LPC: A Logits and Parameter Calibration Framework on Continual
Learning

Anonymous ACL submission

Abstract

Deep learning based pre-trained natural lan-
guage processing (NLP) models typically pre-
train on large unlabeled corpora first, then fine-
tune on new tasks. When we execute such a
paradigm on continuously sequential tasks, the
model will suffer from the catastrophic forget-
ting problem (i.e., they forget the parameters
learned in previous tasks when we train the
model on newly emerged tasks). Inspired by
the idea of how humans learn things, we aim to
maintain the old knowledge when we transfer
to novel contents and calibrate the old and new
knowledge. We propose a Logits and Parame-
ter Calibration (LPC) framework to reduce the
catastrophic forgetting in the continual learn-
ing process. The proposed framework includes
two important components, the Logits Calibra-
tion (LC) and Parameter Calibration (PC). The
core idea is to reduce the difference between
old knowledge and new knowledge by doing
calibration on logits and parameters so that the
model can maintain old knowledge while learn-
ing new tasks without preserving data in pre-
vious tasks. First, we preserve the parameters
learned from the base tasks. Second, we train
the existing model on novel tasks and estimate
the difference between base logits and parame-
ters and novel logits and parameters. Third, we
drift from the base tasks to novel tasks gradu-
ally. Furthermore, we integrate the logtis and
parameter calibration into a brand-new opti-
mization algorithm. Finally, we do experiments
on 7 scenarios of the GLUE (the General Lan-
guage Understanding Evaluation) benchmark.
The experimental results show that our model
achieves state-of-the-art performance on all 7
scenarios.

1 Introduction

Predicting labels for a large number of in-
stances occurring continuously is a crucial prob-
lem in many real-world applications like online
tweets/news summary, online product classification

in e-commerce systems, and online dialogue learn-
ing systems. In these scenarios, we not only require
the model to learn from its own experiences, but
also expect the model to be capable of continuously
acquiring, fine-tuning, and transferring knowledge
over time (Parisi et al., 2019), which is also known
as continual learning. One of the most essential
existing challenges we aim to solve in the contin-
ual learning is the catastrophic forgetting problem
(McCloskey and Cohen, 1989; Kirkpatrick et al.,
2017a). The forgetting typically happens when we
apply the pre-trained model (e.g., BERT (Devlin
et al., 2018)) on newly emerged tasks, the model
usually forgets the parameters it learned from previ-
ous tasks when we train it on new incoming tasks.

Existing works trying to solve the catastrophic
forgetting problem are varied, which can be di-
vided into two categories: (1) storing exemplars
from previous classes (Rebuffi et al., 2017; Rolnick
et al., 2019); (2) regularizing the parameters when
we fine-tune the model on new tasks (Kirkpatrick
et al., 2017b; Li and Hoiem, 2017; Aljundi et al.,
2018). Such methods aim to transfer or store the
knowledge of previous tasks to the newly emerged
tasks and preserve the knowledge learned previ-
ously. Memory Aware Synapses (MAS) (Aljundi
et al., 2018) is an advanced approach by computing
the importance of the neural network parameters
in an unsupervised and online manner. MAS as-
signs more weights on the parameters that are most
important to the model and allows the model to
selectively forgets those weights that are not so es-
sential. Also, Lee et al. (Lee et al., 2020) success-
fully reduce the catastrophic forgetting during the
fine-tuning step by randomly mixing pre-trained
parameters into a downstream model in a dropout-
style.

The methods mentioned above address the
catastrophic forgetting through multi-task learn-
ing. They typically require storing the data from
old or pre-trained tasks, and replay them during the

fine-tuning. However, this learning pattern does
not consider the constraint of memory resource or
privacy issues, e.g., the data of old tasks is often
inaccessible or too large for the continual adapta-
tion setting. Unlike the multi-task learning strategy,
here we focus on the calibration of knowledge gap
between different tasks, which can reduce the catas-
trophic forgetting without any old data/task replay.
The proposed calibration framework is used for
both encoder parameters and output classifiers, we
first train the novel model and evaluate the base
model on novel tasks. Specifically, we add the log-
its calibration that can amplify the softmax output
of the base model, and overcome the bias towards
the novel category (Zhao et al., 2020), which can
simultaneously enforce the model to preserve pre-
vious knowledge via explicit weight constraints.
Also, for the calibration on encoder parameters, we
encourage the model to maintain previously learned
knowledge by simulating the training objective us-
ing the parameters of the base model. Then, during
the training on novel tasks, the model will calibrate
parameters with target drift form the base tasks to
the novel tasks to balance new task learning and
old knowledge maintenance. It allows the model
to focus on novel tasks by making the learning ob-
jective drifting from the base tasks to novel tasks
gradually.

Accordingly, we propose a Logits and Parame-
ter Calibration framework LPC (shown in Figure
1) on continual learning scenario, which is used
to reduce catastrophic forgetting without further
data storage. The proposed calibration mechanism
includes two components for both model encoder
parameters and output logits, we finally integrate
these two calibrations into a brand-new optimiza-
tion algorithm by decoupling them from the gradi-
ent updates in Adam optimizer. We do experiments
on the GLUE benchmark with pre-trained mod-
els BERT-base and ALBERT-xxlarge and achieve
state-of-the-art performance.

The contributions of our work are three folds.
First, we propose LPC, a novel continual learning
framework, which can reduce catastrophic forget-
ting effectively without storing previous instances.
Second, we develop a new mechanism by calibrat-
ing the logits and parameters with target drift from
base tasks to novel tasks, thereby alleviating the
catastrophic forgetting during the model updating.
Third, combining with a parameter regularization
based approach, our model achieves state-of-the-

art performance while addressing the old knowl-
edge forgetting without data storage. Therefore,
the newly proposed LPC is feasible for researchers
to use for further explorations in this field.

2 Related Works

2.1 Continual Learning

Continual learning is also named as life-long learn-
ing, sequential learning, or incremental learning.
As the name suggests, continual learning aims to
learn tasks in a sequential way. In the field of
biology, biological neural networks exhibit con-
tinual learning in which they acquire new knowl-
edge over a lifetime (Zenke et al., 2017). How-
ever, continual learning in deep neural networks
suffers from a phenomenon called catastrophic for-
getting (Shin et al., 2017). Thus, one of the most
essential goals of continual learning systems is to
achieve satisfying performance on all tasks in an
incremental way. Reducing catastrophic forgetting
plays a vital role to achieve it. Current continual
learning approaches can be classified into the fol-
lowing three families (De Lange et al., 2019): (1)
Replay methods, (2) Regularization-based meth-
ods, and (3) Parameter isolation methods. Replay
methods store samples in a raw format or generate
pseudo-samples. Regularization-based methods
eschews storing raw inputs, prioritizing privacy,
and alleviating memory requirements. Parameter
isolation methods dedicate different model parame-
ters to each task to prevent any possible forgetting.
Our method is an advanced regularization-based
method alleviating the catastrophic forgetting with-
out data storage.

2.2 Fine-tuning

Fine-tuning is a successful method in transfer
learning by the following four steps: (1) pre-
train a source neural network model on the source
datasets; (2) create a new neural network model
which copies all model designs and their parame-
ters on the source model except the output layer;
(3) add an output layer to the target model; (4) train
the target model on the target datasets. Girshick
et al. (Girshick et al., 2014) propose a R-CNN to
fine-tune all network parameters. Long et al. (Long
et al., 2015) propose DAN only fine-tuning the pa-
rameters of the last few layers. Li et al. (Li et al.,
2018) investigate several regularization schemes
that explicitly promote the similarity of the fine-
tuned model with the original pre-trained model.

1. Base Task
Pretraining

Base Model

2. Base Parameter
Preservation

Logits Calibration

5. Parameter Calibration
with Target Drift

4. Cross Entropy with

Parameter Calibration

Update

Novel Model 6. Back Propagation

4. Mean Squared Error

1
1
1
1
1
1
1
|
1
|
1
1
1
1
with Logits Calibration 1
1
1
1
1
1
1
1
1
1
|
1
|
1
1

Figure 1: The Overview of LPC Framework. (1) Given the large-scale input texts from base tasks, we first pre-train
a base model on these texts and initialize our model (for novel tasks) same as the base one. (2) We do base
parameter preservation to preserve the parameters of the pre-trained model, and estimate the difference between
base parameters and novel parameters during training, then compute the loss for the base model Lg. (3) During the
novel task training, we compute logtis g; and g,, for the base model and the novel model, respectively. (4) We do
logits calibration (e.g., cross entropy with logits calibration for classification tasks) given g, and ¢;, using Lo grc or
Lrserc for regression tasks as the loss for the novel model L. (5) In the parameter calibration with target drift,
the objective function drifts from Lp to Ly gradually with the annealing coefficient A(¢). (6) Finally, we perform
back propagation to update the parameters of the novel model with parameter calibration.

Guo et al. (Guo et al., 2019) propose an adap-
tive fine-tuning approach SpotTune which automat-
ically decides the optimal set of layers to fine-tune
in a pre-trained model on a new task. Our method
is a trade-off between multi-task learning and fine-
tuning.

3 Proposed Approach

In this section, we introduce our proposed Logits
and Parameter Calibration framework, LPC. The
LPC framework includes two essential parts: (1)
Logits Calibration (LC) that execute calibration
on the logits to reduce the logits forgetting and
increase the accuracy and (2) Parameter Calibra-
tion (PC) to do calibration on the parameters to
reduce the parameter forgetting. For the Logits
Calibration, we apply the Cross Entropy with Log-
its Calibration (CELC) for classification tasks (or
the Means Squared Error with Logits Calibration
(MSELC) for regression tasks). The Parameter Cal-
ibration consists of three components: (1) Base

Parameter Preservation (BPP) that tries to preserve
the parameters we learned from base tasks, (2)
Novel Task Training (NTT) that trains the previous
model on novel tasks, and (3) Parameter Calibra-
tion with Target Drift (PCTD) that focuses on drift-
ing from the base tasks to novel tasks gradually.
What is more, we introduce LPC algorithm by inte-
grating the Logits Calibration (CELC or MSELC)
and all three parts of Parameter Calibration (BPP,
NTT, and PCTD) into a brand-new optimization
algorithm based on the well-known Adam (Kingma
and Ba, 2014) optimization algorithm.

3.1 Logits Calibration

In this section, we introduce our proposed logtis
calibration, the Cross Entropy with Logits Calibra-
tion (CELC) for classification tasks. Some other
loss function (e.g., the Mean Squared Error for re-
gression) can also be combined with the Logits
Calibration, in the following paragraph.

Algorithm 1 -

1: given initial learning rate o € R, momentum factors 5; = 0.9, B2 = 0.999, ¢ = 10~8, pre-trained
parameter vector §* € R", hyperparameter for the regularizer 6 € R, coefficient of the quadratic
penalty v € R, hyperparameter controlling the annealing rate r € R, hyperparameter controlling the

timesteps to € N.

2: initialize timestep ¢ + 0, parameter vector 6;—g € R",

importance weights) < 1, first moment

vector mi—q <— 0, second moment vector v;—q <— 0, schedule multiplier 7;—¢ € R.

3: repeat

4: t—t+1
5 x < SelectBatch(x)
6

7.

S V(fulw0-)) < [NEGBIG G NS ELe @)
9:

10: for k + 0to N do

He) = VB (e fe))

2 O Ot gl

13: end for

5 W) & /(L exp(—r - (o)

16 g @IV £ 0+ RESAEHOOEIS0E)]

17: my < Bimi—1 + (1 — B1)ge

18: Vg ,BQUt_l + (1 — ﬂg)gg

19: mt%mt/(l—ﬁf)

20: Uy — ’Ut/(l — ﬁé)

21 ne < SetScheduleMultiplier(t)

22: 9t — 9,5_1 — T]t(-&mt/(\/v_t +
23: until stopping criterion is met

24: return optimized parameters 6,

> update timestep
> select batch data

> compute output logits for the novel model
> compute output logits for the base model

> compute gradients

> compute importance weights after each update epochs

> compute annealing coefficient

> compute new gradients

> update biased first moment estimate
> update biased second raw moment estimate

> compute bias-corrected first moment estimate

> compute bias-corrected second raw moment estimate
> can be fixed, decay, or also be used for warm restarts

I 200 = ME)8Y (e = 6

> update parameters

3.1.1 Cross Entropy with Logits Calibration

The Cross Entropy (CE) Loss (Zhang and Sabuncu,
2018) is a widely-used loss for classification tasks
in deep learning. It first applies a log softmax
function on the output logits of the neural network.
Then, it computes the negative log likelihood (nll)
loss on the output of the log softmax function. Typ-
ically, the cross entropy loss can be defined as fol-
lows:

Ne exp(gn.i)
Leg(q) = =) pilogl ﬂ) (1
=1 Z exp(qn,;)

j=1

where N is the total number of classes in the
novel tasks. g, ; represents the output logits for
class ¢ of the novel model on the novel tasks. p;

can be considered as the binary label of class ¢. If
the data input = belongs to class %, the value of p;
will be 1, otherwise, the value will be 0.

Nevertheless, the original cross entropy loss only
concerns the performance of the novel model. Thus,
the model will suffer the catastrophic forgetting
problem with the step increasing. In order to reduce
the catastrophic forgetting problem, we consider
to simultaneously evaluate the base model on the
novel tasks and compute the output logits of the
base model gp.

Inspired by the idea from (Kukleva et al., 2021)
which revises the original cross entropy loss by
adding the summation of the exponential logtis of
the base classes classifier to the denominator to
change the normalization scale, we add the log-
its information of the base model into the cross
entropy loss.

However, different from Kukleva’s method, we
do logtis calibration by adding the difference be-
tween each logits of the novel model and the base
model (g,,; — qv,;) to the corresponding output log-
its gy, ; of the novel model for class :. In this way,
the model can preserve important output logits in-
formation of each class for the base model in an
element-wise way. Our proposed Cross Entropy
with Logits Calibration (CELC) Loss is shown in
Equation 2:

N¢
exp(qni + 1(Gni — Qvi))
L=-) pilogly— ")
=1 > exp(n,j + 1(qnj — Gb,j))

j=1

2
where we multiply the difference between the
logits for the novel model and the base model
(gn — q») by a weight item p € [0,1] to control
the calibration degree. By employing this new loss
function, we can also increase the accuracy of the
model through training process by giving a reward
to the logits for the correct class if g, ; is larger
than gy ;, otherwise, giving a penalty to the logits

for the correct class if g, ; is smaller than g, ;.

3.1.2 Mean Squared Error with Logits
Calibration

Mean Squared Error (MSE) Loss (Fisher, 1922)
is the most commonly-used loss function for re-
gression tasks. It computes the squared L2 norm
between output logits and the true values and takes
the mean of the full batch. Follow the idea of the
logits calibration on cross entropy loss, we evaluate
the base model on novel tasks and take out the out-
put logtis g,. We measure the difference between
the output logits of the novel model and the base
model by adding a squared L2 norm on the differ-
ence between logits of the novel model and the base
model (g, — q)? to the original function. The pro-
posed Mean Squared Error with Logits Calibration
Loss Lysserc is shown in Equation 3:

Lvserc(q) = (an —p)* + p(gn — @)* (3)

3.2 Parameter Calibration

In this section, we introduce the second module
of our model, Parameter Calibration (PC). Our
proposed Parameter Calibration method can effec-
tively reduce the catastrophic forgetting by giving
a penalty to the prediction if the parameters of

the novel model are different from the base model
by adding the squared difference between the pa-
rameters of the novel model and the base model
to the training loss. It includes three parts: (1)
Base Parameter Preservation (BPP), (2) Novel Task
Training (NTT), and (3) Parameter Calibration with
Target Drift (PCTD).

3.2.1 Base Parameter Preservation

As shown in Figure 1, in Base Parameter Preser-
vation, we try to maintain the parameters of the
base model like BERT (Devlin et al., 2018). Here,
we add a regularization to the posterior of parame-
ters given data. The Base Parameter Preservation
method can be regarded as an improved method
derived from EWC (Kirkpatrick et al., 2017b) and
MAS (Aljundi et al., 2018). Different from EWC,
BPP measures the importance of each parameter
by introducing the importance weights 2. During
training, the novel model preserves the information
of the most important parameters to a great extent
by penalizing the changes to those important pa-
rameters more severely. The detailed derivation of
our proposed loss function is shown in Equation 4:

Lp = —logp(0|Dp)

~ —log p(0*| D) + 6(6 — 0T H(6*)Q(0) (0 — 6%)

~ 8(0 — 01T H(6%)Q(0)(6 — 0%)

~ 3(0 — 0°)" (NF(67) + Hyrior (67))26)(6 — 07)

R ON Y Fiy(0: — 05)°
i

[5NFZ ng(% - (9;}-)2

ij
=07 Q05 — 05)°
i

“

where § is a hyperparameter for the regularizer.
H (6*) is the Hessian matrix of the optimization
objective with respect to 6*. We can approximate
H (0*) with the empirical Fisher information ma-
trix F'(0*) (Martens, 2014). N is the total num-
ber of data inputs in Dp. Hpior(0*) is the Hes-
sian matrix of the negative log prior probability
—log p(#). EWC ignores H,y o (0*) and approx-
imates H (0*) by assigning the diagonal values of
F(0*) to H(#*). Thus, we replace NF with a
constant value v at the end of the derivation. We
can consider «y as a coefficient of the quadratic
penalty. During the derivation, we can simply ig-
nore — log p(0*|Dp) as it is a constant term with

respect to 0*. Q(6) is estimated by the sensitivity
of the squared L2 norm of the function output to
their changes. We can obtain €);; by accumulating
the gradients over the given data points by Equation
5:

N
1
Q; = N E llgij ()|)
k=1

where g;j(zr) = W is the gradients of

the squared L2 norm of the learned neural network
with respect to the parameter 6;;. The output of
f(xg; 0) is the loss of the network.

In Equation 4, 0;; is the parameter of the novel
model of the connections between pairs of neu-
rons n; and n; in two consecutive layers. 0™ rep-
resents the pre-trained parameters, which can be
assumed as a local minimum of the parameter space
as shown in Equation 6:

0" = argmin{—log p(6|Dp)} (6)

3.2.2 Novel Task Training

In the novel task training process, we train the
novel model and evaluate the base model on novel
tasks simultaneously. The function of the neural
network whose output is the loss of the model can
be represented as follows:

Ly = fi(x;60:1) (N

where ¢ is the timestep. We compute the loss
by the proposed Cross Entropy with Logits Cali-
bration (CELC) for classification tasks and Mean
Squared Error with Logits Calibration (MSELC)
for regression tasks as follows:

ft = Lepre(Q(x;01-1)) | Lmusere(Q(x;0i-1))

(®)

where Q(x; ;1) represents the function of the

novel model and the base model whose output are

logits with data inputs = and parameters 6;_; of
the model in timestep ¢t — 1.

3.2.3 Parameter Calibration with Target Drift

Multi-task learning tries to achieve satisfying per-
formance on both of the base tasks and novel tasks.
However, one of the most essential problems of
multi-task learning is that it is inconsistent with
adaptation (Chen et al., 2020). To deal with this
problem, we introduce Parameter Calibration with

Target Drift, a method allowing the objective func-
tion to gradually drift from Lg to Ly with the
annealing coefficient \(t):

Ly = Xt)Ly + (1 = A(t))Lp 9

where ¢ refers to the timestep during the training
process. We compute A(t) = m as
the sigmoid annealing function (Kiperwasser and
Ballesteros, 2018), where r is the hyperparameter
controlling the annealing rate and ¢ is the hyper-
parameter controlling the timesteps.

When t < tg, —r - (t — to) will be positive. In
this case, if r — oo, then exp(—r - (t —tg)) — oo,
)\(t) — 0, Ly = L. Whent > tg, —7 - (t — to)
will be negative. In this case, if » — oo, then
exp(—r . (t — to)) — 0, /\(t) — 1, Ly = Ljy.
At this moment, our method can be regarded as
fine-tuning. Otherwise, if » — 0, then —r - (¢ —
to) — 0, exp(—r - (t —tg)) — 1, A(t) — 0.5,
Ly = 0.5Lx + 0.5Lg. In this case, our method
can be regarded as multi-task learning. Finally, if
0 <r <oo, then0 < A < 1. In this case, our
method can be regarded as a trade off between fine-
tuning and multi-task learning. With time goes by,
the objective of the model drifts from base tasks
to novel tasks gradually. Finally, by doing back
propagation, we update parameters of the novel
model with parameter calibration.

3.3 LPC Algorithm

In this section, we combine the Logits Calibration
(CELC) with all three parts of Parameter Calibra-
tion (BPP, NTT, and PCTD) into a brand-new opti-
mization algorithm as shown in Algorithm 1. The
Logits Calibration (LC) part is shown from line 6
to line 8. The Parameter Calibration (PC) part is
shown from line 9 to line 18 and line 24. Here,
we introduce LPC Algorithm which integrates the
quadratic penalty with importance weights and the
annealing coefficient into a complete optimization
algorithm by decoupling them from the gradient
update in Adam optimization algorithm (Kingma
and Ba, 2014). The orange part in Algorithm 1
depicts how LPC is different from Adam.

From line 9 to line 16, we show how we calculate
2 by initializing €2 as a tensor filled with the scalar
value one. The size of () are the same as that of
parameter size of the base model and the novel
model. From line 11 to line 14, we accumulate the
gradients of the squared L2 norm of the learned
neural network over the given data inputs to obtain

Table 1: Experimental Results. All of results are the medians over 5 runs. The metric for CoLA is mcc (Matthew
Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation Coefficient).

All other metrics are acc (Accuracy).

CoLA MRPC OQNLI RTE SST-2 STS-B WNLI

Avg Avg Avg

Model mcc acc acc acc acc corr acc ace mee cort
8.5k 3.7k 105k 2.5k 67k 7k 634

BERT-base + PALs (Stickland and Murray, 2019) 51.2 84.6 90.0 76.0 92.6 85.8 N/A N/A 512 858
BERT-large + Adapters (Houlsby et al., 2019) 59.5 89.5 90.7 715 94.0 86.9 N/A N/A 595 869
BERT-large + Diff pruning (Guo et al., 2020) 60.5 87.0 929 681 93.8 83.5 N/A N/A 605 835
BERT-base + Adam (rerun) psegian 57.1 81.3 91.0 639 93.1 89.2 563 77.1 57.1 89.2
BERT-base + RecAdam (rerun) psedian 59.9 85.7 914 708 93.1 90.0 563 79.5 599 90.0
BERT-base + LPC p/edian 61.8 86.1 91.5 747 932 90.3 62.0 815 61.8 903
ALBERT-xxlarge + Adam (rerun) aedian 70.5 88.8 93.7 729 911 92.2 69.0 83.1 705 922
ALBERT-xxlarge + RecAdam (rerun) pzedian 70.5 87.5 939 895 939 92.8 789 887 70.5 92.8
ALBERT-xxlarge + LPC j/cdian 74.1 894 943 895 958 93.3 81.7 90.1 741 933

importance weights €);; for parameter ¢;;. In line
15, we compute the mean value of 2;; by dividing it
by N. Here, N is the total number of data inputs at
a given phase. In line 18, we compute the gradients
of the loss function as a weighted combination of
the gradients of Ly and L. In line 24, we update
the network parameters ¢ by the gradient descent
method.

4 Evaluations

In this section, we evaluate LPC on the Gen-
eral Language Understanding Evaluation (GLUE)
(Wang et al., 2018) benchmark. We compare our
model with PALs (Stickland and Murray, 2019),
Adapters (Houlsby et al., 2019), Diff Pruning (Guo
et al., 2020), Adam (Kingma and Ba, 2014), and
RecAdam (Chen et al., 2020).

4.1 Experimental Setup

We perform the experiments based on deep pre-
trained language models BERT-base! (Devlin et al.,
2018) and ALBERT-xxlarge (Lan et al., 2019), re-
spectively. BERT aims to learn a Transformer en-
coder for representing texts. BERT is a multi-layer
bidirectional Transformer encoder. In BERT, the
Transformer uses bidirectional self-attention. AL-
BERT is an advanced deep pre-trained language
model with lower memory consumption and faster
training speed than BERT. ALBERT improves
BERT using parameter reduction techniques and
employing self-supervised loss for sentence-order
prediction (SOP).

We evaluate our approach LPC on the GLUE
benchmark. GLUE benchmark is a collection of re-
sources for training, evaluating, and analyzing natu-

"https://huggingface.co/transformers/model_doc/bert.html

ral language understanding (NLU) systems (Wang
et al., 2018). It contains the following 9 different
scenarios: (1) Single-Sentence Scenarios: CoLA
The Corpus of Linguistic Acceptability (Warstadt
et al., 2019), and SST-2 The Stanford Sentiment
Treebank (Socher et al., 2013); (2) Similarity and
Paraphrase Senarios: MRPC The Microsoft Re-
search Paraphrase Corpus (Dolan and Brockett,
2005), QQP The Quora Question Pairs dataset?,
and STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017); (3) Inference Scenarios:
MNLI The Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2017), QNLI The
Stanford Question Answering Dataset (Rajpurkar
et al., 2016), RTE The Recognizing Textual En-
tailment datasets (Dagan et al., 2005) (Haim et al.,
2006) (Giampiccolo et al., 2007) (Bentivogli et al.,
2009), and WNLI The Winograd Schema Chal-
lenge (Levesque et al., 2012).

4.2 Results

We perform experiments on 7 scenarios of the
GLUE benchmark as shown in Table 1. From the
experimental results with BERT-base model, we
outperform BERT-base with Adam and BERT-base
with RecAdam (Chen et al., 2020) models on 7 out
of 7 scenarios of the GLUE benchmark and achieve
2.5% improvements on average measured by acc on
MRPC, QNLI, RTE, SST-2, and WNLI, 3.2% im-
provements measured by mcc on CoLA, and 0.3%
improvements measured by corr on STS-B com-
pared with RecAdam. Especially, we achieve sig-
nificant improvements on WNLI corpus (+10.1%)
and CoLA corpus (+5.5%). From the experimen-

“https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

Table 2: The Results of Ablation Study on Adam, Logtis Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC). All of results are the medians over 5 runs. The metric for CoLA is mcc (Matthew
Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation Coefficient).

All other metrics are acc (Accuracy).

CoLA MRPC QNLI

RTE SST-2 STS-B WNLI

Avg Avg Avg

Model mcc acc acc acc corr acc
85k 37k 105k 25k 67k 7k 634 ~ Acc meecom
BERT-base + Adam (rerun) p/edian 57.1 81.3 91.0 63.9 93.1 89.2 56.3 77.1 57.1 89.2
BERT-base + LC p/edian 61.2 82.8 91.5 66.8 92.3 89.3 56.3 779 612 89.3
BERT-base + PC j/edian 61.4 85.3 91.5 72.2 92.8 90.2 577 799 614 90.2
BERT-base + LPC pedian 61.8 86.1 91.5 747 93.2 90.3 62.0 815 61.8 90.3
tal results on ALBERT-xxlarge model, we outper- on STS-B.

form ALBERT-xxlarge with Adam and ALBERT-
xxlarge with RecAdam models on 7 out of 7 scenar-
ios of the GLUE benchmark and achieve 1.6% im-
provements on average measured by acc on MRPC,
QNLI, RTE, SST-2, and WNLI, 5.1% improve-
ments measured by mcc on CoLA, and 0.5% im-
provements measured by corr on STS-B compared
with RecAdam. Specifically, we achieve great im-
provements on CoLA corpus (+5.1%) and WNLI
corpus (+3.5%). What is more, there is no obvious
relationship between the size of the datasets and
the results. Namely, our model performs well on
both large datasets and small datasets.

4.3 Ablation Study

As we have mentioned, our model (LPC) has two
important components, Logits Calibration (LC) and
Parameter Calibration (PC). Thus, we do ablation
study on these two components separately with
BERT-base pre-trained model on the 7 scenarios
of the GLUE benchmark. The results of albation
study is shown in Table 2. We can see both of
LC and PC achieve better results than the baseline
Adam. LPC achieves the best results among all
three models. Compared with Adam, LC achieves
1.0% improvements on average measured by acc on
MRPC, QNLI, RTE, SST-2, and WNLI, 7.2% im-
provements measured by mcc on CoLA, and 0.1%
improvements measured by corr on STS-B. Com-
pared with Adam, PC achieves 3.6% improvements
on average measured by acc on MRPC, QNLI, RTE,
SST-2, and WNLI, 7.5% improvements measured
by mcc on CoLA, and 1.1% improvements mea-
sured by corr on STS-B. Compared with Adam,
LPC achieves 5.7% improvements on average mea-
sured by acc on MRPC, QNLI, RTE, SST-2, and
WNLI, 8.2% improvements measured by mcc on
CoLA, and 1.2% improvements measured by corr

5 Conclusion

In this paper, we propose Logits and Parameter Cal-
ibration (LPC) framework on continual learning to
deal with the catastrophic forgetting problem. The
proposed framework includes two important com-
ponents, Logits Calibration (LC) and Parameter
Calibration (PC). We propose the Cross Entropy
Loss with Logits Calibration (CELC) for classifica-
tion tasks and the Mean Squared Error with Logits
Calibration (MSELC) for regression tasks. The Pa-
rameter Calibration consists of three components:
(1) Base Parameter Preservation (BPP), (2) Novel
Task Training (NTT), and (3) Parameter Calibra-
tion with Target Drift (PCTD). What is more, we
introduce LPC algorithm by integrating the Logits
Calibration and all three parts of Parameter Cali-
bration (BPP, NTT, and PCTD) into a brand-new
optimization algorithm based on the well-known
Adam optimization algorithm. We do experiments
on 7 scenarios of GLUE benchmark and achieve
state-of-the-art performance on all the 7 scenarios.
The limitation of our work is that our work cannot
handle the online learning settings. This means that
when data comes in an online manner (sometimes
without labels), we have no technique to handle it.
Thus, our future direction is to make our model fit
the online learning settings. We also release the
open-source LPC Algorithm to further benefit the
continual learning research community.

References

Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-
seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 139-154.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. arXiv preprint arXiv:2004.12651.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177-190. Springer.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2019. A continual learning sur-
vey: Defying forgetting in classification tasks. arXiv
preprint arXiv:1909.08383.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Ronald A Fisher. 1922. On the mathematical founda-
tions of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical
Character, 222(594-604):309-368.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1-9.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Ji-
tendra Malik. 2014. Rich feature hierarchies for ac-
curate object detection and semantic segmentation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580-587.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen
Grauman, Tajana Rosing, and Rogerio Feris. 2019.
Spottune: transfer learning through adaptive fine-
tuning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages

4805-4814.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225-240.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017a. Overcom-
ing catastrophic forgetting in neural networks. Pro-

ceedings of the national academy of sciences, page
201611835.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017b. Over-
coming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences,
114(13):3521-3526.

Anna Kukleva, Hilde Kuehne, and Bernt Schiele. 2021.
Generalized and incremental few-shot learning by
explicit learning and calibration without forgetting.
arXiv preprint arXiv:2108.08165.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. ICLR.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning. Citeseer.

Xuhong Li, Yves Grandvalet, and Franck Davoine.
2018. Explicit inductive bias for transfer learn-
ing with convolutional networks. arXiv preprint
arXiv:1802.01483.

Zhizhong Li and Derek Hoiem. 2017. Learning without
forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael
Jordan. 2015. Learning transferable features with
deep adaptation networks. In International confer-
ence on machine learning, pages 97-105. PMLR.

James Martens. 2014. New insights and perspectives
on the natural gradient method. arXiv preprint
arXiv:1412.1193.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109-165. Else-
vier.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural Networks, 113:54-71.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
CVPR, pages 2001-2010.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy P Lillicrap, and Greg Wayne. 2019. Experience
replay for continual learning. NeurIPS.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. arXiv preprint arXiv:1705.08690.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert and
pals: Projected attention layers for efficient adapta-
tion in multi-task learning. In International Con-
ference on Machine Learning, pages 5986-5995.
PMLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

10

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intel-
ligence. In International Conference on Machine
Learning, pages 3987-3995. PMLR.

Zhilu Zhang and Mert R Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In 32nd Conference on Neural
Information Processing Systems (NeurlPS).

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and
Shu-Tao Xia. 2020. Maintaining discrimination and
fairness in class incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13208-13217.

A LPC Appendix
A.1 Hyperparameter Analysis

In this section, we analyze the most essential hy-
perparameters we set in the LPC model. ¢ is a
hyperparameter controlling the level of regulariza-
tion. Setting d between 1 and 2 balances the level
of regularization. €2 is a parameter measuring the
importance of different parameters in the model.
Initializing €2 as ones makes the importance of each
parameter more balanced. The hyperparameter u_e
controls the updating epochs of (2. Typically, u_e
is between 1 and 16. w_s is a hyperparameter con-
trolling the number of steps of updating with low
learning rate before/at the beginning of the train-
ing process. We set w_s as 0, 320 or 640. After
these warmup steps, we will use the regular learn-
ing rate to train our model until convergence. In
other words, we have a few steps adjustment before
we actually train the model. From our experiments,
we find that the hyperparameters d, u_e, and w_s
have great influences on the experimental results.

Figure 2 shows the comparison of different hy-
perparameter (9, u_e, and w_s) initializations on
CoLA, MRPC, and STS-B corpora with BERT-
base pre-trained model.

In Figure 2 chart (1), we set u_e = 2 and w_s =
320. We can see when ¢ increases from 1 to 1.2,
the performance of the model decreases a lot. After
that, the performance of the model increases with
¢ increasing. The model achieves the best results
when & = 2 on all the three corpora.

In Figure 2 chart (2), we set 6 = 2 and w_s =
320. We can see the performance of the model
varies with different values of u_e. Specifically,
when u_e increases from 1 to 2, the performance
of the model improves a lot. While when u_e in-
creases from 2 to 4, the performance decreases in a
large extent. However, when u_e increases from 4

—e—ColA MRPC -=-STS-B —+—ColA

o
w
©
w

—_— . s

[+
®
[~
©

00
w
00
w

~
©
~
©

-]
©
)]
©

Metric (mcc, acc, or corr)
~N
w

Metric (mcc, acc, or corr)
~N
w

-
w
o
w

MRPC -=-STS-B

L S —

——ColA MRPC -=-STS-B

©
w

— 1

D NN o
® W 0 W o

Metric (mcc, acc, or corr)

-]
w

58 58 58
6=1 6=1.2 6=14 6=1.8 6=2 ue=l u_e=2 wu_e=4 u_e=8 u_e=16 w_s=0 w_s=320 w_s=640
(1) (2) (3)

Figure 2: Comparison of Different Hyperparameter Initializations on CoLA, MRPC, and STS-B Corpora with
BERT-base Pre-trained Model. The metric for CoLA, MRPC, and STS-B are mcc (Matthew Correlation Coefficient),
acc (Accuracy), and corr (Average of Pearson and Spearman Correlation Coefficient), respectively.

Table 3: The Results of Ablation Study on Adam, Logtis Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC) with ALBERT-xxlarge Pre-trained Model. All of results are the medians over 5
runs. The metric for CoLA is mcc (Matthew Correlation Coefficient). The metric for STS-B is corr (Average of
Pearson and Spearman Correlation Coefficient). All other metrics are acc (Accuracy).

CoLA MRPC QNLI RTE

SST-2 STS-B WNLI

Model mcc acc acc acc acc corr acc Avg Avg Avg

8.5k 37k 105k 25k 67k 7k 634 ¢ meccom
ALBERT-xxlarge + Adam (rerun) pfegian = 70.5 88.0 937 729 911 922 69.0 829 705 922
ALBERT-xxlarge + LC j/edian 71.0 88.5 938 884 955 92.3 704 873 71.0 923
ALBERT-xxlarge + PC jredian 74.1 88.6 94.0 884 957 92.9 746 883 741 929
ALBERT-xxlarge + LPC jredian 74.1 89.4 943 895 958 93.3 81.7 90.1 741 933

to 8, the model performance increases again. When
u_e increases from 8 to 16, there is a slight increase
on the performance.

In Figure 2 chart (3), we set) = 1 and u_e = 1.
We can see when w_s increases from O to 320,
there is a big increase on all three corpora. How-
ever, when w_s increases from 320 to 640, the
performance decreases slightly, instead.

A.2 Forgetting Analysis

In addition to computing accuracy, we also measure
the forgetting by computing the euclidean distance
between the parameters of the novel model and
the base model on CoL A corpus. Figure 3 shows
the comparison of parameter forgetting from the
first epoch to the last epoch and the corresponding
accuracy after convergence with epoch increasing
among LPC, RecAdam and Adam. In Figure 3
chart (1), with epoch increasing, the euclidean dis-
tance of Adam increases a lot, which means the for-
getting of Adam is huge with the epoch increasing.
However, our model (LPC) reduces the forgetting
in a large extent compared with Adam and achieves
similar forgetting with RecAdam, another baseline
trying to reduce carastrophic forgetting. Here, the

forgettnig of our model is a little bit worse than
RecAdam is because our model tries to remember
the most important parameters while forget unim-
portant parameters. Furthermore, in Figure 3 chart
(2), we can see our model (LPC) achieves the best
accuracy compared with RecAdam and Adam all
the time after convergence (Epoch 4).

A.3 Ablation Study with ALBERT-xxlarge
Model

As we have mentioned, our model (LPC) has two
important components, Logits Calibration (LC) and
Parameter Calibration (PC). In addition to doing
ablation study with BERT-base pre-trained model,
we also do ablation study on these two compo-
nents separately with ALBERT-xxlarge pre-trained
model on the 7 scenarios of the GLUE benchmark.
The results of albation study with ALBERT-xxlarge
pre-trained model is shown in Table 3. We can see
with ALBERT-xxlarge pre-trained model, both of
LC and PC achieve better results than the baseline
Adam. LPC achieves the best results among all
three models. Compared with Adam, LC achieves
5.3% improvements on average measured by acc on
MRPC, QNLI, RTE, SST-2, and WNLI, 0.7% im-

11

—#—|PC —®—RecAdam =—e—Adam

Euclidean Distance

012345867 8 91011121314151617
(1)

—#—|PC -—®—RecAdam =—e—Adam

Metric (mcc)
v
(<)}

4 5 6 7 8 9 10 11 12 13 14 15 16 17
()

Figure 3: Comparison of Parameter Forgetting and
Model Performance with the Epoch Increasing on CoLA
Corpus with BERT-base Pre-trained Model.

provements measured by mcc on CoLLA, and 0.1%
improvements measured by corr on STS-B. Com-
pared with Adam, PC achieves 6.5% improvements
on average measured by acc on MRPC, QNLI, RTE,
SST-2, and WNLI, 5.1% improvements measured
by mcc on CoLA, and 0.8% improvements mea-
sured by corr on STS-B. Compared with Adam,
LPC achieves 8.7% improvements on average mea-
sured by acc on MRPC, QNLI, RTE, SST-2, and
WNLI, 5.1% improvements measured by mcc on
CoLA, and 1.2% improvements measured by corr
on STS-B. Thus, we can conclude that our model
can achieve state-of-the-art results with different
pre-trained model. These results prove the scalabil-
ity of our model.

12

