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Abstract

Deep learning based pre-trained natural lan-001
guage processing (NLP) models typically pre-002
train on large unlabeled corpora first, then fine-003
tune on new tasks. When we execute such a004
paradigm on continuously sequential tasks, the005
model will suffer from the catastrophic forget-006
ting problem (i.e., they forget the parameters007
learned in previous tasks when we train the008
model on newly emerged tasks). Inspired by009
the idea of how humans learn things, we aim to010
maintain the old knowledge when we transfer011
to novel contents and calibrate the old and new012
knowledge. We propose a Logits and Parame-013
ter Calibration (LPC) framework to reduce the014
catastrophic forgetting in the continual learn-015
ing process. The proposed framework includes016
two important components, the Logits Calibra-017
tion (LC) and Parameter Calibration (PC). The018
core idea is to reduce the difference between019
old knowledge and new knowledge by doing020
calibration on logits and parameters so that the021
model can maintain old knowledge while learn-022
ing new tasks without preserving data in pre-023
vious tasks. First, we preserve the parameters024
learned from the base tasks. Second, we train025
the existing model on novel tasks and estimate026
the difference between base logits and parame-027
ters and novel logits and parameters. Third, we028
drift from the base tasks to novel tasks gradu-029
ally. Furthermore, we integrate the logtis and030
parameter calibration into a brand-new opti-031
mization algorithm. Finally, we do experiments032
on 7 scenarios of the GLUE (the General Lan-033
guage Understanding Evaluation) benchmark.034
The experimental results show that our model035
achieves state-of-the-art performance on all 7036
scenarios.037

1 Introduction038

Predicting labels for a large number of in-039

stances occurring continuously is a crucial prob-040

lem in many real-world applications like online041

tweets/news summary, online product classification042

in e-commerce systems, and online dialogue learn- 043

ing systems. In these scenarios, we not only require 044

the model to learn from its own experiences, but 045

also expect the model to be capable of continuously 046

acquiring, fine-tuning, and transferring knowledge 047

over time (Parisi et al., 2019), which is also known 048

as continual learning. One of the most essential 049

existing challenges we aim to solve in the contin- 050

ual learning is the catastrophic forgetting problem 051

(McCloskey and Cohen, 1989; Kirkpatrick et al., 052

2017a). The forgetting typically happens when we 053

apply the pre-trained model (e.g., BERT (Devlin 054

et al., 2018)) on newly emerged tasks, the model 055

usually forgets the parameters it learned from previ- 056

ous tasks when we train it on new incoming tasks. 057

Existing works trying to solve the catastrophic 058

forgetting problem are varied, which can be di- 059

vided into two categories: (1) storing exemplars 060

from previous classes (Rebuffi et al., 2017; Rolnick 061

et al., 2019); (2) regularizing the parameters when 062

we fine-tune the model on new tasks (Kirkpatrick 063

et al., 2017b; Li and Hoiem, 2017; Aljundi et al., 064

2018). Such methods aim to transfer or store the 065

knowledge of previous tasks to the newly emerged 066

tasks and preserve the knowledge learned previ- 067

ously. Memory Aware Synapses (MAS) (Aljundi 068

et al., 2018) is an advanced approach by computing 069

the importance of the neural network parameters 070

in an unsupervised and online manner. MAS as- 071

signs more weights on the parameters that are most 072

important to the model and allows the model to 073

selectively forgets those weights that are not so es- 074

sential. Also, Lee et al. (Lee et al., 2020) success- 075

fully reduce the catastrophic forgetting during the 076

fine-tuning step by randomly mixing pre-trained 077

parameters into a downstream model in a dropout- 078

style. 079

The methods mentioned above address the 080

catastrophic forgetting through multi-task learn- 081

ing. They typically require storing the data from 082

old or pre-trained tasks, and replay them during the 083
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fine-tuning. However, this learning pattern does084

not consider the constraint of memory resource or085

privacy issues, e.g., the data of old tasks is often086

inaccessible or too large for the continual adapta-087

tion setting. Unlike the multi-task learning strategy,088

here we focus on the calibration of knowledge gap089

between different tasks, which can reduce the catas-090

trophic forgetting without any old data/task replay.091

The proposed calibration framework is used for092

both encoder parameters and output classifiers, we093

first train the novel model and evaluate the base094

model on novel tasks. Specifically, we add the log-095

its calibration that can amplify the softmax output096

of the base model, and overcome the bias towards097

the novel category (Zhao et al., 2020), which can098

simultaneously enforce the model to preserve pre-099

vious knowledge via explicit weight constraints.100

Also, for the calibration on encoder parameters, we101

encourage the model to maintain previously learned102

knowledge by simulating the training objective us-103

ing the parameters of the base model. Then, during104

the training on novel tasks, the model will calibrate105

parameters with target drift form the base tasks to106

the novel tasks to balance new task learning and107

old knowledge maintenance. It allows the model108

to focus on novel tasks by making the learning ob-109

jective drifting from the base tasks to novel tasks110

gradually.111

Accordingly, we propose a Logits and Parame-112

ter Calibration framework LPC (shown in Figure113

1) on continual learning scenario, which is used114

to reduce catastrophic forgetting without further115

data storage. The proposed calibration mechanism116

includes two components for both model encoder117

parameters and output logits, we finally integrate118

these two calibrations into a brand-new optimiza-119

tion algorithm by decoupling them from the gradi-120

ent updates in Adam optimizer. We do experiments121

on the GLUE benchmark with pre-trained mod-122

els BERT-base and ALBERT-xxlarge and achieve123

state-of-the-art performance.124

The contributions of our work are three folds.125

First, we propose LPC, a novel continual learning126

framework, which can reduce catastrophic forget-127

ting effectively without storing previous instances.128

Second, we develop a new mechanism by calibrat-129

ing the logits and parameters with target drift from130

base tasks to novel tasks, thereby alleviating the131

catastrophic forgetting during the model updating.132

Third, combining with a parameter regularization133

based approach, our model achieves state-of-the-134

art performance while addressing the old knowl- 135

edge forgetting without data storage. Therefore, 136

the newly proposed LPC is feasible for researchers 137

to use for further explorations in this field. 138

2 Related Works 139

2.1 Continual Learning 140

Continual learning is also named as life-long learn- 141

ing, sequential learning, or incremental learning. 142

As the name suggests, continual learning aims to 143

learn tasks in a sequential way. In the field of 144

biology, biological neural networks exhibit con- 145

tinual learning in which they acquire new knowl- 146

edge over a lifetime (Zenke et al., 2017). How- 147

ever, continual learning in deep neural networks 148

suffers from a phenomenon called catastrophic for- 149

getting (Shin et al., 2017). Thus, one of the most 150

essential goals of continual learning systems is to 151

achieve satisfying performance on all tasks in an 152

incremental way. Reducing catastrophic forgetting 153

plays a vital role to achieve it. Current continual 154

learning approaches can be classified into the fol- 155

lowing three families (De Lange et al., 2019): (1) 156

Replay methods, (2) Regularization-based meth- 157

ods, and (3) Parameter isolation methods. Replay 158

methods store samples in a raw format or generate 159

pseudo-samples. Regularization-based methods 160

eschews storing raw inputs, prioritizing privacy, 161

and alleviating memory requirements. Parameter 162

isolation methods dedicate different model parame- 163

ters to each task to prevent any possible forgetting. 164

Our method is an advanced regularization-based 165

method alleviating the catastrophic forgetting with- 166

out data storage. 167

2.2 Fine-tuning 168

Fine-tuning is a successful method in transfer 169

learning by the following four steps: (1) pre- 170

train a source neural network model on the source 171

datasets; (2) create a new neural network model 172

which copies all model designs and their parame- 173

ters on the source model except the output layer; 174

(3) add an output layer to the target model; (4) train 175

the target model on the target datasets. Girshick 176

et al. (Girshick et al., 2014) propose a R-CNN to 177

fine-tune all network parameters. Long et al. (Long 178

et al., 2015) propose DAN only fine-tuning the pa- 179

rameters of the last few layers. Li et al. (Li et al., 180

2018) investigate several regularization schemes 181

that explicitly promote the similarity of the fine- 182

tuned model with the original pre-trained model. 183
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Preservation

𝐿𝐵 𝐿𝑁

𝐿𝑇 = 𝜆 𝑡 𝐿𝑁 + 1 − 𝜆 𝑡 𝐿𝐵

5. Parameter Calibration 
with Target Drift

6. Back Propagation

4. Cross Entropy with 
Logits Calibration

4. Mean Squared Error 
with Logits Calibration

Logits Calibration

Base Model

Input Texts 
in Base Tasks

Input Texts in Novel Tasks 
𝑇𝑡 ∈ 𝑇1, 𝑇2, … , 𝑇𝑛

Input Labels in Novel Tasks
𝑇𝑡 ∈ 𝑇1, 𝑇2, … , 𝑇𝑛

Novel Model

𝑞𝑏, 𝑞𝑛

𝐿𝐶𝐸𝐿𝐶 𝐿𝑀𝑆𝐸𝐿𝐶

Parameter Calibration

LPC Framework

Update
3. Novel Task Training

Figure 1: The Overview of LPC Framework. (1) Given the large-scale input texts from base tasks, we first pre-train
a base model on these texts and initialize our model (for novel tasks) same as the base one. (2) We do base
parameter preservation to preserve the parameters of the pre-trained model, and estimate the difference between
base parameters and novel parameters during training, then compute the loss for the base model LB . (3) During the
novel task training, we compute logtis qb and qn for the base model and the novel model, respectively. (4) We do
logits calibration (e.g., cross entropy with logits calibration for classification tasks) given qb and qn using LCELC or
LMSELC for regression tasks as the loss for the novel model LN . (5) In the parameter calibration with target drift,
the objective function drifts from LB to LN gradually with the annealing coefficient λ(t). (6) Finally, we perform
back propagation to update the parameters of the novel model with parameter calibration.

Guo et al. (Guo et al., 2019) propose an adap-184

tive fine-tuning approach SpotTune which automat-185

ically decides the optimal set of layers to fine-tune186

in a pre-trained model on a new task. Our method187

is a trade-off between multi-task learning and fine-188

tuning.189

3 Proposed Approach190

In this section, we introduce our proposed Logits191

and Parameter Calibration framework, LPC. The192

LPC framework includes two essential parts: (1)193

Logits Calibration (LC) that execute calibration194

on the logits to reduce the logits forgetting and195

increase the accuracy and (2) Parameter Calibra-196

tion (PC) to do calibration on the parameters to197

reduce the parameter forgetting. For the Logits198

Calibration, we apply the Cross Entropy with Log-199

its Calibration (CELC) for classification tasks (or200

the Means Squared Error with Logits Calibration201

(MSELC) for regression tasks). The Parameter Cal-202

ibration consists of three components: (1) Base203

Parameter Preservation (BPP) that tries to preserve 204

the parameters we learned from base tasks, (2) 205

Novel Task Training (NTT) that trains the previous 206

model on novel tasks, and (3) Parameter Calibra- 207

tion with Target Drift (PCTD) that focuses on drift- 208

ing from the base tasks to novel tasks gradually. 209

What is more, we introduce LPC algorithm by inte- 210

grating the Logits Calibration (CELC or MSELC) 211

and all three parts of Parameter Calibration (BPP, 212

NTT, and PCTD) into a brand-new optimization 213

algorithm based on the well-known Adam (Kingma 214

and Ba, 2014) optimization algorithm. 215

3.1 Logits Calibration 216

In this section, we introduce our proposed logtis 217

calibration, the Cross Entropy with Logits Calibra- 218

tion (CELC) for classification tasks. Some other 219

loss function (e.g., the Mean Squared Error for re- 220

gression) can also be combined with the Logits 221

Calibration, in the following paragraph. 222
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Algorithm 1 LPC

1: given initial learning rate α ∈ R, momentum factors β1 = 0.9, β2 = 0.999, ϵ = 10−8, pre-trained
parameter vector θ∗ ∈ Rn, hyperparameter for the regularizer δ ∈ R, coefficient of the quadratic
penalty γ ∈ R, hyperparameter controlling the annealing rate r ∈ R, hyperparameter controlling the
timesteps t0 ∈ N.

2: initialize timestep t ← 0, parameter vector θt=0 ∈ Rn, importance weights Ω ← 1, first moment
vector mt=0 ← 0, second moment vector vt=0 ← 0, schedule multiplier ηt=0 ∈ R.

3: repeat
4: t← t+ 1 ▷ update timestep
5: x← SelectBatch(x) ▷ select batch data
6: qn,t ← Qn,t(x, θt−1) ▷ compute output logits for the novel model

7: qb,t ← Qb,t(x, θ
∗) ▷ compute output logits for the base model

8: ∇(ft(x; θt−1))← ∇(LCELC(qn,t, qb,t) ∥ LMSELC(qn,t, qb,t)) ▷ compute gradients

9: Ωt ← Ωt−1

10: for k ← 0 to N do
11: gt(xk)← ∇l22(ft(xk; θt−1))

12: Ωt ← Ωt + ∥gt(xk)∥
13: end for
14: Ωt ← Ωt/N ▷ compute importance weights after each update epochs

15: λ(t)← 1/(1 + exp(−r · (t− t0)) ▷ compute annealing coefficient

16: gt ← λ(t) ∇ft(x; θt−1)+ 2(1− λ(t))δγΩt(θt−1 − θ∗) ▷ compute new gradients
17: mt ← β1mt−1 + (1− β1)gt ▷ update biased first moment estimate
18: vt ← β2vt−1 + (1− β2)g

2
t ▷ update biased second raw moment estimate

19: m̂t ← mt/(1− βt
1) ▷ compute bias-corrected first moment estimate

20: v̂t ← vt/(1− βt
2) ▷ compute bias-corrected second raw moment estimate

21: ηt ← SetScheduleMultiplier(t) ▷ can be fixed, decay, or also be used for warm restarts
22: θt ← θt−1 − ηt( λ(t) αm̂t/(

√
v̂t + ϵ)+ 2(1− λ(t))δγΩt(θt−1 − θ∗) ) ▷ update parameters

23: until stopping criterion is met
24: return optimized parameters θt

3.1.1 Cross Entropy with Logits Calibration223

The Cross Entropy (CE) Loss (Zhang and Sabuncu,224

2018) is a widely-used loss for classification tasks225

in deep learning. It first applies a log softmax226

function on the output logits of the neural network.227

Then, it computes the negative log likelihood (nll)228

loss on the output of the log softmax function. Typ-229

ically, the cross entropy loss can be defined as fol-230

lows:231

LCE(q) = −
NC∑
i=1

pi log(
exp(qn,i)

NC∑
j=1

exp(qn,j)

) (1)232

where NC is the total number of classes in the233

novel tasks. qn,i represents the output logits for234

class i of the novel model on the novel tasks. pi235

can be considered as the binary label of class i. If 236

the data input x belongs to class i, the value of pi 237

will be 1, otherwise, the value will be 0. 238

Nevertheless, the original cross entropy loss only 239

concerns the performance of the novel model. Thus, 240

the model will suffer the catastrophic forgetting 241

problem with the step increasing. In order to reduce 242

the catastrophic forgetting problem, we consider 243

to simultaneously evaluate the base model on the 244

novel tasks and compute the output logits of the 245

base model qb. 246

Inspired by the idea from (Kukleva et al., 2021) 247

which revises the original cross entropy loss by 248

adding the summation of the exponential logtis of 249

the base classes classifier to the denominator to 250

change the normalization scale, we add the log- 251

its information of the base model into the cross 252

entropy loss. 253
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However, different from Kukleva’s method, we254

do logtis calibration by adding the difference be-255

tween each logits of the novel model and the base256

model (qn,i − qb,i) to the corresponding output log-257

its qn,i of the novel model for class i. In this way,258

the model can preserve important output logits in-259

formation of each class for the base model in an260

element-wise way. Our proposed Cross Entropy261

with Logits Calibration (CELC) Loss is shown in262

Equation 2:263

L = −
NC∑
i=1

pi log(
exp(qn,i + µ(qn,i − qb,i))

NC∑
j=1

exp(qn,j + µ(qn,j − qb,j))

)

(2)264

where we multiply the difference between the265

logits for the novel model and the base model266

(qn − qb) by a weight item µ ∈ [0, 1] to control267

the calibration degree. By employing this new loss268

function, we can also increase the accuracy of the269

model through training process by giving a reward270

to the logits for the correct class if qn,i is larger271

than qb,i, otherwise, giving a penalty to the logits272

for the correct class if qn,i is smaller than qb,i.273

3.1.2 Mean Squared Error with Logits274

Calibration275

Mean Squared Error (MSE) Loss (Fisher, 1922)276

is the most commonly-used loss function for re-277

gression tasks. It computes the squared L2 norm278

between output logits and the true values and takes279

the mean of the full batch. Follow the idea of the280

logits calibration on cross entropy loss, we evaluate281

the base model on novel tasks and take out the out-282

put logtis qb. We measure the difference between283

the output logits of the novel model and the base284

model by adding a squared L2 norm on the differ-285

ence between logits of the novel model and the base286

model (qn − qb)
2 to the original function. The pro-287

posed Mean Squared Error with Logits Calibration288

Loss LMSELC is shown in Equation 3:289

LMSELC(q) = (qn − p)2 + µ(qn − qb)
2 (3)290

3.2 Parameter Calibration291

In this section, we introduce the second module292

of our model, Parameter Calibration (PC). Our293

proposed Parameter Calibration method can effec-294

tively reduce the catastrophic forgetting by giving295

a penalty to the prediction if the parameters of296

the novel model are different from the base model 297

by adding the squared difference between the pa- 298

rameters of the novel model and the base model 299

to the training loss. It includes three parts: (1) 300

Base Parameter Preservation (BPP), (2) Novel Task 301

Training (NTT), and (3) Parameter Calibration with 302

Target Drift (PCTD). 303

3.2.1 Base Parameter Preservation 304

As shown in Figure 1, in Base Parameter Preser- 305

vation, we try to maintain the parameters of the 306

base model like BERT (Devlin et al., 2018). Here, 307

we add a regularization to the posterior of parame- 308

ters given data. The Base Parameter Preservation 309

method can be regarded as an improved method 310

derived from EWC (Kirkpatrick et al., 2017b) and 311

MAS (Aljundi et al., 2018). Different from EWC, 312

BPP measures the importance of each parameter 313

by introducing the importance weights Ω. During 314

training, the novel model preserves the information 315

of the most important parameters to a great extent 316

by penalizing the changes to those important pa- 317

rameters more severely. The detailed derivation of 318

our proposed loss function is shown in Equation 4: 319

LB = − log p(θ|DB)

≈ − log p(θ∗|DB) + δ(θ − θ∗)TH(θ∗)Ω(θ)(θ − θ∗)

≈ δ(θ − θ∗)TH(θ∗)Ω(θ)(θ − θ∗)

≈ δ(θ − θ∗)T (NF (θ∗) +Hprior(θ
∗))Ω(θ)(θ − θ∗)

≈ δN
∑
ij

FijΩij(θij − θ∗ij)
2

≈ δNF
∑
ij

Ωij(θij − θ∗ij)
2

= δγ
∑
ij

Ωij(θij − θ∗ij)
2

(4) 320

where δ is a hyperparameter for the regularizer. 321

H(θ∗) is the Hessian matrix of the optimization 322

objective with respect to θ∗. We can approximate 323

H(θ∗) with the empirical Fisher information ma- 324

trix F (θ∗) (Martens, 2014). N is the total num- 325

ber of data inputs in DB . Hprior(θ
∗) is the Hes- 326

sian matrix of the negative log prior probability 327

− log p(θ). EWC ignores Hprior(θ
∗) and approx- 328

imates H(θ∗) by assigning the diagonal values of 329

F (θ∗) to H(θ∗). Thus, we replace NF with a 330

constant value γ at the end of the derivation. We 331

can consider γ as a coefficient of the quadratic 332

penalty. During the derivation, we can simply ig- 333

nore − log p(θ∗|DB) as it is a constant term with 334
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respect to θ∗. Ω(θ) is estimated by the sensitivity335

of the squared L2 norm of the function output to336

their changes. We can obtain Ωij by accumulating337

the gradients over the given data points by Equation338

5:339

Ωij =
1

N

N∑
k=1

∥gij(xk)∥ (5)340

where gij(xk) =
∂[l22(f(xk;θ))]

∂θij
is the gradients of341

the squared L2 norm of the learned neural network342

with respect to the parameter θij . The output of343

f(xk; θ) is the loss of the network.344

In Equation 4, θij is the parameter of the novel345

model of the connections between pairs of neu-346

rons ni and nj in two consecutive layers. θ∗ rep-347

resents the pre-trained parameters, which can be348

assumed as a local minimum of the parameter space349

as shown in Equation 6:350

θ∗ = argmin
θ
{− log p(θ|DB)} (6)351

3.2.2 Novel Task Training352

In the novel task training process, we train the353

novel model and evaluate the base model on novel354

tasks simultaneously. The function of the neural355

network whose output is the loss of the model can356

be represented as follows:357

LN = ft(x; θt−1) (7)358

where t is the timestep. We compute the loss359

by the proposed Cross Entropy with Logits Cali-360

bration (CELC) for classification tasks and Mean361

Squared Error with Logits Calibration (MSELC)362

for regression tasks as follows:363

ft = LCELC(Q(x; θt−1)) ∥ LMSELC(Q(x; θt−1))
(8)364

where Q(x; θt−1) represents the function of the365

novel model and the base model whose output are366

logits with data inputs x and parameters θt−1 of367

the model in timestep t− 1.368

3.2.3 Parameter Calibration with Target Drift369

Multi-task learning tries to achieve satisfying per-370

formance on both of the base tasks and novel tasks.371

However, one of the most essential problems of372

multi-task learning is that it is inconsistent with373

adaptation (Chen et al., 2020). To deal with this374

problem, we introduce Parameter Calibration with375

Target Drift, a method allowing the objective func- 376

tion to gradually drift from LB to LN with the 377

annealing coefficient λ(t): 378

LT = λ(t)LN + (1− λ(t))LB (9) 379

where t refers to the timestep during the training 380

process. We compute λ(t) = 1
1+exp(−r·(t−t0))

as 381

the sigmoid annealing function (Kiperwasser and 382

Ballesteros, 2018), where r is the hyperparameter 383

controlling the annealing rate and t0 is the hyper- 384

parameter controlling the timesteps. 385

When t < t0, −r · (t − t0) will be positive. In 386

this case, if r →∞, then exp(−r · (t− t0))→∞, 387

λ(t) → 0, LT = LB . When t > t0, −r · (t − t0) 388

will be negative. In this case, if r → ∞, then 389

exp(−r · (t − t0)) → 0, λ(t) → 1, LT = LN . 390

At this moment, our method can be regarded as 391

fine-tuning. Otherwise, if r → 0, then −r · (t − 392

t0) → 0, exp(−r · (t − t0)) → 1, λ(t) → 0.5, 393

LT = 0.5LN + 0.5LB . In this case, our method 394

can be regarded as multi-task learning. Finally, if 395

0 < r < ∞, then 0 < λ < 1. In this case, our 396

method can be regarded as a trade off between fine- 397

tuning and multi-task learning. With time goes by, 398

the objective of the model drifts from base tasks 399

to novel tasks gradually. Finally, by doing back 400

propagation, we update parameters of the novel 401

model with parameter calibration. 402

3.3 LPC Algorithm 403

In this section, we combine the Logits Calibration 404

(CELC) with all three parts of Parameter Calibra- 405

tion (BPP, NTT, and PCTD) into a brand-new opti- 406

mization algorithm as shown in Algorithm 1. The 407

Logits Calibration (LC) part is shown from line 6 408

to line 8. The Parameter Calibration (PC) part is 409

shown from line 9 to line 18 and line 24. Here, 410

we introduce LPC Algorithm which integrates the 411

quadratic penalty with importance weights and the 412

annealing coefficient into a complete optimization 413

algorithm by decoupling them from the gradient 414

update in Adam optimization algorithm (Kingma 415

and Ba, 2014). The orange part in Algorithm 1 416

depicts how LPC is different from Adam. 417

From line 9 to line 16, we show how we calculate 418

Ω by initializing Ω as a tensor filled with the scalar 419

value one. The size of Ω are the same as that of 420

parameter size of the base model and the novel 421

model. From line 11 to line 14, we accumulate the 422

gradients of the squared L2 norm of the learned 423

neural network over the given data inputs to obtain 424
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Table 1: Experimental Results. All of results are the medians over 5 runs. The metric for CoLA is mcc (Matthew
Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation Coefficient).
All other metrics are acc (Accuracy).

Model
CoLA
mcc
8.5k

MRPC
acc
3.7k

QNLI
acc

105k

RTE
acc
2.5k

SST-2
acc
67k

STS-B
corr
7k

WNLI
acc
634

Avg
acc

Avg
mcc

Avg
corr

BERT-base + PALs (Stickland and Murray, 2019) 51.2 84.6 90.0 76.0 92.6 85.8 N/A N/A 51.2 85.8
BERT-large + Adapters (Houlsby et al., 2019) 59.5 89.5 90.7 71.5 94.0 86.9 N/A N/A 59.5 86.9
BERT-large + Diff pruning (Guo et al., 2020) 60.5 87.0 92.9 68.1 93.8 83.5 N/A N/A 60.5 83.5

BERT-base + Adam (rerun) Median 57.1 81.3 91.0 63.9 93.1 89.2 56.3 77.1 57.1 89.2
BERT-base + RecAdam (rerun) Median 59.9 85.7 91.4 70.8 93.1 90.0 56.3 79.5 59.9 90.0
BERT-base + LPC Median 61.8 86.1 91.5 74.7 93.2 90.3 62.0 81.5 61.8 90.3

ALBERT-xxlarge + Adam (rerun) Median 70.5 88.8 93.7 72.9 91.1 92.2 69.0 83.1 70.5 92.2
ALBERT-xxlarge + RecAdam (rerun) Median 70.5 87.5 93.9 89.5 93.9 92.8 78.9 88.7 70.5 92.8
ALBERT-xxlarge + LPC Median 74.1 89.4 94.3 89.5 95.8 93.3 81.7 90.1 74.1 93.3

importance weights Ωij for parameter θij . In line425

15, we compute the mean value of Ωij by dividing it426

by N . Here, N is the total number of data inputs at427

a given phase. In line 18, we compute the gradients428

of the loss function as a weighted combination of429

the gradients of LN and LB . In line 24, we update430

the network parameters θ by the gradient descent431

method.432

4 Evaluations433

In this section, we evaluate LPC on the Gen-434

eral Language Understanding Evaluation (GLUE)435

(Wang et al., 2018) benchmark. We compare our436

model with PALs (Stickland and Murray, 2019),437

Adapters (Houlsby et al., 2019), Diff Pruning (Guo438

et al., 2020), Adam (Kingma and Ba, 2014), and439

RecAdam (Chen et al., 2020).440

4.1 Experimental Setup441

We perform the experiments based on deep pre-442

trained language models BERT-base1 (Devlin et al.,443

2018) and ALBERT-xxlarge (Lan et al., 2019), re-444

spectively. BERT aims to learn a Transformer en-445

coder for representing texts. BERT is a multi-layer446

bidirectional Transformer encoder. In BERT, the447

Transformer uses bidirectional self-attention. AL-448

BERT is an advanced deep pre-trained language449

model with lower memory consumption and faster450

training speed than BERT. ALBERT improves451

BERT using parameter reduction techniques and452

employing self-supervised loss for sentence-order453

prediction (SOP).454

We evaluate our approach LPC on the GLUE455

benchmark. GLUE benchmark is a collection of re-456

sources for training, evaluating, and analyzing natu-457

1https://huggingface.co/transformers/model_doc/bert.html

ral language understanding (NLU) systems (Wang 458

et al., 2018). It contains the following 9 different 459

scenarios: (1) Single-Sentence Scenarios: CoLA 460

The Corpus of Linguistic Acceptability (Warstadt 461

et al., 2019), and SST-2 The Stanford Sentiment 462

Treebank (Socher et al., 2013); (2) Similarity and 463

Paraphrase Senarios: MRPC The Microsoft Re- 464

search Paraphrase Corpus (Dolan and Brockett, 465

2005), QQP The Quora Question Pairs dataset2, 466

and STS-B The Semantic Textual Similarity Bench- 467

mark (Cer et al., 2017); (3) Inference Scenarios: 468

MNLI The Multi-Genre Natural Language Infer- 469

ence Corpus (Williams et al., 2017), QNLI The 470

Stanford Question Answering Dataset (Rajpurkar 471

et al., 2016), RTE The Recognizing Textual En- 472

tailment datasets (Dagan et al., 2005) (Haim et al., 473

2006) (Giampiccolo et al., 2007) (Bentivogli et al., 474

2009), and WNLI The Winograd Schema Chal- 475

lenge (Levesque et al., 2012). 476

4.2 Results 477

We perform experiments on 7 scenarios of the 478

GLUE benchmark as shown in Table 1. From the 479

experimental results with BERT-base model, we 480

outperform BERT-base with Adam and BERT-base 481

with RecAdam (Chen et al., 2020) models on 7 out 482

of 7 scenarios of the GLUE benchmark and achieve 483

2.5% improvements on average measured by acc on 484

MRPC, QNLI, RTE, SST-2, and WNLI, 3.2% im- 485

provements measured by mcc on CoLA, and 0.3% 486

improvements measured by corr on STS-B com- 487

pared with RecAdam. Especially, we achieve sig- 488

nificant improvements on WNLI corpus (+10.1%) 489

and CoLA corpus (+5.5%). From the experimen- 490

2https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs
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Table 2: The Results of Ablation Study on Adam, Logtis Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC). All of results are the medians over 5 runs. The metric for CoLA is mcc (Matthew
Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation Coefficient).
All other metrics are acc (Accuracy).

Model
CoLA
mcc
8.5k

MRPC
acc
3.7k

QNLI
acc

105k

RTE
acc
2.5k

SST-2
acc
67k

STS-B
corr
7k

WNLI
acc
634

Avg
acc

Avg
mcc

Avg
corr

BERT-base + Adam (rerun) Median 57.1 81.3 91.0 63.9 93.1 89.2 56.3 77.1 57.1 89.2
BERT-base + LC Median 61.2 82.8 91.5 66.8 92.3 89.3 56.3 77.9 61.2 89.3
BERT-base + PC Median 61.4 85.3 91.5 72.2 92.8 90.2 57.7 79.9 61.4 90.2
BERT-base + LPC Median 61.8 86.1 91.5 74.7 93.2 90.3 62.0 81.5 61.8 90.3

tal results on ALBERT-xxlarge model, we outper-491

form ALBERT-xxlarge with Adam and ALBERT-492

xxlarge with RecAdam models on 7 out of 7 scenar-493

ios of the GLUE benchmark and achieve 1.6% im-494

provements on average measured by acc on MRPC,495

QNLI, RTE, SST-2, and WNLI, 5.1% improve-496

ments measured by mcc on CoLA, and 0.5% im-497

provements measured by corr on STS-B compared498

with RecAdam. Specifically, we achieve great im-499

provements on CoLA corpus (+5.1%) and WNLI500

corpus (+3.5%). What is more, there is no obvious501

relationship between the size of the datasets and502

the results. Namely, our model performs well on503

both large datasets and small datasets.504

4.3 Ablation Study505

As we have mentioned, our model (LPC) has two506

important components, Logits Calibration (LC) and507

Parameter Calibration (PC). Thus, we do ablation508

study on these two components separately with509

BERT-base pre-trained model on the 7 scenarios510

of the GLUE benchmark. The results of albation511

study is shown in Table 2. We can see both of512

LC and PC achieve better results than the baseline513

Adam. LPC achieves the best results among all514

three models. Compared with Adam, LC achieves515

1.0% improvements on average measured by acc on516

MRPC, QNLI, RTE, SST-2, and WNLI, 7.2% im-517

provements measured by mcc on CoLA, and 0.1%518

improvements measured by corr on STS-B. Com-519

pared with Adam, PC achieves 3.6% improvements520

on average measured by acc on MRPC, QNLI, RTE,521

SST-2, and WNLI, 7.5% improvements measured522

by mcc on CoLA, and 1.1% improvements mea-523

sured by corr on STS-B. Compared with Adam,524

LPC achieves 5.7% improvements on average mea-525

sured by acc on MRPC, QNLI, RTE, SST-2, and526

WNLI, 8.2% improvements measured by mcc on527

CoLA, and 1.2% improvements measured by corr528

on STS-B. 529

5 Conclusion 530

In this paper, we propose Logits and Parameter Cal- 531

ibration (LPC) framework on continual learning to 532

deal with the catastrophic forgetting problem. The 533

proposed framework includes two important com- 534

ponents, Logits Calibration (LC) and Parameter 535

Calibration (PC). We propose the Cross Entropy 536

Loss with Logits Calibration (CELC) for classifica- 537

tion tasks and the Mean Squared Error with Logits 538

Calibration (MSELC) for regression tasks. The Pa- 539

rameter Calibration consists of three components: 540

(1) Base Parameter Preservation (BPP), (2) Novel 541

Task Training (NTT), and (3) Parameter Calibra- 542

tion with Target Drift (PCTD). What is more, we 543

introduce LPC algorithm by integrating the Logits 544

Calibration and all three parts of Parameter Cali- 545

bration (BPP, NTT, and PCTD) into a brand-new 546

optimization algorithm based on the well-known 547

Adam optimization algorithm. We do experiments 548

on 7 scenarios of GLUE benchmark and achieve 549

state-of-the-art performance on all the 7 scenarios. 550

The limitation of our work is that our work cannot 551

handle the online learning settings. This means that 552

when data comes in an online manner (sometimes 553

without labels), we have no technique to handle it. 554

Thus, our future direction is to make our model fit 555

the online learning settings. We also release the 556

open-source LPC Algorithm to further benefit the 557

continual learning research community. 558
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A LPC Appendix 742

A.1 Hyperparameter Analysis 743

In this section, we analyze the most essential hy- 744

perparameters we set in the LPC model. δ is a 745

hyperparameter controlling the level of regulariza- 746

tion. Setting δ between 1 and 2 balances the level 747

of regularization. Ω is a parameter measuring the 748

importance of different parameters in the model. 749

Initializing Ω as ones makes the importance of each 750

parameter more balanced. The hyperparameter u_e 751

controls the updating epochs of Ω. Typically, u_e 752

is between 1 and 16. w_s is a hyperparameter con- 753

trolling the number of steps of updating with low 754

learning rate before/at the beginning of the train- 755

ing process. We set w_s as 0, 320 or 640. After 756

these warmup steps, we will use the regular learn- 757

ing rate to train our model until convergence. In 758

other words, we have a few steps adjustment before 759

we actually train the model. From our experiments, 760

we find that the hyperparameters δ, u_e, and w_s 761

have great influences on the experimental results. 762

Figure 2 shows the comparison of different hy- 763

perparameter (δ, u_e, and w_s) initializations on 764

CoLA, MRPC, and STS-B corpora with BERT- 765

base pre-trained model. 766

In Figure 2 chart (1), we set u_e = 2 and w_s = 767

320. We can see when δ increases from 1 to 1.2, 768

the performance of the model decreases a lot. After 769

that, the performance of the model increases with 770

δ increasing. The model achieves the best results 771

when δ = 2 on all the three corpora. 772

In Figure 2 chart (2), we set δ = 2 and w_s = 773

320. We can see the performance of the model 774

varies with different values of u_e. Specifically, 775

when u_e increases from 1 to 2, the performance 776

of the model improves a lot. While when u_e in- 777

creases from 2 to 4, the performance decreases in a 778

large extent. However, when u_e increases from 4 779
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Figure 2: Comparison of Different Hyperparameter Initializations on CoLA, MRPC, and STS-B Corpora with
BERT-base Pre-trained Model. The metric for CoLA, MRPC, and STS-B are mcc (Matthew Correlation Coefficient),
acc (Accuracy), and corr (Average of Pearson and Spearman Correlation Coefficient), respectively.

Table 3: The Results of Ablation Study on Adam, Logtis Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC) with ALBERT-xxlarge Pre-trained Model. All of results are the medians over 5
runs. The metric for CoLA is mcc (Matthew Correlation Coefficient). The metric for STS-B is corr (Average of
Pearson and Spearman Correlation Coefficient). All other metrics are acc (Accuracy).

Model
CoLA
mcc
8.5k

MRPC
acc
3.7k

QNLI
acc

105k

RTE
acc
2.5k

SST-2
acc
67k

STS-B
corr
7k

WNLI
acc
634

Avg
acc

Avg
mcc

Avg
corr

ALBERT-xxlarge + Adam (rerun) Median 70.5 88.0 93.7 72.9 91.1 92.2 69.0 82.9 70.5 92.2
ALBERT-xxlarge + LC Median 71.0 88.5 93.8 88.4 95.5 92.3 70.4 87.3 71.0 92.3
ALBERT-xxlarge + PC Median 74.1 88.6 94.0 88.4 95.7 92.9 74.6 88.3 74.1 92.9
ALBERT-xxlarge + LPC Median 74.1 89.4 94.3 89.5 95.8 93.3 81.7 90.1 74.1 93.3

to 8, the model performance increases again. When780

u_e increases from 8 to 16, there is a slight increase781

on the performance.782

In Figure 2 chart (3), we set δ = 1 and u_e = 1.783

We can see when w_s increases from 0 to 320,784

there is a big increase on all three corpora. How-785

ever, when w_s increases from 320 to 640, the786

performance decreases slightly, instead.787

A.2 Forgetting Analysis788

In addition to computing accuracy, we also measure789

the forgetting by computing the euclidean distance790

between the parameters of the novel model and791

the base model on CoLA corpus. Figure 3 shows792

the comparison of parameter forgetting from the793

first epoch to the last epoch and the corresponding794

accuracy after convergence with epoch increasing795

among LPC, RecAdam and Adam. In Figure 3796

chart (1), with epoch increasing, the euclidean dis-797

tance of Adam increases a lot, which means the for-798

getting of Adam is huge with the epoch increasing.799

However, our model (LPC) reduces the forgetting800

in a large extent compared with Adam and achieves801

similar forgetting with RecAdam, another baseline802

trying to reduce carastrophic forgetting. Here, the803

forgettnig of our model is a little bit worse than 804

RecAdam is because our model tries to remember 805

the most important parameters while forget unim- 806

portant parameters. Furthermore, in Figure 3 chart 807

(2), we can see our model (LPC) achieves the best 808

accuracy compared with RecAdam and Adam all 809

the time after convergence (Epoch 4). 810

A.3 Ablation Study with ALBERT-xxlarge 811

Model 812

As we have mentioned, our model (LPC) has two 813

important components, Logits Calibration (LC) and 814

Parameter Calibration (PC). In addition to doing 815

ablation study with BERT-base pre-trained model, 816

we also do ablation study on these two compo- 817

nents separately with ALBERT-xxlarge pre-trained 818

model on the 7 scenarios of the GLUE benchmark. 819

The results of albation study with ALBERT-xxlarge 820

pre-trained model is shown in Table 3. We can see 821

with ALBERT-xxlarge pre-trained model, both of 822

LC and PC achieve better results than the baseline 823

Adam. LPC achieves the best results among all 824

three models. Compared with Adam, LC achieves 825

5.3% improvements on average measured by acc on 826

MRPC, QNLI, RTE, SST-2, and WNLI, 0.7% im- 827
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Figure 3: Comparison of Parameter Forgetting and
Model Performance with the Epoch Increasing on CoLA
Corpus with BERT-base Pre-trained Model.

provements measured by mcc on CoLA, and 0.1%828

improvements measured by corr on STS-B. Com-829

pared with Adam, PC achieves 6.5% improvements830

on average measured by acc on MRPC, QNLI, RTE,831

SST-2, and WNLI, 5.1% improvements measured832

by mcc on CoLA, and 0.8% improvements mea-833

sured by corr on STS-B. Compared with Adam,834

LPC achieves 8.7% improvements on average mea-835

sured by acc on MRPC, QNLI, RTE, SST-2, and836

WNLI, 5.1% improvements measured by mcc on837

CoLA, and 1.2% improvements measured by corr838

on STS-B. Thus, we can conclude that our model839

can achieve state-of-the-art results with different840

pre-trained model. These results prove the scalabil-841

ity of our model.842
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