
SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising

Anonymous ACL submission

Abstract

On the WikiSQL1 benchmark, most methods001
tackle the challenge of text-to-SQL with pre-002
defined sketch slots and build sophisticated003
sub-tasks to fill these slots. Though achiev-004
ing promising results, these methods suffer005
from over-complex model structure. In this006
paper, we present a simple yet effective ap-007
proach that enables auto-regressive sequence-008
to-sequence model to robust text-to-SQL gen-009
eration. Instead of formulating the task of010
text-to-SQL as slot-filling, we propose to train011
sequence-to-sequence model with Schema-012
aware Denoising (SeaD), which consists of013
two denoising objectives that train model to ei-014
ther recover input or predict output from two015
novel erosion and shuffle noises. These model-016
agnostic denoising objectives act as the aux-017
iliary tasks for structural data modeling dur-018
ing sequence-to-sequence generation. In ad-019
dition, we propose a clause-sensitive execu-020
tion guided (EG) decoding strategy to over-021
come the limitation of EG decoding for gen-022
erative model. The experiments show that the023
proposed method improves the performance of024
sequence-to-sequence model in both schema025
linking and grammar correctness and estab-026
lishes new state-of-the-art on WikiSQL bench-027
mark. Our work indicates that the capacity of028
sequence-to-sequence model for text-to-SQL029
may have been under-estimated and could be030
enhanced by specialized denoising task.031

1 Introduction032

Text-to-SQL aims at translating natural language033

into valid SQL query. It enables layman to explore034

structural database information with semantic ques-035

tion instead of dealing with the complex grammar036

required by logical -form query. On the WikiSQL037

benchmark, most models adopt a sketch-based slot038

filling approach. It decomposes the task of convert039

query to SQL into several sub-tasks that are rela-040

tively easy to handle, e.g., the ‘SELECT‘ column041

1https://github.com/salesforce/WikiSQL

week | data | opponent | result | attendance
… | … | … | … | …
… | … | … | … | …

SeaD

SELECT ` <col0> ` from ` table ` where ` <col4> ` = ` 53,677 `

Which week had an attendance of 53,677

<col0> week <col1> data <col3> opponent …

Figure 1: SeaD regards text-to-SQL as seq2seq gener-
ation task. During inference, given natural language
question and related database schema, SeaD directly
generates corresponding SQL sequence in an auto-
aggressive manner.

mentioned or the query span corresponding to a 042

condition value. The entire SQL can be recovered 043

from the results of the sub-tasks deterministically. 044

Though being a typical sequence-to-sequence 045

(seq2seq) task, auto-regressive models (LSTM, 046

Transformer, etc.), however, fail to achieve state-of- 047

the-art results for text-to-SQL task. Previous works 048

attribute the sub-optimal results of seq2seq mod- 049

els to three major limitations. First, SQL queries 050

with different clause order may have exact same 051

semantic meaning and return same results by execu- 052

tion. The token interchangeability may confusion 053

model that based on seq2seq generation. Second, 054

the grammar constraint induced by structural logi- 055

cal form is ignored during auto-regressive decod- 056

ing, therefore the model may predict SQL with 057

invalid logical form. Third, schema linking, which 058

has been suggested to be the crux of text-to-SQL 059

task, is not specially addressed by vanilla seq2seq 060

model. 061

In this paper, we present a simple yet effective 062

method to boost the performance of seq2seq model 063

for text-to-SQL task. Instead of building extra sub- 064

1

https://github.com/salesforce/WikiSQL

module or putting constraint on model output, we065

propose two novel schema-awared denoising objec-066

tives trained along with the original seq2seq gener-067

ation task. These denoising objectives deal with the068

intrinsic attribute of logical form and could facili-069

tate schema linking required for text-to-SQL task.070

The inductive schema-awared noises can be cate-071

gorized into two types: erosion and shuffle. Ero-072

sion acts on schema input by randomly permute,073

drop and add columns into the current schema set.074

The related schema entity in target SQL query will075

be jointly modified according to the erosion re-076

sult. Shuffle is applied via randomly re-ordering077

the mentioned entity and values in NL or SQL with078

respect to the schema columns. During training079

procedure, shuffle is performed during monolin-080

gual self-supervision that trains model to recover081

original text given the noised one. Erosion is ap-082

plied to seq2seq task that trains model to generate083

corrupted SQL sequence, given NL and eroded084

schema as input. These proposed denoising objec-085

tives are combined along with the origin seq2seq086

task to train a SeaD model. In addition, to deal with087

the limitation of execution-guided (EG) decoding,088

we propose a clause-sensitive EG strategy that de-089

cide beam size with respect to the clause token that090

is predicted. The proposed method establish new091

state-of-the-art on the WikiSQL benchmark.092

The main contribution of this work is the schema-093

aware denoising objectives that are designed for094

text-to-SQL task. The denoising objectives are095

model-agnostic and could apply to any seq2seq096

model that are trained in auto-regressive manner.097

In addition, we also propose a clause-sensitive EG098

decoding strategy, which can improve the searching099

efficiency of EG during seq2seq generation. The100

results of the work demonstrate the effectiveness101

of the schema-aware denoising approach and shad102

lights on the importance of task-oriented denoising103

objective.104

2 Related Work105

Semantic Parsing The problem of mapping natu-106

ral language to meaningful executable programs107

has been widely studied in natural language pro-108

cessing research. Logic forms (Zettlemoyer and109

Collins, 2012; Artzi and Zettlemoyer, 2011, 2013;110

Cai and Yates, 2013; Reddy et al., 2014; Liang111

et al., 2013; Quirk et al., 2015; Chen et al., 2016)112

can be considered as a special instance to the more113

generic semantic parsing problem. As a sub-task114

of semantic parsing, the text-to-SQL problem has 115

been studied for decades. (Warren and Pereira, 116

1982; Popescu et al., 2003; Li et al., 2006; Giordani 117

and Moschitti, 2012; Bodik). Slot-filling model 118

(Hwang et al., 2019; He et al., 2019a; Lyu et al., 119

2020) translates the clauses of SQL into subtasks, 120

(Ma et al., 2020) treat this task as a two-stage se- 121

quence labeling model. However, the convergence 122

rate between subtasks is inconsistent or the inter- 123

action between multiple subtasks may lead to the 124

model may not converge well. Like lots of previ- 125

ous work (Dong and Lapata, 2016; Lin et al., 2018; 126

Zhong et al., 2017; Suhr et al., 2020; Raffel et al., 127

2019), we treat text-to-SQL as a translation prob- 128

lem, and taking both the natural language question 129

and the DB as input. 130

Hybrid Pointer Networks Proposed by (Vinyals 131

et al., 2015), copying mechanism (CM) uses atten- 132

tion as a pointer to copy several discrete tokens 133

from input sequence as the output and have been 134

successfully used in machine reading comprehen- 135

sion (Wang and Jiang, 2016; Trischler et al., 2016; 136

Kadlec et al., 2016; Xiong et al., 2016), interactive 137

conversation (Gu et al., 2016; Yu and Joty, 2020; 138

He et al., 2019b), geometric problems (Vinyals 139

et al., 2015) and program generation (Zhong et al., 140

2017; Xu et al., 2017; Dong and Lapata, 2016; Yu 141

et al., 2018; McCann et al., 2018; Hwang et al., 142

2019). In text-to-SQL, CM can not only facilitate 143

the condition value extraction from source input, 144

but also help to protect the privacy of the database. 145

In this paper, We use a Hybrid Pointer Generator 146

Network which is similar to (Jia and Liang, 2016; 147

Rongali et al., 2020) to generate next step token. 148

Denoising Self-training Language model pretrain- 149

ing (Devlin et al., 2018; Yang et al., 2019; Liu et al., 150

2019; Lan et al., 2019) has been shown to improve 151

the downstream performance on many NLP tasks 152

and brought significant gains. (Radford et al., 2018; 153

Peters et al., 2018; Song et al., 2019) are benefi- 154

cial to seq2seq task, while they are problematic 155

for some tasks. While (Lewis et al., 2019) is a 156

denoising seq2seq pre-training model, which is ef- 157

fective for both generative and discriminative tasks, 158

reduces the mismatch between pre-training and 159

generation tasks. Inspired by this, we propose a 160

denosing self-training architecture in training to 161

learn mapping corrupted documents to the original. 162

2

Erosion

SeaD

SELECT ` <unk> ` from ` table ` where ` <col0> ` = ` 53,677 `

Which week had an attendance of 53,677

<col0> week <col1> data <col3> opponent …

<col0> attendance <col1> venue <col3> result …

(a) Erosion

SELECT ` <col0> ` from ` table ` where ` <col4> ` = ` 53,677 `

<col0> week <col1> data <col3> opponent …

SeaD

SELECT ` 53,677 ` from ` table ` where ` <col0> ` = ` <col4> `

Which 53,677 had an week of attendance

Which week had an attendance of 53,677

(b) Shuffle

Figure 2: The proposed schema-aware denoising procedure. (a) Erosion denoising randomly drops, adds and re-
permutes schema columns. The related column entities in ground-truth SQL sequence will be jointly modified or
masked out with respect to the erosion results of the current schema set. Erosion objective trains model to predict
the modified SQL sequence under noised input. (b) Shuffle denoising objective re-permutes the mentioned entities
in SQL or NL sequence, and trains model to reconstruct the sequence with the correct entity order.

3 Methodology163

Given natural language question Q and a schema S,164

our goal is to obtain the corresponding SQL query165

Y . Here the natural question Q = {q1, ..., q|Q|}166

denotes a word sequence, the schema S =167

{c1, ..., c|S|} is composed of a set of columns,168

where each column ci = {c1, ..., c|ci|} is a se-169

quence of words. Y = y1, ..., y|Y | denotes the170

token-wise raw SQL sequence. We approach this171

task with directly auto-regressive generation, i.e.,172

predicting the SQL sequence token by token. We173

choose Transformer as our base architecture, which174

is a widely adopted in seq2seq translation and gen-175

eration tasks. In this section, we first present the176

sample formulation that transform text-to-SQL into177

typical seq2seq task, followed by a brief introduce178

of the Transformer architecture with pointer gener-179

ator. Then we describe the proposed schema-aware180

denoising method and clause-sensitive EG decod-181

ing strategy.182

3.1 Sample Formulation183

Given training samples {Xi, Yi}, i = 1, ..., N ,
X = {Q,S}, where Q denotes the NL sequence
and S denotes the schema set, Y is the SQL se-
quence. Sample formulation is a function

X̃, Ỹ = format(X,Y)S

that transforms heterogeneous data into pairwise184

token sequence. It is performed by filling template185

that acts as a prompt to guide seq2seq model to186

generate different types of token with respected187

to various contexts. For schema formulation,188

each column name is prefixed with a separate 189

special token <coli>, where i denotes the i- 190

th column in the schema set. The column type 191

of each column is also append to the name se- 192

quence to form the template for a schema col- 193

umn <coli> col name : col type. All 194

columns in schema is formulated and concatenated 195

together to compose the input sequence for schema. 196

The schema sequence is further concatenated with 197

the NL sequence for model input. We explicitly in- 198

troduce schema-mention alignment to NL sequence 199

by surrounding schema names that are mentioned 200

in NL sequence with bracket tokens [], in order to 201

improve the learning of schema linking, 202

For SQL sequence, we initialize it with raw SQL 203

query and perform several modifications on it: 1) 204

surrounding entities and values in SQL query with a 205

"‘" token, and dropping other surroundings if exist; 206

2) replacing col entities with their corresponding 207

separate token in schema; 3) inserting spaces be- 208

tween punctuation and words. The formulated SQL 209

sequence is illustrated in Figure 1. The formatting 210

procedure improves consistency between tokenized 211

sequences of source and target, and contributes to 212

the identification and linking of schema entities. 213

3.2 Transformer with Pointer 214

Following the previous works on seq2seq semantic 215

parsing, we use Transformer (Vaswani et al., 2017) 216

as the backbone of our model. The vanilla Trans- 217

former generate tokens with a feed-forward layer 218

that computes the unnormalized score over the tar- 219

get vocabulary. In text-to-SQL task, however, most 220

3

schema and value mentions can be extracted from221

the input sequence. Therefore, we adopt a Hybrid222

Pointer Generator Network (Jia and Liang, 2016) in223

our architecture to generate tokens from the target224

vocabulary V or copy from the input context.225

During inference, input sequence X is first en-226

coded into a sequence of hidden states Henc. Then,227

the decoder produces the hidden states hdec for step228

t based on previously generated sequence and en-229

coded output. The unnormalized scores scoresv =230

{s1, ..., s|V |} over V can be obtained from hdec231

through a feed-forward layer. V = {Vq,Vc,Vs}232

is the target vocabulary, where Vq denotes cor-233

pora token vocabulary, Vc denotes column token234

set and Vs denotes avaliable SQL keywords, e.g.235

SELECT, MAX, MIN, etc. The decoder output236

hdec is also used to compute the unnormalized at-237

tention scores scores = {i1, ..., i|X|} over the in-238

put sequence tokens, where |X| is the sequence239

length.240

We concatenate scoresv and scores241

to get the hybrid score scorehybrid =242

{s1, ..., s|V |, i1, ..., i|X|}, where the first |V |243

elements represent the output distribution of244

the target vocabulary V and the remained |X|245

are pointers tokens referred to corresponding246

input tokens. The final probability distribution247

is computed by P = softmax(scorehybrid), to248

determine the next token during generation.249

3.3 Schema-aware Denoising250

Similar to masked language modeling and other251

denoising task, we propose two schema-aware ob-252

jectives, erosion and shuffle, that train model to253

either reconstruct the origin sequence from noising254

input or predict corrupted output otherwise. The255

denoising procedure is illustrated in Figure 2.256

3.3.1 Erosion257

Given input sample {Q,S, Y }, erosion corrupts258

the schema sequence S with a serial compositions259

of three noising operations:260

Permutation Re-order the concatenation sequence261

of schema columns during schema formulation.262

Removal For each column, remove it with a drop-263

ping probability pdrop.264

Addition With a addition probability padd, extract265

a column from another schema that exists in the266

training database and insert it into current schema267

set.268

During all operations above, the order of separating269

special tokens remains unchanged, therefore the270

Algorithm 1: Training procedure for
schema-aware denoising
Input : training corpus

X = {(Qi, Si, Yi)}, i ∈ 1, ...|X |,
S2S Transformer Θ

foreach (Qi, Si, Yi) ∈ X do
Tsrc, Ttgt ← Qi, Yi;
Ttgt, Si ← Erosion(Ttgt, Si)
with Pshuffle do

with Pswap do
Tsrc, Ttgt ← Ttgt, Tsrc;

end
Tsrc← Shuffle (Ttgt)

end
Ttype← SeqType(Ttgt)
if Ttype = SQL then

Tprefix ← <2sql>;
else

Tprefix ← <2nl>;
end
Tsrc ← Tprefix + Tsrc + Si;
TrainOneSample(Tsrc, Ttgt,Θ)

end

corresponding anonymous entities in SQL query 271

should be updated along with the erosion opera- 272

tions in schema sequence. In particular, if a col- 273

umn entity mentioned in SQL query is removed 274

during erosion, we substitute the corresponding col- 275

umn token in SQL with a masking token <unk> 276

to cope with the absence of the schema informa- 277

tion. With such joint modification for schema and 278

SQL sequence, the model is required to identify 279

the schema entities that are truly related to the NL 280

question and learns to raise an unknown exception 281

whenever the schema information is insufficient to 282

compose the target SQL. 283

3.3.2 Shuffle 284

Given input sequence X ′ = {Q, S}, where Q = 285

{Q,Y }, the shuffle noise reorders the mentioning 286

sequence of entities in the source query while the 287

schema sequence S is fixed. The denoising objec- 288

tive trains model to reconstruct the query sequence 289

Q with entities in correct order. The objective of 290

recovering shuffled entity orders trains model to 291

capture the inner relation between different enti- 292

ties and therefore contributes to the schema link- 293

ing performance. It is also notable that, as a self- 294

supervision objective, both Q and Y are engaged 295

4

in this denoising task and get trained separately.296

Though we dependent on the SQL query to identify297

the value entities in NL query, order shuffling with298

only column entities is sufficient to obtain promis-299

ing performance. Since no parallel data is required,300

additional corpus with monolingual data for both301

SQL and NL could help with the re-order task and302

will be one of the further direction of this work.303

3.3.3 Training Procedure304

Inspired by previous works on denoising self-305

training (Song et al.; Lewis et al.), we propose to306

train the schema-aware denoising objectives along307

with the primary seq2seq task. During training, for308

each training sample, we apply a nosing pipeline to309

it before feeding it into the model. The noises with310

different type are applied to the sample individu-311

ally. Through the control of activate probability,312

they could share the same weights in the overall ob-313

jective. Such continual noising pipeline generates314

random-wise corrupted samples during training. It315

prevents the model from fast over-fitting and could316

yield results with better generalization (Siddhant317

et al.). The whole procedure is summarized in Al-318

gorithm 1.319

3.4 Clause-sensitive EG Decoding320

During the inference of text-to-SQL task, the pre-321

dicted SQL may contain errors related to inap-322

propriate schema linking or grammar. EG decod-323

ing (Wang et al., 2018) is proposed to amend these324

errors through an executor-in-loop iteration. It is325

performed by feeding SQL queries in the candidate326

list into the executor in sequence and discarding327

those queries that fail to execute or return empty328

result. Such decoding strategy, while effective, sug-329

gests that the major disagreement in the candidate330

list focuses on schema linking or grammar. Di-331

rectly perform EG to the candidates generated with332

beam search leads to trivial improvement, as the333

candidates consist of redundant variations focuses334

on selection or schema naming, etc. This prob-335

lem can be addressed by setting the beam length336

of most of the predicted tokens to 1 and releas-337

ing those tokens related to schema linking (e.g.,338

WHERE). We also notice that there are cases that339

combine incorrect schema linking with some ag-340

gregation in SELECT clause, which return some341

trivial results such as 0, thus suppress the EG filter.342

To mitigate the issue, we suggest to drop aggregate343

operator in SELECT during EG to maximize the344

effectiveness of it. Note that with such strategy, the345

Model Dev Test

Acclf Accex Acclf Accex

SQLNet 63.2 69.8 61.3 68.0
SQLova 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
HydraNet 83.6 89.1 83.8 89.2
SeaD 84.9 90.2 84.7 90.1
IESQL ♣ 84.6 89.7 84.6 88.8
BRIDGE ♦ 86.2 91.7 85.7 91.1
SDSQL ♣ 86.0 91.8 85.6 91.4

HydraNet+EG 86.6 92.4 86.5 92.2
IESQL+EG ♣ 85.8 91.6 85.6 91.2
BRIDGE+EG ♦ 86.8 92.6 86.3 91.9
SDSQL+EG ♣ 86.7 92.5 86.6 92.4
SeaD+EGCS 87.3 92.8 87.1 92.7

Table 1: Accuracy (%) of logic form (Acclf) and ex-
ecution (Accex) of our model SeaD and other competi-
tors. Best results in bold. EG: execution-guided decod-
ing. EGCS : the proposed clause-sensitive EG strategy
for S2S generation. ♣ denotes methods that leverage
additional annotation of dataset. ♦ denotes methods
that utilize database content during training.

condition with inequation in WHERE clause should 346

be dropped together to ensure the validity of the 347

ground-truth SQL results. 348

4 Experiment 349

To demonstrate the effectiveness of the proposed 350

method, we evaluate the proposed model on Wik- 351

iSQL benchmark and compare it to other state-of- 352

the-art methods. 353

4.1 Dataset 354

As the largest human-annotated dataset of text- 355

to-SQL, WikiSQL consists of 56, 355, 8, 421 and 356

15, 878 NL-SQL pairs for training, validation and 357

inference respectively. All ground-truth SQL 358

queries are guaranteed with at least one query re- 359

sult. Each SQL contains SELECT clause with at 360

most one aggregation operator and WHERE clause 361

with at most 4 conditions that connected by AND. 362

Each SQL is associated with a schema in database. 363

4.2 Implementation details 364

We implement our method using AllenNLP (Gard- 365

ner et al.) and Pytorch (Paszke et al.). For the 366

model architecture, we use Transformer with 12 367

layers in each of the encoder and decoder with a 368

hidden size of 1024. We initialize the model weight 369

with bart-large pretrained model provided by 370

5

Huggingface community (Wolf et al.) and fine-tune371

it on training dataset for 20 epochs. The batch size372

during training is set to 8 with a gradient accumula-373

tion step of 2. We choose Adam (Kingma and Ba)374

as the optimizer and set the learning rate to 7e− 5375

with a warm-up step ratio of 1%. The weight decay376

for regulation is set to 0.01. We set the activation377

probability Pswap = 0.5 and Pshuffle = 0.3 to378

balance the weight between self-supervision and379

seq2seq objective. Pdrop for column removal in380

erosion is set to 0.1. The early stop patience is set381

to 5 with respect to the BLUE metric (Papineni382

et al.) on validation set. The overall training pro-383

cedure spend around 3 hours on an Ubuntu server384

with 8 NVIDIA V100 GPUs.385

4.3 Competitors386

We compare the proposed method to the follow-387

ing models: (1) SQLNet (Xu et al., 2017) is a388

sketch-based method; (2) SQLova (Hwang et al.,389

2019) is a sketch-based method which leverage the390

pre-trained language model for representation; (3)391

X-SQL (He et al., 2019a) enhances the structural392

schema representation with contextual embedding;393

(4) HydraNet (Lyu et al., 2020) transforms schema394

linking into column-wise matching and ranking;395

(5) IESQL (Ma et al., 2020) treats text-to-SQL as396

a sequence labeling task; (6) BRIDGE (Lin et al.,397

2020) is a sequential architecture for modeling de-398

pendencies between natural language question and399

related schema; (7) SDSQL (Hui et al., 2021) is400

a multi-task model with explicitly schema depen-401

dency guided module.402

4.4 Comparison with State-of-the-art Models403

The comparison results are summarized in Table 1.404

Models suffixed with ♣ leverage additional annota-405

tion of the dataset. Models suffixed with ♦ utilize406

database content during training procedure. With-407

out using EG, SeaD significantly outperforms all408

models without the auxiliary of table content or409

schema linking annotation. When combined with410

EG decoding, SeaD achieve best performance even411

compared to those models that utilize additional412

training information. It indicates the effectiveness413

of the proposed denoising objectives on model-414

ing text-to-SQL through vanilla seq2seq. Notably,415

the annotation noise makes aggregation prediction416

a major challenge for WikiSQL. Previous works417

suggested to improve AGG prediction via rule-418

based annotation amendment. As shown in Table 2,419

we argue that the proposed aggregation dropping420

Model Dev Test

Acclf Accex Acclf Accex

IESQL+EG+AE 87.9 92.6 87.8 92.5
SDSQL+EG+AE 86.7 92.5 87.0 92.7
SeaD+EGACS 87.6 92.9 87.5 93.0

Table 2: Accuracy (%) of logic form (Acclf) and ex-
ecution (Accex) of our model SeaD and other com-
petitors with EG decoding. Best results in bold. EG:
execution-guided decoding. AE: rule-based aggrega-
tion enhancement. EGACS : the clause-sensitive EG
strategy for S2S generation, with aggregation ignored
during decoding.

Model Scol Sagg Wcol Wop Wval

SQLova 96.8 90.6 94.3 97.3 95.4
X-SQL 97.2 91.1 95.4 97.6 96.6
HydraNet 97.6 91.4 95.3 97.4 96.1
IESQL 97.6 90.7 96.4 98.7 96.8
SeaD 97.7 91.7 96.5 97.7 96.7
SDSQL 97.3 90.9 98.1 97.7 98.3

SQLova+EG 96.5 90.4 95.5 95.8 95.9
X-SQL+EG 97.2 91.1 97.2 97.5 97.9
HydraNet+EG 97.6 91.4 97.2 97.5 97.6
IESQL+EG 97.6 90.7 97.9 98.5 98.3
SeaD+EGCS 97.9 91.8 98.3 97.9 98.4

Table 3: Test accuracy (%) on WikiSQL test set for
various clause components of SQL. The best results in
bold. EG: execution-guided decoding. EGCS : clause-
sensitive EG decoding for S2S generation.

strategy for EG achieves comparable enhancement, 421

while less human effort is involved. Combined with 422

the AGG dropped clause-sensitive EG, the SeaD 423

model establishes new state-of-the-art on WikiSQL 424

benchmark. 425

To analysis the detailed improvement for SeaD 426

on text-to-SQL task, in Table 3 we report the ac- 427

curacy on WikiSQL test set with respect to sev- 428

eral SQL components with and without EG de- 429

coding. SeaD shows promising results on column 430

selection, aggregation, where column and where 431

value prediction. It outperforms all method except 432

SDSQL, which leverages rule-based annotation of 433

schema linking. After applying EG decoding, SeaD 434

achieves best performance on four out of five com- 435

ponents among all competitors. 436

4.5 Ablation Study 437

To evaluate the contribution of each proposed ob- 438

jective, we perform ablation study to SeaD (4) with 439

6

Model Dev Test

Acclf Accex Acclf Accex

Bart 81.4 87.1 81.2 86.8
Bartptr 82.8 88.6 82.4 88.3
Bartptr + infilling 82.8 88.7 82.7 88.6
SeaD (Shuffle-only) 83.5 89.0 83.2 88.8
SeaD (Erosion-only) 84.2 89.6 84.1 89.4
SeaD 84.6 90.2 84.7 90.1

Table 4: Ablation study for SeaD model on WikiSQL
benchmark.

WikiSQL dataset. We start from the Bart model440

and add components to it in sequence. The pointer441

net contributes to 1.2% absolute improvement of442

Acclf on test set. Combine text infilling, an ef-443

fective denoising objective utilized by Bart, into444

training procedure brings 0.3 absolute Acclf im-445

provement. On the other hand, erosion and shuf-446

fle objectives contribute to 1.5% and 0.6% abso-447

lute Acclf improvement for SeaD on test set re-448

spectively. It demonstrates the effectiveness of the449

schema-aware denoising objective for improving450

seq2seq generation in text-to-SQL task.451

5 Conclusions452

In this paper, we proposed to train model with novel453

schema-aware denoising objectives, which could454

improve performance of seq2seq generation for455

text-to-SQL task. Combined with the proposed456

clause-sensitive EG decoding strategy, our model457

achieves state-of-the-art on the WikiSQL bench-458

mark. The success of the SeaD highlights the po-459

tential of utilizing task-oriented denoising objective460

for seq2seq model enhancement.461

References462

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping463
semantic parsers from conversations. In Proceed-464
ings of the 2011 Conference on Empirical Methods465
in Natural Language Processing, pages 421–432.466

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-467
pervised learning of semantic parsers for mapping468
instructions to actions. Transactions of the Associa-469
tion for Computational Linguistics, 1:49–62.470

Chenglong Wang Alvin Cheung Rastislav Bodik. Syn-471
thesizing highly expressive sql queries from input-472
output examples.473

Qingqing Cai and Alexander Yates. 2013. Large-scale474
semantic parsing via schema matching and lexicon475

extension. In Proceedings of the 51st Annual Meet- 476
ing of the Association for Computational Linguistics 477
(Volume 1: Long Papers), pages 423–433. 478

Xinyun Chen, Chang Liu, Richard Shin, Dawn Song, 479
and Mingcheng Chen. 2016. Latent attention 480
for if-then program synthesis. arXiv preprint 481
arXiv:1611.01867. 482

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 483
Kristina Toutanova. 2018. Bert: Pre-training of deep 484
bidirectional transformers for language understand- 485
ing. arXiv preprint arXiv:1810.04805. 486

Li Dong and Mirella Lapata. 2016. Language to log- 487
ical form with neural attention. arXiv preprint 488
arXiv:1601.01280. 489

Matt Gardner, Joel Grus, Mark Neumann, Oyvind 490
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe- 491
ters, Michael Schmitz, and Luke Zettlemoyer. Al- 492
lenNLP: A deep semantic natural language process- 493
ing platform. 494

Alessandra Giordani and Alessandro Moschitti. 2012. 495
Translating questions to sql queries with generative 496
parsers discriminatively reranked. In Proceedings of 497
COLING 2012: Posters, pages 401–410. 498

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK 499
Li. 2016. Incorporating copying mechanism in 500
sequence-to-sequence learning. arXiv preprint 501
arXiv:1603.06393. 502

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and 503
Weizhu Chen. 2019a. X-sql: reinforce schema 504
representation with context. arXiv preprint 505
arXiv:1908.08113. 506

Shizhu He, Kang Liu, and Weiting An. 2019b. Learn- 507
ing to align question and answer utterances in cus- 508
tomer service conversation with recurrent pointer 509
networks. In Proceedings of the AAAI Conference 510
on Artificial Intelligence, volume 33, pages 134– 511
141. 512

Binyuan Hui, Xiang Shi, Ruiying Geng, Binhua Li, 513
Yongbin Li, Jian Sun, and Xiaodan Zhu. 2021. Im- 514
proving text-to-sql with schema dependency learn- 515
ing. arXiv preprint arXiv:2103.04399. 516

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and 517
Minjoon Seo. 2019. A comprehensive exploration 518
on wikisql with table-aware word contextualization. 519
arXiv preprint arXiv:1902.01069. 520

Robin Jia and Percy Liang. 2016. Data recombina- 521
tion for neural semantic parsing. arXiv preprint 522
arXiv:1606.03622. 523

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and 524
Jan Kleindienst. 2016. Text understanding with 525
the attention sum reader network. arXiv preprint 526
arXiv:1603.01547. 527

7

http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640

Diederik Kingma and Jimmy Ba. Adam: A method528
for stochastic optimization. In International Confer-529
ence on Learning Representations.530

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,531
Kevin Gimpel, Piyush Sharma, and Radu Soricut.532
2019. Albert: A lite bert for self-supervised learn-533
ing of language representations. arXiv preprint534
arXiv:1909.11942.535

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-536
jan Ghazvininejad, Abdelrahman Mohamed, Omer537
Levy, Ves Stoyanov, and Luke Zettlemoyer. BART:538
Denoising sequence-to-sequence pre-training for539
natural language generation, translation, and com-540
prehension.541

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-542
jan Ghazvininejad, Abdelrahman Mohamed, Omer543
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.544
Bart: Denoising sequence-to-sequence pre-training545
for natural language generation, translation, and546
comprehension. arXiv preprint arXiv:1910.13461.547

Yunyao Li, Huahai Yang, and HV Jagadish. 2006.548
Constructing a generic natural language interface549
for an xml database. In International Conference550
on Extending Database Technology, pages 737–754.551
Springer.552

Percy Liang, Michael I Jordan, and Dan Klein. 2013.553
Learning dependency-based compositional seman-554
tics. Computational Linguistics, 39(2):389–446.555

Xi Victoria Lin, Richard Socher, and Caiming Xiong.556
2020. Bridging textual and tabular data for cross-557
domain text-to-sql semantic parsing. arXiv preprint558
arXiv:2012.12627.559

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,560
and Michael D Ernst. 2018. Nl2bash: A cor-561
pus and semantic parser for natural language inter-562
face to the linux operating system. arXiv preprint563
arXiv:1802.08979.564

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-565
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,566
Luke Zettlemoyer, and Veselin Stoyanov. 2019.567
Roberta: A robustly optimized bert pretraining ap-568
proach. arXiv preprint arXiv:1907.11692.569

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik570
Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hy-571
brid ranking network for text-to-sql. arXiv preprint572
arXiv:2008.04759.573

Jianqiang Ma, Zeyu Yan, Shuai Pang, Yang Zhang,574
and Jianping Shen. 2020. Mention extraction and575
linking for sql query generation. arXiv preprint576
arXiv:2012.10074.577

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,578
and Richard Socher. 2018. The natural language de-579
cathlon: Multitask learning as question answering.580
arXiv preprint arXiv:1806.08730.581

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 582
Jing Zhu. BLEU: a method for automatic evalua- 583
tion of machine translation. In Proceedings of the 584
40th Annual Meeting on Association for Computa- 585
tional Linguistics - ACL ’02, page 311. Association 586
for Computational Linguistics. 587

Adam Paszke, Sam Gross, Francisco Massa, Adam 588
Lerer, James Bradbury, Gregory Chanan, Trevor 589
Killeen, Zeming Lin, Natalia Gimelshein, Luca 590
Antiga, Alban Desmaison, Andreas Köpf, Edward 591
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, 592
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun- 593
jie Bai, and Soumith Chintala. PyTorch: An impera- 594
tive style, high-performance deep learning library. 595

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt 596
Gardner, Christopher Clark, Kenton Lee, and Luke 597
Zettlemoyer. 2018. Deep contextualized word repre- 598
sentations. arXiv preprint arXiv:1802.05365. 599

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 600
2003. Towards a theory of natural language inter- 601
faces to databases. In Proceedings of the 8th in- 602
ternational conference on Intelligent user interfaces, 603
pages 149–157. 604

Chris Quirk, Raymond Mooney, and Michel Galley. 605
2015. Language to code: Learning semantic parsers 606
for if-this-then-that recipes. In Proceedings of the 607
53rd Annual Meeting of the Association for Compu- 608
tational Linguistics and the 7th International Joint 609
Conference on Natural Language Processing (Vol- 610
ume 1: Long Papers), pages 878–888. 611

Alec Radford, Karthik Narasimhan, Tim Salimans, and 612
Ilya Sutskever. 2018. Improving language under- 613
standing with unsupervised learning. 614

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 615
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 616
Wei Li, and Peter J Liu. 2019. Exploring the limits 617
of transfer learning with a unified text-to-text trans- 618
former. arXiv preprint arXiv:1910.10683. 619

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. 620
Large-scale semantic parsing without question- 621
answer pairs. Transactions of the Association for 622
Computational Linguistics, 2:377–392. 623

Subendhu Rongali, Luca Soldaini, Emilio Monti, and 624
Wael Hamza. 2020. Don’t parse, generate! a se- 625
quence to sequence architecture for task-oriented se- 626
mantic parsing. In Proceedings of The Web Confer- 627
ence 2020, pages 2962–2968. 628

Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Fi- 629
rat, Mia Chen, Sneha Kudugunta, Naveen Arivazha- 630
gan, and Yonghui Wu. Leveraging monolingual 631
data with self-supervision for multilingual neural 632
machine translation. 633

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- 634
Yan Liu. MASS: Masked sequence to sequence pre- 635
training for language generation. 636

8

http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/2005.04816
http://arxiv.org/abs/1905.02450
http://arxiv.org/abs/1905.02450
http://arxiv.org/abs/1905.02450

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-637
Yan Liu. 2019. Mass: Masked sequence to sequence638
pre-training for language generation. arXiv preprint639
arXiv:1905.02450.640

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-641
ton Lee. 2020. Exploring unexplored generalization642
challenges for cross-database semantic parsing. In643
Proceedings of the 58th Annual Meeting of the Asso-644
ciation for Computational Linguistics, pages 8372–645
8388.646

Adam Trischler, Zheng Ye, Xingdi Yuan, and Ka-647
heer Suleman. 2016. Natural language com-648
prehension with the epireader. arXiv preprint649
arXiv:1606.02270.650

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob651
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz652
Kaiser, and Illia Polosukhin. 2017. Attention is all653
you need. arXiv preprint arXiv:1706.03762.654

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.655
2015. Pointer networks. arXiv preprint656
arXiv:1506.03134.657

Chenglong Wang, Kedar Tatwawadi, Marc658
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-659
sandr Polozov, and Rishabh Singh. 2018. Robust660
text-to-sql generation with execution-guided661
decoding. arXiv preprint arXiv:1807.03100.662

Shuohang Wang and Jing Jiang. 2016. Machine com-663
prehension using match-lstm and answer pointer.664
arXiv preprint arXiv:1608.07905.665

David HD Warren and Fernando CN Pereira. 1982. An666
efficient easily adaptable system for interpreting nat-667
ural language queries. American journal of compu-668
tational linguistics, 8(3-4):110–122.669

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien670
Chaumond, Clement Delangue, Anthony Moi, Pier-671
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-672
icz, Joe Davison, Sam Shleifer, Patrick von Platen,673
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,674
Teven Le Scao, Sylvain Gugger, Mariama Drame,675
Quentin Lhoest, and Alexander M. Rush. Hug-676
gingFace’s transformers: State-of-the-art natural lan-677
guage processing.678

Caiming Xiong, Victor Zhong, and Richard Socher.679
2016. Dynamic coattention networks for question680
answering. arXiv preprint arXiv:1611.01604.681

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:682
Generating structured queries from natural language683
without reinforcement learning. arXiv preprint684
arXiv:1711.04436.685

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-686
bonell, Ruslan Salakhutdinov, and Quoc V Le.687
2019. Xlnet: Generalized autoregressive pretrain-688
ing for language understanding. arXiv preprint689
arXiv:1906.08237.690

Tao Yu and Shafiq Joty. 2020. Online conversation dis- 691
entanglement with pointer networks. arXiv preprint 692
arXiv:2010.11080. 693

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and 694
Dragomir Radev. 2018. Typesql: Knowledge-based 695
type-aware neural text-to-sql generation. arXiv 696
preprint arXiv:1804.09769. 697

Luke S Zettlemoyer and Michael Collins. 2012. Learn- 698
ing to map sentences to logical form: Structured 699
classification with probabilistic categorial grammars. 700
arXiv preprint arXiv:1207.1420. 701

Victor Zhong, Caiming Xiong, and Richard Socher. 702
2017. Seq2sql: Generating structured queries 703
from natural language using reinforcement learning. 704
arXiv preprint arXiv:1709.00103. 705

9

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

