
Optimal Solving of Constrained Path-Planning Problems with Graph
Convolutional Networks and Optimized Tree Search

Kevin Osanlou1,2 Andrei Bursuc3 Christophe Guettier1 Tristan Cazenave2 Eric Jacopin4
1Safran Electronics & Defense 2LAMSADE, Paris-Dauphine University 3valeo.ai

4CREC Saint-Cyr, Coetquidan School Campus
{kevin.osanlou,christophe.guettier}@safrangroup.com andrei.bursuc@valeo.com

tristan.cazenave@lamsade.dauphine.fr eric.jacopin@st-cyr.terre-net.defense.gouv.fr

Abstract— Deep learning-based methods are growing promi-
nence for planning purposes. In this paper, we present a hybrid
planner that combines a graph machine learning model and
an optimal solver based on branch and bound tree search
for path-planning tasks. More specifically, a graph neural
network is used to assist the branch and bound algorithm in
handling constraints associated with a desired solution path.
There are multiple downstream practical applications, such
as Autonomous Unmanned Ground Vehicles (AUGV), typically
deployed in disaster relief or search and rescue operations. In
off-road environments, AUGVs must dynamically optimize a
source-destination path under various operational constraints,
out of which several are difficult to predict in advance and
need to be addressed online. We conduct experiments on
realistic scenarios and show that graph neural network support
enables substantial speedup and smoother scaling to harder
path-planning problems. Additionally, information provided by
the graph neural network enables the approach to outperform
problem-specific handcrafted heuristics, highlighting the poten-
tial graph neural networks hold for path-planning tasks.

I. INTRODUCTION

Automated path-planning is an area of interest in AI with
a wide panel of applications. The ability to efficiently plan
an optimal path in a geometric graph that meets a set of
requirements is becoming increasingly critical in a world
where autonomy is starting to prevail. The requirements
usually consist in a set of constraints imposed on the so-
lution path , making it more difficult to compute. In the
case of autonomous unmanned ground vehicles (AUGV),
terrain structure is represented through a geometric graph,
and maneuvers must consider terrain knowledge. Disaster
relief, logistics, or area surveillance are a few among many
applications for which online constrained path-planning al-
gorithms enable autonomous mobility using perception and
control functionalities. The ability of the AUGV to efficiently
come up with an optimal path for a given mission has
a direct impact on operational efficiency, underpinning the
importance of an efficient path-planner.

For such problems, classical robotic systems integrate A*
algorithms [1] as a best-first search approach in the space
of available paths. For a complete overview of static algo-
rithms (such as A*), replanning algorithms (D*), anytime
algorithms (e.g. ARA*), and anytime replanning algorithms
(AD*), we refer the reader to Ferguson et al. [2]. Tree search
algorithms stemming from A* require the specification of a
planning domain where constraints are modeled, and can be

Fig. 1. Proposed framework for solving a path-planning problem with
constraints in a graph with a GCN-assisted solver. The GCN takes as input
the graph and the problem, and provides relevant information to speed up
a tree search, after which an optimal solution path can be built.

more or less efficient depending on the affinity of the search
heuristic with the planning context. In this work, we focus on
the branch and bound (B&B) tree search algorithm instead
[3]. More specifically, our study focuses on the performance
gain when it is coupled with machine learning techniques.

Convolutional Neural Networks (CNNs) have been proven
to be very efficient for computer vision applications, such
as image recognition [4]. They are a multilayer perceptron
variant designed for minimal preprocessing and capable of
detecting complex patterns in images. In this paper, we are
dealing with graphs which represent either maneuvers or off-
road navigation. Instead of CNNs, the paper focuses on graph
convolutional neural networks (GCNs), a recent architecture
for learning complex patterns in graph data [5], [6], [7]. One
of the main reasons GCNs are preferred over CNNs for graph
processing is that nodes and edges are attributed relevant
features. CNNs are not able to learn features of an equivalent
quality from an image of the graph. Moreover, CNNs are not
invariant to node permutations, an issue GCNs do not share.

In this paper, we study a GCN-based approach for con-
strained path-planning and stick to exact resolution methods
for path-related problems in a specific graph. We run exper-
iments on realistic AUGV scenarios for which we consider
mandatory pass-by nodes as type of constraint. This makes
path-planning similar to the traveling salesman problem
(TSP). The TSP is an NP-hard problem for which there
exist efficient approximate solvers [8], however it remains a
challenge for exact approaches ([9], [10], [11]). We make the
following contributions. First, we define a GCN architecture

ar
X

iv
:2

10
8.

01
03

6v
4

 [
cs

.A
I]

 3
 A

pr
 2

02
2

suited for the considered problem. Second, we propose a self-
supervised training strategy for the GCN. We then provide
a framework which combines the GCN with the depth-first
branch and bound (B&B) algorithm. Finally, we conduct
experiments on realistic problems for which results exhibit
accelerated solving performance.

II. RELATED WORK

In the past few years there has been a growing interest
for transferring the intuitions and practices from neural
networks on structured inputs towards graphs [12], [13],
[14], [6]. [13] bridges spectral graph theory with multi-layer
neural networks by learning smooth spectral multipliers of
the graph Laplacian. Then [14] and [6] approximate these
smooth filters in the spectral domain using polynomials of
the graph Laplacian. Free parameters of the polynomials are
learned by a neural network, avoiding the costly computation
of the eigenvectors of the graph Laplacian. We refer the
reader to [15] for a comprehensive review on learning on
graphs.

Applications of these types of networks are starting to
emerge. Recent works suggest GCNs are capable of making
key decisions to solve either path-planning problems in
graphs [16], or even STRIPS planning tasks [17]. Regarding
path-related optimization problems, Liet al. [16] tackle the
maximum independent set (MIS) problem with a solver
that combines a GCN-guided tree search and local search
optimization. The input to their solver is a graph, and the
output is a highly optimized solution. Kool et al. [18]
propose a reinforcement learning framework to solve the
travelling salesman problem (TSP) and variants of the vehicle
routing problem (VRP) approximately. While they prefer
an encoder-decoder architecture over GCNs, they achieve
better results than previous learning-based approaches. These
related works focus on the approximate solving of a given
task in big graphs. To this end, a learning model is coupled
with tree search algorithms to narrow a wide search space
in order to retrieve a high quality solution in a short time.
In contrast, our work is intended for optimal task solving
in smaller graphs. As optimal solving requires visiting most
of the search space to ensure proof of optimality, previous
approaches are not suitable and we proceed differently.

III. CONTEXT AND PROBLEM FORMALIZATION

We consider a weighted connected graph G = (V, E , A),
where V is the set of vertices, E the set of edges and A
the adjacency matrix of the graph. While in this work we
choose to deal with realistic AUGV scenario graphs which
are undirected (§VII), our approach is equally applicable to
directed graphs. In a typical crisis scenario, the AUGV has to
proceed from an initial point to several areas for information
gathering, before making its way to a final destination
to share its assessment of the ongoing situation. Another
frequent scenario consists in delivering food and first-aid
equipment to areas likely to be undergoing a shortage. Such

problems can be formalized mathematically. Let I be a path-
planning problem instance, defined as follows:

I = (start, dest, C)

• start ∈ V is the index of the start node in G,
• dest ∈ V is the index of the destination node in G,
• C is a set of constraints that need to be satisfied.

Solving I optimally means finding a path p, i.e. a sequence
of nodes (or edges), which begins from start, ends in dest,
satisfies all constraints in C and minimizes the total weight
of the edges included in p. We can consider various types of
constraints in C. In this work, we experiment with constraints
related to mandatory nodes, which require the solution path
to include a given set of nodes M ∈ V . In the next
sections, we will refer to a path-planning problem instance
(start, dest,M) simply as an instance. A valid solution path
is required to include every node in M at least once. Since
the order of visit is not imposed for M , this problem can be
assimilated to a TSP variant.

IV. PATH-BUILDING WITH GRAPH CONVOLUTIONAL
NETWORKS

In this section, we present our approach for training a
graph neural network on a particular graph. We aim to
leverage the learning capacity of the graph neural network to
approximate the behavior of a model-based planner on the
graph.

A. Neural Networks

Neural Networks (NNs) enable multiple levels of ab-
straction of data by using models with trainable parameters
coupled with non-linear transformations of the input data.

In spite of the complex structure of a NN, the main mech-
anism is straightforward. A feedforward neural network, or
multi-layer perceptron (MLP), with L layers describes a
function f(x;θ) : Rdx 7→ Rdy that maps an input vector
x ∈ Rdx to an output vector y ∈ Rdy . Vector x is the input
data that we need to analyze (e.g. an image, a signal, a graph,
etc.), while y is the expected decision from the NN (e.g. a
class index, a heatmap, etc.). The function f performs L
successive operations over the input x:

h(l) = f (l)(h(l−1); θ(l)) = σ
(
θ(l)h(l−1) + b(l)

)
(1)

where h(l) is the hidden state of the network and f (l) is the
mapping function performed at layer l and parameterized
by trainable parameters θ(l) and bias b(l), and piece-wise
activation function σ(·); h(0) = x.

CNNs [19], [20] are a popular architecture for 2D data.
They generalize MLPs by sliding groups of parameters
across an input vector similarly to filters in image process-
ing, leveraging fewer parameters and parallel computation.
Hidden states in CNNs preserve the number of dimensions
of the input, i.e. 2D when images are used as input, and are
called feature maps.

B. Graph Convolutional Networks

GCNs are generalizations of CNNs to non-Euclidean
graphs [15]. GCNs are in fact neural networks based on
local operators on a graph G = (V, E) which are derived
from spectral graph theory. The filter parameters are typi-
cally shared over all locations in the graph, thus the name
convolutional.

We consider here the approach of Kipf and Welling [6].
The GCNs have the following layer propagation rule:

h(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2h(l)θ(l)

)
, (2)

where Ã = A+IN is the adjacency matrix of the graph with
added self-connections such that when multiplying with Ã
we aggregate features vectors from both a node and its neigh-
bors. Matrix IN is the identity matrix; D̃ is the diagonal node
degree matrix of Ã; σ(·) is the activation function, which
we set to ReLU(·) = max(0, ·). Matrix D̃ is employed for
normalization of Ã in order to avoid a change of scales in the
feature vectors when multiplying with Ã. In [6], the authors
argue that using a symmetric normalization, i.e. D̃−

1
2 ÃD̃−

1
2 ,

ensures better dynamics compared to simple averaging of
neighboring nodes in the one-sided normalization D̃−1A.

C. Problem Instance Encoding

The input of our model is a vector x containing in-
formation about the problem instance, including the graph
representation. For every instance I = (start, dest,M) of a
given graph G = (V, E), we associate a vector x made up of
triplet features from each node in G, making up for a total
of 3× |V| features. The three features for a node j ∈ V are:
• start node feature stj = 1 if node j is the start node in

instance I , otherwise 0
• end node feature edj = 1 if node j is the end node in

instance I , otherwise 0
• mandatory node feature myj = 1 if node j is a

mandatory node in instance I , otherwise 0.
We obtain the input x ∈ R|V|×3 by stacking node features:

x = [[st1, ed1,my1], [st2, ed2,my2], ..., [st|V|, ed|V|,my|V|]]
(3)

D. Neural network architecture and training

We define a neural network f that consists of a sequence
of multiple graph convolutions followed by a fully connected
layer. This GCN takes as input any instance I over the
graph G, and outputs a probability vector ŷ ∈ R|V|. Then,
argmax(ŷ) corresponds to the next mandatory node to
visit from the start node in an optimal path that solves
I . The hidden states of the graph convolution layers h(l) ∈
R|V|×Nhidden consist of Nhidden higher-dimensional features
for each node in the graph . After the final convolutional
layer, the feature matrix is flattened into a vector by con-
catenating its rows and linked to a fully connected layer that
maps it to a vector z ∈ R|V|. We use the softmax function
to convert z into probabilities.

NNs trained in a supervised manner use labeled training
data, i.e. a set of input-output pairs (xi,yi) sampled from

a large training set. Here, xi is an instance I and yi is the
index of the next mandatory node for xi in an optimal path
solving I . We train the GCN on instances that have already
been optimally solved by an exact planner, which serves here
as a teacher. The network learns to approximate the solutions
computed by the planner. To this end, we train the network
using the negative log-likelihood loss , used for multi-class
classification, and stochastic gradient descent (SGD).

E. Mandatory Node Ordering

For a given input instance, the GCN computes a mandatory
node prediction at a time. In order to make it compatible
with instances with varying amounts of mandatory nodes we
make a few adjustments. Given an instance with multiple
mandatory nodes (start, dest,M), we perform multiple re-
cursive GCN calls to get the next mandatory node predictions
qi. More specifically, after a prediction qi is computed, we
generate a sub-instance where the start node becomes the
current predicted mandatory node qi and where the list of
mandatory nodes contains the remaining nodes except qi, i.e.
(qi, dest, M̃i = M̃i−1 \qi), where M̃0 =M and q0 = start.
We use the recursive calls during both training and testing.
An interesting side-effect of this strategy is that it ensures an
implicit balancing of the training samples by difficulty, as we
generate sub-instances ranging from challenging (large |M |)
to trivial (small |M |).

V. SELF-SUPERVISED LEARNING

We present a self-supervised learning strategy aimed at
training the GCN for a particular graph. First, we define a
planning domain to solve instances. Second, we introduce a
modified version of the A* algorithm for generating optimal
data on which the GCN is trained. In this section, we refer
to an instance as a planning state s = (start, dest,M). An
end state is a termination instance, i.e. an instance for which
the destination node has been reached and all mandatory
nodes have been visited. We denote the termination instances
as Fi = (i, i, ∅), i ∈ {1, 2, ..., |V |}. There are exactly as
many termination instances as there are nodes in G. We
respectively define the successors and predecessors of a state
s = (start, dest,M) as succ(s) and pred(s) in Table I.

TABLE I
TRANSITION RULES TO SUCCESSORS AND PREDECESSORS.

s = (start, dest,M)

Successor state s′ Predecessor state s′

s′ = (start′, dest′,M ′) s′ = (start′, dest′,M ′)
(start, start′) ∈ E (start′, start) ∈ E
dest′ = dest dest′ = dest
M ′ = M\{start′} M ′ = M . 1∗

- or
- M ′ = M ∪ {start} . 2∗

s is not an end state s′ is not an end state
Transition cost: (start, start′) Transition cost: (start′, start)

1∗ only if start′ 6∈M
2∗ only if start 6= dest

Algorithm 1 Backwards A* for reverse instance solving
1: function ComputePaths()
2: while elapsed time < timeout do
3: remove state s from the front of OPEN;
4: if length(mand(s)) > 0 then . 3∗
5: insert the pair < s, d(s) > to the training set
6: for all s′ ∈ pred(s) do . 3∗
7: if g(s′) > g(s) + c(s, s′) then
8: g(s’) = g(s) + c(s, s’)
9: a(s’) = s

10: if mand(s) = mand(s′) then
11: d(s′) = d(s) . 4∗
12: else
13: d(s′) = startNode(s) . 3,5∗
14: insert s′ into OPEN with value g(s′) . 6∗
15: function main()
16: for all i ∈ {1, 2, ..., |V |} do
17: for all s ∈ S do
18: g(s) =∞
19: g(Ei) = 0, a(Ei) = ∅, d(Ei) = ∅
20: OPEN = ∅
21: insert Fi into OPEN with value g(Ei) . 6∗
22: ComputePaths();
3∗ length(x): returns length of list x; mand(x): returns mandatory
nodes of instance x; startNode(x): returns the start node of
instance x; pred(x): returns all possible predecessors of instance
x
4∗ s′ is created from s without adding its start node to the list of mandatory
nodes
5∗ s′ is created from s by adding its start node to the list of mandatory
nodes
6∗ h = 0

Transition costs from a state to a neighboring state is the
cost of the edge in the graph linking the start nodes of both
states. With these rules, the destination node remains always
the same. Therefore, we run the backwards version of A*
from every termination instance Fi as initial state (using pred
as rule of succession). For each state s visited by A*, a path
p is built from s to Fi which the algorithm considers the
shortest. We define g(s) as the cost of p, a(s) as the next
state visited after s in p, and d(s) as the first mandatory node
of s that is visited in p.

Furthermore we perform the following changes to A*.
First, when a shorter path is found to a state s′ while
developing a state s, i.e. g(s′) > g(s) + c(s, s′), the values
of a(s′) and d(s′) are also updated along with g(s′) to
take into account the shorter path. Secondly, we set the
heuristic function h to 0. Since A* is run backwards from
a termination state Fi, we are not aiming for the algorithm
to reach a defined state in particular, but seek to reach as
many states as possible. This ensures that when a state s is
taken from the OPEN priority list of states left to develop, an
optimal path from s to Fi has already been found. Choosing
d(s) as the next mandatory node to visit thus enables optimal
solving. Consequently we can add the pair 〈s, d(s)〉 to the
training set. We provide the pseudo-code in Algorithm 1.

The data generated by the algorithm is added to the
training set and shuffled. The GCN is then trained on this
set with supervised learning. Results show that training on

the ”synthetic” data generated with A* enables the GCN
to generalize well on instances that A* did not process.
We argue this is because the distribution obtained with A*
is related to the path length of resolved instances. In fact,
graph patterns already explored in short path solutions are
incrementally included into longest ones.

VI. DEPTH-FIRST BRANCH AND BOUND TREE SEARCH

It is possible to resolve an instance within a combina-
torial search tree, rather than in the path-planning domain
defined in §V. To this end, we compute the shortest source-
destination paths for every pair of nodes 〈i, j〉 in G using Di-
jkstra’s algorithm, as well as the associated path cost. Solving
an instance I = (start, dest,M) then becomes equivalent to
finding the optimal order in which the mandatory nodes in M
are visited for the first time. The solution path associated with
an order o = (m1,m2,m3, ...,mq−1,mq) of the mandatory
nodes can be built by concatenating the shortest path from
start to m1, from m1 to m2, from m2 to m3, ... , from
mq−1 to mq , and from mq to dest. Its total cost is the sum
of the cost of each shortest path used to build it. A particular
tree can be searched for identifying an optimal order of the
mandatory nodes. For an instance I , we define the root of this
tree as the start node, every leaf node as the dest node, and
every intermediate tree node as a mandatory node in M , such
that a path from the root of the tree to a leaf defines an order
in which to visit the mandatory nodes in M . The cost of of
transitioning from a node v to a child node v′ in the tree is the
cost of the shortest path in G between the pair 〈v, v′〉. In the
following, we refer to this tree as the mandatory search tree.
Since we are using here only mandatory node constraints,
the combinatorial optimization problem associated with this
tree displays a similar structure with the TSP. However, it
differs in the choice of the start and destination nodes which
are fixed.

The branch and bound algorithm (B&B) is a popular tree
search algorithm that is well known for its computational
efficiency ([3]). In this work, we consider a depth-first B&B
search algorithm. When developing a node inside the tree,
the algorithm checks if each branch is expected to host a
better solution than the best solution found so far. Should
that not be the case for a given branch, the branch is cut,
and the algorithm will not develop nodes further down the
branch. This is done by using a lower bound and an upper
bound. The lower bound is the sum of the total cost from
the root node to the current node and a heuristic function
π that approximates the remaining cost from the current
node to the best achievable solution in branches below. This
heuristic function should return a value as close as possible
to this remaining cost (to cut as frequently as possible), while
staying smaller (for the algorithm to remain optimal).

Next, we define the heuristic function π that we use. Let
v ∈ M be a mandatory node in the mandatory search tree,
and R the set of remaining mandatory nodes left to the leaf
node dest, i.e. the nodes in M that haven’t been included
between the root node start and v. Let D = {v}∪R∪{dest}.
We define two functions, min1 and min2, that respectively

Fig. 2. GCN-assisted branch and bound algorithm pipeline. The GCN is
used recursively to build an order of visit for the mandatory nodes. The
order is converted into a path using the previously computed shortest path
pairs, and the cost of the path is used as an initial upper bound for the
algorithm. Here, the upper bound of the GCN allows for a level 2 early cut.

return for a node x in D the lowest shortest path cost in
G from x to any node in D\{x}, and the second lowest
such cost. We build the heuristic function π by considering
the remaining nodes left. For each node left, we consider
the weight of all edges connecting it to other nodes in D
and add the first and second smallest such weights, with the
exception of v and dest for which only the first smallest
weight is added, and divide the total by 2:

π(v) =
1

2
(min1(v)+min1(dest)+

∑
r∈R

min1(r)+min2(r))

Recent progress in learning-assisted tree search has shown
that machine learning can be used to narrow the search space
in very large domains to allow for efficient solving. Inspiring
results have been shown in the game of Go [21], [22], where
a very good solution, which is not required to be optimal,
is found in record time. Promising parts of the search tree
are first visited in accordance with the suggestions of the
neural network, unpromising parts then, only if time allows.
On the other hand, in a context where finding an optimal
solution is critical, the search cannot be directed in such a
way, as proof of optimality is required. Consequently, we
keep the GCN out of the tree search procedure. For a given
instance, we use the GCN recursively in order to obtain a
suggested order of visit of the mandatory nodes (IV-E), from
which we build the associated solution path by concatenating
the shortest paths. This is done in negligible time compared
to the tree search. The cost of the solution path found in
such probing manner [23] is then used as an initial upper
bound for the B&B algorithm (figure 2). In section §VII we
conduct experiments to evaluate the influence of the upper
bound obtained with the GCN on search performance.

VII. EXPERIMENTS

A. Benchmarks and baselines

We run experiments to evaluate the impact of the GCN’s
upper bound on the B&B method. Since proof of optimality
is necessary in our context, we focus only on small-scale
problems for which optimal solving is possible in reasonable
time. We consider four different graphs, G1, G2, G3 and G4,
with respectively 15, 23, 22 and 23 nodes. These graphs
represent realistic AUGV crisis scenarios in which aid has to
be provided to key points in operational areas. More details
on the graphs are available in [24], from which the scenarios
have been built. We generate 1512, 2928, 2712 and 2712
random instances for each graph respectively. In order to
remain close to some ’realistic’ instances, we generate the
instances as follows: using the shortest source-destination
paths computed previously, we apply a decimation ratio (typ-
ically 80%) to keep only the 20% source-destination pairs
that have the longest shortest paths. For each resulting pair
〈start, dest〉 kept, we generate multiple random instances
with an increasing cardinality for the set of mandatory nodes,
ranging from 5 to 12.

We consider 4 different baseline solvers on the bench-
mark instances generated to compare solving performance.
All solvers search for an optimal solution path. First, we
use a solver based on dynamic programming (DP) which
searches the mandatory search tree. Second, we run the B&B
algorithm to search the mandatory search tree, both with and
without the upper bound provided by the GCN. Lastly, we
solve instances using forward A* applied on the planning
domain described in section §V, with the minimum spanning
tree (MST) as heuristic function. The MST heuristic is
computed for an instance (start, dest, M) by considering
the complete graph G′, which comprises only the start, dest
and mandatory nodes M . All pairs of nodes (v, v′) in G′ are
connected by an edge which has a weight equal to the cost
of the shortest path from v to v′ in G. The MST heuristic
value is obtained by adding the following three values: the
total weight of the MST of all mandatory nodes M in G′,
the minimum edge weight in G′ from the start node to any
node in the MST, and the minimum edge weight in G′ from
any node in the MST to the dest node.

B. Implementation details

We set the run-time of A* to 10 hours per graph for data
generation. We use 3 graph convolutional layers of width
100. During training, we apply batch normalization [25] with
decay of moving average ε = 0.9, dropout with drop rate of
0.1, and train the GCN with Adam [26]. We set the learning
rate to η = 10−4. We train models on a Tesla P100 GPU
using over 1.5M training examples generated by A*, for ∼5
hours. We conduct the benchmark tests in this section on a
laptop with an Intel i5 processor and 8GB of RAM. We point
out that our approach requires GPU only for the training of
the GCN, which can be done offline. Problem instances can
be then solved online on a CPU.

Fig. 3. Comparison of the performance of different solvers on benchmark
instances generated for graph G2. The X axis represents the number of
mandatory nodes of the instances, the Y axis the average solving time. We
limit the Y axis to a range [0,4] to obtain a better comparison scale.

C. Results

We summarize results for G2 in Figure 3. We detail the
experiments for graph G3 and G4 in Tables II and III. We
include solving time only if it is measurable by CPU clock
time. Figures for all graphs show a similar trend. We note that
for instances with seven mandatory nodes and more, best-
first algorithms such as A* applied on the planning domain
defined in §V become more suited than depth-first algorithms
such as B&B applied on the combinatorial search tree
associated with the mandatory constraints. Although each
planning state takes longer to compute in order to account
for the specifics of the planning domain, overall significantly
fewer planning states are visited than mandatory search tree
nodes. This is because the planning domain takes advantage
of the graph structure, which gives A* a significant edge
over depth-first DP and B&B. We note, however, that when
the upper bound of the GCN is used, the B&B algorithm
is able to outperform A* on all instances, even the most
complex ones, while scaling more smoothly with the number
of mandatory nodes. In table IV we provide additional

TABLE II
EXPERIMENTS FOR GRAPH G3 . LEGEND: T/O = 5 MINUTES TIMEOUT.

Mandatory #: 5 7 9 11 12

DP
Avg. node visits: 11.7K 876K 98.6M T/O T/O
Avg. time (s): - 0.26 30.52 T/O T/O

B&B
Avg. node visits: 418 4,94K 146K 11,1M 120M
Avg. time (s): - - 0.07 5.39 71.1

A*, h=MST
Avg. state visits: 26.4 58.5 141 342 503
Avg. time (s): 0.14 0.29 0.73 1.84 2.70

B&B + GCN
Avg. node visits: 148 1,24K 10,8K 161K 642K
Avg. time (s): - - 0.01 0.08 0.34

TABLE III
EXPERIMENTS FOR GRAPH G4 . LEGEND: T/O = 5 MINUTES TIMEOUT.

Mandatory #: 5 7 9 11 12

DP
Avg. node visits: 11.7K 876K 98.6M T/O T/O
Avg. time (s): - 0.24 30.53 T/O T/O

B&B
Avg. node visits: 545 7.58K 193K 11,8M 122M
Avg. time (s): - - 0.09 5.28 70.8

A*, h=MST
Avg. state visits: 41.78 96.8 226 787 1,09K
Avg. time (s): 0.15 0.44 0.96 3.18 4.36

B&B + GCN
Avg. node visits: 233 2.46K 29.1K 235K 859K
Avg. time (s): - - 0.02 0.11 0.56

insight on these results through information collected from
the mandatory search tree for instances with 11 mandatory
nodes. The average number of nodes processed in the subtree
of each child node of the root node is given, as well as the
average score of the best known solution after the subtree is
processed.

TABLE IV
INFORMATION FROM THE MANDATORY SEARCH TREE.

Root node child # - 1 2 3 ...

B&B
Avg. node visits - 11M 50K 30K ...
Avg. best sol. score ∞ 10.35K 9940 9781 ...

B&B + GCN
Avg. node visits - 74K 11K 7K ...
Avg. best sol. score 9890 9300 9264 9249 ...

Since our B&B algorithm is depth-first, processing the
entire subtree under the first child node of the root node when
no initial upper bound is known is highly computationally
expensive. Indeed, no cut can be made until a leaf node
is reached, and even then, the identified solution is very
likely to be costly compared to the optimal solution, thus
the updated upper bound would still not allow for frequent
cuts, until a good part of the subtree has been processed. On
the other hand, if a good upper bound is known in advance,
which is generally the case for the one given by the GCN
in our experiments, the algorithm does not suffer from this
issue, and early cuts can be made.

VIII. DISCUSSION AND FURTHER WORKS

We experiment with path-planning problems defined by
three features: the start node, destination node, and manda-
tory nodes. We accelerate optimal depth-first solving of the
search tree associated with the mandatory constraints by
leveraging the upper bound computed by the GCN. We show
that this speedup is significant, competing successfully with
A*. This is the case even for scenarios where handling con-
straints within the planning domain is more appropriate than
extracting and solving them separately. Also, our attempts to
guide A* search with a GCN heuristic achieved worse results

than the MST heuristic. The reason is due to the best-first
approach for which the GCN is unable to provide a suitable
heuristic. Moreover, the proposed framework can include
additional types of constraints for path-planning problems.
Each new constraint type results in additional features on
nodes, and potentially also on edges [27]. In this case, the
GCN would learn to predict the next node to visit, and not
the next mandatory node. Recursive GCN calls would be
made until a solution which satisfies all constraints is found,
backtracking when necessary. The approach can be combined
with state-of-the-art constraint propagation techniques [28].
In the same manner, the solution cost can be used as an initial
upper bound for a depth-first search of a combinatorial tree
associated with the constraints.

Learning-wise, the more constraint types there are for a
path-planning problem, the wider the GCN learning domain
will be. Further work will especially focus on this limitation
to relate the exhaustiveness of the training phase with the
variety of constraint types. Also, the proposed approach
requires neural network offline training for a given graph
(e.g. problem scenario). It can then be used online for path
re-planning purposes, as the AUGV drives through the graph,
with appealing computational performances.

IX. CONCLUSION

We introduced a method combining graph neural networks
and branch and bound (B&B) tree search to handle con-
straints in path-planning, successfully accelerating optimal
solving of path-planning tasks. A relevant self-supervised
strategy has been developed, based on A*, which provides
appropriate data to train the graph neural network. The
heuristic information computed by the graph neural net-
work enables better scaling of the B&B algorithm onto
more complex problems. Results exhibit solving times that
outperform A* with problem-specific handcrafted heuristics.
Various path-planning applications for autonomous vehicles
can benefit from such an approach, especially when known
terrains are given and path or itineraries must be computed on
the fly. We also hope this line of work will serve to highlight
the merits of using graph neural networks for path-planning
tasks.

REFERENCES

[1] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems, Science and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968.

[2] D. Ferguson, M. Likhachev, and A. T. Stentz, “A guide to heuristic-
based path planning,” in Proceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systems, Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
June 2005.

[3] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm
for feature subset selection,” IEEE Transactions on Computers, vol.
C-26, pp. 917–922, 1977.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks
and locally connected networks on graphs,” in International Confer-
ence on Learning Representations, 2014.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations, 2017.

[7] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in International Conference on Learning
Representations, 2016.

[8] J. Monnot, V. T. Paschos, and S. Toulouse, “Approximation algo-
rithms for the traveling salesman problem,” Mathematical methods
of operations research, vol. 56, no. 3, pp. 387–405, 2003.

[9] Y. Caseau and F. Laburthe, “Solving small tsps with constraints.” in
ICLP, vol. 97, 1997, p. 104.

[10] T. Volgenant and R. Jonker, “A branch and bound algorithm for
the symmetric traveling salesman problem based on the 1-tree
relaxation,” European Journal of Operational Research, vol. 9, pp.
83–89, 01 1982.

[11] G. Laporte, “The traveling salesman problem: An overview of
exact and approximate algorithms,” European Journal of Operational
Research, vol. 59, no. 2, pp. 231–247, 1992.

[12] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Neural Networks, 2005. IJCNN’05. Proceed-
ings. 2005 IEEE International Joint Conference on, vol. 2. IEEE,
2005, pp. 729–734.

[13] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[14] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Advances in Neural Information Processing Systems, 2016, pp. 3844–
3852.

[15] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: going beyond euclidean data,”
IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[16] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with
graph convolutional networks and guided tree search,” in Advances
in Neural Information Processing Systems, 2018, pp. 536—-545.

[17] T. Ma, P. Ferber, S. Huo, J. Chen, and M. Katz, “Adaptive planner
scheduling with graph neural networks,” CoRR, vol. abs/1811.00210,
2018. [Online]. Available: http://arxiv.org/abs/1811.00210

[18] W. Kool and M. Welling, “Attention solves your tsp,” arXiv preprint
arXiv:1803.08475, 2018.

[19] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition,”
in Competition and cooperation in neural nets. Springer, 1982, pp.
267–285.

[20] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[21] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[22] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no.
7676, p. 354, 2017.

[23] K. Osanlou, C. Guettier, A. Bursuc, T. Cazenave, and E. Jacopin,
“Constrained shortest path search with graph convolutional neural
networks,” in Workshop on Planning and Learning (PAL-18), 2018.

[24] C. Guettier, “Solving planning and scheduling problems in network
based operations,” in Proceedings of Constraint Programming (CP),
2007.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference for Learning Representations,
2015.

[27] W. B. W. Vos, “End-to-end learning of latent edge weights for graph
convolutional networks,” Master’s thesis, University of Amsterdam,
8 2017.

[28] C. Guettier and F. Lucas, “A constraint-based approach for planning
unmanned aerial vehicle activities,” The Knowledge Engineering
Review, vol. 31, no. 5, pp. 486–497, 2016.

[29] K. Osanlou, C. Guettier, A. Bursuc, T. Cazenave, and E. Jacopin,

http://arxiv.org/abs/1811.00210

“Learning-based preference prediction for constrained multi-criteria
path-planning,” arXiv preprint arXiv:2108.01080, 2021.

[30] G. Li, M. Müller, B. Ghanem, and V. Koltun, “Training graph neural
networks with 1000 layers,” in International conference on machine
learning. PMLR, 2021, pp. 6437–6449.

[31] Z. Zhao, G. Verma, C. Rao, A. Swami, and S. Segarra, “Distributed
scheduling using graph neural networks,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 4720–4724.

[32] J. Park, J. Chun, S. H. Kim, Y. Kim, and J. Park, “Learning to
schedule job-shop problems: representation and policy learning using
graph neural network and reinforcement learning,” International
Journal of Production Research, vol. 59, no. 11, pp. 3360–3377,
2021.

[33] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 33, pp.
1621–1632, 2020.

[34] Z. Wang and M. Gombolay, “Learning scheduling policies for multi-
robot coordination with graph attention networks,” IEEE Robotics
and Automation Letters, vol. 5, no. 3, pp. 4509–4516, 2020.

[35] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks
for decentralized multi-robot path planning,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 11 785–11 792.

[36] F. Zhou, Q. Yang, T. Zhong, D. Chen, and N. Zhang, “Variational
graph neural networks for road traffic prediction in intelligent trans-
portation systems,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 4, pp. 2802–2812, 2020.

[37] T. Silver, R. Chitnis, A. Curtis, J. Tenenbaum, T. Lozano-Perez,
and L. P. Kaelbling, “Planning with learned object importance in
large problem instances using graph neural networks,” arXiv preprint
arXiv:2009.05613, 2020.

[38] M. S. A. Hameed and A. Schwung, “Reinforcement learning on
job shop scheduling problems using graph networks,” arXiv preprint
arXiv:2009.03836, 2020.

[39] F. Zhou, Q. Yang, K. Zhang, G. Trajcevski, T. Zhong, and
A. Khokhar, “Reinforced spatiotemporal attentive graph neural net-
works for traffic forecasting,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 6414–6428, 2020.

[40] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and
P. Veličković, “Combinatorial optimization and reasoning with graph
neural networks,” arXiv preprint arXiv:2102.09544, 2021.

[41] R. Sato, M. Yamada, and H. Kashima, “Approximation ratios of graph
neural networks for combinatorial problems,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[42] M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi,
“Learning to solve np-complete problems: A graph neural network
for decision tsp,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 4731–4738.

[43] L. Hu, Z. Liu, W. Hu, Y. Wang, J. Tan, and F. Wu, “Petri-net-
based dynamic scheduling of flexible manufacturing system via deep
reinforcement learning with graph convolutional network,” Journal
of Manufacturing Systems, vol. 55, pp. 1–14, 2020.

[44] Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-aware graph attention
networks for large-scale multi-robot path planning,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 5533–5540, 2021.

[45] K. Rusek and P. Chołda, “Message-passing neural networks learn
little’s law,” IEEE Communications Letters, vol. 23, no. 2, pp. 274–
277, 2018.

[46] Y. Hu, S. Chen, Y. Zhang, and X. Gu, “Collaborative motion
prediction via neural motion message passing,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 6319–6328.

[47] F. Gama, E. Tolstaya, and A. Ribeiro, “Graph neural networks for
decentralized controllers,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 5260–5264.

[48] Y. Hu, Y. Yao, and W. S. Lee, “A reinforcement learning approach
for optimizing multiple traveling salesman problems over graphs,”
Knowledge-Based Systems, vol. 204, p. 106244, 2020.

[49] X. Weng, Y. Yuan, and K. Kitani, “Joint 3d tracking and forecasting
with graph neural network and diversity sampling,” arXiv preprint
arXiv:2003.07847, vol. 2, no. 6.2, p. 1, 2020.

[50] H. Lemos, M. Prates, P. Avelar, and L. Lamb, “Graph colouring meets
deep learning: Effective graph neural network models for combinato-
rial problems,” in 2019 IEEE 31st International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 2019, pp. 879–885.

[51] I. Drori, A. Kharkar, W. R. Sickinger, B. Kates, Q. Ma, S. Ge,
E. Dolev, B. Dietrich, D. P. Williamson, and M. Udell, “Learning to
solve combinatorial optimization problems on real-world graphs in
linear time,” in 2020 19th IEEE International Conference on Machine
Learning and Applications (ICMLA), 2020, pp. 19–24.

[52] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman,
“Learning combinatorial optimization on graphs: A survey with
applications to networking,” IEEE Access, vol. 8, pp. 120 388–
120 416, 2020.

[53] T. Guo, C. Han, S. Tang, and M. Ding, “Solving combinatorial
problems with machine learning methods,” Nonlinear Combinatorial
Optimization, 2019.

[54] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, pp. 4–24, 2019.

[55] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” ArXiv, vol. abs/1810.00826, 2019.

[56] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,”
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

[57] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gn-
nexplainer: Generating explanations for graph neural networks,”
Advances in neural information processing systems, vol. 32, pp.
9240–9251, 2019.

[58] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks.” arXiv: Learning, 2019.

[59] E. Rossi, F. Frasca, B. P. Chamberlain, D. Eynard, M. M. Bronstein,
and F. Monti, “Sign: Scalable inception graph neural networks,”
ArXiv, vol. abs/2004.11198, 2020.

[60] V. K. Garg, S. Jegelka, and T. Jaakkola, “Generalization and represen-
tational limits of graph neural networks,” ArXiv, vol. abs/2002.06157,
2020.

[61] A. Loukas, “What graph neural networks cannot learn: depth vs
width,” ArXiv, vol. abs/1907.03199, 2020.

[62] F. Lin and H.-P. Hsieh, “A goal-prioritized algorithm for additional
route deployment on existing mass transportation system,” in 2020
IEEE International Conference on Data Mining (ICDM). IEEE,
2020, pp. 1130–1135.

[63] F. Lin, J.-Y. Fang, and H.-P. Hsieh, “A gaussian-prioritized ap-
proach for deploying additional route on existing mass transportation
with neural-network-based passenger flow inference,” in 2020 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2020, pp.
1–8.

[64] S. Sombolestan, A. Rasooli, and S. Khodaygan, “Optimal path-
planning for mobile robots to find a hidden target in an unknown
environment based on machine learning,” Journal of Ambient Intel-
ligence and Humanized Computing, vol. 10, no. 5, pp. 1841–1850,
2019.

[65] M. W. Otte, “A survey of machine learning approaches to robotic
path-planning,” University of Colorado at Boulder, Boulder, 2015.

[66] T. Zohdi, “The game of drones: rapid agent-based machine-learning
models for multi-uav path planning,” Computational Mechanics,
vol. 65, no. 1, pp. 217–228, 2020.

[67] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and
A. Kanezaki, “Path planning using neural a* search,” in International
Conference on Machine Learning. PMLR, 2021, pp. 12 029–12 039.

[68] I. Sung, B. Choi, and P. Nielsen, “On the training of a neural network
for online path planning with offline path planning algorithms,” In-
ternational Journal of Information Management, vol. 57, p. 102142,
2021.

[69] D. Xin, C. Hua-hua, and G. Wei-kang, “Neural network and genetic
algorithm based global path planning in a static environment,”
Journal of Zhejiang University-Science A, vol. 6, no. 6, pp. 549–
554, 2005.

[70] H. Zhou, D. Ren, H. Xia, M. Fan, X. Yang, and H. Huang, “Ast-
gnn: An attention-based spatio-temporal graph neural network for
interaction-aware pedestrian trajectory prediction,” Neurocomputing,
vol. 445, pp. 298–308, 2021.

[71] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Routenet: Leveraging graph neural networks
for network modeling and optimization in sdn,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 10, pp. 2260–2270,
2020.

[72] Y. Zhang, S. Li, and H. Guo, “A type of biased consensus-based
distributed neural network for path planning,” Nonlinear Dynamics,
vol. 89, no. 3, pp. 1803–1815, 2017.

[73] R. Glasius, A. Komoda, and S. C. Gielen, “Neural network dynamics
for path planning and obstacle avoidance,” Neural Networks, vol. 8,
no. 1, pp. 125–133, 1995.

[74] N. Wu, X. W. Zhao, J. Wang, and D. Pan, “Learning effective road
network representation with hierarchical graph neural networks,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 6–14.

[75] Z. Li, C. Lu, Y. Yi, and J. Gong, “A hierarchical framework for
interactive behaviour prediction of heterogeneous traffic participants
based on graph neural network,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[76] S. Chen, J. Dong, P. Ha, Y. Li, and S. Labi, “Graph neural network
and reinforcement learning for multi-agent cooperative control of
connected autonomous vehicles,” Computer-Aided Civil and Infras-
tructure Engineering, vol. 36, no. 7, pp. 838–857, 2021.

[77] D. Cao, J. Li, H. Ma, and M. Tomizuka, “Spectral temporal graph
neural network for trajectory prediction,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
1839–1845.

[78] U. A. Syed, F. Kunwar, and M. Iqbal, “Guided autowave pulse
coupled neural network (gapcnn) based real time path planning and
an obstacle avoidance scheme for mobile robots,” Robotics and
autonomous systems, vol. 62, no. 4, pp. 474–486, 2014.

[79] Z. Li, J. Gong, C. Lu, and Y. Yi, “Interactive behavior prediction
for heterogeneous traffic participants in the urban road: A graph-
neural-network-based multitask learning framework,” IEEE/ASME
Transactions on Mechatronics, vol. 26, no. 3, pp. 1339–1349, 2021.

[80] Y. Lu, Y. Chen, D. Zhao, and D. Li, “Mgrl: Graph neural network
based inference in a markov network with reinforcement learning for
visual navigation,” Neurocomputing, vol. 421, pp. 140–150, 2021.

[81] E. Rehder, J. Quehl, and C. Stiller, “Driving like a human: Imitation
learning for path planning using convolutional neural networks,” in
International Conference on Robotics and Automation Workshops,
2017, pp. 1–5.

[82] Y. Peng, S.-W. Li, and Z.-Z. Hu, “A self-learning dynamic path
planning method for evacuation in large public buildings based on
neural networks,” Neurocomputing, vol. 365, pp. 71–85, 2019.

[83] S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spagnn: Spatially-
aware graph neural networks for relational behavior forecasting from
sensor data,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 9491–9497.

[84] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggre-
gated graph neural network for heterogeneous graph embedding,” in
Proceedings of The Web Conference 2020, 2020, pp. 2331–2341.

[85] Z. Lu, W. Lv, Y. Cao, Z. Xie, H. Peng, and B. Du, “Lstm variants
meet graph neural networks for road speed prediction,” Neurocom-
puting, vol. 400, pp. 34–45, 2020.

[86] R.-J. Wai and A. S. Prasetia, “Adaptive neural network control
and optimal path planning of uav surveillance system with energy
consumption prediction,” IEEE Access, vol. 7, pp. 126 137–126 153,
2019.

[87] X. Weng, Y. Yuan, and K. Kitani, “Ptp: Parallelized tracking and
prediction with graph neural networks and diversity sampling,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4640–4647, 2021.

[88] A. Monti, A. Bertugli, S. Calderara, and R. Cucchiara, “Dag-net:
Double attentive graph neural network for trajectory forecasting,” in
2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 2551–2558.

[89] D. Lee, Y. Gu, J. Hoang, and M. Marchetti-Bowick, “Joint interaction
and trajectory prediction for autonomous driving using graph neural
networks,” arXiv preprint arXiv:1912.07882, 2019.

[90] J. Wiederer, A. Bouazizi, U. Kressel, and V. Belagiannis, “Traf-
fic control gesture recognition for autonomous vehicles,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2020, pp. 10 676–10 683.

[91] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph

neural networks,” in Conference on robot learning. PMLR, 2020,
pp. 671–682.

[92] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural
rrt*: Learning-based optimal path planning,” IEEE Transactions on
Automation Science and Engineering, vol. 17, no. 4, pp. 1748–1758,
2020.

[93] E. S. Low, P. Ong, and K. C. Cheah, “Solving the optimal path
planning of a mobile robot using improved q-learning,” Robotics and
Autonomous Systems, vol. 115, pp. 143–161, 2019.

[94] C. Yan, X. Xiang, and C. Wang, “Towards real-time path planning
through deep reinforcement learning for a uav in dynamic environ-
ments,” Journal of Intelligent & Robotic Systems, vol. 98, no. 2, pp.
297–309, 2020.

[95] S. Guo, X. Zhang, Y. Zheng, and Y. Du, “An autonomous path
planning model for unmanned ships based on deep reinforcement
learning,” Sensors, vol. 20, no. 2, p. 426, 2020.

[96] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint
optimization of multi-uav target assignment and path planning based
on multi-agent reinforcement learning,” IEEE access, vol. 7, pp.
146 264–146 272, 2019.

[97] C. Qu, W. Gai, M. Zhong, and J. Zhang, “A novel reinforcement
learning based grey wolf optimizer algorithm for unmanned aerial
vehicles (uavs) path planning,” Applied soft computing, vol. 89, p.
106099, 2020.

[98] Q. Yao, Z. Zheng, L. Qi, H. Yuan, X. Guo, M. Zhao, Z. Liu, and
T. Yang, “Path planning method with improved artificial potential
field—a reinforcement learning perspective,” IEEE Access, vol. 8,
pp. 135 513–135 523, 2020.

[99] H. Bae, G. Kim, J. Kim, D. Qian, and S. Lee, “Multi-robot path
planning method using reinforcement learning,” Applied sciences,
vol. 9, no. 15, p. 3057, 2019.

[100] X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of unknown
environment based on deep reinforcement learning,” Journal of
Robotics, vol. 2018, 2018.

[101] A. K. Lakshmanan, R. E. Mohan, B. Ramalingam, A. V. Le, P. Veer-
ajagadeshwar, K. Tiwari, and M. Ilyas, “Complete coverage path
planning using reinforcement learning for tetromino based cleaning
and maintenance robot,” Automation in Construction, vol. 112, p.
103078, 2020.

[102] B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path planning
in dynamic environments through globally guided reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.
6932–6939, 2020.

[103] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning:
Fixed time, near-optimal path generation via oracle imitation,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 3965–3972.

[104] A. H. Qureshi and M. C. Yip, “Deeply informed neural sampling for
robot motion planning,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 6582–
6588.

[105] Y. Li, R. Cui, Z. Li, and D. Xu, “Neural network approximation based
near-optimal motion planning with kinodynamic constraints using
rrt,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11,
pp. 8718–8729, 2018.

[106] M. Saraswathi, G. B. Murali, and B. Deepak, “Optimal path planning
of mobile robot using hybrid cuckoo search-bat algorithm,” Procedia
computer science, vol. 133, pp. 510–517, 2018.

[107] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned
critical probabilistic roadmaps for robotic motion planning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 9535–9541.

[108] Z. Xing and S. Tu, “A graph neural network assisted monte carlo
tree search approach to traveling salesman problem,” IEEE Access,
vol. 8, pp. 108 418–108 428, 2020.

[109] B. Fu, L. Chen, Y. Zhou, D. Zheng, Z. Wei, J. Dai, and H. Pan,
“An improved a* algorithm for the industrial robot path planning
with high success rate and short length,” Robotics and Autonomous
Systems, vol. 106, pp. 26–37, 2018.

[110] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
planning networks: Bridging the gap between learning-based and
classical motion planners,” IEEE Transactions on Robotics, vol. 37,
no. 1, pp. 48–66, 2020.

[111] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 10 007–10 013.

[112] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned
aerial vehicles: A review, solutions, and challenges,” Computer
Communications, vol. 149, pp. 270–299, 2020.

[113] Á. Madridano, A. Al-Kaff, D. Martı́n, and A. de la Escalera, “Tra-
jectory planning for multi-robot systems: Methods and applications,”
Expert Systems with Applications, vol. 173, p. 114660, 2021.

[114] E. Prianto, M. Kim, J.-H. Park, J.-H. Bae, and J.-S. Kim, “Path plan-
ning for multi-arm manipulators using deep reinforcement learning:
Soft actor–critic with hindsight experience replay,” Sensors, vol. 20,
no. 20, p. 5911, 2020.

	I introduction
	II Related Work
	III Context and Problem Formalization
	IV Path-building with Graph Convolutional Networks
	IV-A Neural Networks
	IV-B Graph Convolutional Networks
	IV-C Problem Instance Encoding
	IV-D Neural network architecture and training
	IV-E Mandatory Node Ordering

	V Self-supervised learning
	VI Depth-First Branch and Bound Tree Search
	VII Experiments
	VII-A Benchmarks and baselines
	VII-B Implementation details
	VII-C Results

	VIII Discussion and Further Works
	IX Conclusion
	References

