiable function f :

V T∇xf(x) = V T
(
∂z

∂x

)T
∇zf(z) = V TV︸ ︷︷ ︸

I

∇zf(V
Tx︸︷︷︸
z

) = ∇zf(z).

By letting f(xt) = log p(xt), the score transforms as V T∇xt log p(xt) = ∇zt log p(zt). Since Λ is
diagonal and the DCT basis orthogonalizes the frequency modes, applying DCT to equation 7, the
reverse-time probability flow ODE admits the following mode-wise decomposition:

dzt[k]

dt
= −η(t)λk zt[k]−

1

2
g(t, k)2 ∇zt[k] log p(zt), (10)

where λk is the k-th diagonal entry of Λ, corresponding to the Laplacian eigenvalue of the kth DCT
basis component, which evolves independently under the ODE dynamics.

The following proposition bridges between this DCT mode-wise probability flow ODE and the
conditional velocity (vector) field in flow matching (Lipman et al., 2023).
Proposition 1. A mode-wise conditional perturbation kernel (isotropic in each DCT mode) is

p(zt[k] | z0[k]) = N
(
µ(t, k) z0[k], σ(t, k)

2
)
, (11)

with mean and standard deviation (std) schedules

µ(t, k) = α(t)ω(t, k), ω(t, k) = e−λkτ(t), σ(t, k)2 = 1− µ(t, k)2, (12)

where α(t) is the mean schedule of a variance-preserving (VP) diffusion process and τ(t) =∫ t
0
η(s) ds, satisfies the heat dissipation process (6) and (9). The mode-wise diffusion coefficients

are then given by

g(t, k)2 = 2σ(t, k)
(
σ̇(t, k)− f(t, k)σ(t, k)

)
, (13)

where f(t, k) = α̇(t)
α(t) − η(t)λk, and µ̇(t, k), σ̇(t, k) denote time-derivatives of the mean and std

schedules in (12).
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Table 1: Comparison of unconditional Netsim dataset generation across SOTA and proposed model.
CoT-GAN DiffTime DiffWave TimeVAE TimeGAN Diffusion-TS T2I-Diff DSFM (Ours)

cFID ↓ 7.813±.550 0.340±.015 0.244±.018 14.449±.969 0.126±.002 0.105±.006 1.384±.107 0.193±.017

Corr. ↓ 26.824±.449 1.501±.048 3.927±.049 17.296±.526 23.502±.039 1.411±.042 4.121±.094 4.552±.041

Disc. ↓ 0.492±.018 0.245±.051 0.402±.029 0.476±.044 0.484±.042 0.167±.023 0.400±.059 0.497±.001

Pred. ↓ 0.185±.003 0.100±.000 0.101±.000 0.113±.003 0.126±.002 0.099±.000 0.102±.001 0.104±.000

Proof. Refer to the Supplementary Material.

Proposition 2. A mode-wise conditional velocity field

dzt[k]

dt

∣∣∣∣
z0[k]

= v(zt|z0; t, k) = µ̇(t, k) z0[k] + σ̇(t, k) ϵ, (14)

where ϵ ∼ N (0, 1), is equivalent to the conditional probability flow ODE

dzt[k]

dt

∣∣∣∣
z0[k]

= −η(t)λk zt[k] +
1

2
g(t)2 ∇zt[k] log p(zt|z0). (15)

Furthermore, it follows that the marginal velocity field

dzt[k]

dt
= v(zt; t, k) = Epdata(z0|zt)

[
v(zt|z0; t, k) | zt

]
, (16)

given by the law of the unconscious statistician (Lipman et al., 2024), satisfies the marginal mode-
wise probability flow ODE (10).

Proof. Refer to the Supplementary Material.

Given this correspondence between the probability flow ODE from diffusion models and flow match-
ing, we parameterize the velocity field vθ using a deep neural network (U-ViT (Bao et al., 2023))
and train it via the following conditional spectral flow matching (CSFM) loss:

LCSFM(θ)=Et,p(zt | z0)pdata(z0)

∥∥vθ(zt; t, k)− v(zt|z0; t, k)
∥∥2, (17)

where v(zt|z0; t, k) is the conditional velocity field in (14), with zt sampled from the per-mode
conditional perturbation kernel (11), and t ∼ U(0, 1) is uniformly sampled. Notably, this CSFM
loss recovers the standard flow matching loss under the OT-CFM schedules µ(t) = 1 − t and
σ(t) = t, where the time convention adopted here is the reverse of that in (Lipman et al., 2023).
Hence, our framework generalizes flow matching to a heat dissipation process in the DCT domain.
In our experiments, we use α(t) from the variance-preserving (VP) cosine schedule and set τ(t) =
σmax sin

2
(
π
2 t
)

following (Hoogeboom & Salimans, 2023), which observes optimal performance
with σmax = 20.

To enable class-conditioned generation, we employ classifier-free guidance (Ho & Salimans, 2021)
by conditioning the velocity model on the class label c, i.e., vθ(zt; t, k, c) and set c = ∅ for the
unconditional model. The conditional and unconditional models are trained jointly by randomly
replacing the class label cwith the null token ∅ with probability p∅. During sampling, the classifier-
free guided velocity is obtained as a weighted combination of the model outputs (Zheng et al., 2023).
Finally, DCT samples are generated by numerically integrating the learned flow velocity using an
adaptive ODE solver.

3 EXPERIMENT

3.1 SETTINGS

Data Acquisition and Pre-processing. We preprocessed the resting-state fMRI (rs-fMRI) dataset
from the REST-meta-MDD Consortium database (Yan et al., 2019) using the Data Processing As-
sistant for Resting-State fMRI (DPARSF) (Yan & Zang, 2010). This dataset comprises 250 Healthy

6
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Table 2: The best MDD dataset generation quality and classification performance of different clas-
sifiers trained on ground-truth data augmented at three levels. - refers to FC-based generation Full
results. Refer to the Supplementary Material.

W/O Aug. 2D-DCGAN WGAN-GP TimeGAN Diffusion TS T2I-Diff DSFM (Ours)

Metric Real (R.) R. + Synth. 3× R. + Synth. 2× R. + Synth. 1× R. + Synth. 1× R. + Synth. 1× R. + Synth. 1×
cFID − − − 4.98± 0.65 2.06± 0.21 7.45± 0.42 1.51± 0.41
Corr. − − − 197.05± 17.75 64.16± 3.92 62.32± 1.04 57.30± 2.89
Accuracy 58.90± 2.98 58.86± 2.24 65.04± 2.02 66.78± 0.02 67.29± 0.02 66.87± 3.22 70.84± 5.89
Recall 58.90± 2.98 58.86± 2.24 65.04± 2.02 66.78± 0.02 67.29± 0.02 66.87± 3.22 70.84± 5.89
Precision 59.56± 2.74 59.91± 2.57 66.35± 2.13 67.14± 0.02 67.55± 0.02 67.06± 3.34 70.99± 5.80
F1-Score 58.39± 3.09 57.64± 1.96 64.12± 2.10 66.48± 0.02 67.21± 0.02 66.83± 3.21 70.77± 5.97
ROC 59.00± 2.56 58.57± 2.05 64.74± 2.08 67.26± 0.03 64.57± 0.03 67.26± 6.00 71.49± 5.73

Table 3: Generation quality and classification accuracy with Schaefer parcellation on ABIDE
dataset.

GAT GatedGCN GPS BrainNetCNN ContrastPool BNTF DSFM (Ours)

Metric W/O Aug. W/O Aug. W/O Aug. W/O Aug. W/O Aug. 1× W/O Aug. 1× R. + Synth. 1×
cFID − − − − − − 0.07± 0.01
Corr. − − − − − − 13.05± 1.69
Accuracy 60.10± 4.13 61.66± 3.36 63.04± 3.36 65.75± 3.24 65.01± 3.84 63.70± 4.84 71.30± 0.03
Recall 55.11± 7.89 55.74± 11.58 68.75± 11.22 61.25± 5.66 61.45± 5.43 70.19± 8.66 71.40± 0.03
Precision 59.57± 4.63 61.65± 4.12 59.97± 5.36 63.98± 3.47 63.56± 3.62 60.34± 5.40 72.60± 0.03
F1-Score 56.96± 5.16 58.05± 8.20 63.48± 5.98 62.39± 3.13 62.28± 2.81 64.64± 5.65 71.40± 0.03
ROC 60.43± 3.88 62.31± 4.32 63.34± 5.15 64.78± 2.52 64.52± 2.30 64.15± 5.42 71.50± 0.07

Controls (HC) subjects and 227 individuals diagnosed with Major Depressive Disorder (MDD). All
scans were acquired using a Siemens Tim Trio 3T scanner TR/TE = 2000/30 ms, and a slice thick-
ness of 3mm. The brain was parcellated into 116 ROIs, covering cortical and subcortical areas, and
the mean BOLD signal for each ROI was extracted across 232 time points using the Automated
Anatomical Labeling (AAL) atlas. The Autism Brain Imaging Data Exchange (ABIDE) initia-
tive provides rs-fMRI data curated from multiple international sites to advance research on Autism
Spectrum Disorder (ASD) Di Martino et al. (2014). Our analysis includes 488 ASD patients and
537 normal controls (NC) from the ABIDE database. Lastly, we incorporate the NetSim dataset, a
widely used benchmark for evaluating causal discovery algorithms in neuroimaging. NetSim offers
biologically realistic simulations of blood-oxygen-level–dependent (BOLD) time series, we chose
simulation 4 with 50 features from the original dataset Smith et al. (2011). Quality Metrics. Our
proposed DSFM model is first assessed in the unconditional setting using standard metrics used by
ImagenTime and T2I-Diff (Naiman et al., 2024; Tew et al., 2025), against seven time-series and
time-frequency generative model baselines such as CoT-GAN (Xu et al., 2020), DiffTime (Coletta
et al., 2023), DiffWave (Kong et al., 2020), TimeVAE (Desai et al., 2021), TimeGAN (Yoon et al.,
2019), Diffusion-TS (Yuan & Qiao, 2024), and T2I-Diff (Tew et al., 2025). In the conditional setting,
we computed the image-domain FID score on subject-specific DCT and DWT image representations
(Heusel et al., 2017). To ensure image-to-signal reconstruction quality, we evaluate the time-domain
using the context-FID (cFID) score (Jeha et al., 2022). Classification Metrics. We further evaluate
the downstream performance with a specially designed classifier for brain connectivity (Kawahara
et al., 2017). The baselines include GANs and diffusion models such as Vanilla-GAN (Goodfel-
low et al., 2020), 1D-DCGAN (Radford et al., 2015), 2D-DCGAN (Tan et al., 2024b), WGAN-GP
(Gulrajani et al., 2017), and T2I-Diff (Tew et al., 2025).

3.2 IMPLEMENTATION DETAILS

Connectivity Network Construction. The subject-specific functional connectivity is derived us-
ing the Ledoit-Wolf (LDW) regularized shrinkage covariance estimator to preserve the strongest
τ = 40% connections, resulting in a sparse 116×116 FCs with all other connections set to zero.
DSFM Training. The proposed DSFM framework generates the fMRI signals corresponding to the
subjects’ condition (HC and MDD). The classifiers then discriminate between the HC and MDD
subjects. We train the DSFM using an AdamW optimizer with a learning rate of 2e−4 over 300k
iterations. All experiments employ a Haar wavelet with a 5-level basis, yielding a real-valued prop-
erty of 116×232 image size, and we compare numbers of function evaluations (NFE) of 20,50, and
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Table 4: Ablation analysis of frequency-specific FC classification by incorporating individual and
grouped wavelet subbands.

Wavelet Subbands Accuracy Precision F1-Score ROC

Setting LH1 LH2 LH3 LH4 LH5 LL Value Drop (%) Value Drop (%) Value Drop (%) Value Drop (%)

Full-band ✓ ✓ ✓ ✓ ✓ ✓ 70.84 – 70.99 – 70.77 – 71.49 –
Low-pass ✗ ✗ ✓ ✓ ✓ ✓ 66.89 -5.58 66.96 -5.68 66.77 -5.65 65.79 -7.97
Mid-pass ✓ ✓ ✗ ✗ ✓ ✓ 63.30 -10.64 63.74 -10.21 63.05 -10.91 60.41 -15.50

High-pass ✓ ✓ ✓ ✓ ✗ ✗ 65.40 -7.68 65.55 -7.66 65.18 -7.90 63.66 -11.0

Band-pass 1 ✗ ✓ ✓ ✓ ✓ ✓ 66.45 -6.20 66.53 -6.28 66.39 -6.19 68.38 -4.35
Band-pass 2 ✓ ✓ ✓ ✓ ✓ ✗ 66.66 -5.90 66.88 -5.79 66.60 -5.89 66.74 -6.64
Band-pass 3 ✗ ✓ ✓ ✓ ✓ ✗ 66.88 -5.59 66.76 -5.96 67.06 -5.24 67.77 -5.20

100 steps, and signal-to-noise ratios (SNRs) of 1.0 and 2.0. Data Augmentation and Classifier
Training. The trained DSFM is used to augment real fMRI signals by factors of 1×, 2×, and 3×.
For our classifier, the L2 regularization weight decay is from 10−8 to 10−2, the scheduler learning
rate reduction factor is from 0.1 to 0.9, and the batch size is from 5 to 16, the same as in (Tan et al.,
2022). All hyperparameters are selected based on a 5-fold stratified cross-validation.

3.3 OVERALL PERFORMANCE

We first trained our constrained spectral flow matching models to produce similar outputs in Table
1. Then, we followed the standard setting for the quality evaluation of the time-series generation.

Figure 3: We plot the 2D t-SNE embedding of
HC and MDD synthetic data generated with our
method (top & bottom). Then, we compare with
the Jensen-Shannon Divergence and probability
density functions (top right).

Classification Score. To validate the fidelity of
the generated samples, we evaluate the classi-
fication performance of BrainNetCNN (Kawa-
hara et al., 2017), comparing DSFM to GAN
and diffusion-based baselines on our fMRI
dataset. Here, we use the parameter setting
of NFE = 100 and SNR = 1.0 in subsequent
downstream analyses, as supported by the qual-
ity metrics of distinguishing HC and MDD sub-
jects in Table 7. Table 3 reports the classifica-
tion results on the 5-fold cross-validation test
set. Notably, DSFM achieves the highest ac-
curacy under a 1 × data augmentation setting.
Moreover, our model exhibits lower variance
across increased augmentation levels, indicat-
ing strong generalization and robustness. These
results confirm that DSFM not only enriches
sample diversity but also preserves discrimina-
tive structural and functional patterns critical
for clinical tasks. Figure 3 further demonstrates
that our proposed DSFM model excels in gen-
erating class-conditioned synthetic data whose
statistical distribution closely matches that of
the original samples.

3.4 ABLATION STUDIES

We conducted ablation studies on six wavelet detail bands, i.e., LH1: 0.125 - 0.250Hz, LH2: 0.0625
- 0.125Hz, LH3: 0.03125 - 0.0625Hz, LH4: 0.015625 - 0.03125Hz, LH5: 0.007825 - 0.015625Hz,
and a coarse approximation LL: 0 - 0.007825Hz, contrasting each setting with the full 0 to 0.25Hz
spectrum. Table 4 assesses the impact of different wavelet subbands on model performance. The
steepest decline occurred when the mid-frequency LH3–LH4 pair was removed, highlighting the
pivotal role of 0.01–0.06 Hz oscillations to capture disease-specific interactions due to insufficient
contextual information. Suppressing either the highest (LH1–LH2) or the very lowest components
(LL and LH5) produced a comparable, still significant degradation (5–8%), indicating that both
rapid fluctuations and slow drifts provide complementary cues. Conversely, removing individual
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Figure 4: Visualization of the average resting-state hemodynamic response function (rsHRF) and
power spectral density (PSD) of real and synthetic BOLD in the Medial Prefrontal Cortex (mPFC)
and Posterior Cingulate Cortex (PCC) region of the Default Mode Network (DMN). Highlighted L2
norm quantifies the generation and synthetic results closely resemble the real physiological profiles.

bands such as LH1 and LL also reduced performance by 5–7%, indicating that long-range and slow
drifts carry global synchrony patterns essential for classification. Interestingly, we observe that al-
though BOLD fluctuations predominantly lie in the low-frequency band, removing any subbands
impaired performance, indicating that disease-related features are distributed across the entire fre-
quency spectrum.

Table 5: Ablation of block Size, wavelet basis,
and different normalization strategy.

Configurations cFID↓ Corr↓
1) B = 4, MM 1.505±0.41 57.3±2.89

2) B = 4, ECS 0.098±0.01 18.2±1.41

3) B = 2, Haar 0.121±0.03 19.7±3.03

4) B = 4, Haar 0.098±0.01 18.2±1.41

5) B = 4, dB-4 0.199±0.10 20.7±3.25

Table 5 presents ablation analyses of different
configurations evaluating normalization strategies,
block sizes, and wavelet bases influence the gen-
erative quality of our dual-spectral representa-
tion. In particular, (1,2) shows a comparison of
MinMax normalization (MM) with the Entropy-
Consistent Scaling (ECS). Notably, MinMax scales
each wavelet coefficient independently, broaden-
ing the distribution of high-frequency coefficients,
which results in slower training and reduced per-
formance. In contrast, ECS preserves the global
spectral coefficient by normalizing DCT frequency
components using a percentile-trimmed bound de-
rived from the lowest frequency component, pro-
viding better cFID and correlation scores by main-
taining the original coefficient distribution. Both
experiments of smaller and larger block sizeB in (3,4) achieve comparable generation performance,
with a tradeoff of a smaller B will lead to slower training, larger B leads to the loss of fine-grained
local dependencies. Finally, ablation of (4,5) with different mother wavelet produces similar gener-
ation results on the MDD dataset. This further exemplifies that the underlying fMRI signals do not
exhibit strong wavelet-specific bases sensitivity.

Table 6: Similarity between synthetic and real FC networks across FC edges, node strength, and
edge betweenness centrality. Higher values indicate better preservation of real FC topology.

Metric Vanilla-GAN 1D-DCGAN 2D-DCGAN WGAN WGAN-GP DSFM (Ours)

FC Edges 0.53± 0.06 0.10± 0.11 0.54± 0.49 0.51± 0.47 0.52± 0.17 0.99± 0.00
Node Strength 0.67± 0.08 0.30± 0.16 0.53± 0.08 0.64± 0.09 0.62± 0.03 0.99± 0.00
Edge Betweenness Centrality 0.11± 0.02 0.06± 0.02 0.14± 0.02 0.14± 0.02 0.15± 0.02 0.77± 0.09
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Figure 5: (a) Group-averaged connectivity patterns of real and synthetic HC/MDD connectivity
patterns and their differences. (b,c) Subject-level connectivity patterns of real and synthetic from
HC and MDD, respectively. (d) 3D cortical surface and brain networks visualizations showing node
strength (top) and network organization for real and synthetic HC/MDD (bottom).

4 NEUROPHYSIOLOGICAL PLAUSIBILITY ANALYSIS

To assess the neurophysiological plausibility of our proposed DSFM-generated BOLD signals, Fig-
ure 4 presents the qualitative and quantitative comparisons of resting-state hemodynamic response
function (rsHRF) and power spectral density (PSD) between real and synthetic signals in two key
hubs of the Default Mode Network (DMN). As shown in Figure 4, the near-perfect overlap of the
HRF plots indicates that DSFM preserves the canonical temporal dynamics of the hemodynamic
process rather than merely matching marginal statistics. Likewise, the close alignment of the PSD
curves indicates that the synthetic samples exhibit meaningful fMRI-like spectral characteristics,
accurately capturing the dominant low-frequency peaks and the spectral decay from low-frequency
and high-frequency components. The low L2 error across both HRF and PSD provides evidence
that DSFM can learn underlying spectral-temporal dynamics of the BOLD signals. Overall, these
analyses suggest that our model is able to generate synthetic signals that have the neurophysiological
plausibility for different downstream tasks. This is further verified by the classification performance
in Table 3, where models trained with DSFM-generated data perform better on unseen samples.

5 FUNCTIONAL CONNECTIVITY (FC) ANALYSIS AND VISUALIZATION

Table 6 further evaluates the fidelity of the generated data FC matrices derived from real and syn-
thetic fMRI BOLD signals. Across all graph similarity metrics, DSFM shows higher Pearson cor-
relation with the real data than other GAN-based models, indicating more realistic synthesis of FC
networks in both connectivity edges and network topology. These results demonstrate that DSFM
not only reproduces plausible pairwise connectivity patterns but also faithfully captures higher-order
network topology, reflecting more coherent interdependencies among FC edges than existing GAN-
based generative models. Figure 5 visualizes group-averaged connectivity, thresholded at 0.6 to
highlight significant edge connections. Our analysis reveals that the synthetic FC closely aligns
with the functional changes observed in the real FC distribution. Furthermore, the HC and MDD
connectograms between both real and synthetic FC indicate a reduction in intra-network connec-
tivity within the left superior frontal gyrus (FrontalSupL) and weakened coupling between the left
middle frontal gyrus (FrontalMidL) and the anterior cingulate cortex (CingulumAntL). The results
suggest impaired cognitive functions associated with difficulties in decision-making and emotion
regulation, indicating the biological plausibility of the generated data.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose DSFM, which effectively captures both temporal dynamics and spectral
evolution underlying the ground-truth data distribution for accurate brain signal generation. For
future work, we aim to further validate MDD classification using graph-based deep learning models.
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framework for static and dynamic functional connectivity augmentation for multi-domain brain
disorder classification. In Proceedings of the 2023 IEEE International Conference on Image
Processing (ICIP), pp. 635–639, 2023.

Yee-Fan Tan, Junn-Yong Loo, Chee-Ming Ting, Fuad Noman, Raphaël C-W Phan, and Hernando
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A APPENDIX

This appendix provides self-contained additional material for the submission titled ”Functional MRI
Time Series Generation via Wavelet-Based Image Transform and Spectral Flow Matching for Brain
Disorder Identification”. It includes a detailed about related works, proofs and derivations, the
evaluation metrics, full experimental results, limitations, reproducibility statement, as well as the
use of large language models (LLMs).

B RELATED WORKS

B.1 GENERATIVE MODELING OF FMRI TIME SERIES.

Synthesizing fMRI BOLD signals is challenging due to the complex spatiotemporal dependencies,
non-stationarity, and interferences arising from physiological fluctuations. Existing time-series gen-
eration is principally based on generative adversarial networks (GANs), variational autoencoders
(VAEs), and diffusion-based frameworks.

GAN-based approaches: Yoon et al. (2019) proposes TimeGAN by extending GAN framework
with an embedding function and a supervised loss to better capture temporal dynamics, successfully
preserving both the static and dynamic characteristics of synthetic time-series data. COT-GAN
introduces a causality-aware optimal transport cost, further aligning real and synthetic samples over
time and reducing time-dependent discrepancy between them (Xu et al., 2020).

VAE-based approaches: TimeVAE incorporates temporal components into its encoder-decoder
network, improving the interpretability of generated time series. Furthermore, it demonstrates suc-
cess in reducing overall training time compared to adversarial methods (Desai et al., 2021).

Diffusion-based approaches: DiffTime improves time-series generation by applying hard con-
straints to enforce fixed points and global minima; alongside soft constraints introduce penalties to
guide the model towards desired temporal trends (Coletta et al., 2023). DiffWave achieves high-
fidelity time-series generation by replacing autoregressive dependencies with a diffusion denoising
chain (Kong et al., 2020). More recently, ImagenTime and T2I-Diff demonstrated its capability in
modelling long-term time-series benchmarks by converting signals into short-time Fourier transform
(STFT) as the image representation, offering an alternative for modelling longer continuous signals
using spectral components (Naiman et al., 2024; Tew et al., 2025). In contrast, the wavelet trans-
form provides multi-resolution bands by using adaptive windows that narrow at high frequencies and
widen at low frequencies. These adaptive methods make the wavelet transform better at capturing
short transients in continuous signals while still capturing slower trends (Murad et al., 2025).

C PROOFS AND DERIVATIONS

C.1 PROOF OF PROPOSITION 1

Proof. The forward-time SPDE (9) in the DCT domain admits the following mode-wise decompo-
sition:

dzt[k] = η(t)λk zt[k] dt+ g(t, k) dWt[k] (18)

where Wt[k] is the per-mode standard Wiener process. Subsequently, introduce the variance-
preserving (VP) scaling

zt[k] = α(t) z̃t[k] (19)

where α(t) is a scalar applied equally to every mode, and the DCT basis remains unchanged, i.e., the
scaled zt still obeys the heat dissipation SPDE. Substituting this into (18) and applying Itô’s lemma
gives

dzt[k] = f(t, k) zt[k] dt+ g(t, k) dWt[k] (20)

where we have defined

f(t, k) =
α̇(t)

α(t)
− η(t)λk (21)

14
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Taking the conditional expectation of the drift term in (20) and integrating with respect to time yields

d

dt
E
[
zt[k] | z0[k]

]
= f(t, k)E

[
zt[k] | z0[k]

]
E
[
zt[k] | z0[k]

]
=

∫ t

0

f(t, k)µ(t, k) dt = α(t) e−λkτ(t) = µ(t, k)

(22)

which is exactly the mean schedule defined in (12). From (24), we also have

µ̇(t, k) = f(t, k)µ(t, k) (23)

which we will use to derive the standard deviation.

Applying Itô’s lemma once again to the square of (20), and taking conditional expectations yields

d

dt
E[zt[k]2] = 2 f(t, k)E

[
zt[k]

2
]
+ g(t, k)2 (24)

Additionally, taking the time-derivative

σ(t, k)2 = Var
[
zt[k] | z0[k]

]
= E

[
zt[k]

2
]
− µ(t, k)2 (25)

and substituting µ̇ = f(t, k)µ from (23), we have

σ̇2 = 2 f(t, k)σ2 + g(t, k)2 (26)

where we use the shorthand notations µ, σ and µ̇, σ̇ for brevity. Since the conditional perturbation
kernel is variance–preserving, we also have

σ(t, k)2 = 1− µ(t, k)2 (27)

Differentiating this gives

σ̇2 = −2µ µ̇ = −2 f(t, k)µ2 = −2 f(t, k) (1− σ2) (28)

Equating (26) and (28) gives

g(t, k)2 = 2σ(t, k)
(
σ̇(t, k)− f(t, k)σ(t, k)

)
(29)

which is exactly (13). This completes the proof.

C.2 PROOF OF PROPOSITION 2

Proof. The Gaussian reparameterization trick

zt[k]|z0[k] = µ(t, k) z0[k] + σ(t, k) ϵ (30)

follows from the mode-wise conditional perturbation kernel (11) , and its time-derivative gives the
conditional vector field (14). Using the results (21), (23) and (29) from the proof of Proposition 1,
and substituting (30), we can reformulate the conditional vector field (14) as follows:

dzt[k]

dt

∣∣∣∣
z0[k]

= v(zt | z0; t, k)

= µ̇ z0[k] + σ̇ ϵ

=
µ̇

µ

(
zt[k]− σ ϵ

)
+ σ̇ ϵ

= f(t, k)
(
zt[k]|z0[k] − σ ϵ

)
+ σ̇ ϵ

= f(t, k) zt[k]|z0[k] +
(
σ̇ − f(t, k)σ

)
ϵ

= f(t, k) zt[k]|z0[k] +
1

2
g(t, k)2

ϵ

σ

= f(t, k) zt[k]|z0[k] +
1

2
g(t, k)2 ∇zt[k] log p(zt[k] | z0[k])

(31)

which arrives at the conditional probability flow ODE (15). Here, we again use the shorthand nota-
tions for brevity.
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Applying the law of the unconscious statistician from (16)

Epdata(z0|zt)
[
v(zt|z0; t, k) | zt

]
(32)

to the score ∇zt log p(zt | z0), we have∫
R
∇zt log p(zt | z0) pdata(z0|zt) dz0

=

∫
R
∇zt log p(zt | z0)

p(zt | z0) pdata(z0)∫
R p(zt | z0) pdata(z0) dz0

dz0

=

∫
R

∇ztp(zt | z0)
p(zt | z0)

p(zt | z0) pdata(z0)

p(zt)
dz0

=
1

p(zt)
∇zt
∫
R
p(zt | z0) pdata(z0) dz0

=
1

p(zt)
∇ztp(zt) = ∇zt log p(zt)

(33)

where we have repeatedly apply the log-derivative trick 1
p(z)∇p(z) = ∇ log p(z). This gives us the

marginal score and the same applies to the drift term f(t, k) zt[k]|z0[k] in (31), thus completing the
proof.

D EVALUATION PROTOCOL

D.1 TIME-SERIES METRICS.

We extend the standardized time-series generation metrics from Naiman et al. (2024) to broaden
their applicability. We employ the following four metrics and provide their mathematical formula-
tions to ensure comparable evaluation across multiple aspects:

Discriminative (Disc.) & Predictive score (Pred.). We adopt the same experimental setup of (Yoon
et al., 2019) for both the discriminative and predictive scores. Both the classifier and sequence-
prediction model use a two-layer GRU-based architecture. The discriminative score is computed as
|accuracy − 0.5|, where lower scores indicate better indistinguishability, and higher scores reflect
greater divergence. The predictive score is the mean absolute error (MAE) of the one-step-ahead
predictions and the ground-truth values.

Context-FID score (cFID). Context-FID score is a time-series adaptation of the image-based
Frechet Inception Distance (FID) that measures how close in distribution synthetic data is to the
real data in a learned embedding space (Jeha et al., 2022). Instead of image features, it uses a
trained encoder called TS2Vec to capture temporal context. Lower scores indicate higher fidelity
and have been shown to correlate with better downstream tasks.

Correlational score (Corr.). Following (Liao et al., 2020), we first estimate the covariance of the
ith and jth feature of time series as follows:

covi,j =
1

T

T∑
t=1

Xt
iX

t
j −

(
1

T

T∑
t=1

Xt
i

)(
1

T

T∑
t=1

Xt
j

)
(34)

Then, the correlation score is defined as the average absolute difference between corresponding
pairwise correlations in the real and synthetic data:

Corr =
1

10

∑
i,j

∣∣∣∣∣ covri,j√
covri,i cov

r
j,j

−
covsi,j√

covsi,i cov
s
j,j

∣∣∣∣∣ (35)

D.2 CLASSIFICATION METRICS.

We quantify classification performance using accuracy, precision, recall, F1-score, and the area
under the ROC curve, with larger values indicating better performance; their definitions are given in
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equation 36-equation 40.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(36)

Precision (PRE) =
TP

TP + FP
(37)

Recall (REC) =
TP

TP + FN
(38)

F1-score = 2 · PRE × REC
PRE + REC

(39)

ROC =

∫ 1

0

TPR(τ) d
(
FPR(τ)

)
(40)

E FULL EXPERIMENTAL RESULTS

Table 7: Evaluation of our proposed DSFM with class-conditional (HC vs MDD) generation under
varying NFE and SNR.

NFE NS Discrete Cosine Transform (DCT) Discrete Wavelet Transform (DWT) Signal Transform (Time)

HC ↓ MDD ↓ HC ↓ MDD ↓ HC ↓ MDD ↓

20 SNR 1.0 5.303±1.890 5.352±2.126 4.552±0.150 4.569±0.203 1.703±0.302 1.428±0.785
SNR 2.0 5.735±1.120 5.296±1.583 4.632±0.156 4.623±0.200 1.441±0.859 1.702±1.036

50 SNR 1.0 5.481±1.892 5.580±1.528 4.567±0.303 4.624±0.100 1.327±0.208 1.312±0.186
SNR 2.0 5.637±2.131 5.811±1.702 4.574±0.295 4.626±0.095 1.378±0.521 1.603±0.538

100 SNR 1.0 5.079±1.507 5.386±1.448 4.520±0.191 4.569±0.134 1.237±0.519 1.255±0.471
SNR 2.0 5.502±1.975 5.701±2.058 4.463±0.221 4.860±0.116 1.913±0.462 1.428±0.919

E.1 FMRI SIGNAL GENERATION QUALITY.

Table 7 compares the generative fidelity of our DSFM framework across three representations: fre-
quency (DCT), time-scale (DWT), and the raw time-series domains. Overall, DSFM demonstrates
competitive performance in the DWT domain by achieving the lowest FID across HC and MDD
subjects with hyperparameter settings of NFE = 100, SNR = 1.0, indicating precise reconstruction
of scale-specific BOLD dynamics. Consistently low cFID values in the time domain further confirm
that the synthetic signals remain well aligned with in-distribution temporal patterns, outlining that
the model is complementary with additional spectral features. By raising the noise level to 2.0, we
observe increased variances and occasionally worsened FID scores, reporting that higher diffusion
noise scales impede fine-grained generation quality. In contrast, we also observe that increasing
the number of NFE from 20 to 100 consistently reduces error across subjects. These results vali-
date DSFM as an effective time-series-to-image framework for synthesizing biologically plausible,
frequency-aligned fMRI signals across representations.

E.2 FULL RESULTS OF CLASSIFICATION PERFORMANCE.

Table 8 presents the complete MDD classification results across three augmentation levels. The per-
formance gains at each level indicate that the synthesized FCs accurately capture brain connectivity
patterns and that the data augmentation strategy significantly improves classifier generalizability to
unseen samples.

F ADDITIONAL VISUALIZATION

F.1 SPECTRAL IMAGE TRANSFORMATIONS

Figure 6 illustrates the forward and inverse processes of ImagenTime/T2I-Diff and DSFM applied to
our proposed fMRI signals. The top row shows an univariate (Short-Time Fourier Transform) STFT

17
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Figure 6: Comparison of univariate and multivariate spectral representations: ImagenTime/T2I-Diff
and our proposed DSFM.

Method Train Set Accuracy Recall Precision F1-Score ROC

W/O Augmentation Real 58.90 ± 2.98 58.90 ± 2.98 59.56 ± 2.74 58.39 ± 3.09 59.00 ± 2.56

Vanila-GAN
Real + Synth 1× 56.90 ± 1.66 56.90 ± 1.66 56.40 ± 2.86 53.68 ± 3.31 56.29 ± 1.92
Real + Synth 2× 50.71 ± 3.69 50.71 ± 3.69 48.60 ± 7.23 46.74 ± 5.18 50.81 ± 4.13
Real + Synth 3× 58.86 ± 2.24 58.86 ± 2.24 59.91 ± 2.57 57.64 ± 1.96 58.57 ± 2.05

1D-DCGAN
Real + Synth 1× 62.94 ± 2.01 62.94 ± 2.01 63.43 ± 2.20 62.23 ± 2.68 62.71 ± 2.26
Real + Synth 2× 65.04 ± 2.02 65.04 ± 2.02 66.35 ± 2.13 64.12 ± 2.10 64.74 ± 2.08
Real + Synth 3× 58.21 ± 2.98 58.21 ± 2.98 55.70 ± 6.58 52.86 ± 4.14 57.38 ± 3.11

2D-DCGAN
Real + Synth 1× 60.78 ± 4.98 60.78 ± 4.98 61.30 ± 5.34 60.01 ± 5.00 60.33 ± 5.03
Real + Synth 2× 61.41 ± 2.59 61.41 ± 2.59 61.99 ± 3.73 62.18 ± 3.29 61.04 ± 2.79
Real + Synth 3× 62.88 ± 4.99 62.88 ± 4.99 63.12 ± 5.02 62.48 ± 5.25 62.67 ± 5.15

WGAN
Real + Synth 1× 64.98 ± 5.54 64.98 ± 5.54 65.19 ± 5.34 64.86 ± 5.61 64.95 ± 5.39
Real + Synth 2× 60.59 ± 1.81 60.59 ± 1.81 60.89 ± 1.96 60.35 ± 1.78 60.53 ± 1.84
Real + Synth 3× 61.83 ± 3.03 61.83 ± 3.03 62.27 ± 3.29 61.44 ± 2.70 61.58 ± 2.73

WGAN-GP
Real + Synth 1× 66.02 ± 4.25 66.02 ± 4.25 66.22 ± 4.24 65.93 ± 4.20 65.95 ± 4.13
Real + Synth 2× 64.76 ± 4.25 64.76 ± 4.25 65.67 ± 4.08 64.23 ± 4.52 64.73 ± 4.14
Real + Synth 3× 64.56 ± 3.18 64.56 ± 3.18 64.78 ± 3.17 64.38 ± 3.15 64.41 ± 3.08

T2I-Diff
Real + Synth 1× 66.87 ± 3.22 66.87 ± 3.22 67.06 ± 3.34 66.83 ± 3.21 67.26 ± 6.00
Real + Synth 2× 65.41 ± 2.37 65.41 ± 2.37 66.30 ± 1.67 64.73 ± 2.80 65.75 ± 3.22
Real + Synth 3× 66.03 ± 1.75 66.03 ± 1.75 66.50 ± 1.32 65.85 ± 1.82 66.58 ± 5.33

DSFM (Ours)
Real + Synth 1× 70.84 ± 5.89 70.84 ± 5.89 70.99 ± 5.80 70.77 ± 5.97 71.49 ± 5.73
Real + Synth 2× 69.58 ± 3.89 69.58 ± 3.89 69.75 ± 3.72 69.43 ± 3.86 69.91 ± 4.23
Real + Synth 3× 69.80 ± 3.13 69.80 ± 3.13 69.61 ± 3.02 69.80 ± 3.13 69.00 ± 4.29

Table 8: Classification performance of different classifiers trained on the ground-truth data and an
increasing amount of augmented time series data using our proposed model.

spectrogram, and the bottom row presents a multivariate DWT coefficient map. Our framework
directly transforms multivariate BOLD signals into a single image representation.

F.2 FREQUENCY-SPECIFIC FC ANALYSIS

Figure 7 compares the HC and MDD FC matrices against the ground-truth data correlation across
different wavelet subbands. Consistent with the full-band correlation, removing the highest-
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Figure 7: Frequency-specific functional connectivity (FC) matrices for healthy controls (HC) and
patients with major depressive disorder (MDD), alongside their differences. The FCs are shown
under four different conditions: full-band; removal of the highest-frequency subbands (D1 + D2)
and the lowest-frequency component (A5), which both yield the two highest classification scores;
and removal of the mid-band subbands (D3 + D4), which produces the greatest deviations and the
lowest score.

frequency subbands (D1 and D2), or combining D1 with the lowest band (A5) preserves dense
edge connections near the main diagonal. In contrast, removing the mid-frequency subbands (D3
and D4) results in sparser connectivity, particularly in the lower-right region of the matrices.

G COMPUTATIONAL COST

The training required 22 hours, 40 minutes, and 52.698 seconds of wall-clock time, while inference
for generating the full samples took 48 minutes and 48.98 seconds with 1x A100 GPU. The model
contains 130,844,352 parameters.

H LIMITATIONS

Currently, DSFM is specially designed for the generation of resting-state fMRI signals. This opens
a valuable opportunity to expand our work to other human brain activity signals, such as electroen-
cephalography (EEG), functional near-infrared spectroscopy (fNIRS), and magnetoencephalogra-
phy (MEG). Our spectral flow matching framework offers flexibility to capture spectral-temporal
dynamics of other neural signals with frequency-specific representation.

I REPRODUCIBILITY STATEMENT

We provide the datasets, source code, and configurations for all key experiments, including instruc-
tions on how to preprocess data and train the models at https://anonymous.4open.science/r/DSFM-
123C.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely for grammar correction. All ideas, analyses, and results are by the authors.
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