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Abstract

Large language models (LLMs) have shown impressive capabilities in solving a
wide range of tasks based on human instructions. However, developing a conver-
sational AI assistant for electronic health record (EHR) data remains challenging
due to (1) the lack of large-scale instruction-following datasets and (2) the lim-
itations of existing model architectures in handling complex and heterogeneous
EHR data. In this paper, we introduce MIMIC-Instr, a dataset comprising over
400K open-ended instruction-following examples derived from the MIMIC-IV
EHR database. This dataset covers various topics and is suitable for instruction-
tuning general-purpose LLMs for diverse clinical use cases. Additionally, we
propose Llemr, a general framework that enables LLMs to process and interpret
EHRs with complex data structures. Llemr demonstrates competitive perfor-
mance in answering a wide range of patient-related questions based on EHR data.
Furthermore, our evaluations on clinical predictive modeling benchmarks reveal
that the fine-tuned Llemr achieves performance comparable to state-of-the-art
(SOTA) baselines using curated features. The dataset and code are available at
https://github.com/zzachw/llemr.

1 Introduction

EHRs document a patient’s medical history and care, including demographics, diagnoses, laboratory
test results, medication prescriptions, and clinical notes [Evans, 2018]. Despite the potential benefits
in supporting clinical decision-making and care coordination, EHR systems also lead to physician
burnout due to challenges in navigating the user interface, the large volume of data that needs to be
reviewed for each medical decision, and the extra clerical tasks directed to physicians [Melnick et al.,
2020, Tajirian et al., 2020, DeChant et al., 2019]. Previous studies show that physicians spend an
average of 3.17 hours daily on EHR systems [Overhage and McCallie, 2020]. This not only detracts
from patient care but also reduces the time physicians can spend interacting directly with patients.

Advances in LLMs offer an opportunity to streamline EHR processes and ease the load on healthcare
providers. LLMs have revolutionized natural language processing fields in tasks such as question
answering [Wei et al., 2022a, Touvron et al., 2023], visual understanding [Liu et al., 2023, Li et al.,
2023a, 2022, 2023b], reasoning [Wei et al., 2022b, Brown et al., 2020], and code generation [Black
et al., 2022]. They have demonstrated remarkable capabilities in understanding complex inputs
and following human instructions to solve diverse tasks. Recent works have further shown that
LLMs can achieve expert-level performance on multiple-choice questions from medical licensing
exams [Singhal et al., 2022, 2023]. However, despite these advances, developing a conversational AI
assistant specifically for EHR data remains a significant challenge.

Challenge 1: Lack of large-scale instruction-following data. LLMs are typically fine-tuned on
large-scale instruction-following datasets to understand user instructions and perform a variety of
tasks [Wei et al., 2022a]. These datasets are created using manually defined templates or with
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the assistance of LLMs. The construction process requires substantial efforts and becomes even
more complex when data must be paired with patient EHRs. Thus, most prior works mainly focus
on the clinical notes [Kweon et al., 2024, Lehman et al., 2022, Yue et al., 2021], as generating
instruction-following data from free text is comparatively straightforward. However, a substantial
amount of information exists solely within structured EHR data (e.g., relational tables). Although
some question-answering (QA) datasets are based on structured EHR data [Pampari et al., 2018,
Lee et al., 2023, Tang et al., 2023], they mainly focus on factoid extraction and lack alignment with
real-world clinical decision-making, which often requires complex reasoning. Moreover, existing
datasets are limited in size [Fleming et al., 2024], ranging from thousands to tens of thousands of
examples, which is insufficient for effective LLM instruction tuning.

Challenge 2: Limitations of existing model architectures in handling complex and heteroge-
neous EHR data. Due to the complex schemas and various standardizations of EHR data [Gamal
et al., 2021], most existing clinical predictive models depend heavily on manual data preprocess-
ing [Harutyunyan et al., 2019, Choi et al., 2016a,b]. This preprocessing includes steps like feature
selection, code mapping, unit standardization, value normalization, and imputation. Such manual
processes demand significant time and expertise and may introduce human errors and biases into
the data. While recent works have attempted to develop a unified foundation model for EHRs [Hur
et al., 2024, Kim et al., 2024], these models are generally limited to specific tasks and lack interactive
capabilities.

In this paper, we introduce MIMIC-Instr, a dataset of over 400K EHR-grounded instruction-
following examples based on the publicly available MIMIC-IV EHR database [Johnson et al.,
2023]. This dataset is divided into two parts: (1) Schema alignment subset: A set of 350K QA
pairs was constructed from over 100 templates and subsequently paraphrased using GPT-3.5 1. These
questions query various information from the structured EHR data, such as patient demographics,
diagnoses, treatment histories, and test results. They are designed to train LLMs on the ability to
navigate and extract specific information from the complex and heterogeneous EHR data. (2) Clinical
reasoning subset: Another set of 50K QA pairs was generated from discharge summaries with
GPT-3.5. Discharge summaries capture the complexities of patient cases and the rationales behind
medical decisions. This subset challenges LLMs to go beyond simple fact extraction, engaging
in deeper clinical reasoning tasks such as understanding the progression of a patient’s condition,
predicting possible complications, and suggesting appropriate follow-up actions.

To address the second challenge, we propose Llemr, an instruction-tuned LLM for electronic medical
records (EMRs) 2. We adopt the Medical Event Data Standard [Arnrich et al.] and represent each
patient’s EHR data as a stream of clinical events (e.g., procedures, prescriptions, and transfers).
Each event is formatted as a triplet of timestamp, type, and value, such as (2024-03-11 13:32:26,
Lab, Hemoglobin 12 g/dl), which can be combined into sentence-like representations. This format
simplifies inputs and is robust to variations in EHR schemas and standards. While the concatenated
event sequence can be directly input into LLMs, it often exceeds the context length of LLMs
for patients with extensive event histories. Inspired by REMed [Kim et al., 2024], we utilize
ClinicalBERT [Alsentzer et al., 2019] to first encode each event into an embedding, and then feed
the sequence of event embeddings into the LLM with an additional mapping layer (i.e., a linear
projection). This approach largely reduces the input length and speeds up the training. Llemr is
trained in a curriculum learning fashion: it initially learns to navigate through EHR data via 350K
schema alignment examples, and then progresses to more complex reasoning with the 50K clinical
reasoning examples.

Llemr exhibits excellent ability to answer diverse inquiries about a patient. Further, our evaluation
on standard clinical predictive benchmarks shows that the fine-tuned Llemr achieves performance
comparable to SOTA baselines using manually curated features.

In summary, this paper makes the following contributions:

• Clinical instruction-following data. We created a dataset of 400K instruction-following examples
based on the MIMIC-IV database. This dataset enables instruction-tuning of general LLMs to
better understand EHRs.

1We used Azure’s HIPAA-compliant platform in accordance with PhysioNet’s regulations.
2We use EMR and EHR interchangeably in this paper.
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Table 1: Comparison between MIMIC-Instr and existing clinical question-answering / instruction-
following datasets.

Dataset Size Source Format Answer Type
MedQA [Jin et al., 2020] 13K US medical licensing exam Question + Answer Multi Choice
MedMCQA [Pal et al., 2022] 6K AIIMS and NEET PG entrance exams Question + Answer Multi Choice
PubMedQA [Jin et al., 2019] 0.5K PubMed literature Question + Context + Answer Multi Choice
MMLU clinical [Hendrycks et al., 2021] 1K US Medical Licensing Examination Question + Answer Multi Choice
EHRSQL [Lee et al., 2023] 24K MIMIC-III Question + Answer SQL
EHRNoteQA [Kweon et al., 2024] 0.9K MIMIC-IV Question + Note + Answer Free Text
MedAlign [Fleming et al., 2024] 0.9K EHRs (Stanford University) Question + EHR + Answer Free Text

MIMIC-Instr 400K MIMIC-IV Question + EHR + Answer Free Text

• Foundation model for EHR. We introduce Llemr, a general framework to empower LLMs to
perform both information extraction and clinical reasoning on EHR data.

• Open-source. We will release the instruction-following data via PhysioNet 3, and also share the
code and model weights to facilitate future research.

2 Related Work

2.1 Clinical Instruction-Tuning Data

Instruction tuning fine-tunes a pre-trained LLM using pairs of instructions and responses. It general-
izes LLMs’ capabilities beyond next token prediction to diverse new tasks described with instructions.
Generally, the instruction tuning datasets are constructed either with manually-defined templates
or LLMs like GPT. While there are increasing interests in adapting LLMs to the clinical domain,
existing works mainly focus on broad clinical tasks with natural language inputs, such as answering
medical licensing exam questions and consumer queries [Singhal et al., 2022, Johri et al., Tu et al.,
2024, 2023], information extraction and text summarizing [Tran et al., 2023, Zhang et al., 2024],
and ICD coding [Wang et al., 2024]. These tasks are typically based on natural language as inputs
and thus the instruction tuning data is relatively easy to generate. However, existing works fall short
in instruction tuning a LLM to understand EHR data. While there are some recent benchmarks
evaluating the capability of LLM on EHR data, they either focus on information extraction tasks [Lee
et al., 2023, Shi et al., 2024], or solely perform model evaluation [Kweon et al., 2024, Fleming et al.,
2024, Zakka et al., 2024], as the datasets are too small to enable instruction tuning. To bridge this gap,
we release a dataset of 400K instruction-response examples on patient EHR data covering a broad
range of topics and can be used to instruction tune general-purpose LLMs to understand EHR data.

2.2 Foundation Model for EHR

With the wide adoption of EHR systems, there has been growing interest in utilizing deep learning
models in interpreting and analyzing EHR data to assist clinical decision-making and improve patient
outcome [Choi et al., 2016b, Tan et al., 2022, Choi et al., 2017, Zhang et al., 2021, Li et al., 2020, Xu
et al., 2024]. However, real-world EHR data is often very messy and has complex schemas. Thus,
most existing methods typically require manual feature selection and complex data preprocessing to
harmonize the data. This process requires domain expertise and is very time-consuming. Yet, the
developed model is often task-specific and the same process needs to be performed again for new
tasks. In recent years, language models have demonstrated remarkable capability in understanding
diverse text inputs [Brown et al., 2020]. Thus, some recent methods try to utilize them to encode
clinical events and eliminate the need for feature selection and data preprocessing [Hur et al., 2024,
Kim et al., 2024]. However, they still follow the task-specific supervised training paradigm and do
not fully utilize the power of LLMs. In this work, we also follow recent trends in converting clinical
events into text and utilize LLMs to interpret them. But we take a step further in tuning LLMs to
follow instructions and generalize to unseen tasks.

3Under the PhysioNet Credentialed Health Data License: https://www.physionet.org/content/
ehr-ds-qa/view-license/1.0.0/.
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Figure 1: Illustration of the construction process of MIMIC-Instr, a dataset of 400K EHR-grounded
instruction-following examples based on the publicly available MIMIC-IV database. It serves two
sequential purposes: adapting LLMs to the EHR schema and teaching LLMs to perform in-depth
clinical reasoning.

3 Preliminaries

EHR records comprehensive clinical information about a patient, including demographics, diagnoses,
prescriptions, laboratory and microbiology tests, vital signs, and more. Most existing clinical
predictive models rely on expert-defined features to construct a predictive pipeline [Harutyunyan
et al., 2019]. This process is labor-intensive, requiring significant domain expertise, and is often
repetitive across different tasks. To alleviate this, we adopt the Medical Event Data Standard [Arnrich
et al.] and represent each patient’s EHR data as a sequence of events. Each event consists of a
timestamp (e.g., 2024-03-11 13:32:26) denoting when the event occurred, a type (e.g., Lab) denoting
the category of the event, and a value (e.g., Hemoglobin 12 g/dl) denoting the content of the event.
This approach allows a unified representation across different EHR schemas.

Besides clinical event sequence, EHR data often includes] discharge summaries written by doctors or
nurses at the time of discharge. Discharge summaries provide a comprehensive overview of a patient’s
hospital stay, detailing the reason for admission, treatments provided, patient’s responses to treatment,
and recommendations for follow-up care. This data is usually not used in clinical predictive modeling
as it is only available at hospital discharge. In this work, we only leverage discharge summaries as a
complementary source to generate instruction-following data.

4 Clinical Instruction-Following Data

With the growing digitization of healthcare, EHR data is now routinely collected [Evans, 2018].
However, clinical instruction-following data remains limited because its creation is time-consuming
and requires significant domain expertise. Therefore, many existing works resort to medical exam
questions to tune and evaluate LLM performance in the medical domain [Singhal et al., 2023, Tu
et al., 2023]. Yet, these exam-style questions are quite different from how doctors interact with LLMs
in real-world clinical practice. To adapt general-purpose LLMs for clinical use, we must first enable
them to understand EHR schemas and to reason effectively over EHR data. Inspired by the success
of recent works in utilizing GPT to generate instruction-following data [Liu et al., 2023, Li et al.,
2023a], we created a clinical instruction-following dataset through a machine-human co-curation
process. This dataset includes two subsets: information extraction data and clinical reasoning data,
which are used at different training stages. An overview of the data generation process can be found
in Figure 1.

4.1 MIMIC-IV EHR Database Preparation

We construct our cohort from ICU patients in the MIMIC-IV [Johnson et al., 2023]
database. This database contains 51K patients admitted to the ICU at Beth Israel Dea-
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Table 2: Example questions from MIMIC-Instr.

Schema Alignment

What was the ethnicity of the individual?

What was the patient’s Cr level at the time of discharge?

What was the highest recorded Blood Oxygen Blood Gas level on day 13?

Which organisms were detected in the MRSA SCREEN sample after 104.00 hours?

What was the average measurement of Blood Lymphocytes Hematology within the initial 12-hour period?

Clinical Reasoning

What was the reason for the patient’s hypotension upon presentation to the emergency department?

What interventions were performed for the patient’s pancreatic pseudocyst?

What is the recommended follow-up plan for the patient’s abdominal pain and gastrointestinal symptoms?

Why was a statin not started for the patient despite other medications being titrated to effect?

What is the recommended dose for levalbuterol for the patient’s severe COPD exacerbation?

coness Medical Center. We filter out patients without discharge summaries, with more
than two ICU stays per hospital admission, and with negative ICU or hospital length-of-
stay. We then select the following tables from MIMIC-IV: hosp/patients, hosp/admissions,
hosp/diagnosis, hosp/labevents, hosp/microbiologyevents, hosp/prescriptions, hosp/transfers,
icu/icustays, icu/inputevents, icu/outputevents, icu/procedureevents. Note that icu/chartevents table
is excluded due to two reasons: it contains dense bedside monitor data, which is better treated as a
time series rather than as an event sequence, and it has substantial overlap with other tables, such as
hosp/labevents [Johnson et al., 2023]. In the end, we have a total of 55846 admissions. We hold out
10% each for validation and testing.

4.2 Data for Schema Alignment

As described in Section 3, EHR data has a schema that is fundamentally different from general
text. To bridge this gap, we first created a set of 350K instruction-tuning examples focused on
clinical information extraction. Specifically, for each type of clinical event, we developed a set of
question templates (e.g., “which {measurement_name} performed on the {specimen_name} were
abnormal {time_period}?”). These templates query diverse information from patient EHR data in the
MIMIC-IV database. Each question template is paired with a manually crafted Python script that
extracts the ground-truth answer from the corresponding EHR table.

Given a patient’s EHR data, we randomly select a template to generate a corresponding question-
answer pair (e.g., Q: “Which Blood Gas measurement on the Blood specimen were abnormal at
the 650.05 hour?” A: “Calculated Total CO2, pCO2, pO2.”). Since the generated QA pairs all
follow some fixed template, which limits their effectiveness for training LLMs to interpret diverse
instructions, we leveraged GPT-3.5 to paraphrase the generated QA pairs without altering their
meanings (e.g., Q: “Show me the abnormal blood gas measurements at the 650.05 hours?” A: “The
calculated total CO2, pCO2, pO2 were abnormal.”)

In this way, we generated 350K QA pairs focused on information retrieval. This set of instruction-
tuning QA pairs primarily asks about the extraction and aggregation of specific factual information
from EHR data, serving as a foundational step for enabling LLMs to perform deeper clinical reasoning
on EHR data.

4.3 Data for Clinical Reasoning

Expectations for clinical assistant AI often go beyond information extraction to following various
instructions and performing clinical reasoning. To align the model with this goal, we created diverse
instruction-following data focused on clinical reasoning using GPT-3.5. Specifically, we prompted
GPT-3.5 to generate questions and answers that resemble those doctors might ask in real-world
clinical settings. We also manually created few-shot examples in the prompt to demonstrate how to
generate high-quality QA pairs.

However, struggled to interpret raw clinical event sequences (converted to text) due to the unique
structure of EHR data. So instead, we leveraged complimentary discharge summaries from the
MIMIC-IV database as input to generate QA pairs. Compared to raw clinical event sequences,
discharge summaries provide a more concise overview of the patient’s hospital trajectory and often
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include the rationale behind treatments and plans for future care. This makes the QA data generated
from discharge summaries better suited for clinical reasoning tasks. In this way, we generated another
50K QA pairs to equip the model with clinical reasoning abilities.

Note that since the discharge summaries are usually generated at the end of hospital admission and
are not available for many real-time clinical predictive tasks, we only use discharge summaries to
generate instruction-tuning data. The inputs to our foundation clinical model (introduced next) consist
solely of clinical event sequences.

5 Llemr: A Foundation Model for EHR Data

With the generated data, we further propose Llemr, a simple yet effective model for EHR data.

5.1 Architecture

Figure 2: Model architecture of Llemr.

Given a patient’s EHR event sequence and a language instruction from the user, Llemr learns
to generate a free-text response. Due to the high volume of events associated with MIMIC-IV
ICU patients, instead of directly encoding raw events, Llemr utilizes an additional event encoder.
Specifically, for each patient’s event sequence, ClinicalBERT [Alsentzer et al., 2019] is first used
to encode each event into an embedding. Then, Llemr applies a linear projection layer to map
the event embeddings to the word embedding space. The sequence of event embeddings is further
concatenated with the token embeddings for the language instruction and fed into the backbone LLM
(i.e., vicuna-7b-v1.5 [Chiang et al., 2023]).

5.2 Training with Curriculum Learning

Inspired by LLaVA [Liu et al., 2023], we adopt a two-stage curriculum training procedure to first
bridge the schema gap between general text and EHR data, and then equip the model with clinical
reasoning abilities.

5.2.1 Stage 1: Training for Schema Alignment

We utilize the 350K QA pairs generated from templates and paraphrased by GPT-3.5. For each patient,
given the event sequence and language instruction, we ask the model to generate the corresponding
response. We keep both the event encoder and LLM backbone frozen and only update the projection
matrix. In this way, we can teach LLMs to interpret the outputs from the event encoder and bridge
the schema gap between general text and EHR data.

5.2.2 Stage 2: Training for Clinical Reasoning

In this stage, we continue to tune the model to follow more complex instructions and perform clinical
reasoning. We utilize the other 50K QA pairs for clinical reasoning and tune both the LLM and
projection matrix. The weights of the event encoder are kept frozen. This allows Llemr to go beyond
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Table 3: Evaluation on the performance of Llemr as a conversation AI assistant.

Model Schema Alignment Clinical Reasoning Overall
Llama-2-7b-chat-hf [Touvron et al., 2023] 47.66 ± 15.31 47.55 ± 11.73 47.60 ± 9.62
SynthIA-7B-v1.3 [Tissera, 2023] 47.18 ± 5.84 49.16 ± 4.99 48.17 ± 3.83
Mistral-7B-OpenOrca [Lian et al., 2023] 51.75 ± 8.20 51.18 ± 7.67 51.46 ± 5.60
Llama-3-8b-Instruct [Touvron et al., 2023] 56.18 ± 7.08 55.07 ± 7.25 55.62 ± 5.05
MPT-7b-8k-instruct [MosaicML, 2023] 68.13 ± 8.95 53.90 ± 4.92 61.01 ± 5.19
vicuna-7b-v1.5 [Chiang et al., 2023] 66.81 ± 5.61 62.40 ± 4.59 64.60 ± 3.63
dolphin-2.0-mistral-7b [Cognitive, 2023] 63.06 ± 5.36 72.66 ± 7.47 67.86 ± 4.64

Llemr + Stage 1 69.71 ± 6.32 64.35 ± 7.21 67.03 ± 6.83
Llemr + Stage 1&2 70.42 ± 5.88 76.23 ± 4.23 73.33 ± 5.30

information extraction, enabling it to perform more advanced clinical reasoning tasks based on the
given instructions.

6 Experiments

We conduct experiments to evaluate two key components: the quality of the generated clinical
instruction-following data, and the performance of the proposed Llemr. We design experiments
to answer the following research questions: (1) How well does Llemr perform as a conversational
clinical AI assistant? (2) How does Llemr compare to SOTA methods on standard clinical predictive
benchmarks?

6.1 Performance as Conversational AI Assistant

Datasets. To evaluate the performance of Llemr as a conversational clinical AI assistant, we construct
a separate test set of 200 QA pairs. Specifically, we randomly select 100 ICU admissions from the
previously held-out test set. These 100 admissions are unseen during training. Then, we follow the
procedure described in Section 4 to generate 100 questions each for schema alignment and clinical
reasoning.

Metrics. We follow Li et al. [2023a] and leverage GPT to quantify the quality of the generated
responses. For each question, we generate a reference response with GPT-4. Then, we feed the
question, the ground-truth answer, the GPT-4 generated answer, and the candidate LLM generated
answer to GPT-3.5 and ask it to score both answers on a scale of 1 to 10, with higher scores indicating
better performance. We prompt the GPT-3.5 to consider the helpfulness, relevance, accuracy, and
level of detail of the responses. Next, we compute the relative score for the candidate LLM by
normalizing against the GPT-4 reference score. We also report 95% confidence interval based on the
200 questions.

Baselines. We compare Llemr against seven popular open-sourced LLMs. For each baseline model,
we concatenate the patient’s event sequence and the corresponding question and input them directly
into the LLM. These baseline LLMs have a context length from 4K to 32K tokens. For patients with
long event sequences, we adopt Fleming et al. [2024]’s multi-step refinement approach. We segment
the EHR sequence into chunks and process them sequentially. LLMs will generate an initial response
from the first chunk, then decide whether to update or maintain this response as they process each
subsequent chunk.

Results. The results are reported in Table 3. Overall, we can see that Llemr outperforms all existing
LLM baselines and matches 73% of the GPT-4 performance. Surprisingly, we find that stage-1
training alone yields performance improvements, despite only the linear projection layer is trained.
This may be due to Llemr ’s architecture, which enables it to process the entire patient EHR sequence
at once, whereas the baseline LLMs process it in chunks. Incorporating Stage 2 training further
boosts performance, especially for clinical reasoning tasks.

In Table 4, we show examples of the generated responses and compare Llemr against its backbone
LLM Vicuna [Chiang et al., 2023]. Generally, we find that Llemr tends to give more concise and
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Table 4: Example of the generated response from Llemr.

Schema Alignment

User When was the first Blood Anion Gap Chemistry measured?
Gold 6.02 hours after admission.
Vicuna The initial Blood Anion Gap Chemistry measurement was 14 mEq/L, which is within the

normal range of 8-16 mEq/L.
Llemr The measurement was taken at 6.02 hours.

User Where was the patient admitted?
Gold The patient was admitted to the emergency room.
Vicuna The patient was admitted to the hospital with an emergency room complaint of agitation. The

patient was transferred to the Medical Intensive Care Unit (MICU). The patient’s diagnosis is
not provided in the given data.

Llemr The patient was initially admitted to the Emergency Room.

Clinical Reasoning

User What was the rationale for not pursuing surgery for the patient with severe c. diff and septic
shock?

Gold Surgery was not considered for the patient due to being a poor surgical candidate with severe
lung disease and because surgery was not aligned with the patient’s goals of care based on
discussions with him and his family.

Vicuna The patient was not pursued surgically due to concerns about the patient’s overall condition
and the potential risks of surgery. The patient’s lab results showed abnormal values for various
chemistry and hematology tests.

Llemr The rationale for not pursuing surgery for the patient was likely due to the patient’s critical
condition and the presence of multiple lung diseases.

User What antibiotic was used for perioperative coverage during the aortic valve replacement surgery?
Gold Cefazolin was used for perioperative antibiotic coverage during the aortic valve replacement

surgery.
Vicuna The antibiotic used for perioperative coverage during the aortic valve replacement surgery was

likely Omeprazole.
Llemr The data only includes various medications such as analgesics, sedatives, and other treatments,

but no antibiotics were prescribed specifically for the surgery.

precise answers. In contrast, Vicuna [Chiang et al., 2023] tends to give broad responses or directly
copy information from the input sequence. We also note that the last question contains information
only from the discharge summaries. This can happen as the clinical reasoning data was generated
from discharge summaries instead of EHR tables. This points out a potential future direction of
further filtering the generated instruction-responses data.

6.2 Performance on Standard Clinical Predictive Benchmarks

Datasets. We leverage the held-out test set of 5585 ICU admissions from the MIMIC-IV database.
The training and validation sets share the same cohorts as the ones used in instruction-tuning.
Additional patient filtering is performed for each task introduced below.

Tasks & Metrics. We focus on four common clinical predictive tasks.

• Mortality prediction aims to predict whether the patient will pass away upon discharge using
events from the first 48 hours of the hospital admission.

• Length-of-stay prediction aims to determine whether the patient’s hospital stay will be longer
than 7 days using the first 48 hours of the hospital admission. For both mortality and length-of-stay
prediction tasks, patients with hospital length-of-stay less than 48 hours are filtered.

• Readmission prediction aims to predict whether the patient will be readmitted back to the hospital
within 14 days following current discharge using all events from the current admission. Patients
who are deceased in the current hospital admission are filtered for this task.

• Diagnosis classification aims to classify which acute care conditions are present using all events
from the current admission. We follow existing works [Harutyunyan et al., 2019] and define disease
labels with 25 conditions that are common in adult ICUs, including 12 critical conditions, (e.g.,
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Table 5: Results on the MIMIC-IV clinical predictive benchmark tasks.

Method Mortality Readmission Length-of-Stay Diagnosis
RNN [Cho et al., 2014] 0.8002 (0.02) 0.6643 (0.01) 0.6833 (0.03) 0.7735 (0.01)
Transformer [Vaswani et al., 2017] 0.8241 (0.03) 0.7006 (0.01) 0.6990 (0.01) 0.8025 (0.02)
RETAIN [Choi et al., 2016a] 0.8302 (0.02) 0.6994 (0.01) 0.7015 (0.01) 0.8073 (0.02)
GRASP [Zhang et al., 2021] 0.8362 (0.01) 0.7155 (0.01) 0.7100 (0.03) 0.8005 (0.02)
GenHPF [Hur et al., 2024] 0.8258 (0.02) 0.7102 (0.01) 0.6993 (0.02) 0.8103 (0.03)
REMed [Kim et al., 2024] 0.8346 (0.02) 0.7193 (0.02) 0.7018 (0.01) 0.8128 (0.01)
Llemr (further-trained) 0.8388 (0.01) 0.7251 (0.03) 0.7132 (0.01) 0.8086 (0.01)

respiratory failure; 8 chronic conditions (e.g., diabetes); and 5 mixed (i.e., recurring or chronic with
periodic acute episodes) conditions (e.g., cardiac dysrhythmias).

The first three tasks are binary classification and we calculate the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) scores. The last task is multilabel classification and we report the
macro AUC-ROC. We report the average scores and standard deviation by performing bootstrapping
(i.e., sampling with replacement) 1000 times.

Baselines. We compare Llemr with three groups of baselines: (1) general machine learning (ML)
methods: RNN [Cho et al., 2014] and Transformer [Vaswani et al., 2017]; (2) ML models specifically
designed for clinical predictive modeling: RETAIN [Choi et al., 2016a], GRASP [Zhang et al., 2021],
GenHPF [Hur et al., 2024]; (3) Foundation models that alleviate the need for manual preprocessing:
REMed [Kim et al., 2024]. The first two baseline groups rely on hand-crafted features and thus we
follow existing works [Zhang et al., 2021, Jiang et al., 2024] and only input the procedure, lab, and
prescription features; and truncate event sequence to 512.

Results. It is important to note that these clinical predictive tasks are quite different from the
instruction-following tasks. Thus, we perform an additional supervised fine-tuning step for Llemr.
A new classification head (i.e., linear layer) is added on top of Llemr and trained for each clinical
predictive task.

The results on clinical predictive benchmarks can be found in Table 5. Both Llemr and the baseline
methods are supervised trained for the benchmark tasks. We select the best model weights on the
validation set and report the performance on the test set. First, we can see that baselines relied on
manual data engineering perform quite well, reaching 0.80 AUC-ROC score for mortality prediction
and diagnosis classification. Among them, RETAIN [Choi et al., 2016a], GRASP [Zhang et al., 2021],
and GenHPF [Hur et al., 2024] perform slightly better by injecting various domain-specific inductive
biases. Interestingly, despite being free from feature engineering, REMed [Kim et al., 2024] performs
even better than many other baselines. This is probably because REMed [Kim et al., 2024] is able to
take a broader range of events as input and utilize them as additional information. Lastly, we can see
that the fine-tuned Llemr can perform better or on par with SOTA methods. This demonstrates the
flexibility and adaptability of Llemr.

7 Conclusion

The remarkable abilities of LLMs to understand complex inputs and follow instructions for diverse
tasks suggest their potential to simplify and enhance the analysis of EHRs. However, developing a
conversational AI assistant for EHR data is difficult due to the following challenges: (1) the lack of
large-scale instruction tuning data and (2) the limitation of model architectures in handling EHR data
with complex schemas. In this paper, we introduce MIMIC-Instr, a dataset of over 400K open-ended
instruction-tuning examples generated by GPT-3.5. This dataset covers a broad range of topics and
can be used to instruction-tune general-purpose LLMs. Additionally, we propose Llemr, a generic
framework designed to empower LLMs to encode EHR data with heterogeneous schema. Evaluation
results show that Llemr exhibits excellent capabilities in answering diverse inquiries about a patient
and performs on par with SOTA baselines when further fine-tuned for clinical predictive tasks.
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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