
Under review as a conference paper at ICLR 2021

PARSED CATEGORIC ENCODINGS WITH AUTOMUNGE

Anonymous authors
Paper under double-blind review

ABSTRACT

The Automunge open source python library platform for tabular data pre-
processing automates feature engineering data transformations of numerical en-
coding and missing data infill to received tidy data on bases fit to properties of
columns in a designated train set for consistent and efficient application to subse-
quent data pipelines such as for inference, where transformations may be applied
to distinct columns in “family tree” sets with generations and branches of deriva-
tions. Included in the library of transformations are methods to extract struc-
ture from bounded categorical string sets by way of automated string parsing, in
which comparisons between entries in the set of unique values are parsed to iden-
tify character subset overlaps which may be encoded by appended columns of
boolean overlap detection activations or by replacing string entries with identified
overlap partitions. Further string parsing options, which may also be applied to
unbounded categoric sets, include extraction of numeric substring partitions from
entries or search functions to identify presence of specified substring partitions.
The aggregation of these methods into “family tree” sets of transformations are
demonstrated for use to automatically extract structure from categoric string com-
positions in relation to the set of entries in a column, such as may be applied to
prepare categoric string set encodings for machine learning without human inter-
vention.

1 AUTOMUNGE

Automunge is an open source python library, available now for pip install, built on top of Pandas
(McKinney, 2010), SciKit-Learn (Pedregosa et al., 2011), Scipy (Virtanen et al., 2020), and Numpy
(van der Walt et al., 2011). It takes as input tabular data received in a tidy form (Wickham, 2014),
meaning one column per feature and one row per observation, and returns numerically encoded sets
with infill to missing points, thus providing a push-button means to feed raw tabular data directly
to machine learning algorithms. The complexity of numerical encodings may be minimal, such
as automated normalization of numerical sets and encoding of categorical, or may include more
elaborate feature engineering transformations applied to distinct columns. Generally speaking, the
transformations are performed based on a “fit” to properties of a column in a designated train set
(e.g. based on a set’s mean, standard deviation, or categorical entries), and then that same basis is
used to consistently and efficiently apply transformations to subsequent designated test sets, such as
may be intended for use in inference or for additional training data preparation.

The library consists of two master functions, automunge(.) and postmunge(.). The automunge(.)
function receives a raw train set and if available also a consistently formatted test set, and returns a
collection of encoded sets intended for training, validation, and inference. The function also returns
a populated python dictionary, which we call the postprocess dict, capturing all of the steps and
parameters of transformations. This dictionary may then be passed along with subsequent test data
to the postmunge(.) function for consistent processing on the train set basis, such as for instance may
be applied sequentially to streams of data for inference. Because it makes use of train set properties
evaluated during a corresponding automunge(.) call instead of directly evaluating properties of the
test data, processing of subsequent test data in the postmunge(.) function is very efficient.

Included in the platform is a library of feature engineering methods, which in some cases may be
aggregated into sets to be applied to distinct columns. For such sets of transformations, as may in-
clude generations and branches of derivations, the order of implementation is designated by passing
transformation categories as entries to a set of “family tree” primitives described further below.

1



Under review as a conference paper at ICLR 2021

2 CATEGORIC ENCODINGS

In tabular data applications, such as are the intended use for Automunge data preparations, a com-
mon tactic for practitioners is to treat categoric sets in a coarse-grained representation for presenta-
tion to a training operation. Such aggregations transform each unique categoric entry with distinct
numeric encoding constructs, such as one-hot encoding in which unique entries are each represented
with their own column for boolean activations, or ordinal encoding of single column integer repre-
sentations. The Automunge library offers some further variations on categoric encodings [Fig. 1].
The default ordinal encoding ‘ord3’, activated when the number of unique entries exceeds some
heuristic threshold, has encoding integers sorted by frequency of occurrence followed by alphabeti-
cal, where frequency in general may be considered more useful to a training operation. For sets with
a number of unique entries below this threshold, the categoric defaults instead make use of ‘1010’
binary encodings, meaning multi-column boolean activations in which representations of distinct
categoric entries may be achieved with multiple simultaneous activations, which has benefits over
one-hot encoding of reduced memory bandwidth. Special cases are made for categoric sets with 2
unique entries, which are converted by ‘bnry’ to a single column boolean representation, and sets
with 3 unique entries are somewhat arbitrarily applied with ‘text’ one-hot encoding. Note that each
transform has a default convention for infill to missing values which may be updated for configure
to distinct columns.

Figure 1: Categoric encoding examples

The categoric encoding defaults in general are based on assumptions of training models in the de-
cision tree paradigms (e.g. Random Forest, Gradient Boosting, etc.), particularly considering that
a binary representation may sacrifice compatibility for an entity embedding of categorical variables
[4] as may be applied in the context of a neural network (for which we recommend a seeded repre-
sentation of ‘ord3’ for ordinal encoding by frequency). The defaults for automation are all config-
urable, and alternate root categories of transformations may also be specified to distinct columns to
overwrite the automation defaults.

The characterization of these encodings as a coarse graining is meant to elude to the full discarding
of the structure of the received representations. When we convert a set of unique values {‘circle’,
‘square’, ‘triangle’} to {1, 2, 3}, we are hiding from the training operation any information that
might be inferred from grammatical structure, such as the recognition of the prefix “tri” meaning
three. Consider the word “Automunge”. You can probably infer from the common prefix “auto”
that there might be some automation involved, or if you are a data scientist you might recognize

2



Under review as a conference paper at ICLR 2021

the word “munge” as referring to data transformations. Naturally we may then ask how we might
incorporate practices from NLP into our tabular encodings, such as vectorized representations in a
model like Word2Vec (Mikolov et al., 2013). While this is a worthy line for further investigation,
some caution is deserved that the validity of such representations is built on a few assumptions,
most notably the consistency of vocabulary interpretations between any pre-trained model and the
target tabular application. In NLP practice it is common to fine-tune (Howard & Ruder, 2018) a
pre-trained model to accommodate variation in a target domain. In tabular applications obstacles to
this type of approach may arise from the limited context surrounding the categoric entries - which
in practice is not uncommon to find entries as single words, or sometimes character sets that aren’t
even words such as e.g. serial numbers or addresses. We may thus be left without the surrounding
corpus vocabulary necessary to fine tune a NLP model for some tabular target, and thus the only
context available to extract domain properties may be the other entries shared in a categoric set or
otherwise just the surrounding corresponding tabular features.

3 STRING PARSING

Automunge offers a novel means to extract some additional grammatical context from categoric
entries prior to encoding by way of comparisons between entries in the unique values of a feature
set. The operation is conducted by a kind of string parsing, in which the set of unique entries in a
column are parsed to identify character subset overlaps between entries. In its current form the im-
plementation is probably not at an optimal computational efficiency, which we estimate complexity
scaling on the order of O((LN)2), where N is the number of unique entries and L is the average
character length of those entries. Thus the intended use case is for categoric sets with a bounded
range of unique entries. In general, the application of comparable transformations to test data in
the postmunge(.) function is materially more computationally efficient than the initial fitting of the
transformations to the train set in the automunge(.) function, particularly in variations with added
assumptions for test set composition in relation to the corresponding train data.

The implementation to identify character subset overlaps is performed by first inspecting the set
of unique entries from the train set, determining the longest string length (-1), then for each entry
comparing each subset of that length to every equivalent length subset of the other entries, where
if composition overlaps are identified, the results are populated in a data structure matching identi-
fied overlaps to their corresponding source column unique entries, and after each overlap inspection
cycle incrementing that inspection length by negative steps until a configurable minimum length
overlap detection threshold is reached. To keep things manageable, in the base configuration over-
laps are limited to a single identification per unique entry, prioritized by longest length. Note also
that transformation function parameters may be activated to exclude from overlap detections any
subsets with space, punctuation, or other designated character sets such as to promote single word
activations.

There are a few options of these methods to choose from [Fig. 2]. In the first version ‘splt’ any
identified substring overlap partitions are given unique columns for boolean activations. In a sec-
ond version ‘spl2’ the full entries with identified overlaps are replaced with the overlap partitions,
resulting in a reduced number of unique entries - such as may be intended as a reduced information
content supplement to the original set, which we speculate could be beneficial in the context of a
curriculum learning regime (Bengio et al., 2009). A third version ‘spl5’ is similar to the second with
distinction that those entries not replaced with identified overlap partitions are instead replaced with
an infill plug value, such as to avoid too much redundancy between different configurations derived
from the same set. The fourth shown version ‘sp15’ is comparable to ‘splt’ but with the allowance
for multiple concurrent activations to each entry, demonstrating a tradeoff between information re-
tention and dimensionality of returned data. Each of these versions have corresponding variants with
improved computational efficiency to test set processing with the postmunge(.) function based on
incorporating the assumption that the set of unique entries in the test set will be the same or a subset
of those found in the train set.

Some further variations include ‘sp19’ in which concurrent activation sets are collectively consol-
idated with a binary transform to reduce dimensionality. Another variation is available as ‘sbst’
which instead of comparing string character subsets of entries to string character subsets of other
entries, only compares string character subsets of entries to complete character sets of other entries.

3



Under review as a conference paper at ICLR 2021

Figure 2: String parsing for bounded sets

4 PARSING UNBOUNDED SETS

The transformations of the preceding section were somewhat constrained toward use against cate-
goric sets with a bounded range of unique entries in the training data due to the complexity scaling
on train set implementation. For cases where categoric sets may be presented with an unbounded
range of unique entries, such as in cases for all unique entries or otherwise unbounded, Automunge
offers a few more string parsing transformations to extract grammatical structure prior to categoric
encodings.

As a first example, categoric entries may be passed to a search function ‘srch’ in which entries are
string parsed to identify presence of user-specified substring partitions, which are then presented to
machine learning by way of recorded activations in returned boolean columns specific to each search
term or alternatively with the set of activations collected into a single ordinal encoded column. Some
variations on the search functions include the allowance to aggregate multiple search terms into
common activations or variations for improved processing efficiency based on added assumptions
of whether the target set has a narrow range of entries. Note that these methods are supported by
the Automunge infrastructure allowing a user to pass transformation function specific parameters to
those applied to distinct columns or also to reset transformation function parameter defaults in the
context of an automunge(.) call.

Another string parsing option suitable for application to both bounded and unbounded categoric
sets is intended for purposes of detecting numeric portions of categoric string entries, which are
extracted and returned in a dedicated numeric column. Some different numeric formats are sup-
ported, including entries with commas via ‘nmcm’, and using the family tree primitives the returned
sets may in the same operation be normalized such as with a z-score or min-max scaling. As with
other string-parsing methods priority of extracts are given to identified partitions with the longest
character length. A comparable operation may instead be performed to extract string partitions from
majority numeric entries, although we suggest caution of applying these methods towards numeri-
cal sets which include units of measurement for instance, as we recommend reserving engineering
domain evaluations for oversight by human intelligence.

4



Under review as a conference paper at ICLR 2021

Figure 3: Numeric extraction and search for unbounded sets

5 FAMILY TREE AGGREGATIONS

An example composition of string parsing transformation aggregations, including generations and
branches of derivations by way of entries to the family tree primitives, are now demonstrated for the
root transformation category ‘or19’ [Fig. 4], which is available for assignment to source columns
in context of an automunge(.) call. This transformation set is intended to automatically extract
grammatical context from tabular data categoric features with a bounded range of unique entries.

Figure 4: Example family tree aggregations for bounded categoric sets

The sequence of four character keys represent transformation functions based on the transformation
categories applied to a column. Note that each key represents a set of functions which may include
one for application to train/test set(s) in an automunge(.) call for initial fitting of transformations to
properties of a train set or a corresponding function for processing of a comparably formatted test
set in postmunge(.) on the basis of properties from the train set. The steps of transformations for
each returned column are logged by way of transformation function specific suffix appenders to the
original column headers. Note also that some of the intermediate steps of transformations may not
be retained in the returned set based on presence of downstream replacement primitive entries to
family tree primitives as described further below.

The upstream application of an ‘UPCS’ transform serves the purpose of converting categoric entry
strings to all uppercase characters, thus consolidating entries with different case configurations, e.g.
a received set with unique entry strings ‘usa’, ‘Usa’, ‘USA’ would all be considered an equivalent
entry (there may be some domains where this convention is not preferred in which case a user may

5



Under review as a conference paper at ICLR 2021

deactivate a parameter to exclude this step). Adjacent to the ‘UPCS’ transform is a ‘NArw’ which
returns boolean activations for those rows corresponding to infill based on the root category “pro-
cessdict” defined type of source column values that will be target for infill (processdict is a data
structure discussed further below, whose entries may either be a default or user specified). The
included ‘1010’ transform for binary encoding distinguishes all distinct entries prior to any string
parsing aggregations to ensure full information retention after the ‘UPCS’ transform both for pur-
poses of ML training and also to support any later inversion operation to recover the original format
of data pre-transforms as is supported in the postmunge(.) function. An alternate configuration could
replace ‘1010’ with another categoric transform such as one-hot or ordinal encodings. The ‘nmc7’
transformation function is similar to ‘nmcm’ discussed earlier, but only string parses those unique
entries which were not found in the train set for a more efficient application in the postmunge(.)
function. These numeric extractions are followed by a ‘nmbr’ function for z-score normalization.
Note that in some cases a numerical extract, such as those derived here from zip codes of passed
addresses, may in fact be more suitable to a categoric encoding instead of numeric normalization.
Such alternate configurations may easily be defined with the family tree primitives.

The remaining branches downstream of the ‘UPCS’ start with a ‘spl9’ function performing string
parsing replacement operations comparable to the ‘spl2’ demonstrated above, but with the assump-
tion that the set of unique entries in the test data will be the same or a subset of the train set for
efficiency considerations. The ‘spl9’ parses through unique entry strings to identify character subset
overlaps and replaces entries with the longest identified overlap, which results in returned columns
with a fewer number of unique entries by aggregating entries with shared overlaps into a com-
mon representation, which may then be numerically encoded such as shown here with an ‘ord3’
transform. The ‘or19’ family tree also incorporates a second tier of string parsing with overlap re-
placement by use of the ‘sp10’ transform (comparable to ‘spl5’ with similar added assumptions for
efficiency considerations as ‘spl9’). ‘sp10’ differs from ‘spl9’ in that unique entries without overlap
are replaced in aggregate with an infill plug value to avoid unnecessary redundancy between encod-
ings, again resulting in a reduced number of unique entries which may then be numerically encoded
such as with ‘ord3’. Note that Fig. 4 also demonstrates an alternate root category configuration as
‘or20’ in which an additional tier of ‘spl9’ is incorporated prior to the ‘sp10’.

Figure 5: Demonstration of ‘or19’ returned data

Fig. 5 demonstrates the numerical encodings as would be returned from the application of the ‘or19’
root category to a small example feature set of categoric strings. It might be worth restating that due
to the complexity scaling of the string parsing operation this type of operation is intended preferably
for categoric sets with a bounded range of unique entries in the train set. The composition of returned
sets are derived based on properties of the source column received in a designated train set, and these
same bases are applied to consistently prepare data for test sets, such as sets that may be intended for
an inference operation. In other words, when preparing corresponding test data, the same type and
order of columns are returned, with equivalent encodings for corresponding entries and equivalent
activations for specific string subset overlap partitions that were found in the train set.

6



Under review as a conference paper at ICLR 2021

6 SPECIFICATION

The specification of transformation set compositions for these methods are conducted by way of
transformation category entries to a set of family tree primitives, which distinguish for each trans-
formation category the upstream transformation categories for when that category is applied as a
root category to a source column and also the downstream transformation categories for when that
category is found as an entry in an upstream primitive with offspring. Downstream primitive en-
tries are treated as upstream primitive entries for the successive generation, and primitives further
distinguish source column retention and generation of offspring.

Figure 6: Family tree primitives

Transformation category family tree sets may be passed to an automunge(.) call by way of a “trans-
formdict” data structure, which is complemented by a second “processdict” data structure populated
for each transformation category containing entries for the associated transformation functions and
data properties. The transformdict with transformation category entries to family tree primitives and
corresponding processdict transformation function entries associated with various columns returned
from the ‘or19’ root category set are demonstrated here [Fig. 7]. Here the single processdict entry
of the transformation function associated with a transformation category is an abstraction for the set
of corresponding transformation functions to be directed at train and/or test set feature sets.

Figure 7: ‘or19’ specifications

7



Under review as a conference paper at ICLR 2021

7 EXPERIMENTS

Some experiments were run to evaluate comparison between standard tabular categoric representa-
tion techniques and parsed categoric encodings. The data set from the IEEE-CIS Kaggle competition
(Vesta, 2019) was selected based on known instances of feature sets containing serial number entries
which were expected as a good candidate for string parsing.

The experiments were supported by the Automunge library’s feature importance evaluation methods,
in which a model is trained on the full feature set to determine a base accuracy on a partitioned
validation set, and metrics are calculated by shuffle permutation (Parr et al., 2018), where the target
feature has it’s entries shuffled between rows to measure damping effect on the resulting accuracy,
the delta of which may serve as a metric for feature importance. Automunge actually aggregates two
metrics for feature importance, the first metric specific to a source feature by shuffling all columns
derived from the same feature, in which a higher metric represents more importance, and the second
metric specific to each derived column by shuffling all but the target of the columns derived form
the same feature, in which a lower metric represents more relative importance between columns
derived from the same feature. The experiment findings discussed below are based on the first
metric. Although other auto ML options are supported in the library, this experiment used the base
configuration of Random Forest (Breiman, 2001) for the model.

For the experiment, the training data was paired down to the top ten features based on feature im-
portance in addition to two features selected as targets for the experiments, identified in the data
set by ‘id 30’ and ‘id 31’. These two features contained entries corresponding to operating system
serial numbers and browser serial numbers associated with origination of financial transactions. By
inspection, there were many cases where serial numbers shared portions of grammatical structure,
as for example the entries {‘Mac OS X 10 11 6’, ‘Mac OS X 10 7 5’} or {‘chrome 62.0’, ‘chrome
49.0’}. Scenarios were run in which both of these features were treated to different types of encod-
ings, including ‘text’ one-hot encoding, ‘ord3’ ordinal, ‘1010’ binary [Fig 1], and two string parse
scenarios, the first with ‘or19’ [Fig 4, 5, 7] and the second with an aggregation of: ‘sp19’ (string
parse with concurrent activations consolidated by binary encoding) supplemented by ‘nmcm’ (nu-
meric extraction) [Fig 3] and ‘ord3’ (ordinal encoding). The feature importance was then evaluated
corresponding to each of these encoding scenarios [Table 1].

Table 1: Feature Importance Metric Results

Encoding Category Accuracy ‘id 30’ ‘id 31’

one-hot ‘text’ 0.98029 0.00135 0.00490
ordinal ‘ord3’ 0.98040 0.00193 0.00581
binary ‘1010’ 0.98045 0.00245 0.00699
string parse ‘or19’ 0.98082 0.00295 0.00914
string parse ‘sp19’ 0.98081 0.00279 0.00924

The experiments illustrate some important points about the impact of categoric encodings even out-
side of string parsing. Here we see that binary encoding materially outperforms one-hot encoding
and ordinal encoding. We believe that one-hot encoding is best suited for labels or otherwise just
used for interpretability purposes. We believe ordinal encoding is best suited for very high cardi-
nality when a set has large number of entries. We believe binary is the best default for categoric
encodings outside of vectorization, and thus serves as our categoric default under automation.

The string parsing was found to have a material benefit to both of our target features. It appears the
‘or19’ version of string parsing was more beneficial to the ‘id 30’ feature and the ‘sp19’ version to
the ‘id 31’ feature.

Part of the challenge of benchmarking parsed categoric encodings is the nature of the application, in
that performance impact of string parsing is highly dependent on data set properties, and not neces-
sarily generalizable to a metric that would be relevant for comparison between different features or
data sets. We believe this experiment has successfully demonstrated that string parsing has the po-
tential to train better performing models in tabular applications based on improved model accuracy
and feature importance in comparisons for these specific features.

8



Under review as a conference paper at ICLR 2021

8 DISCUSSION

To be clear, we believe the family tree primitives [Fig 6] represent a scientifically novel framework,
serving as a fundamental reframing of command line specification for multi-transform sets as may
include generations and branches of derivations applied by recursion. They are built on assumptions
of tidy data and that derivations are all downstream of a specific target feature set, and are well suited
for the final data preprocessing steps applied prior to the application of machine learning in tabular
applications. We consider these primitives a universal language for univariate data transformation
specification and an improvement on mainstream practice.

Although this paper is being submitted under the subject of NLP, it should be noted that the string
parsing methods as demonstrated are kind of a compromise from vocabulary vectorization, intended
for tabular applications in esoteric domains with limited context or surrounding language such as
could be used to fine-tune a pre-trained model, and thus not suitable for mainstream NLP models
like BERT. We have attempted in this work a comprehensive overview of various permutations of
string parsing that may be applied for scenarios excluding vectorization. That is not to say that a
vectorization may not still be achievable - for instance each of the returned categoric encodings of
varying information content returned from ‘or19’ could be fed as input to an entity embedding layer
[4] when the returned sets are used to train a model.

Further, this paper is not just intended to propose theory and methods. Automunge is a downloadable
software toolkit, and the methods demonstrated here are available now in the library for push-button
operation. It really is just as simple as passing a dataframe and designating a root category of ‘or19’
to a target column. We believe the automation of string parsing for categoric encodings is a novel
invention that will prove very useful for machine learning researchers and practitioners alike.

The value of the library extends well beyond string parsing. For instance, Automunge is an au-
tomated solution to missing data infill. In addition to the infill defaults for each transformation, a
user can select for each column other infill options from the library, including “ML infill” in which
column specific Random Forest models (Breiman, 2001) are trained from partitioned subsets of the
training data to predict infill to train and test sets. For example, when ML infill is applied to the
‘or19’ set, each of the returned subsets will have their own trained infill model.

An important point of value is not just the transformations themselves, but the means by which they
are applied between train and test sets. In a traditional numerical set normalization operation for in-
stance, it is not uncommon that each of these sets is evaluated individually for a mean and standard
deviation, which runs a risk of inconsistency of transformations between sets, or alternate meth-
ods to measure prior to validation set extraction runs the risk of data leakage between training and
validation operations. In a postmunge(.) test set application, all of the transformation parameters
are derived from corresponding columns in the train set passed to automunge(.) after partitioning
validation sets, which in addition to solving these problems of inconsistency and data leakage, we
speculate that at data center scale could have material benefit to computational overhead and asso-
ciated carbon intensity of inference, perhaps also relevant to edge device battery constraints.

Another key point of value for this platform is simply put the reproducibility of data preprocessing. If
a researcher wants to share their results for exact duplication to the same data or similar application
to comparable data, all they have to do is publish the simple python dictionary returned from an
automunge(.) call, and other researchers can then exactly duplicate. The same goes for archival
of preprocessing experiments - a source data set need only be archived once, and every performed
experiment remains accessible and reproducible with this simple python dictionary.

Beyond the core points of feature engineering and infill, the Automunge library contains several
other push-button methods. The goal is to automate the full workflow for tabular data for the steps
between receipt of tidy data and returned sets suitable for machine learning application. Some of
the options include feature importance evaluation (by shuffle permutation (Breiman, 2001)), dimen-
sionality reduction (including by means of PCA (Jolliffe & Cadima, 2016), feature importance, and
binary encodings), preparation for oversampling in cases of label set class imbalance (Buda et al.,
2017), evaluation of data distribution drift between initial train sets and subsequent test sets, and
perhaps most importantly the simplest means for consistently and efficiently processing subsequent
data with postmunge(.).

Oh, and once you try it out, please let us know.

9



Under review as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

A thank you owed to: the Kaggle IEEE-CIS competition which helped me recognize the potential
for string parsing. Mark Ryan who shared a comment in Deep Learning with Structured Data that
was inspiration for the ‘UPCS’ transform. Thanks to Stack Overflow, Python, PyPI, GitHub, Colab-
oratory, Anaconda, and Jupyter. Special thanks to Scikit-Learn, Numpy, Scipy Stats, and Pandas.

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/
1553374.1553380.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. arXiv e-prints, art. arXiv:1710.05381, October 2017.

Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text Classifica-
tion. arXiv e-prints, art. arXiv:1801.06146, January 2018.

Ian Jolliffe and Jorge Cadima. Principal component analysis: A review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 374:20150202, 04 2016. doi: 10.1098/rsta.2015.0202.

Wes McKinney. Data structures for statistical computing in python. Proceedings of the 9th Python
in Science Conference, pp. 51–56, 2010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv e-prints, art. arXiv:1301.3781, January 2013.

Karthika Mohan and Judea Pearl. Graphical Models for Processing Missing Data. arXiv e-prints,
art. arXiv:1801.03583, January 2018.

Terrence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard. Beware default ran-
dom forest importances. Explained.ai (blog), 2018. URL https://explained.ai/
rf-importance/.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Stefan van der Walt, Chris Colbert, and Gael Varoquaux. The numpy array: A structure for efficient
numerical computation. Computing in Science & Engineering, 13:22–30, 2011.

Vesta. IEEE-CIS fraud detection data set. Retrieved Nov 12, 2020 from https://www.kaggle.
com/c/ieee-fraud-detection/, 2019.

Pauli Virtanen, Ralf Gommers, Travis Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew Nelson, Eric Jones,
Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric Moore, Jake VanderPlas, Den-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antônio Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: https://doi.org/10.1038/s41592-019-0686-2.

Hadley Wickham. Tidy data. Journal of Statistical Software, Articles, 59(10):1–23, 2014. ISSN
1548-7660. doi: 10.18637/jss.v059.i10. URL https://www.jstatsoft.org/v059/
i10.

10



Under review as a conference paper at ICLR 2021

APPENDIX

A BROADER IMPACT

The following discussions are somewhat speculative in nature. At the time of this writing Auto-
munge has yet to establish what we would consider a substantial user base and there may be a bias
towards optimism at play in how we have been proceeding, which we believe is our sole leverage of
bias.

From an ethical standpoint, we believe the potential benefits of our platform far outweigh any neg-
ative aspects. What we noted in the discussions about the potential for reduced carbon intensity
for machine learning at scale has been one of our guiding principles for design. Particularly we
have sought to optimize the postmunge(.) function for speed, used as a proxy for computational
efficiency. As a rule of thumb, processing times for equivalent data in the postmunge(.) function,
such as could be applied to streams of data in inference, have shown to operate on the order of twice
the speed of initial preparations in the automunge(.) function, although for some specific transforms
like those implementing string parsing that advantage may be considerably higher. While the over-
head may prevent achieving the speed of directly applying manually specified transformations to a
dataframe, the postmunge(.) speed gets close to manual transformations with increasing data size.

We believe too that the impact to the machine learning community of a formalized open source
standard to tabular data preprocessing could have material benefits to ensuring reproducibility of
results. There for some time has been a gap between the wide range of open source frameworks
for training neural networks in comparison to options for prerequisites of data pipelines. I found
some validation for this point from the tone of the audience Q&A at a certain 2019 NeurIPS keynote
presentation by the founder of a commercial data wrangling package. In fact it may be considered
a potential negative impact of this research in the risk to commercial models of such vendors, as
Automunge’s GNU GPL 3.0 license coupled with patent pending status on the various inventions
behind our library (including these string parsing methods, family tree primitives, ML infill, and
etc.) will preclude commercial platforms offering comparable functionality. We expect that the
benefits to the machine learning community in aggregate will far outweigh the potential commercial
impacts to this narrow segment.

Further, benefits of automating machine learning derived infill to missing data may result in a ma-
terial impact to the mainstream data science workflow. That old rule of thumb often thrown around
about how 80% of a machine learning project is cleaning the data may need to be revised to a lower
figure. We speculate that other options for generalized missing data infill, such as methods built
around do-calculus (Mohan & Pearl, 2018), may have benefits for generality across multiple target
labels in a data lake (the ML infill method predicts infill on a basis of a specific target feature set), but
there may be trade-offs for computational overhead of implementation, not to mention simplicity.

Regarding consequences of system failure, it should be noted that Automunge is an industry agnostic
toolset, with intention to establish users across a wide array of tabular data domains, potentially
ranging from the trivial to mission critical. We recognize that with this exposure comes additional
scrutiny and responsibility. Our development has been performed by a professional engineer and
we have sought to approach validations, which has been an ongoing process, with a commensurate
degree of rigor.

Our development has followed an incremental and one might say evolutionary approach to systems
engineering, with frequent and sequential updates as we iteratively added functionality and trans-
forms to the library within defined boundaries of the data science workflow. The intent has always
been to transition to a more measured pace at such time as we may establish a more substantial user
base.

11



Under review as a conference paper at ICLR 2021

B FUNCTION CALL DEMONSTRATIONS

Automunge is available for pip install:

pip install Automunge

Or to upgrade (we currently roll out upgrades fairly frequently):

pip install Automunge --upgrade

Once installed, run this in local session to initialize:

from Automunge import Automunger
am = Automunger.AutoMunge()

Then, assuming we want to prepare a train set df train for ML, can apply default parameters as:

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict = \
am.automunge(df_train)

Note that if our df train set included a labels column, we should designate the column header with
the labels column parameter. Or likewise we can designate any ID columns with the trainID column
parameter.

The returned postprocess dict should be saved such as with pickle.

We can then consistently prepare subsequent test data df test in postmunge(.):

test, testID, testlabels, \
labelsencoding_dict, postreports_dict \
= am.postmunge(postprocess_dict, df_test)

I find it helps to just copy and paste the full range of parameters for reference:

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict = \
am.automunge(df_train, df_test=False, labels_column=False,
trainID_column=False, testID_column=False, valpercent1=.0,
valpercent2=.0, floatprecision=32, shuffletrain=True,
TrainLabelFreqLevel=False, powertransform=False,
binstransform=False, MLinfill=False, infilliterate=1,
randomseed=42, eval_ratio=.5, LabelSmoothing_train=False,
LabelSmoothing_test=False, LabelSmoothing_val=False, LSfit=False,
numbercategoryheuristic=63, pandasoutput=False,
NArw_marker=False, featureselection=False, featurepct=1.0,
featuremetric=0.0, featuremethod='default', Binary=False,
PCAn_components=False, PCAexcl=[], excl_suffix=False,
ML_cmnd = {'MLinfill_type':'default',

'MLinfill_cmnd':{'RandomForestClassifier':{},
'RandomForestRegressor':{}},

'PCA_type':'default', 'PCA_cmnd':{}},

12



Under review as a conference paper at ICLR 2021

assigncat = {
'nmbr':[], 'retn':[], 'mnmx':[], 'mean':[], 'MAD3':[], 'lgnm':[],
'bins':[], 'bsor':[], 'pwrs':[], 'pwr2':[], 'por2':[], 'bxcx':[],
'addd':[], 'sbtr':[], 'mltp':[], 'divd':[],
'log0':[], 'log1':[], 'logn':[], 'sqrt':[], 'rais':[], 'absl':[],
'bnwd':[], 'bnwK':[], 'bnwM':[], 'bnwo':[], 'bnKo':[], 'bnMo':[],
'bnep':[], 'bne7':[], 'bne9':[], 'bneo':[], 'bn7o':[], 'bn9o':[],
'bkt1':[], 'bkt2':[], 'bkt3':[], 'bkt4':[],
'nbr2':[], 'nbr3':[], 'MADn':[], 'MAD2':[], 'tlbn':[],
'mnm2':[], 'mnm3':[], 'mnm4':[], 'mnm5':[], 'mnm6':[],
'ntgr':[], 'ntg2':[], 'ntg3':[], 'mea2':[], 'mea3':[], 'bxc2':[],
'dxdt':[], 'd2dt':[], 'd3dt':[], 'dxd2':[], 'd2d2':[], 'd3d2':[],
'nmdx':[], 'nmd2':[], 'nmd3':[], 'mmdx':[], 'mmd2':[], 'mmd3':[],
'shft':[], 'shf2':[], 'shf3':[], 'shf4':[], 'shf7':[], 'shf8':[],
'bnry':[], 'onht':[], 'text':[], 'txt2':[], '1010':[], 'or10':[],
'ordl':[], 'ord2':[], 'ord3':[], 'ord4':[], 'om10':[], 'mmor':[],
'Unht':[], 'Utxt':[], 'Utx2':[], 'Uor3':[], 'Uor6':[], 'U101':[],
'splt':[], 'spl2':[], 'spl5':[], 'sp15':[], 'sp19':[], 'sbst':[],
'spl8':[], 'spl9':[], 'sp10':[], 'sp16':[], 'sp20':[], 'sbs2':[],
'srch':[], 'src2':[], 'src4':[], 'strn':[], 'lngt':[], 'aggt':[],
'nmrc':[], 'nmr2':[], 'nmcm':[], 'nmc2':[], 'nmEU':[], 'nmE2':[],
'nmr7':[], 'nmr8':[], 'nmc7':[], 'nmc8':[], 'nmE7':[], 'nmE8':[],
'ors2':[], 'ors5':[], 'ors6':[], 'ors7':[], 'ucct':[], 'Ucct':[],
'or15':[], 'or17':[], 'or19':[], 'or20':[], 'or21':[], 'or22':[],
'date':[], 'dat2':[], 'dat6':[], 'wkdy':[], 'bshr':[], 'hldy':[],
'wkds':[], 'wkdo':[], 'mnts':[], 'mnto':[],
'yea2':[], 'mnt2':[], 'mnt6':[], 'day2':[], 'day5':[],
'hrs2':[], 'hrs4':[], 'min2':[], 'min4':[], 'scn2':[], 'DPrt':[],
'DPnb':[], 'DPmm':[], 'DPbn':[], 'DPod':[], 'DP10':[], 'DPoh':[],
'excl':[], 'exc2':[], 'exc3':[], 'exc4':[], 'exc5':[], 'exc6':[],
'null':[], 'copy':[], 'shfl':[], 'eval':[], 'ptfm':[]},
assignparam = {'default_assignparam' :

{'(category)' : {'(parameter)' : 42}},
'(category)' : {'(column)' : {'(parameter)' : 42}}},

assigninfill = {'stdrdinfill':[], 'MLinfill':[],
'zeroinfill':[], 'oneinfill':[],
'adjinfill':[], 'meaninfill':[], 'medianinfill':[],
'modeinfill':[], 'lcinfill':[], 'naninfill':[]},

assignnan = {'categories':{}, 'columns':{}, 'global':[]},
transformdict={}, processdict={}, evalcat=False,
privacy_encode = False, printstatus=True)

Or for postmunge(.) with full range of parameters:

test, testID, testlabels, \
labelsencoding_dict, postreports_dict = \
am.postmunge(postprocess_dict, df_test,
testID_column = False, labelscolumn = False,
pandasoutput = False, printstatus = True,
TrainLabelFreqLevel = False, featureeval = False,
driftreport = False,
LabelSmoothing = False, LSfit = False, inversion = False,
traindata = False,
returnedsets = True, shuffletrain = False)

13



Under review as a conference paper at ICLR 2021

C ASSIGNING TRANSFORMS AND INFILL

Assigning root categories is conducted in assigncat parameter, assigning infill in assigninfill, and
parameters in assignparam - e.g. for a train set df train with column headers ‘col1’ and ‘col2’ we
could assign string parsing (splt) and a string parse family tree (or19) with infill types zero infill and
ML infill.

Since ‘splt’ transform accepts parameters, we’ll also demonstrate passing parameter of excluding
space and special characters, such as to promote single word overlap detections.

Note any columns we don’t explicitly assign will defer to automation or we could turn off auto-
mated defaults for pass-through of other columns by passing automunge parameter powertransform
= ‘excl’.

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict \
= am.automunge(df_train,
assigncat = {'splt':['col1'], 'or19':['col2']},
assigninfill = {'zeroinfill':['col1'], 'MLinfill':['col2']},
assignparam = {'splt' : {'col1' :

{'space_and_punctuation' : False}}})

14



Under review as a conference paper at ICLR 2021

D OVERWRITING SETS OF TRANSFORMS

Here we’ll demonstrate overwriting sets of transformations with the transformdict parameter passed
to automunge(.).

Let’s use the example from paper of ‘or19’ application of ‘nmr7’ to extract numerical portions which
has result of returning the zip codes in the address examples. We noted in paper that there might be
benefit to encoding the output as categorical instead of a numeric (z-score) normalization, so let’s
demonstrate overwriting the pre-defined transform to apply a categoric encoding downstream of the
‘nmr7’.

Referring to Figure 7, we see the relevant family tree is for category ‘nmc8’ which has a children
primitive entry of ‘nmbr’. These family trees are also available for inspection in the READ ME.

So if we want to instead encode the numeric extract as categorical, we could overwrite ‘nmc8’ in a
custom passed transformdict.

Note that since ‘nmc8’ is called as part of an offspring generation, the ‘nmc8’ upstream primitives
(parents / siblings / auntsuncles / cousins) aren’t inspected in context of ‘or19’, so we only have to
worry about the downstream primitives (children / niecesnephews / coworkers / friends).

Let’s demonstrate the overwrite, we’ll instead use ‘ord3’ for ordinal encoding by frequency.

transformdict = {'nmc8' : {'parents' : ['nmc8'],
'siblings' : [],
'auntsuncles' : [],
'cousins' : ['NArw'],
'children' : ['ord3'],
'niecesnephews' : [],
'coworkers' : [],
'friends' : []}}

And since we are using existing categories from the library, we don’t need to repopulate a corre-
sponding processdict.

Then when we call automunge(.) we can pass this transformdict to overwrite ‘nmc8’:

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict \
= am.automunge(df_train,
assigncat = {'or19':['col2']},
transformdict = transformdict)

The returned columns log the steps of transformations via suffix appenders, so this replaces the
original returned column ‘col2 UPCS nmc7 nmbr’ with ‘col2 UPCS nmc7 ord3’.

15



Under review as a conference paper at ICLR 2021

E FEATURE IMPORTANCE

The Automunge library includes an option for push-button feature importance evaluation by shuffle
permutation, in which a model is trained on the full training set feature set with a base accuracy
evaluated on a partitioned validation set. Metrics are then derived by shuffling the rows of a target
feature to determine the resulting delta from dampened accuracy. In the first metric all of the columns
derived from the same source feature are shuffled, and a higher metric signals higher influence of
the source feature. In the second metric, all columns except for a target column originating from the
same source feature are shuffled, and a lower metric signals higher relative influence in comparison
to the other columns derived from the same source feature. The current basis for performance
metrics is accuracy for classification and mean squared log error for regression. Note that the method
requires the inclusion and designation of a label column by the labels column parameter.

Feature importance is supported by the following automunge(.) parameters:

• featureselection: boolean (default False), when True feature importance is performed
• featuremethod: accepts entries {‘default’, ‘pct’, ‘metric’, ‘report’}, where ‘default’ evalu-

ates feature importance and then processes data as in a general automunge(.) call, ‘report’
evaluates feature importance without further processing of data, and ‘pct’ or ‘metric’ ac-
tivate a dimensionality reduction on returned data based on the results, further detailed in
READ ME documentation.

The results of an evaluation are returned in the printouts, and then also in the returned dictionary
featureimportance. Sorted results are further available in the returned postprocess dict dictionary
under the key ‘FS sported’.

Note that feature importance can also be conducted on subsequent data in the postmunge(.) function
by activating the boolean featureeval parameter, with results available in printouts and returned in
the returned dictionary postreports dict.

The second metric for relative importance between columns derived from the same feature are par-
ticularly useful for evaluating influence of different segments of a feature set’s distribution. For
example, when a categoric feature is encoded by ‘text’ one-hot encoding the metrics may indicate
which of the categoric entries are more influential to the model. Similarly, when a numeric feature is
encoded by ‘tlbn’ tail bins encoding, the metrics may indicate which segments of the numeric set’s
distribution are more influential to the model.

Important to keep in mind that feature importance metrics are as much a measure of the model as
they are of the features.

16



Under review as a conference paper at ICLR 2021

F A FEW HELPFUL HINTS

A few highlights that might make things easier for first-timers:

1) automunge(.) returns sets as numpy arrays by default (for universal compatibility with ML plat-
forms). A user can instead receive the returned sets as pandas dataframes by passing the parameter
pandasoutput = True

2) Even if the sets are returned as numpy arrays, you can still inspect the returned column headers
with the returned list we demonstrate as finalcolumns train

3) Printouts are turned on by default, they can be turned off with printstatus=False

4) Note for data sets with just a few rows, such as those demonstrated here, there is a PCA heuristic
to apply dimensionality reduction when the number of features is more than 50% of the number of
observations in the train set (this is a somewhat arbitrary heuristic). This can be turned off with
ML cmnd = {‘PCA type’:‘off’}.

5) Speaking of PCA, if you do want to apply PCA, a useful option allows you to exclude
from dimensionality reduction boolean or ordinal encoded columns, available with ML cmnd =
{‘PCA cmnd’:{‘bool ordl PCAexcl’:True}}.

6) Note that data shuffling is on by default for the train set and off by default for the test sets returned
from automunge(.) and postmunge(.). If you want to shuffle the test data in automunge too you can
pass shuffletrain = ‘traintest’. Or to shuffle the test data returned from postmunge you can pass the
postmunge parameter shuffletrain = True.

7) The automated feature importance evaluation is easy to use, you just need to be sure to designate
a label column with labels column = ‘column header’. Then just pass featureselection = True and
printouts will return results as well as the returned report featureimportance

8) To ensure that you can later prepare additional data for inference, please be sure to save the
returned postprocess dict such as with pickle library.

9) Importantly, when you pass a train set to automunge(.) please designate any included labels
column with labels column = (label column header string), which may be an integer index for numpy
arrays. When you go to process additional data in postmunge, the columns must have consistent
headers as those originally passed to automunge. Or if you originally passed numpy arrays, just
be sure that the columns are in the right order. If you’re passing postmunge(.) data that includes a
column originally designated as a label to automunge, just apply labelscolumn = True.

10) Speaking of numpy arrays, if you pass numpy arrays instead of pandas dataframes to the func-
tion, all of the column assignments will accept integers for the column number.

11) When applying ML infill, which is based on Scikit-Learn Random Forest implementations,
a useful ML cmnd if you don’t mind a little more training time is to increase the number of es-
timators as e.g. ML cmnd = {‘MLinfill cmnd’:{‘RandomForestClassifier’:{‘n estimators’:1000},
‘RandomForestRegressor’:{‘n estimators’:1000}}}

12) Note that any columns you want to exclude from processing, you can either assign them to root
category ‘excl’ in assigncat if you don’t mind their retention (noting that they will still be included in
ML infill so will need numerical encoding), or you can carve them out from the set to be returned in
ID sets consistently shuffled and partitioned such as between training and validation data, just pass a
list of column headers to trainID column and/or testID column. You can also turn off the automated
transforms and only perform those designated in assigncat by passing powertransform=‘excl’

G INTELLECTUAL PROPERTY DISCLAIMER

Automunge is released under GNU General Public License v3.0. Full license details available on
GitHub. Contact available via (anonymized). Copyright (C) 2020 - All Rights Reserved. Patent
Pending, applications (anonymized)

17


