
Improving Rule-based Reasoning in LLMs using Neurosymbolic
Representations

Anonymous ACL submission

Abstract001

Large language models (LLMs) continue to002
face challenges in reliably solving reasoning003
tasks, particularly tasks that involve precise rule004
following, as often found in mathematical rea-005
soning tasks. This paper introduces a novel006
neurosymbolic method that improves LLM rea-007
soning by encoding hidden states into neu-008
rosymbolic vectors, enabling problem-solving009
within a neurosymbolic vector space. The re-010
sults are decoded and merged with the orig-011
inal hidden state, significantly boosting the012
model’s performance on numerical reasoning013
tasks. By offloading computation through neu-014
rosymbolic representations, this method en-015
hances efficiency, reliability, and interpretabil-016
ity. Our experimental results demonstrate an017
average of 88.6% lower cross-entropy loss and018
15.4 times more problems correctly solved on019
a suite of mathematical reasoning tasks com-020
pared to chain-of-thought prompting and super-021
vised fine-tuning (LoRA), while not hindering022
the LLM’s performance on other tasks. We023
make our code available at Neurosymbolic024
LLM1025

1 Introduction026

Despite the remarkable progress in deep learning,027

significant gaps remain between the strengths of028

deep learning-based models and traditional sym-029

bolic reasoning systems (Mirzadeh et al., 2024;030

Petruzzellis et al., 2024). Deep learning excels at031

intuition and pattern recognition, leveraging large032

datasets to make flexible, context-aware predic-033

tions. However, these models often suffer from034

issues such as hallucinations and a lack of reliabil-035

ity, especially when solving tasks that require strict036

rule-following and logical consistency (Lin et al.,037

2023; Chen et al., 2023). In contrast, symbolic038

1https://anonymous.4open.science/r/
Neurosymbolic-LLM-A498

What is 910 mod 213 ?

58

Attention

MLP

Encoder

Symbolic
Algorithm

Decoder

Figure 1: A diagram of our method, showing how
LLM hidden states are converted into compositional
neurosymbolic representations. The encoder network
converts the LLM hidden state to a neurosymbolic vec-
tor which can be queried to obtain the ones, tens, and
hundreds digit of each number, as well as the type of
problem being asked. This information is used by the
neurosymbolic algorithm to find a solution to the prob-
lem, which the decoder converts from a neurosymbolic
vector into an LLM hidden state vector, which is then
added to the original LLM hidden state.

reasoning methods provide precision and reliabil- 039

ity, but they struggle to scale to complex and noisy 040

real-world problems. 041

This dichotomy has fueled a growing interest 042

in merging the strengths of these two paradigms. 043

Many integrated approaches aim to leverage the 044

intuition and adaptability of large language mod- 045

els (LLMs) while incorporating the rigor and in- 046

terpretability of symbolic reasoning (Xiao et al., 047

2023; Gupta et al., 2023; Chakraborty et al., 2024; 048

Wu et al., 2024). For example, approaches such 049

as deep learning-guided program synthesis aim to 050

use LLMs to generate complex algorithms by pro- 051

1

https://anonymous.4open.science/r/Neurosymbolic-LLM-A498
https://anonymous.4open.science/r/Neurosymbolic-LLM-A498


ducing code for various candidate programs that052

could solve abstract reasoning problems (Chollet053

et al., 2025). While this approach demonstrates054

the potential of combining neural network-based055

pattern recognition with symbolic algorithms for056

programmatic reasoning, it remains constrained057

to token-level operations and fails to leverage the058

richer and more complex information embedded059

within the LLM’s hidden states.060

In this paper, we introduce a novel method that061

extends the capabilities of LLMs by encoding their062

hidden states into structured symbolic vector rep-063

resentations. Unlike previous work focusing on064

token-level program synthesis, our approach di-065

rectly integrates symbolic algorithms within the066

neural model by running them in a symbolic space067

derived from the LLM’s internal representations.068

This innovation bridges the gap between neural069

and symbolic reasoning by extracting inputs from070

the LLM’s hidden state and operating directly on a071

structured, interpretable representation of the prob-072

lem.073

Our contributions include:074

• A Neurosymbolic Method for LLMs: This075

work represents a first step toward integrating076

symbolic reasoning into LLMs . We explore077

the ability of symbolic algorithms to operate078

within a symbolic space constructed from the079

LLM’s latent representations.080

• Symbolic Representations from Hidden081

States: We demonstrate the feasibility of de-082

coding state information from LLM hidden083

layers into structured, compositional symbolic084

representations using Vector Symbolic Alge-085

bras (VSAs). These representations enable086

rule-based manipulation of mathematical and087

logical constructs.088

• Improved Performance on Rule-Based089

Tasks: By leveraging neurosymbolic process-090

ing, our approach achieves significant im-091

provements in accuracy and interpretability092

on numerical reasoning tasks, outperforming093

methods like chain-of-thought (CoT) prompt-094

ing and Low-Rank Adaptation (LoRA) fine-095

tuning.096

This work enables symbolic algorithms to run097

directly within neural networks, laying the ground-098

work for more advanced neurosymbolic systems099

that balance the adaptability of LLMs with the reli- 100

ability of symbolic reasoning. By integrating neu- 101

rosymbolic algorithms and decoding hidden state 102

information into structured neurosymbolic repre- 103

sentations, we aim to unlock new possibilities for 104

solving complex, rule-based problems previously 105

only solvable via symbolic approaches such as pro- 106

gram synthesis. 107

2 Related Work 108

2.1 Linear Probes 109

Linear probes are widely used tools for interpret- 110

ing the internal representations of LLMs (Hewitt 111

and Manning, 2019; Liu et al., 2019). They in- 112

volve training a lightweight, linear mapping from a 113

model’s hidden states to specific properties of in- 114

terest, such as linguistic features or numerical val- 115

ues. By analyzing how well these linear mappings 116

perform, researchers can infer what information 117

is encoded in the model’s hidden states. For nu- 118

merical reasoning, linear probes have been used to 119

represent values by extracting information directly 120

from hidden states (Elhage et al., 2021). 121

Previous work has extended this approach with 122

digit-specific circular probes, which attempt to 123

decompose numerical representations into their 124

constituent digits using circular algebra (Elhage 125

et al., 2022). However, such methods generally ex- 126

hibit lower accuracy compared to traditional linear 127

probes and are limited in scope. Specifically, cir- 128

cular probes can only detect numbers and lack the 129

ability to discern operations or broader semantic 130

relationships. 131

In contrast, the method proposed in this work 132

addresses these limitations by leveraging vector 133

symbolic algebras (VSAs) to encode both numbers 134

and operations. VSA-based representations offer 135

dynamic scalability, allowing new functionality to 136

be integrated without retraining the probe. Our ap- 137

proach is thus particularly well-suited for complex 138

numerical reasoning tasks that require flexible and 139

interpretable encodings. 140

2.2 Sparse Autoencoders 141

Sparse autoencoders (SAEs) are a class of unsu- 142

pervised learning methods designed to parse high- 143

dimensional data, such as the hidden states (also 144

called activations) of LLMs, into sparse, monose- 145

mantic components (Olah et al., 2020; Le et al., 146

2021). These components, often referred to as 147

“concepts,” are linearly combined to reconstruct the 148

2



original input data (Elhage et al., 2021). SAEs149

have been used to identify which latent features in150

an LLM are active during specific tasks, enabling151

researchers to explore the internal representations152

of the model. Furthermore, SAEs can be used to153

steer LLMs by selectively amplifying or suppress-154

ing certain concepts, providing a powerful tool for155

interpretability and control.156

Despite these advantages, SAEs face notable lim-157

itations. First, the concepts learned by SAEs are158

not guaranteed to be atomic or aligned with struc-159

tured representations, such as individual digits in160

numerical data. This ambiguity makes SAEs less161

suitable for tasks that require precise decomposi-162

tion of hidden states. Second, the representations163

learned by SAEs are probabilistic and emergent,164

determined during training without external con-165

straints, which complicates their use in symbolic166

algorithms (Olah et al., 2020; Elhage et al., 2021).167

Additionally, the concepts extracted by SAEs168

are typically non-interpretable by default, requir-169

ing manual inspection of activations to identify170

their semantic meaning (Olah et al., 2020; Elhage171

et al., 2021). While this can provide insights into172

LLM internals, it is labor-intensive and less system-173

atic than the interpretable symbolic representations174

proposed in this paper. Finally, SAEs operate in175

an unsupervised setting, whereas the approach pre-176

sented here uses supervised learning to enforce177

specific properties on the learned representations.178

This trade-off introduces inductive biases but en-179

sures that the resulting encodings are structured180

and interpretable, facilitating their use in numerical181

reasoning tasks.182

3 Vector Symbolic Algebras183

Vector Symbolic Algebras (VSAs) are a family of184

methods for constructing compositional, symbol-185

like representations within a fixed-dimensional vec-186

tor space. In this work, we use Holographic Re-187

duced Representations (HRRs) (Plate, 1995)—a188

type of VSA—to encode and interpret the internal189

states of LLMs for numerical reasoning tasks.190

A VSA supports three core operations: bundling,191

binding, and similarity. Bundling (vector addition)192

enables representing sets of items; binding (cir-193

cular convolution) encodes associations between194

elements; and similarity (dot product) is used for195

comparison and querying. See Appendix A for196

precise definitions and equations.197

To represent a structured query such as “What is198

842 mod 910?”, we compose randomly-initialized 199

vectors for each digit and place value (e.g., ones, 200

tens, hundreds), then bind these with role and oper- 201

ation vectors. This compositional approach enables 202

us to encode not only values but also their roles in 203

the problem. An example encoding is provided in 204

Appendix A. 205

VSAs also support unbinding, which allows spe- 206

cific components of a compositional vector to be 207

queried (see Appendix A). By leveraging these al- 208

gebraic operations, our method can extract and ma- 209

nipulate interpretable, structured representations of 210

arithmetic problems from LLM hidden states. 211

4 Methodology 212

Our method consists of three stages, which together 213

provide an approach for enhancing the reasoning 214

capabilities of LLMs through neurosymbolic pro- 215

cessing. These stages are: 216

1. Prompting the LLM with mathematical rea- 217

soning problems and gathering the hidden 218

states from the model’s layers. 219

2. Encoding the gathered hidden states into neu- 220

rosymbolic VSA representations that capture 221

key features of the reasoning process. 222

3. Applying rule-based algorithms to the repre- 223

sentations, then decoding the results back into 224

the LLM to generate final solutions. 225

Next, we describe the dataset used in this study, 226

before returning to describe each of these stages in 227

more detail. 228

4.1 Dataset 229

We release a formally specified, procedurally gener- 230

ated benchmark, the Symbolic-Math Dataset2, to 231

foster reproducible evaluation of arithmetic reason- 232

ing in LLMs. The dataset is open-source (MIT li- 233

cense) and fully regenerable, enabling reproducibil- 234

ity and scaling to more complex queries of the 235

same arithmetic form (i.e., operations over arbitrar- 236

ily many digits). 237

Construction. In this study, each example is built 238

by (i) sampling two independent three-digit inte- 239

gers (x, y ∈ {0, . . . , 999}) and (ii) sampling a 240

problem type t from a fixed set of p = 10 sym- 241

bolic operations (listed below). To ensure every 242

2https://anonymous.4open.science/r/
Symbolic-Math-Dataset-

3

https://anonymous.4open.science/r/Symbolic-Math-Dataset-
https://anonymous.4open.science/r/Symbolic-Math-Dataset-


operand and result remains a single sub-word to-243

ken in LLaMA-3, we mod-reduce any outcome244

that exceeds three decimal digits: e.g. (932×245

152) mod 1000 = 816. The instance is rendered246

as a natural-language question such as247

‘‘What is 932 times 152 mod 1000?’’248

and paired with the numeric answer encoded as a249

single token. The problem types used in this study250

are:251

(1) Modulo: x mod y,252

(2) Multiplication: (x · y) mod 103,253

(3) GCD: gcd(x, y),254

(4) LCM: lcm(x, y) mod 103,255

(5) Square Modulo: x2 mod y,256

(6) Bitwise AND: int(bin(x)&bin(y)),257

(7) Bitwise XOR: int(bin(x) ⊕ bin(y)),258

(8) Bitwise OR: int(bin(x) ∨ bin(y)),259

(9) Addition: x+ y,260

(10) Integer Division: x//y.261

Separate training, validation, and test splits are262

procedurally generated. The training and valida-263

tion sets exclude addition and integer division,264

which are included only in the test set to evaluate265

out-of-distribution generalization.266

Prompting format. In our study, each test query267

is presented in a few-shot format with two in-268

context exemplars of the same problem type, pre-269

ceding the target question. This consistent demon-270

stration style encourages the model to learn the271

syntactic and arithmetic patterns of the task from272

examples alone, promoting the model to provide273

responses in a consistent and easy to evaluate for-274

mat.275

4.2 Prompting and Gathering Hidden States276

In the first stage of our method, the LLM is pre-277

sented with mathematical reasoning problems for-278

mulated as natural language questions. For each279

prompt, we extract the hidden state of the most280

recent token from a designated layer of the LLM,281

capturing an intermediate representation of the rea-282

soning process.283

For this study, we use LLaMA 3.1 8B, which284

features 4096-dimensional hidden state vectors at285

each of its 32 layers. Each layer consists of a self-286

attention mechanism, a feed-forward MLP, skip287

connections, and RMS normalization (Grattafiori 288

et al., 2024). Our approach records the hidden 289

states just before they are processed by the selected 290

layer, preserving an unaltered view of the model’s 291

internal representations at that stage. 292

4.3 Encoding Hidden States 293

The second stage, after prompting, involves con- 294

verting the hidden states of the LLM into neurosym- 295

bolic vector representations. For this purpose, we 296

train a linear encoder network designed to map the 297

hidden states recorded during the forward pass into 298

neurosymbolic vectors that represent the problem’s 299

key components: the two input numbers and the op- 300

eration type (see Figure 1). For problems involving 301

mod 1000 to truncate the final three digits, the 1000 302

is not represented as an input number, but instead 303

is tied to a problem type (e.g., multiplication prob- 304

lem types will always apply modulo 1000 to the 305

final answer). The symbolic vectors are structured 306

using the framework described in Section A.1. The 307

encoder is trained using a root mean squared error 308

(RMSE) loss, with the objective of minimizing the 309

difference between the predicted and true symbolic 310

vectors. 311

4.4 Decoding Neurosymbolic States 312

Once the encoder network is trained, a correspond- 313

ing linear decoder network is trained to reverse this 314

mapping. The decoder network takes symbolic vec- 315

tors as input, reconstructs the LLM’s hidden state, 316

and is optimized to minimize the RMSE loss be- 317

tween the original and reconstructed hidden states. 318

The input dataset for the decoder training is gen- 319

erated by converting hidden states from the LLM 320

into symbolic vectors using the trained (and now 321

frozen) encoder network. 322

After training, both the encoder and decoder net- 323

works are included in the LLM (as shown in Figure 324

1) to assist in solving mathematical reasoning prob- 325

lems. The inference process begins by encoding 326

the hidden state of the designated LLM layer into a 327

neurosymbolic vector. This vector is then queried 328

to determine the problem type, which dictates the 329

selection of an appropriate rule-based Python func- 330

tion. If the queried problem type is not sufficiently 331

similar to any the problem types encountered dur- 332

ing training, the decoder is bypassed, and the LLM 333

proceeds with its standard forward pass. Other- 334

wise, the predefined rule-based function is applied 335

to the extracted input values from the neurosym- 336

bolic vector, generating a new neurosymbolic rep- 337

4



resentation containing the computed solution. This338

solution vector is then decoded back into an LLM-339

compatible hidden state via the decoder network,340

allowing the model to incorporate the computed341

result into its forward pass.342

The output of the decoder is linearly combined343

with the original hidden state at the intervention344

layer to form the final hidden state. This linear mix-345

ing is performed using a 50-50 ratio, as described346

in Appendix F.347

Note that the layer at which the encoder gen-348

erates the neurosymbolic vector from the hidden349

state does not need to be the same layer at which350

the decoder network uses the solution neurosym-351

bolic vector to impact the hidden state of the LLM.352

In fact, multiple decoder layers may be trained and353

used to influence the hidden state of the LLM at354

different layers using the solution symbolic vec-355

tor. For simplicity, we only choose layer 17’s en-356

coder and decoder network to both generate the357

neurosymbolic vector of the problem and to apply358

intervention to the forward pass of the LLM. The359

reasoning in choosing layer 17 is discussed further360

in Appendix B.361

Although the decoder networks are pretrained362

to reconstruct hidden states corresponding to sym-363

bolic vectors, their direct use during the LLM’s364

forward pass may disrupt the algorithm being ex-365

ecuted by the LLM, leading to degraded perfor-366

mance. This disruption occurs because the pre-367

trained decoder networks map neurosymbolic vec-368

tors containing problem solutions directly into the369

LLM’s hidden states. However, the LLM’s original370

forward pass has hidden states that encode the prob-371

lem inputs rather than the solution. Replacing the372

hidden states with representations of the solution373

can interfere with subsequent layers of the LLM,374

which expect input representations to align with375

the problem’s original structure.376

To address this issue, the decoder networks are377

fine-tuned by calculating the cross entropy loss of378

the logits of the correct token during the LLM’s379

forward pass. This loss measures the discrepancy380

between the model’s predicted output and the ex-381

pected solution, allowing the decoder networks to382

adapt their mappings. The fine-tuning process en-383

sures that the modified hidden states generated by384

the decoder networks not only represent the so-385

lution but also align with the LLM’s internal ex-386

pectations, enabling the model to generate correct387

outputs.388

Fine-tuning the decoder layers achieves two ob-389

jectives: 390

(1) It teaches the decoder networks to map solu- 391

tion neurosymbolic vectors into hidden states 392

that align with the LLM’s forward-pass expec- 393

tations. 394

(2) It mitigates disruptions to the LLM’s computa- 395

tions caused by direct interventions in hidden 396

states, ensuring the model generates correct 397

outputs. 398

Without fine-tuning, decoder outputs may cause 399

the model to deviate from its learned reasoning 400

pathways, leading to errors. By fine-tuning, the 401

decoder networks adapt to the model’s computa- 402

tional context, improving overall performance in 403

mathematical reasoning tasks. 404

4.5 Computational complexity. 405

Although our method introduces additional neu- 406

rosymbolic processing steps, its computational 407

overhead is minimal. As detailed in Appendix E, 408

the total runtime cost per forward pass through the 409

neurosymbolic block is 410

Θ
(
d v + v log v

)
, 411

which is independent of the sequence length n 412

and number of layers L, and is asymptotically 413

dominated by the standard key–value cached trans- 414

former cost of O(L(nd+d2)). The space overhead 415

is likewise modest, Θ(dv), which is negligible rel- 416

ative to the memory usage of the full LLM. This 417

confirms that the neurosymbolic extension can be 418

deployed efficiently without impacting scalability. 419

4.6 Comparisons to Other Methods 420

We compared the performance of our method to 421

two other popular strategies for improving the 422

mathematical reasoning capabilities of LLMs: zero- 423

shot chain-of-thought (CoT) reasoning and super- 424

vised fine-tuning via LoRA modules. These meth- 425

ods were selected as baselines because they rep- 426

resent two distinct paradigms: implicit reasoning 427

through prompting and explicit task-specific fine- 428

tuning. 429

Chain-of-Thought reasoning (Wei et al., 2022; 430

Kojima et al., 2022; Wang et al., 2022) involves 431

prompting the model to generate intermediate rea- 432

soning steps explicitly, rather than directly provid- 433

ing a final answer. This approach encourages step- 434

by-step reasoning, which is particularly beneficial 435

5



for solving complex mathematical problems that re-436

quire multi-step calculations or logical deductions437

(Zhou et al., 2022). CoT has been shown to im-438

prove interpretability and correctness in reasoning439

tasks by enabling the model to break down prob-440

lems into smaller, manageable components (Nye441

et al., 2021; Wei et al., 2022). CoT prompting442

can be implemented by including examples of de-443

tailed reasoning in the training dataset or through444

few-shot prompting during inference (Kojima et al.,445

2022). This strategy leverages the model’s inherent446

capabilities without requiring architectural modi-447

fications, making it efficient for a wide range of448

reasoning tasks.449

LoRA (Low-Rank Adaptation) modules (Hu450

et al., 2021; Xie et al., 2023; Wang et al., 2023)451

are an efficient fine-tuning strategy where trainable452

low-rank matrices are introduced into the atten-453

tion layers of the LLM. Unlike full fine-tuning,454

which updates all model parameters, LoRA mod-455

ules selectively modify a small number of param-456

eters while keeping the pre-trained model largely457

intact (Li and Liang, 2021; Houlsby et al., 2019).458

This makes fine-tuning computationally efficient459

and memory-friendly, even for very large models460

(Ding et al., 2022). LoRA modules are typically461

inserted into the attention mechanism, where they462

adapt the query, key, and value projections to im-463

prove task-specific performance (Hu et al., 2021).464

For mathematical reasoning, LoRA fine-tuning en-465

ables the model to learn domain-specific represen-466

tations and reasoning strategies effectively, while467

minimizing the computational burden (Xie et al.,468

2023).469

By comparing these two strategies with our470

method, which encodes symbolic representations471

directly into the model, we aim to evaluate the472

trade-offs between interpretability, efficiency, and473

reasoning accuracy. Unlike CoT reasoning, which474

relies on implicit reasoning through prompting, our475

approach explicitly encodes symbolic representa-476

tions, enabling precise manipulation of mathemat-477

ical structures. Compared to LoRA, which fine-478

tunes the model for specific tasks while potentially479

degrading the performance of the LLM on other480

problems, our method avoids this by checking if the481

queried problem type has been seen during train-482

ing, and if not, it does not intervene in the LLM’s483

forward pass. These distinctions highlight the po-484

tential of our approach to bridge the gap between485

interpretability and task-specific adaptability.486

5 Experiments 487

5.1 Evaluation Setup 488

We evaluate the proposed Neurosymbolic LLM 489

(NS LLM) against three baselines: (i) a Standard 490

LLM (frozen, with few-shot prompting), (ii) a 491

LoRA-fine-tuned LLM trained on the same task 492

corpus, and (iii) a CoT prompted LLM. 493

All models are evaluated on the Symbolic-Math 494

Dataset described in Section 4.1. We use a procedu- 495

rally generated split consisting of 20,000 training 496

examples, 200 validation examples, and 2,000 test 497

examples. The training set is used to fit model pa- 498

rameters, the validation set tracks accuracy during 499

training, and the test set is used for final evaluation. 500

Each model is prompted using the same few- 501

shot format: two in-context exemplars of the same 502

problem type precede the target query, as detailed 503

in Section 4.1. For all approaches, generation uses 504

greedy decoding (temperature = 0). 505

We report two evaluation metrics: 506

• Score (% ↑): The percentage of test examples 507

for which the model assigns highest probabil- 508

ity to the correct answer. 509

• Loss (↓): The categorical cross-entropy loss 510

on the target token, i.e., the negative log- 511

likelihood of the correct answer. 512

The reported results are taken from single runs 513

of each approach over the entire testing dataset. 514

5.2 Base LLM 515

The base LLM is evaluated using the same few-shot 516

prompt format described in Section 5.1, with two 517

in-context examples preceding each query. The 518

model performs a single forward pass to generate 519

its prediction for the final answer token. 520

We use the LLaMA 3.1 8B model for all 521

experiments, following the inference procedure 522

and key–value caching mechanism outlined in 523

Grattafiori et al. (2024). The model weights are 524

frozen during evaluation, and no additional fine- 525

tuning is applied. 526

5.3 NS LLM 527

To avoid erroneous interventions, the decoder’s 528

output is only incorporated into the LLM’s hidden 529

state when the model is confident that the encoded 530

neurosymbolic vector correctly reflects the problem 531

type. Specifically, we compute the dot product sim- 532

ilarity between the extracted neurosymbolic vector 533

6



and each problem type vector in the vocabulary,534

and apply the decoder output only if the highest535

similarity exceeds a threshold of 0.8 (justification536

for this threshold is provided in Appendix C). This537

gating mechanism prevents the neurosymbolic pro-538

cedure from modifying the LLM’s internal state on539

unfamiliar or out-of-distribution tasks, preserving540

performance on problems that lack an associated541

neurosymbolic algorithm. Further discussion of the542

performance of the NS LLM on out-of-distribution543

tasks is provided in Appendix D.544

In this study, we intervene at layer 17, as it545

achieves the lowest encoder reconstruction loss546

(see Appendix B). The dimensionality of the vec-547

tor symbolic architecture (VSA) is fixed at 2048.548

The decoder output is combined with the original549

hidden state using a 50/50 linear mixture. The550

empirical justification for this mixing strategy is551

provided in Appendix F.552

The encoder and decoder networks are initially553

trained for 1,000 epochs to ensure accurate neu-554

rosymbolic representations. Subsequently, the de-555

coder is fine-tuned for one epoch using cross-556

entropy loss to align its outputs with the LLM’s557

internal expectations during inference.558

5.4 LoRA559

To ensure a fair comparison with the NS560

LLM, we implement a LoRA module with rank561

2048—matching the dimensionality of the VSA562

used in the neurosymbolic method. This ensures563

both approaches have an equivalent number of564

trainable parameters. As with the NS LLM, the565

output of the LoRA module is mixed with the orig-566

inal hidden state at the intervention layer using a567

50/50 weighted sum.568

The LoRA module is trained for 1 epoch to569

match the fine-tuning stage of the NS LLM. Unlike570

the NS LLM, LoRA does not undergo a symbolic571

pretraining phase, as its encoder output is uncon-572

strained. In contrast, the NS LLM explicitly en-573

forces its encoder to produce structured VSA-style574

representations, enabling neuro symbolic querying575

and interpretation.576

5.5 CoT577

For the Chain-of-Thought (CoT) baseline, the LLM578

is not prompted with few-shot exemplars. Instead,579

its system prompt instructs it to "Always explain580

your reasoning step by step", encouraging581

it to perform structured reasoning autonomously.582

This setup ensures that the model generates its own583

intermediate steps rather than relying on algorith- 584

mic demonstrations embedded in the prompt. 585

6 Results 586

Table 1: Performance of Symbolic, Standard, CoT, and
LoRA LLMs on Various Problem Types. Note that
Addition and Integer Division problem types are not
seen during training

Problem Model Score (% ↑) Loss (↓)

Mod NS LLM 98.7 0.093
Standard LLM 53.5 2.904

CoT LLM 69.7 4.424
LoRA LLM 51.5 3.838

Mult. NS LLM 95.6 0.314
Standard LLM 1.1 9.279

CoT LLM 25.3 11.755
LoRA LLM 4.5 6.279

GCD NS LLM 94.2 0.205
Standard LLM 62.6 1.31

CoT LLM 93.2 0.874
LoRA LLM 74.5 1.235

LCM NS LLM 87.3 1.051
Standard LLM 2.5 7.359

CoT LLM 10.8 14.778
LoRA LLM 2.0 5.941

Square NS LLM 58.9 2.818
Mod Standard LLM 7.0 5.054

CoT LLM 32.7 9.934
LoRA LLM 5.5 5.600

Bitwise NS LLM 91.2 0.755
And Standard LLM 2.7 7.152

CoT LLM 5.5 11.556
LoRA LLM 9.0 4.670

Bitwise NS LLM 99.4 0.094
Xor Standard LLM 6.7 10.606

CoT LLM 1.1 16.606
LoRA LLM 8.0 6.116

Bitwise NS LLM 97.6 0.093
Or Standard LLM 4.4 9.527

CoT LLM 7.8 12.423
LoRA LLM 10.5 5.046

Addition NS LLM 98.2 0.206
Standard LLM 100.0 0.000

CoT LLM 78.8 2.218
LoRA LLM 46.5 6.299

Integer NS LLM 97.4 0.066
Division Standard LLM 95.2 0.148

CoT LLM 94.3 0.709
LoRA LLM 72.0 1.797

Across all trained problem types, the Neurosym- 587

bolic LLM achieves the best overall performance 588

among all models, as shown in Table 1. It con- 589

sistently attains higher accuracy and lower cross- 590

entropy loss. For most problems, both the loss 591

is significantly reduced and the accuracy is much 592

higher than that of the Standard LLM. 593

7



However, on more complex tasks, such as LCM594

and square modulo, performance is slightly lower.595

This may be due to the complexity of the under-596

lying forward-pass algorithm required for these597

problems (e.g., square modulo requires two-hop598

reasoning), which makes applying interventions599

via a single decoder network more challenging. A600

potential improvement could involve using multi-601

ple decoder networks to insert neurosymbolic in-602

formation at different stages of the forward pass,603

enabling more precise alignment with the LLM’s604

internal computations.605

The CoT LLM improves over the Standard LLM606

in tasks like GCD (93.2% score, 0.874 loss) and607

modulo (69.7% score, 4.424 loss). However, CoT608

performs worse on tasks like bitwise XOR, where609

the score drops from 6.7% (Standard LLM) to 1.1%.610

This is likely due to the increased opportunity for611

errors in multi-step reasoning, such as incorrect612

bitstring conversion during intermediate steps (fur-613

ther discussed in Appendix H). Furthermore, CoT614

strategies consistently exhibit higher loss values615

than other methods, reflecting the narrow token616

path required to generate correct outputs from rea-617

soning steps.618

While LoRA fine-tuning improves performance619

on some tasks, it underperforms on more complex620

operations and exhibits poor generalization to tasks621

it was not trained on (i.e., addition and integer di-622

vision). This contrasts with the NS LLM, which623

adapts by avoiding interventions for unseen prob-624

lem types, preserving its generality.625

Discussion626

Our results highlight the following:627

• The Neurosymbolic LLM outperforms all628

other models on trained problems, while also629

not significantly sacrificing performance on630

testing problems (i.e., Addition and Integer631

Division).632

• The Standard LLM performs well on simpler633

tasks but struggles with problems requiring634

intermediate reasoning or symbolic represen-635

tation. The Standard LLM has a 87% higher636

loss and a 25.5 times lower score than the637

Neurosymbolic LLM.638

• The CoT LLM’s reliance on multi-step reason-639

ing introduces opportunities for errors, partic-640

ularly in tasks involving non-trivial intermedi-641

ate computations. The CoT LLM has a 91%642

higher loss and a 16.9 times lower score than 643

the Neurosymbolic LLM. 644

• The LoRA LLM’s inability to generalize to 645

unseen tasks underscores the advantage of 646

neurosymbolic encoding for maintaining task 647

flexibility. The LoRA LLM has a 86% higher 648

loss and a 13.8 times lower score than the 649

Neurosymbolic LLM. 650

These findings validate the utility of neurosym- 651

bolic encoding as a useful tool for enhancing the 652

reasoning capabilities of LLMs, demonstrating an 653

average of 88.6% lower cross entropy loss and 654

15.4 times more problems correctly solved than the 655

baselines. The advantages of our method are evi- 656

dent particularly in domains where precision and 657

rule-following are required, while also providing 658

insights into the model’s internal representations 659

by converting hidden states into interpretable and 660

compositional symbolic vectors. 661

7 Conclusion 662

We introduce a neurosymbolic method that bridges 663

the strengths of LLMs and symbolic reasoning sys- 664

tems to address challenges in rule-based reasoning 665

tasks. By encoding LLM hidden states into neu- 666

rosymbolic representations, solving problems in 667

a symbolic domain, and merging solutions back 668

into the LLM, our approach achieves significant 669

improvements in mathematical reasoning tasks. Ex- 670

perimental results demonstrate superior accuracy 671

and reliability compared to traditional methods like 672

CoT reasoning and fine-tuning with LoRA mod- 673

ules. 674

Our method not only enhances task performance 675

but also fosters greater interpretability, providing 676

insights into the internal representations of LLMs. 677

Moreover, by leveraging neurosymbolic representa- 678

tions capable of encoding complex and structured 679

data, our method has the potential to scale across a 680

broad range of reasoning tasks. These results high- 681

light the potential of neurosymbolic integration as 682

a useful approach to enhancing the reasoning ca- 683

pabilities of LLMs, enabling them to solve prob- 684

lems with the robustness and precision previously 685

achievable only by symbolic AI systems. 686

Limitations 687

While our neurosymbolic LLM approach demon- 688

strates strong improvements in rule-based mathe- 689

8



matical reasoning, there are several limitations to690

note:691

• Input Data Structure: Our method has been692

evaluated primarily on tasks with a fixed, pre-693

determined structure and format. Scaling our694

approach to handle unstructured or free-form695

problems is an important direction for future696

work. This would enable compatibility with697

strategies such as chain-of-thought prompting,698

where mathematical reasoning occurs as an699

intermediate step rather than the entire goal.700

Expanding to less structured tasks would also701

allow our approach to be applied to a wider702

range of mathematical reasoning datasets.703

• Linear encoder network: Our approach cur-704

rently employs a linear encoder network that705

processes only the hidden state of the most706

recent token (at the 17th layer). While this707

is effective for tasks involving short, well-708

structured prompts, it may be insufficient for709

problems that span many tokens or require710

modeling longer contexts. Addressing this711

limitation will likely require architectures ca-712

pable of integrating information across multi-713

ple tokens, such as transformers or recurrent714

models. Expanding the encoder in this way715

is an important direction for future work to716

enable broader applicability of the neurosym-717

bolic method.718

• Computational Cost: Although the neu-719

rosymbolic block incurs only incurs an over-720

head that does not change the overall asymp-721

totic inference time or space complexity of the722

LLM, it does add to the computational cost of723

inference, as outlined in Appendix E.724

• Societal Impact: While the current method725

is targeted at safe, mathematical tasks, future726

work applying neurosymbolic interventions to727

more sensitive domains (e.g., social reasoning728

or decision-making) should carefully consider729

fairness, transparency, and misuse risks.730

References731

S. Chakraborty, D. Saha, S. Bansal, P. Goyal, and R. Kr-732
ishnamurthy. 2024. Chatlogic: Integrating logic pro-733
gramming with large language models for multi-step734
reasoning. arXiv preprint arXiv:2407.10162.735

J. Chen, R. Li, and Q. Wang. 2023. Evaluating the 736
logical consistency of gpt models. arXiv preprint 737
arXiv:2305.00471. 738

Francois Chollet, Mike Knoop, Gregory Kamradt, and 739
Bryan Landers. 2025. Arc prize 2024: Technical 740
report. Preprint, arXiv:2412.04604. 741

Xuan Choo and Chris Eliasmith. 2010. A spiking neu- 742
ron model of serial-order recall. In 32nd Annual 743
Conference of the Cognitive Science Society, Port- 744
land, OR. Cognitive Science Society. 745

Ning Ding, Yutong Zheng, and 1 others. 2022. Delta 746
tuning: A comprehensive study of parameter-efficient 747
methods for pre-trained language models. arXiv 748
preprint arXiv:2203.06904. 749

Nelson Elhage, Neel Nanda, and 1 others. 2021. Mathe- 750
matical interpretability with sparse autoencoders. 751

Nelson Elhage, Neel Nanda, and 1 others. 2022. A math- 752
ematical framework for transformer circuits. Trans- 753
former Circuits Thread, OpenAI. 754

Chris Eliasmith. 2013. How to Build a Brain: A Neu- 755
ral Architecture for Biological Cognition. Oxford 756
University Press. 757

Aaron Grattafiori and 1 others. 2024. The llama 3 herd 758
of models. arXiv preprint arXiv:2407.21783. 759

A. Gupta, R. Das, P. Clark, K. Richardson, and A. Sab- 760
harwal. 2023. Linc: A neurosymbolic approach 761
for logical reasoning by combining language mod- 762
els with first-order logic provers. arXiv preprint 763
arXiv:2310.15164. 764

John Hewitt and Christopher D. Manning. 2019. A 765
structural probe for finding syntax in word represen- 766
tations. In Proceedings of the 2019 Conference of 767
the North American Chapter of the Association for 768
Computational Linguistics: Human Language Tech- 769
nologies, pages 4129–4138. 770

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 771
and 1 others. 2019. Parameter-efficient transfer learn- 772
ing for nlp. In Proceedings of the 36th International 773
Conference on Machine Learning. 774

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen- 775
Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen. 2021. 776
Lora: Low-rank adaptation of large language models. 777
In International Conference on Learning Representa- 778
tions (ICLR). 779

G.A. Kabatiansky and V.I. Levenshtein. 1978. Bounds 780
for packings on a sphere and in space. Problems of 781
Information Transmission, 14:1–17. 782

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 783
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 784
guage models are zero-shot reasoners. arXiv preprint 785
arXiv:2205.11916. 786

9

https://arxiv.org/abs/2407.10162
https://arxiv.org/abs/2407.10162
https://arxiv.org/abs/2407.10162
https://arxiv.org/abs/2407.10162
https://arxiv.org/abs/2407.10162
https://arxiv.org/abs/2305.00471
https://arxiv.org/abs/2305.00471
https://arxiv.org/abs/2305.00471
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
https://doi.org/10.1093/acprof:oso/9780199794546.001.0001
https://doi.org/10.1093/acprof:oso/9780199794546.001.0001
https://doi.org/10.1093/acprof:oso/9780199794546.001.0001
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.15164
https://arxiv.org/abs/2310.15164
https://arxiv.org/abs/2310.15164
https://arxiv.org/abs/2310.15164
https://arxiv.org/abs/2310.15164


Andrew Le and 1 others. 2021. Probing neu-787
ral networks for interpretability. arXiv preprint788
arXiv:2110.02096.789

Xiang Li and Percy Liang. 2021. Prefix-tuning: Op-790
timizing continuous prompts for generation tasks.791
arXiv preprint arXiv:2101.00190.792

X. Lin, Y. Zhang, and H. Chen. 2023. On the false793
positives of large language models. arXiv preprint794
arXiv:2303.16963.795

Nelson F Liu, Matt Gardner, Yonatan Belinkov,796
Matthew Peters, and Noah A Smith. 2019. Linguistic797
knowledge and transferability of contextual repre-798
sentations. In Proceedings of the 2019 Conference799
of the North American Chapter of the Association800
for Computational Linguistics: Human Language801
Technologies, pages 1073–1094.802

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,803
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.804
2024. Gsm-symbolic: Understanding the limitations805
of mathematical reasoning in large language models.806
Preprint, arXiv:2410.05229.807

Maxwell Nye, Jacob Andreas, and 1 others. 2021. Work808
hard, play hard: Language models in learning and809
reasoning. Advances in Neural Information Process-810
ing Systems.811

Chris Olah, Arvind Satyanarayan, and 1 others. 2020.812
Zoom in: An introduction to circuits. Distill.813

Flavio Petruzzellis, Alberto Testolin, and Alessandro814
Sperduti. 2024. Assessing the emergent symbolic815
reasoning abilities of llama large language models.816
Preprint, arXiv:2406.06588.817

Tony Plate. 1995. Holographic reduced representations:818
Distributed representation for cognitive structures.819
Advances in Neural Information Processing Systems.820

Jianfeng Wang, Fei Huang, and 1 others. 2023. Efficient821
fine-tuning of large language models with lora. arXiv822
preprint arXiv:2303.01234.823

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,824
Ed H Chi, and Denny Zhou. 2022. Self-consistency825
improves chain of thought reasoning in language826
models. Advances in Neural Information Processing827
Systems.828

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten829
Bosma, Brian Ichter, Fei Xia, Ed H Chi, Quoc V Le,830
and Denny Zhou. 2022. Chain of thought prompting831
elicits reasoning in large language models. Advances832
in Neural Information Processing Systems.833

H. Wu, J. Liu, M. Zhou, X. Tang, and B. Shen.834
2024. Symbolicai: A framework for logic-based ap-835
proaches combining generative models and solvers.836
arXiv preprint arXiv:2402.00854.837

Y. Xiao, Z. Li, P. Wang, Y. Xu, and Y. Zhang. 2023.838
Logic-lm: Empowering large language models with839
symbolic solvers for faithful logical reasoning. arXiv840
preprint arXiv:2305.12295.841

Jiayi Xie, Shicheng Deng, and Sheng Lin. 2023. 842
Parameter-efficient fine-tuning for large models with 843
lora. arXiv preprint arXiv:2301.10999. 844

Denny Zhou, Quoc Le, Xuezhi Wang, and 1 others. 845
2022. Least-to-most prompting enables complex rea- 846
soning in large language models. arXiv preprint 847
arXiv:2205.10625. 848

10

https://arxiv.org/abs/2303.16963
https://arxiv.org/abs/2303.16963
https://arxiv.org/abs/2303.16963
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2406.06588
https://arxiv.org/abs/2406.06588
https://arxiv.org/abs/2406.06588
https://arxiv.org/abs/2402.00854
https://arxiv.org/abs/2402.00854
https://arxiv.org/abs/2402.00854
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295


A Vector Symbolic Algebras849

VSAs are characterized by three key operations:850

bundling, binding, and similarity:851

• Bundling: combines multiple vectors to rep-852

resent a set (vector addition in HRRs).853

• Binding: represents associations (circular854

convolution in HRRs).855

• Similarity: compares two vectors (dot prod-856

uct in HRRs).857

The binding operation (circular convolution) is:858

(x⊛y)i :=

d∑
j=1

xjy((i−j) mod d)+1, i ∈ {1, . . . , d}.

(1)859

A.1 Encoding Compositional Data860

VSAs allow compositional data to be encoded in a861

fixed-dimensional vector. For example, to represent862

the three-digit number 842, we assign vectors to863

the digits (0–9) and their respective place values864

(ones, tens, hundreds):865

x = hundreds⊛8+tens⊛4+ones⊛2. (2)866

This generalizes to multiple numbers and rela-867

tions. For example, “What is 842 mod 910?” can868

be encoded as:869

x = n1 ⊛ (hundreds⊛ 8+ tens⊛ 4+ ones⊛ 2)870

+ n2 ⊛ (hundreds⊛ 9+ tens⊛ 1+ ones⊛ 0)871

+ problem type⊛modulo. (3)872

To encode the structure of numbers, digits can873

be constructed by binding the vector for 1 with874

itself multiple times, e.g., 3 = 1 ⊛ 1 ⊛ 1. Simi-875

larly, place values can be constructed as repeated876

binding of ones, e.g., tens = ones⊛ ones. This877

systematic construction ensures that desired numer-878

ical relations exist between the neurosymbolic vec-879

tors (Choo and Eliasmith, 2010; Eliasmith, 2013).880

A.2 Unbinding and the Pseudo-Inverse881

VSAs support unbinding, which allows extraction882

of components from a compositional vector. For883

HRRs, unbinding is performed by binding with the884

pseudo-inverse of a vector y, denoted y†, defined885

by flipping the order of all but the first element:886

y† = (y1, yd, yd−1, . . . , y2), (4)887

where d is the dimensionality. 888

If z = x⊛ y, then unbinding retrieves (approxi- 889

mately) x: 890

x ≈ y† ⊛ z. (5) 891

For example, to query the hundreds digit of the 892

second number in (3): 893

result = hundreds† ⊛ (n2
† ⊛ x), (6) 894

which has maximal similarity with 9 (the hundreds 895

digit of 910). 896

A.3 Vector Orthogonality and Capacity 897

A key strength of VSAs is the ability to con- 898

struct many roughly orthogonal vectors, support- 899

ing complex structured representations. For a d- 900

dimensional space, the number of vectors with pair- 901

wise similarity below ϵ scales as: 902

N ∝ exp
(
αdϵ2

)
, (7) 903

where α is a constant derived from spherical 904

code packing and the Kabatiansky–Levenshtein 905

bound (Kabatiansky and Levenshtein, 1978; Plate, 906

1995). For ϵ ∼ O(1/
√
d), the capacity grows ex- 907

ponentially with d. 908

In summary, VSAs provide a robust framework 909

for encoding and manipulating structured numeri- 910

cal representations, supporting scalability, compo- 911

sitionality, and interpretability. 912

B Encoder and Decoder Performance 913

Figure 2: Average RMSE loss of the encoder (blue) and
decoder (red) across layers of the LLM.

After training, the encoder networks achieve 914

RMSE loss curves shown in Figure 2. The re- 915

sults indicate that earlier layers of the LLM are 916

11



less effective at encoding the problem into sym-917

bolic vectors due to a lack of global context. As the918

hidden states progress through more layers, the self-919

attention mechanism provides increasing amounts920

of contextual information, improving the encoder’s921

performance. The RMSE loss reaches its minimum922

at layer 17, suggesting that this layer optimally923

encodes the problem’s symbolic structure.924

However, at layers deeper than 17, the RMSE925

loss increases. We believe that this phenomenon926

can be attributed to the cumulative effects of resid-927

ual connections and RMS normalization applied in928

the LLM. As described in the equations below, the929

residual connections repeatedly add outputs from930

earlier layers to the hidden state:931

hn+1 = fn(hn) + hn, (8)932

hL = h0 +
L∑

n=1

fn(hn−1), (9)933

where hn represents the hidden state at layer n, and934

fn denotes the non-linear transformation applied935

at each layer. At deeper layers, the hidden state936

becomes a mixture of earlier representations and937

intermediate computations, making the problem938

information less prominent for encoding.939

As shown in Figure 2, the reconstruction loss940

of the decoder networks monotonically increase941

with layer depth. We believe that this trend re-942

flects the increasing complexity of hidden states at943

deeper layers, as they incorporate non-linear trans-944

formations from previous layers. Because decoder945

networks are linear, they struggle to reconstruct the946

intricate structure of hidden states in deeper layers,947

resulting in higher RMSE losses.948

The decision to use layer 17’s encoder and de-949

coder networks is based on the encoder evaluation950

results, which indicate that layer 17 minimizes951

RMSE loss for symbolic vector encoding. Al-952

though decoder interventions could be applied at953

multiple layers, restricting the intervention to layer954

17 simplifies the experimental setup while leverag-955

ing the layer’s optimal encoding performance.956

C Determining Problem Types and957

Intervention Thresholds958

As discussed in Section 4.4, after the encoder gen-959

erates the neurosymbolic vector corresponding to960

a given LLM prompt, in order to determine which961

program to execute, the problem type is extracted962

as: result = x ⊛ problem type†, where x is963

defined in Equation 3.964

For problems seen during training, we expect 965

that result will be approximately equal to a prob- 966

lem type seen during training, since one of the 967

encoder’s purposes is to represent the correct prob- 968

lem type in its neurosymbolic vector output. For 969

problems not seen during training, the expected 970

behavior is that result should be dissimilar to all 971

problem types seen during training. This allows us 972

to prevent the neurosymbolic system from interven- 973

ing on untrained problems. 974

For example, if the LLM is asked “What is 920 975

mod 895?”, the neurosymbolic vector generated 976

by the encoder is queried for its problem type, and 977

the dot product of this vector is taken with the neu- 978

rosymbolic vector representing every problem type. 979

The various dot product similarities are shown in 980

Table 2. The left table shows the Modulo prob- 981

lem type has the highest similarity. For unseen 982

problems such as integer division (right table), sim- 983

ilarities are lower, but modulo is still highest, sug- 984

gesting similarity in underlying computation. 985

Figure 3 shows the distribution of dot product 986

similarities of different problems. We avoid inter- 987

vention on problems not seen during training by 988

imposing a maximum similarity threshold; if the 989

maximum dot product similarity is below 0.8, the 990

neurosymbolic system does not intervene. 991

D Performance Comparison to 992

Non-Mathematical Problems 993

As discussed in Section 6, LoRA modules lack se- 994

lective deactivation and cannot generalize to unseen 995

problem types. In contrast, the NS LLM dynami- 996

cally determines whether to intervene, allowing it 997

to skip symbolic execution for unfamiliar prompts. 998

To evaluate this property, we test the NS LLM 999

on non-mathematical questions from seven topic 1000

categories: philosophy, ethics, history, psychol- 1001

ogy, science fiction, technology, and art/culture. 1002

For each prompt, we compute the maximum dot 1003

product similarity between the encoder-generated 1004

neurosymbolic vector and problem type vectors. 1005

Figure 4 shows the maximum similarity for all 1006

non-mathematical queries remains below the 0.8 1007

threshold, confirming the NS LLM suppresses de- 1008

coder intervention for out-of-distribution prompts. 1009

E Computational Complexity 1010

We analyze the time and space requirements of 1011

three settings: (a) vanilla Transformer, (b) Trans- 1012

former inference with key–value caching, (c) 1013

12



Problem Type Similarity

Multiplication -0.0623
Modulo 1.0264
GCD 0.0686
LCM -0.0655
Square Mod -0.0022
Bitwise AND 0.0109
Bitwise XOR -0.0209
Bitwise OR 0.0037

(a) LLM is asked a modulo question

Problem Type Similarity

Multiplication 0.2488
Modulo 0.5666
GCD 0.1817
LCM -0.1408
Square Mod 0.0407
Bitwise AND -0.0451
Bitwise XOR -0.0374
Bitwise OR -0.0212

(b) LLM is asked an integer division question

Table 2: Dot product similarities for problem type queries.

Figure 3: Histogram of maximum similarity of queried problem type across all problem types, segregated per
training and non-training problems.

our neurosymbolic extension that inserts an en-1014

coder–symbolic–decoder block at layer ℓ⋆.1015

Notation. n: sequence length; d: hidden width1016

(4096); L: layers (32); v: VSA dimensionality1017

(2048); D: maximal digit length (5); p: problem1018

types (10)1019

E.1 Baseline Transformer1020

During training every layer computes self–attention1021

and a feed-forward network:1022

Timetrain = O(L(n2d+ nd2)), (10)1023

Spacetrain = O(Lnd) + Θ(#LLM params) (11)1024

E.2 Transformer Inference with KV Caching1025

LLaMA-style decoding stores past key–value pairs,1026

so a new token attends to n cached tokens but does1027

not recompute the n2 matrix: 1028

TimeKV = O(L(nd+ d2)) (12) 1029

SpaceKV = O(Lnd) + Θ(#LLM params) (13) 1030

E.3 Neurosymbolic Extension 1031

At layer ℓ⋆ we add: (i) encoder We ∈ Rd×v, (ii) 1032

symbolic computation in VSA of width v, (iii) de- 1033

coder Wd ∈ Rv×d. 1034

Encoder/decoder cost. Each is a matrix–vector 1035

product: O(dv). 1036

Neurosymbolic cost. Binding/unbinding use 1037

FFT-based circular convolution: Θ(v log v). 1038

Total symbolic overhead: 1039

O(dv)+O((10D+p+1)v log v)+O(M(D) logD) 1040

13



Figure 4: Histogram of maximum problem type similarity for training problems vs. non-mathematical queries.
None of the non-math queries exceed the 0.8 threshold.

where M(D) is the multiplication cost. In practice,1041

this is dominated by the standard transformer cost1042

when v < d.1043

Space complexity. Overhead is Θ(dv), negligi-1044

ble compared to the LLM parameter and KV cache1045

sizes.1046

F Mixing Ratio Ablations1047

We use a 50/50 weighted sum to combine the neu-1048

rosymbolic decoder output with the LLM hidden1049

state, such that the resulting hidden state is:1050

hfinal = 0.5 · hdecoder + 0.5 · horiginal,1051

where hdecoder is the output of the decoder network1052

and horiginal is the LLM’s hidden state at the same1053

layer.1054

RMS Layer Normalization was tested as an al-1055

ternative; Table 3 shows the 50/50 mix is generally1056

better.1057

G Decoder Fine Tuning1058

As mentioned in Section 4.4, the decoder network1059

requires fine tuning to properly enhance LLM per-1060

formance. Figures 5a and 5b illustrate that as1061

fine-tuning progresses, both cross-entropy loss de-1062

creases and task performance improves. One fine-1063

tuning step is a batch.1064

H Error Analysis of Chain-of-Thought 1065

Reasoning 1066

One interesting result of Section 6 is that for certain 1067

problem types, CoT prompting performs worse 1068

than not using CoT. To understand why, in this 1069

section we show a few common causes of error 1070

when prompting the model to use CoT reasoning, 1071

and how those relate to the strengths of LLMs as 1072

probabilistic systems. 1073

H.1 Representation Errors 1074

One source of errors is when the LLM incorrectly 1075

represents the input numbers, and consequently 1076

gets the wrong final answer. In the below example, 1077

we query the LLM with “Solve the following prob- 1078

lem step by step: What is 601 plus 106”. In the 1079

LLM’s CoT response, it says 601 has 6 hundreds 1080

and 1 tens and 1 ones, which is incorrect, leading 1081

to the wrong answer. 1082

In contrast, if the LLM was asked an addition 1083

problem without being prompted to provide a chain 1084

of thought, it would be extremely likely to return 1085

the correct answer (see Table 1). This demon- 1086

strates the LLM’s strength in pattern-matching 1087

tasks, while underscoring its limitations in program 1088

synthesis and strict logical reasoning. 1089

To solve this problem, we will add the 1090

two numbers together. 1091

14



Table 3: Performance of NS LLM using 50/50 mixing vs. RMS Layer Normalization.

Problem Type 50/50 Score 50/50 Loss RMS Score RMS Loss

Addition 98.7 0.093 98.6 0.140
Division 97.4 0.066 96.1 0.210
Multiplication 95.6 0.314 95.1 0.399
Modulo 98.7 0.093 97.4 0.277
GCD 94.2 0.205 88.4 0.459
LCM 87.3 1.051 81.0 1.441
Square Mod 58.9 2.818 56.1 3.189
Bitwise AND 91.2 0.755 92.3 0.809
Bitwise XOR 99.4 0.094 97.8 0.270
Bitwise OR 97.6 0.093 88.4 0.422

(a) Average cross-entropy loss vs. step (b) Average score vs. epoch

Figure 5: Training performance over steps. (a) Loss decreases over time, indicating effective learning. (b) Score
increases, confirming improved model accuracy.

Step 1: We will start by adding the hun-1092

dreds place of both numbers. 601 has 61093

hundreds and 1 tens and 1 ones. 106 has1094

1 hundreds and 0 tens and 6 ones.1095

Step 2: Add the hundreds place of both1096

numbers. 6 hundreds + 1 hundreds = 71097

hundreds1098

Step 3: Now, we will add the tens place1099

of both numbers. 1 tens + 0 tens = 1 tens1100

Step 4: Now, we will add the ones place1101

of both numbers. 1 ones + 6 ones = 71102

ones1103

Step 5: Now, we will combine the hun-1104

dreds, tens, and ones place to get the final1105

answer. 7 hundreds = 700 1 tens = 10 71106

ones = 71107

Step 6: Combine the values from step 51108

to get the final answer. 700 + 10 + 7 =1109

7171110

Final Answer: 7171111

H.2 Intermediate Step Errors 1112

The CoT approach also underperforms the standard 1113

LLM in more complicated tasks, such as bitwise 1114

OR. This is because these problems require mul- 1115

tiple rules or algorithms being applied, increasing 1116

the opportunity for the LLM to make an error. For 1117

example, if we query the LLM with “Solve the 1118

following problem step by step: What is 513 OR 1119

107”, the model must convert each number to bi- 1120

nary, perform bitwise OR, and then convert back 1121

to decimal. In the below example, the LLM in- 1122

correctly converts one input number from decimal 1123

to binary (513 is 1000000001, not 1000001001), 1124

causing the final solution to be incorrect. 1125

Despite bitwise OR being a difficult problem 1126

with multiple steps, the standard LLM (which pro- 1127

duces an answer in a single forward pass) outper- 1128

forms CoT prompting on this problem type. 1129

To solve this problem, we need to per- 1130

form a bitwise OR operation between 1131

the two binary numbers 513 and 107. 1132

First, let’s convert the decimal numbers 1133

to binary: 1134

15



513 in binary is: 1000001001 107 in bi-1135

nary is: 11010111136

Now, let’s perform the bitwise OR oper-1137

ation:1138

...1139

H.3 Stuck in Infinite Loops1140

Another source of errors when using CoT is the1141

LLM being stuck in an endless cycle. In the be-1142

low example, we query the LLM with “Solve the1143

following problem step by step: What is 661 plus1144

420”. The LLM starts with the correct procedure,1145

but keeps applying the procedure to digits that are1146

not in the original problem, repeating endlessly and1147

never producing the final answer.1148

To solve this problem, we will add the1149

two numbers together.1150

Step 1: We will start by writing the num-1151

bers to be added, with the first num-1152

ber (661) on top and the second number1153

(420) below it.1154

661 + 4201155

Step 2: We will add the numbers in the1156

ones place (the rightmost digit). In this1157

case, we have 1 (from 661) + 0 (from1158

420) = 1.1159

Step 3: We will add the numbers in the1160

tens place (the next digit to the left). In1161

this case, we have 6 (from 661) + 2 (from1162

420) = 8.1163

Step 4: We will add the numbers in the1164

hundreds place (the next digit to the left).1165

In this case, we have 6 (from 661) + 41166

(from 420) = 10.1167

Step 5: We will add the numbers in the1168

thousands place (the next digit to the left).1169

In this case, we have 0 (from 661) + 01170

(from 420) = 0.1171

Step 6: We will add the numbers in the1172

ten-thousands place (the next digit to the1173

left). In this case, we have 0 (from 661)1174

+ 0 (from 420) = 0.1175

...1176

Step 21: We will add the numbers in the1177

ten-quintillion place (the next digit to the1178

left). In this case, we have 0 (from 661)1179

+ 0 (from 420) = 0.1180

...1181

16


	Introduction
	Related Work
	Linear Probes
	Sparse Autoencoders

	Vector Symbolic Algebras
	Methodology
	Dataset
	Prompting and Gathering Hidden States
	Encoding Hidden States
	Decoding Neurosymbolic States
	Computational complexity.
	Comparisons to Other Methods

	Experiments
	Evaluation Setup
	Base LLM
	NS LLM
	LoRA
	CoT

	Results
	Conclusion
	Vector Symbolic Algebras
	Encoding Compositional Data
	Unbinding and the Pseudo-Inverse
	Vector Orthogonality and Capacity

	Encoder and Decoder Performance
	Determining Problem Types and Intervention Thresholds
	Performance Comparison to Non-Mathematical Problems
	Computational Complexity
	Baseline Transformer
	Transformer Inference with KV Caching
	Neurosymbolic Extension

	Mixing Ratio Ablations
	Decoder Fine Tuning
	Error Analysis of Chain-of-Thought Reasoning
	Representation Errors
	Intermediate Step Errors
	Stuck in Infinite Loops


