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ABSTRACT

Knowledge distillation has become a crucial technique to transfer the capacities
of large language models (LLMs) to smaller, more efficient models for practical
deployment. While recent work exploits rich information from intermediate states
of the teacher model for more effective knowledge transfer, imperfect knowledge
from the teacher can also mislead student learning, restricting the student’s gen-
eralization capacity. In this work, we propose a two-stage distillation framework
that is effective for diverse knowledge distillation scenarios. In the first stage,
we pretrain projectors to extract and compress teacher knowledge into a low-
dimensional vector space via self-reconstruction. In the second stage, we perform
distillation with a hybrid objective that combines learning from the compressed
teacher representations with standard supervised fine-tuning on ground-truth data.
Our key innovation is residual learning for LLM distillation, where the student
learns to make predictions based on the differential between its representations
and projected states from the teacher. This approach encourages the student to fur-
ther improve its representations beyond potentially erroneous teacher knowledge.
For Mixture-of-Experts (MoE) teacher models, we further fuse the experts’ out-
puts using a self-attention mechanism for better utilizing the teacher knowledge.
Moreover, to support the cross-tokenizer distillation setting, where the teacher
and student models have different vocabularies, we adopt a cross-model attention
mechanism that eliminates the need for explicit token alignment rules. Experi-
mental results show the superior performance of our proposed framework under
both same- and cross-tokenizer settings, demonstrating the effectiveness in pre-
serving teacher knowledge and improving student generalization capability.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse natural
language tasks, from complex reasoning and mathematical problem solving to creative writing and
code generation (Chowdhery et al., 2023; Grattafiori et al., 2024; Comanici et al., 2025; Yang et al.,
2025). However, deploying large models with billions of parameters requires substantial computa-
tional power, which limits their adoption in resource-constrained environments. To this end, knowl-
edge distillation (KD) (Buciluǎ et al., 2006; Hinton et al., 2015; Sanh et al., 2019) has emerged as a
promising paradigm to address this challenge by transferring knowledge from large teacher models
to smaller, more efficient student models that could preserve most of the teacher capability.

Knowledge distillation methods can be broadly categorized into black-box and white-box ap-
proaches. Under black-box KD, the student model learns from training data generated by the teacher
model through standard supervised fine-tuning (Kim & Rush, 2016; Taori et al., 2023; Chiang et al.,
2023; Xu et al., 2023). Despite its simplicity and broad applicability, black-box KD fails to utilize
the rich knowledge embedded in the intermediate representations of the teacher model (Gu et al.,
2023; Wen et al., 2023; Ko et al., 2024). Therefore, white-box KD methods aims to further improve
student model training by leveraging more information from the teacher, including logit distribu-
tions (Sanh et al., 2019; Liang et al., 2023) and internal hidden states (Sun et al., 2019; Jiao et al.,
2019; Hou et al., 2020; Zuo et al., 2022; Shen et al., 2025). However, applying white-box KD
becomes particularly challenging when the teacher and student models use different tokenizers, as
token misalignment makes direct knowledge transfer between sequence representations infeasible.
To address these challenges, recent work has explored white-box KD for cross-tokenizer scenarios,
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where not only the model structure but also the vocabulary are different between the teacher and stu-
dent model (Boizard et al., 2024; Zhang et al., 2025b; Chen et al., 2025; Cui et al., 2025; Minixhofer
et al., 2025).

Despite their success, recent work has mainly focused on divergence-based methods that optimize
output distribution matching (Xu et al., 2024) without considering scenarios where teacher predic-
tions are incorrect. In this case, the teacher can transfer detrimental bias to student, resulting in
poor performance and generalization capacity of the student model (Zhang et al., 2025a). Moreover,
teacher hacking (Tiapkin et al., 2025) could be another concerning issue, where the student model
learns to mimic superficial patterns rather than acquiring meaningful knowledge. These limitations
are further compounded by more challenging knowledge distillation settings when teacher and stu-
dent models are significantly different in the model architectures, e.g. knowledge distillation from a
Mixture-of-Experts (MoE) model to a dense model.

To this end, we propose a novel white-box KD framework to address the above challenges. Our
approach consists of two stages: pretraining and distillation. In the pretraining stage, we com-
press teacher hidden states into a low-dimensional space and train the teacher projectors via a
self-reconstruction mechanism, which extracts task-relevant information from the teacher model.
In the distillation stage, we introduce a novel mechanism called residual learning, in which the
student learns to predict next tokens using the residual hidden states computed by subtracting pro-
jected teacher hidden states from those of student whenever the teacher’s predictions are inaccu-
rate. This mechanism encourages the student to learn complementary knowledge that captures what
it understands differently from the teacher and avoid replicating teacher errors. To support the
cross-tokenizer distillation, we adopt a cross-model attention mechanism, inspired by Zhang et al.
(2025b), that automatically establishes the alignments between teacher and student token representa-
tions through hidden state similarity. Finally, to better exploit the rich knowledge distributed across
experts in a MoE teacher model, we introduce a lightweight scaled dot-production self-attention
mechanism that enriches expert outputs before top-k aggregation. These components form a unified
framework which is effective for distillation across diverse architectures and tokenization schemes.

We evaluate our framework on standard instruction-following benchmarks following recent works
(Gu et al., 2023; Zhang et al., 2025b; Chen et al., 2025) under different distillation settings including
cross-tokenizer distillation and distillation from MoE to dense models. Experimental results demon-
strate that our method consistently outperforms the existing white-box KD approaches on average
Rouge-L scores for different scenarios.

In summary, our contributions are as follows:

• We introduce a two-stage knowledge distillation framework that effectively extracts teacher
knowledge for fine-tuning a student model.

• We introduce a residual learning approach that effectively leverages teacher’s hidden states
and errors as learning signals, enabling student model to generalize better.

• We adopt a cross-model attention mechanism that aligns teacher and student tokens based
on their hidden state similarity to handle token mismatches in cross-tokenizer distillation.

• We enhance knowledge extraction for MoE teachers by using a scaled dot-product attention
mechanism, fully leveraging all experts’ knowledge.

• Experiments show that our method significantly outperforms the existing white-box meth-
ods under diverse distillation settings.

2 RELATED WORK

Knowledge Distillation for LLMs. A straightforward method for knowledge distillation is black-
box KD (Kim & Rush, 2016). Let T and S represent the teacher and student models, respectively.
Black-box KD fine-tunes the student model using the standard causal language modeling objective
on teacher-generated texts:

LKD = Ex∼X ,y∼PT (·|x) [− logPS(y|x)] , (1)
where y is the output sequence generated by teacher model, PT and PS are the output probability
distributions from the teacher and student, respectively. Although simple, black-box KD has proven
to be an effective method in diverse tasks (Wang et al., 2023; Taori et al., 2023; Chiang et al., 2023).
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Recent research has shifted to white-box KD to leverage the intermediate information from LLMs
beyond their final outputs. Specifically, these methods attempt to align output distributions or max-
imize the similarity between the hidden states of the teacher and student models (Sanh et al., 2019;
Liang et al., 2023; Sun et al., 2019; Zuo et al., 2022; Shen et al., 2025). One common approach is
minimizing the divergence between the output probability distributions of the teacher and student:

Ldivergence = E(x,y)∼X×Y [DKL (PT (y|x) ∥ PS(y|x))] (2)

where the data point (x,y) are sampled from the data space X × Y and the closed-form expres-
sion of DKL is determined based on the specific divergence metric adopted. Popular choices for
DKL include Kullback-Leibler (KL) divergence, reverse KL (Gu et al., 2023), Jensen-Shannon di-
vergence (Agarwal et al., 2024), and their skew variants (Lee, 2001; Ko et al., 2024; 2025).

While proven to be effective, divergence-based methods can potentially limit the student’s learning
capacity. The information from the teacher model is not perfect as it can still make wrong predictions
and exhibit certain bias (Zhang et al., 2025a). As a result, forcing the student to mimic the teacher’s
distributions may propagate such imperfection to the student model and prevent the student from
learning beyond the teacher’s knowledge boundaries.

Cross-Tokenizer Knowledge Distillation. One restriction in white-box KD is that it requires the
same vocabulary between the student and the teacher for distribution alignment. Recent work has
further explored white-box KD for cross-tokenizer distillation settings, where the student and teacher
have different vocabularies. Cross-tokenizer KD setting poses more challenges than conventional
same-tokenizer settings, including mismatches in sequence length and output dimensionality. To
tackle these challenges, ULD (Boizard et al., 2024) applies simple truncation strategies to align
sequence lengths and logit dimensions, enabling direct comparison of output distributions. Based
on ULD, MultiLevelOT (Cui et al., 2025) integrates an approximate optimal transport objective to
reduce the divergence at both token and sequence levels. Dual-space KD (DSKD) (Zhang et al.,
2025b) projects the student’s hidden states into the teacher space and vice versa for calculating the
divergence between output distributions. It further introduces a cross-model attention mechanism to
align tokens across disparate tokenizers using token embeddings similarity. ALM (Minixhofer et al.,
2025) further refines token alignment by exhaustively enumerating decoded chunks and identifying
equivalent segments between teacher and student outputs.

Despite these advances, existing cross-tokenizer KD methods exhibit several inherent limitations.
Truncation-based strategies such as ULD may discard valuable information and suffer from align-
ment errors. MultiLevelOT improves performance but incurs computational overhead due to optimal
transport, limiting its scalability. Projection-based approaches like DSKD rely on KL divergence on
the output distributions, which could suffer from the limitations discussed above. Brute-force meth-
ods such as ALM achieve precise alignment but scale poorly with large vocabularies or extended
sequences. Moreover, none of these state-of-the-art methods address teacher hacking (Tiapkin et al.,
2025) or mitigate teacher bias (Zhang et al., 2025a), which could restrict the generalization capacity
of the student when the teacher itself is imperfect.

Distillation from Mixture-of-Experts. Despite the superior capacity of Mixture-of-Experts (MoE)
models on various natural language tasks, few works have specifically explored how to fully distill
their inherent power (Salinas et al., 2022; Kim et al., 2025). While Kim et al. (2025) highlighted
the importance of incorporating knowledge from all experts during distillation and proposed two
mechanisms for expert knowledge extraction, their approaches face practical limitations. The first
approach relies on stochastic expert sampling, which requires multiple forward passes to access
different expert combinations and increases computational overhead during training. The second
approach attempts to adjust router probabilities based on student preferences, but this may result in
suboptimal expert selection as it prioritizes the student’s current state over the teacher’s expertise.
These limitations motivate the need for a more efficient and effective method to distill knowledge
from MoE teachers while preserving the specialized capabilities of individual experts.

3 METHODOLOGY

In this section, we introduce a two-stage white-box KD framework that is applicable to various
KD settings to address the existing limitations. Figure 1 illustrates the overall workflow of our
framework. In the first stage, we employ learnable projectors to compress teacher hidden states into
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(a) Stage 1: Pretraining teacher projectors. The projectors P T →A and PA→T are learned by optimizing next-
token prediction objective using the reconstructed hidden states.

(b) Stage 2: Residual learning objective. We first compute the residual hidden states h̃S
i , then use this quantity

to obtain the adjusted output probability distribution P̃ (xi+1|x:i) for next-token prediction.

Figure 1: Overview of our proposed two-stage framework. Modules marked with fire icons have
learnable parameters that are updated during training, while those marked with snow icons have
frozen weights.

a low-dimensional space that is agnostic to any student architecture and the projectors are optimized
using a self-reconstruction mechanism as shown in Figure 1(a). Section 3.1 describes the details of
the first stage. Figure 1(b) illustrates the workflow of the second stage which performs knowledge
distillation from the teacher to the model. We introduce a novel mechanism called residual learning
in Section 3.2 that leverages the residual hidden states calculated from the student hidden states
and projected teacher hidden states to effectively guide student learning. Furthermore, we present
the expert knowledge fusion mechanism in Section 3.3, which utilizes the knowledge from all
experts to enhance distillation from MoE teachers. Finally, we introduce a cross-model attention
mechanism in Section 3.4, aiming at handling sequence mismatch in cross-tokenizer KD settings.
The total objective function for distillation is given in Section 3.5.

3.1 PRETRAINING PROJECTORS WITH SELF-RECONSTRUCTION

The pretraining stage learns to compress teacher representations while preserving their semantics
and task-relevant information. We denote A as a low-dimensional space whose dimension is dA,
and the hidden state dimensions of the student and teacher as dS and dT , respectively. Let P T →A

and PA→T denote the projection functions that map hidden states between T and A. As shown in
Figure 1(a), these projectors form an autoencoder in the self-reconstruction process, where teacher
hidden states are compressed into A, and then reconstructed. The reconstructed hidden states hT ′

i
are subsequently used for next-token prediction, and the projectors are optimized via the cross-
entropy objective:

LCE = −
∑
i

logP(xi+1|x:i), with P (xi+1|x:i) = softmax
(
WT hT ′

i

)
(3)

where WT is the teacher’s prediction head. We denote hT →A
i as the compressed teacher hidden

states, i.e., hT →A
i = P T →AhT

i . In the subsequent stage, P T →A remains frozen to stabilize teacher
information during distillation.

4
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3.2 RESIDUAL LEARNING

Recent work highlights two key challenges in distillation: teacher hacking, where the student ex-
ploits superficial patterns in the teacher’s outputs rather than learning meaningful knowledge (Tiap-
kin et al., 2025), and teacher bias, where prediction errors are directly transferred to the student. To
address these challenges, we propose residual learning for LLM distillation, which leverages not
only the projected hidden states from the teacher but also the teacher errors as informative signals to
guide student learning.

Let h(T →A)→S
i denote the projected teacher hidden states of token i that are mapped to the student

space S, i.e., h(T →A)→S
i = PA→ShT →A

i . We compute the residual hidden states by taking the
difference between the student hidden states and the projected teacher representations in the student
space at the positions where the teacher makes incorrect predictions:

h̃S
i = hS

i − βh
(T →A)→S
i · 1 [argmaxPT (xi|x:i−1) ̸= xi] , (4)

where h̃S
i represents the residual hidden states, β is a scaling factor, and the indicator function

equals 1 only when the teacher’s top-1 prediction is different from the ground-truth token. The
scaling factor β is crucial for balancing the contribution of teacher and student in the residual term.
If β is too large, student representations are overwhelmed by those of teachers, making the residuals
ineffective. In contrast, if β is too small, the residual terms approximate the student hidden states,
and the benefits of residual learning would diminish. Therefore, we adaptively compute proper β
values according to the dimensions and magnitudes of the hidden states as below:

β =

√
dS
dA︸ ︷︷ ︸

rescale dimension

× 1

n

nS∑
i=1

∥∥hS
i

∥∥∥∥∥h(T →A)→S
i

∥∥∥︸ ︷︷ ︸
rescale magnitude

(5)

where nS stands for the student’s sequence length. The first component in β normalizes for di-
mensional differences between spaces, while the second term aligns the magnitudes of teacher and
student representations to ensure balanced residual computation. These ratios prevent either the stu-
dent or teacher representations from dominating the residual calculation. We empirically observe
that using β at sequence level (average of token-wise norm ratios) can stabilize training and yield
better results.

Then, we train the student model to make accurate predictions based on the residual hidden states
using the student’s LM head WS with the cross-entropy loss:

Lres = −
nS∑
i=1

log P̃ (xi+1|x:i) , where P̃ (xi+1|x:i) = softmax
(
WS h̃S

i

)
(6)

This objective fundamentally changes the learning dynamics: instead of passively replicating the
teacher’s distributions, the student learns to actively identify the differences between its current
understanding and the teacher’s knowledge. This prevents the superficial pattern matching that
characterizes teacher imperfection, ultimately leading to better generalization of the student model.

3.3 EXPERT KNOWLEDGE FUSION

For teacher models with MoE structures, we propose an efficient expert knowledge fusion mecha-
nism to effectively utilize the knowledge of all experts for better knowledge distillation. Given E

experts in the teacher model, we denote h
(m)
i as the outputs of the m-th expert at the token position

i for the last MoE layer. We enrich the expert outputs through scaled dot-product attention:

h̃
(m)
i =

E∑
j=1

αmjh
(j)
i , where αmj = softmax

(
h
(m)
i (h

(j)
i )⊤√

dT

)
(7)

where αmj captures the relevance between the outputs of the m-th and j-th experts. This self-
attention mechanism allows each expert to incorporate complementary information from similar
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experts, resulting in more informative representations. Finally, the enriched expert outputs are ag-
gregated to form the final states following the original MoE workflow:

hT
i =

∑
j∈top-k

gjh̃
(j)
i (8)

where gj denotes the router probability assigned to the j-th expert, and top-k denotes the k experts
selected by the router. Unlike previous methods that rely on stochastic sampling or router probability
adjustment (Kim et al., 2025), our attention-based fusion can directly leverage the complementary
knowledge of all experts in a single forward pass.

3.4 CROSS-MODEL ATTENTION MECHANISM

In Section 3.2, we introduce our residual learning design in the same-tokenizer setting where the
input sequences for the teacher and student are exactly the same. In the cross-tokenizer setting, since
teacher and student have different vocabularies, their tokenizers will output sequences of different
lengths for the same text input. This hinders the application of residual learning.

To address this challenge, we propose a cross-model attention mechanism to align the compressed
teacher hidden states hT →A

i for the input tokens of the student. We first map the student hidden
states hS

i to the same low-dimensional space A (denoted as hS→A
i ) via a trainable projector. Then,

for each pair of student token i and teacher token j, we compute their semantic similarity via dot-
products using the normalized hidden states, followed by row-wise softmax normalization:

Aij =

[
hS→A
i

std
(
hS→A
i

)]⊤ [ hT →A
j

std
(
hT →A
j

)] , then A[i, :] = softmax

(
A[i, :]√

dA

)
(9)

By computing similarity scores between all token pairs, we construct a cross-model attention matrix
A ∈ RnS×nT , where nS and nT are the sequence lengths for student and teacher respectively. Each
element Aij represents the semantic similarity between student token i and teacher token j. Using
the cross-model attention matrix A, we calculate the aligned teacher hidden states ĥT →A

i for each
student token by taking a weighted sum of the compressed teacher hidden states:

ĥT →A
i =

nT∑
j=1

Aijh
T →A
j , (10)

This mechanism allows each student token to attend to the most semantically relevant teacher tokens,
effectively bridging the tokenization gap and preserving semantic information. Then, we can use
ĥT →A
i instead to perform residual learning under the cross-tokenizer settings.

3.5 TRAINING OBJECTIVE

We incorporate the residual learning objective from Eqn. 6 with a standard supervised fine-tuning
(SFT) objective where the student model learns to predict the next token from the ground-truth data.
The final loss function is:

L = λresLres + λSFTLSFT, (11)
where λres and λSFT are hyperparameters that balance the contribution of each loss component during
student model training. In our experiments, we simply use λres = λSFT = 0.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We evaluate our framework under both the same-tokenizer and cross-tokenizer settings. For
the same-tokenizer setting, we conduct experiments on knowledge distillation from Mixtral-8×7B-
Instruct (Jiang et al., 2024) to Mistral-7B and distillation from LLaMA2-7B (Touvron et al., 2023) to
TinyLLaMA-1.1B (Zhang et al., 2024). To optimize LLaMA2-7B’s performance as a teacher model,
we further fine-tune it on the training dataset before knowledge distillation. For the cross-tokenizer

6
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Table 1: Performance comparison using Rouge-L scores (%) for same-tokenizer KD. We report the
average scores over 3 random seeds.

Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.

Mixtral-8×7B-Instruct → Mistral-7B

Teacher zero-shot 25.55 24.12 26.62 40.84 36.21 30.67
Student SFT 25.85 22.17 17.18 33.41 30.26 25.77
ULD 28.64 21.99 21.31 35.71 34.42 28.41
MultiLevelOT 30.55 23.07 20.62 34.79 36.78 29.16
DSKD 25.35 20.43 18.27 35.39 31.45 26.18
Ours 31.39 24.27 20.48 38.82 38.42 30.68

LLaMA2-7B → TinyLLaMA-1.1B

Teacher SFT 26.42 17.90 17.65 26.82 29.77 23.71
Student SFT 24.26 16.41 16.13 25.70 27.41 21.98
ULD 23.15 15.72 15.73 28.52 28.01 22.23
MultiLevelOT 21.80 14.60 14.82 26.62 25.35 20.64
DSKD 21.66 15.21 14.87 25.51 27.90 21.03
Ours 25.70 20.50 16.84 32.50 33.64 25.84

setting, we use Mixtral-8×7B-Instruct as the teacher model and use TinyLLaMA-1.1B and GPT2-
120M (Radford et al., 2019) as the student models. We perform full fine-tuning on GPT2-120M and
LoRA fine-tuning on TinyLLaMA-1.1B and Mistral-7B. In this way, our evaluation covers diverse
knowledge distillation settings in practice.

Datasets. For training, we use the Dolly dataset (Ouyang et al., 2022), processed by Gu et al. (2023),
which comprises approximately 11,000 training samples and 1,000 validation samples. We evalu-
ate our method on five standard instruction-following benchmarks: Dolly (500 test samples), Self-
Instruction (Wang et al., 2023), Vicuna-Eval (Chiang et al., 2023), Super-Natural Instructions (Wang
et al., 2022), and Unnatural Instruction (Honovich et al., 2023). We adopt Rouge-L scores (%) as
the primary metric across all datasets.

Baselines. We select the following approaches as baselines: supervised fine-tuning (SFT), Universal
Logits Distillation (ULD, Boizard et al. (2024)), Multi-Level Optimal Transport (MultiLevelOT,
Cui et al. (2025)), Dual-space KD (DSKD, (Zhang et al., 2025b)), and Approximate Likelihood
Matching (ALM, (Minixhofer et al., 2025)). Although these baselines were specifically designed
for cross-tokenizer KD, they are also capable of achieving state-of-the-art performance in the same-
tokenizer setting, except for ALM which can only be applied for cross-tokenizer KD.

Implementation Details. We conduct experiments using PyTorch Distributed on NVIDIA A100
GPUs (80GB). We use bfloat16 precision and gradient accumulations to manage memory con-
straints. The dimension of the space A is set as dA = 64 across all experiments, and all projector
modules are linear weights without bias. Teacher projectors are pretrained for 10 epochs as de-
scribed in Section 3.1 and we use the checkpoint at the final step. For final evaluation, we select the
checkpoint with the best validation Rouge-L score during distillation. The detailed hyperparameters
can be found in Appendix A.

4.2 RESULTS

Same-tokenizer KD results. Table 1 reports the Rouge-L scores for same-tokenizer KD across
multiple benchmarks. For Mixtral-8×7B-Instruct → Mistral-7B, our method achieves the highest
average score (30.68), which matches the teacher zero-shot performance (30.67) and significantly
outperforms the best baseline MultiLevelOT (29.16). For LLaMA2-7B → TinyLLaMA-1.1B, our
method surpasses all baselines and teacher SFT, reaching an average of 25.84, which is +2.13
above the teacher SFT performance. These results demonstrate the effectiveness of our proposed
framework in improving student’s generalization beyond the teacher capacity.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison using Rouge-L scores (%) for cross-tokenizer KD. We report the
average scores over 3 random seeds.

Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.

Teacher zero-shot 25.55 24.12 26.62 40.84 36.21 30.67

Mixtral-8×7B-Instruct → TinyLLaMA-1.1B

Student SFT 24.26 16.41 16.13 25.70 27.41 21.98
ULD 23.61 15.45 17.06 29.01 28.45 22.71
MultiLevelOT 22.52 14.48 14.97 27.06 25.77 20.96
ALM 21.93 14.11 15.37 25.75 25.49 20.53
DSKD 26.16 18.02 18.15 27.06 30.08 23.89
Ours 25.84 19.38 17.35 30.86 32.04 25.09

Mixtral-8×7B-Instruct → GPT2-120M

Student SFT 21.45 9.45 14.89 16.86 19.14 16.36
ULD 22.12 10.54 15.03 18.16 20.12 17.19
MultiLevelOT 21.40 9.57 15.56 15.88 18.05 16.09
ALM 21.16 9.77 15.46 16.09 18.26 16.15
DSKD 23.11 11.20 15.81 20.33 21.56 18.40
Ours 22.62 11.66 15.12 24.51 26.15 20.01

Cross-tokenizer KD results. Table 2 presents the results for cross-tokenizer KD settings. For
Mixtral-8×7B-Instruct → TinyLLaMA-1.1B, our method again achieves the best average perfor-
mance (25.09), outperforming the best baseline DSKD (23.89) by +1.20. For Mixtral-8×7B-
Instruct → GPT2-120M, our approach reaches 20.01 average Rouge-L, significantly outperform-
ing all baselines. We also note that the performance gap between the teacher and the fine-tuned
student is larger in the cross-tokenizer settings, which is due to the the compounded difficulty of
cross-tokenizer alignment and smaller student model size.

In summary, for both same- and cross-tokenizer KD, our method outperforms the existing baselines.
The improvements are robust across datasets and teacher-student pairs, highlighting the effectiveness
of our approach in preserving and transferring knowledge.

4.3 ABLATION STUDY

To understand the effectiveness of each design choice in our framework, we conduct comprehensive
ablation studies under the cross-tokenizer setting where we use Mixtral-8×7B-Instruct as the teacher
and GPT2-120M as the student.

Effectiveness of each technique. We consider the following variants of our method: 1) “w/o β”, in
which we remove β for computing the residual hidden states; 2) “w/o accuracy mask”, in which we
remove the indicator function for computing the residual hidden states; 3) “w/o pretrained P T →A”,
in which we remove the pretraining stage and train P T →A directly during distillation; 4) “w/o
MoE expert fusion”, in which we remove our expert knowledge fusion design. We further consider
another variant to leverage the knowledge of all experts which simply activates and aggregates all
the experts, i.e. using top-k as top-8 for Mixtral-8×7B-Instruct. Table 3 compares the results of our
method with these variants. We can find that all these variants perform significantly worse than the
original method, which demonstrates the effectiveness of each design. Among them, removing the
coefficient β leads to the most significant performance drop, highlighting its role in balancing the
teacher–student contributions within residual learning.

Impact of the low-dimensional space. Under the cross-tokenizer settings, the low-dimensional
space A is used to compress teacher hidden states and perform cross-model attention for alignment.
Here, we further study the impact of the dimension dA on the distillation performance. Figure 2(a)
shows the distillation performance when varying dA. We find that increasing dA does not provide
additional benefit and a very large dimension (e.g. dA = 768 or 1024) can even significantly harm
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Table 3: Ablation study results for different variants under the knowledge distillation from Mixtral-
8×7B-Instruct (teacher) to GPT2-120M (student).

Description Dolly SelfInst VicunaEval S-NI UnNI Avg.

Mixtral-8×7B-Instruct → GPT2-120M

Ours 22.62 11.66 15.12 24.51 26.15 20.01
w/o β 22.31 9.59 14.43 16.01 18.93 16.25
w/o accuracy mask 22.63 11.04 14.79 24.02 25.45 19.59
w/o pretrained P T →A 21.52 10.07 15.24 18.81 21.31 17.39
w/o MoE expert fusion

– sparse experts (2/8 activated) 22.68 11.84 14.82 23.36 25.61 19.66
– all experts (8/8 activated) 23.09 10.52 16.10 23.88 24.82 19.68

32 64 256 512 768 1024

18

19

20

Av
g.

 R
ou

ge
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 sc
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e

19.46

20.01

19.52
19.70

18.02

18.74

(a) Varying dA

DSKD DSKD + res

18

19

20

18.40

19.60

(b) DSKD + Residual learning

Figure 2: Cross-tokenizer distillation results on (a) varying the dimensionality of the space A (b)
incorporating residual learning into DSKD.

the performance. It proves that compressing teacher hidden states into a low dimension is not only
beneficial but essential for effective knowledge transfer. In our case, dA = 64 yields the best result
(20.01), indicating a balance between compression and expressivity.

Generality of residual learning. To demonstrate the effectiveness of residual learning, we further
apply our design into other white-box KD methods. Figure 2(b) compares the performance of in-
corporating the residual loss Lres with the baseline DSKD. We see an improvement of +1.20 on
average after incorporating residual learning. It demonstrates the generality of our residual learning
mechanism, which has the potential to improve the performance of other white-box KD methods.

5 CONCLUSION

In this work, we introduce a novel two-stage KD framework that addresses key challenges arising
from the imperfect teacher knowledge in white-box KD settings. We compress the teacher hid-
den states into a low-dimension space prior to distillation and guide student training through resid-
ual learning, which ensures robust knowledge transfer and effectively mitigates overfitting to the
teacher’s imperfection. Our framework further provides targeted designs for diverse KD settings in-
cluding cross-tokenizer distillation and distillation from an MoE model. Extensive experiments on
multiple instruction-following benchmarks demonstrate that our method consistently outperforms
the existing baselines and significantly improves the capacity of the student model under different
settings. In the future, we will further investigate if our method can generalize to other tasks such as
reasoning-intensive tasks and code generation.
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A CONFIGURATIONS AND HYPERPARAMETERS

In this appendix, we provide details of the configurations and hyperparameters for training and
evaluation, as shown in Table 4.

Table 4: Training configuration and hyperparameters
Parameter Value
Hardware & Training
GPU 8× NVIDIA A100 (80GB)
Global batch size 128
Max sequence length 512
Precision bfloat16

Optimization
Optimizer AdamW
Learning rate (student) 10−3

Learning rate (projectors) 10−3

Learning rate scheduler Cosine decay
Weight decay 10−4

Epochs 10

Architecture
Alignment space dim (dA) 64
Projector layers Linear (without bias)
Teacher projector pretraining 10 epochs

Loss Coefficients
λres 0.5
λSFT 0.5

LoRA Parameters
Modules Q,O,Up and Down projections
Rank 256
α 8
Dropout rate 0.1

Generation Configurations
Temperature 1.0
Top P 1.0
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B RESIDUAL LEARNING VS. DUAL SPACE KD UNDER DIVERGENCE
VARIANTS

To further evaluate the robustness of our framework, we compare residual learning with the strong
Dual-Space KD (DSKD) baseline under different divergence loss functions. In particular, we re-
place the KL divergence in DSKD with alternatives including reverse KL, Jensen–Shannon (JS)
divergence, adaptive KL, and skewed KL variants, and measure the student performance in each
setting. All experiments are conducted with Mixtral-8×7B-Instruct as the teacher and GPT2-120M
as the student. The results in Table 5 show that residual learning consistently outperforms DSKD
across all divergence objectives, underscoring its generalization and effectiveness. By leveraging
the teacher’s errors as learning signals, residual learning prevents the student from imitating the
teacher’s output distributions in a rigid manner, resulting in stronger generalization.

Table 5: Comparing residual learning vs. DSKD under divergence variants.

Description Dolly SelfInst VicunaEval S-NI UnNI Avg.

Mixtral-8×7B-Instruct → GPT2-120M

DSKD + forward KL 23.11 11.20 15.81 20.33 21.56 18.40
DSKD + reverse KL 22.03 9.44 12.95 17.08 18.41 15.98
DSKD + adaptive KL 23.41 10.65 14.76 18.88 20.46 17.63
DSKD + JS divergence 22.60 10.59 16.21 18.44 20.37 17.64
DSKD + skew forward KL 23.63 10.89 15.57 19.42 21.21 18.14
DSKD + skew reverse KL 23.15 11.10 15.64 20.47 21.67 18.40
Ours 22.62 11.66 15.12 24.51 26.15 20.01
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