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Abstract— In robotic vision, a de-facto paradigm is to learn
in simulated environments and then transfer to real-world
applications, which poses an essential challenge in bridging the
sim-to-real domain gap. While mainstream works tackle this
problem in the RGB domain, we focus on depth data synthesis
and develop a Range-aware RGB-D data Simulation pipeline
(RaSim). In particular, high-fidelity depth data is generated by
imitating the imaging principle of real-world sensors. A range-
aware rendering strategy is further introduced to enrich data
diversity. Extensive experiments show that models trained with
RaSim can be directly applied to real-world scenarios without
any finetuning and excel at downstream RGB-D perception
tasks. Data and code are available at https://github.com/shanice-
l/RaSim.

I. INTRODUCTION
With the advent of deep learning, neural networks have

emerged as dominance for numerous 3D vision tasks, in-
cluding 3D semantic segmentation [1], [2], [3], [4], object
pose estimation [5], [6], [7], and depth completion [8],
[9], [10]. However, Convolutional Neural Networks (CNNs)
and Transformers are extremely data-driven, requiring vast
amounts of high-fidelity RGB-D data during the training
process. Moreover, obtaining large-scale 3D datasets and
annotating their precise labels are extremely time-consuming
and labor-intensive.

As a result, numerous approaches have been proposed to
address the lack of real RGB-D data and labels. One of the
most effective strategies is to simulate large-scale synthetic
training data using tools like Blender [11] or OpenGL.
Oftentimes, domain randomization is also employed to en-
sure the diversity of the data [12], [13]. However, rendered
images still exhibit the drawbacks of low quality and lack of
physical plausibility. Therefore, recent works have shifted
their focus towards employing physically-based rendering
techniques [14], [15], [16] to enhance image quality. While
substantial efforts have been invested in enhancing the fi-
delity of synthetic RGB data, the sim-to-real domain gap
w.r.t. the depth modality is still obvious. This is because
synthetic depth data is typically flawless, whereas real-world
depth data is incomplete, along with blur and artifacts.

To alleviate this problem, we introduce a Range-aware
RGB-D data Simulation pipeline named RaSim to produce
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Fig. 1: Illustration of the core idea. We first generate high-
fidelity simulated depth maps by imitating the imaging
principle of the stereo camera, and further design a range-
aware rendering strategy that renders binocular IR or RGB
images according to distance to enrich data diversity. Then
an SDRNet is devised to restore the ground-truth depth from
simulated depth.

high-fidelity simulated 3D data. As shown in Fig. 1, our
simulation system is grounded on imitating the imaging
principle of the stereo camera based on the RealSense D400
series, as they have broad applications in both industrial and
academic scenarios. Implemented with Kubric [14], we first
generate large corpora of virtual scenes with photo-realistic
object models, diverse backgrounds, global illuminations,
and physical simulations. Then simulated depth maps are
obtained by performing the semi-global stereo-matching al-
gorithm using binocular images. We further devise a range-
aware rendering strategy to enrich data diversity. Specifically,
the type of matching images for depth simulation varies
between IR and RGB depending on the distance between
the scene and the camera. This strategy allows us to simulate
nearby and distant scenes, enabling the pipeline to adapt to
a wider range of application scenarios.

Supported by RaSim which randomizes over lighting
and textures, we create a large-scale domain-randomized
dataset that includes simulated and ground-truth depth maps,
pixel-level semantic annotations, and millions of instances



labeled with poses, categories, and 3D object coordinates. To
verify whether RaSim can assist in real-world applications,
we train networks with the proposed RaSim dataset for
two RGB-D-based perception tasks: depth completion and
depth pre-training. Firstly, a Simulated Depth Restoration
Network (SDRNet) is trained to repair the incomplete and
noisy simulated depth map by decoding hierarchical RGB
and depth features extracted with Swin Transformer [17].
Subsequently, inspired by the idea of masked language
modeling in natural language processing [18], we consider
depth restoration as a pre-training task for RGB-D-based
Transformer. Specifically, weights pre-trained on RaSim are
used to initialize the depth branch of the Transformer for
facilitating various downstream tasks. Note that we opt for
Transformer over CNNs, in that the scarcity of data in the
Transformer architecture is a more prominent concern.

To verify the effectiveness of RaSim, we conduct extensive
experiments on two real-world datasets, i.e., ClearGrasp [8]
for depth completion and YCB-V [5] for depth pre-training.
To sum up, our contributions are threefold:

• By imitating the imaging principle of the stereo camera,
we propose a RaSim pipeline to produce high-fidelity
simulated depth and photo-realistic RGB-D images. A
range-aware scene rendering strategy is further intro-
duced to enrich the diversity of depth data.

• Supported by the RaSim pipeline, we create a large-
scale synthetic RGB-D dataset that comprises more than
206K images across 9,835 diverse scenes. This dataset
is equipped with physical simulations, comprehensive
annotations, and the integration of domain randomiza-
tion techniques.

• We conduct extensive experiments on two RGB-D-
based perception tasks, i.e., depth completion and depth
pre-training, to demonstrate the applicability of RaSim
in real-world scenarios.

II. RELATED WORK

This work relates to two major strands of research: syn-
thetic RGB-D dataset generation and learning from simulated
environments.

A. Synthetic RGB-D Dataset Generation

High-quality synthetic data generation plays a crucial role
in 3D vision tasks since it is error-prone and labor-intensive
to collect, calibrate, and annotate realistic RGB-D data.
There are various synthetic 3D dataset generation pipelines
like BlenderProc [11], Omnidata [19], OpenRooms [20], and
Kubric [14]. However, the depth maps directly generated
from these pipelines are too idealistic to adjust to real-world
scenarios, since the depth collected from the real world could
be noisy and incomplete.

More recently, Dai et al. [21] proposed a pipeline called
DREDS to generate simulated depth by imitating the Re-
alSense D415 camera following [22]. However, DREDS
faces limitations in terms of physics simulation, which results
in semantic ambiguity. Additionally, the diversity of depth
data is restrained by the ideal range (0.5 – 2 meters) of their

system. Moreover, since DREDS is tailored for category-
level pose estimation, the variety w.r.t. object categories are
relatively scarce. In contrast, our work focuses on generating
a large-scale, photo-realistic RGB-D synthetic dataset featur-
ing rich annotations, physical simulations, a diverse array of
objects and scenes, and an extensive depth range.

B. Learning from Simulated Environments

In robotic vision, a widely adopted strategy involves
training the network in simulated environments and sub-
sequently transferring to real-world applications, such as
robotic grasping [23], pose estimation [24], [25], [26], depth
completion [8], [21], and scene understanding [27], [28],
[29]. Driven by this strategy, sim-to-real approaches like
domain randomization and domain adaptation play a pivotal
role in the learning process. Specifically, domain random-
ization diversifies training data to adapt to various testing
scenes [30], [31], [32], while domain adaptation leverages
transfer learning techniques to align the simulated environ-
ment with the real world [33], [34], [35]. In this work, we
address the sim-to-real challenge from both perspectives. On
one hand, we introduce randomization in object categories,
indoor and outdoor scenes, illuminations, and camera poses.
On the other hand, we simulate high-fidelity depth maps by
imitating real-world sensors to adapt to real domains.

III. RANGE-AWARE RGB-D DATA SIMULATION

A. Overview

Synthetic depth generated by the traditional pipelines is
accurate, complete, and noise-free, while the depth collected
from the real world is of low quality, along with blur
and artifacts. To bridge the sim-to-real domain gap, we
choose to simulate active stereo depth sensors, i.e., Intel
RealSense D400 Series, as they are relatively cheap and have
broad applications in both industrial and academic scenarios.
RealSense D400 imaging system includes an infrared (IR)
projector, stereo IR cameras with a baseline distance Cb and
a unified focal length Cf , as well as a central RGB camera.
After the projector emits infrared light, the stereo cameras
fetch left and right IR images respectively. Given binocular
images, we could calculate the disparity value Dp with the
semi-global matching algorithm [36].

Finally, the depth zsim is obtained as follows

zsim =
Cb · Cf
Dp + ϵ

, (1)

where we set ϵ to 10−6 to avoid dividing by zero.

B. Range-aware Scene Rendering

Following [21], [22], we render stereo IR images by
having all ambient lights emit rays in the IR spectrum
with reduced intensity. Additionally, a weak light value is
added to simulate radiance from the environment. Finally, the
rendered IR images are generated in grayscale. Despite the
above pipeline generating high-fidelity depth from stereo IR
images, a significant flaw is that the depth quality declines
sharply when the camera is far from the scene (≥2m). It
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Fig. 2: The pipeline of RaSim. Given the virtual scene constructed by objects, background, and global illumination, the
left and right cameras take videos under chronological physical simulation. Subsequently, the simulated depth maps are
generated by the semi-global stereo-matching algorithm from binocular images.

is due to the discrepancy between the left and right IR
images becoming inconspicuous, along with the reduced
environmental illumination, making the stereo-matching pro-
cedure error-prone. To alleviate this problem, we propose
a range-aware rendering strategy. Recapping Fig. 1, for
nearby scenes where the camera and objects are close, we
perform stereo matching with IR images. While for distant
scenes, the matching is based on binocular RGB images with
richer texture information and brighter light illumination.
Given rectified stereo images, RaSim first applies the center-
symmetric census transform [37], followed by a semi-global
stereo-matching [38] algorithm for disparity estimation. Sub-
sequently, the disparity is further refined by median filtering
and consistency checks before the conversion into depth.
This range-aware rendering strategy enriches the diversity
of the dataset, yielding improvements in the versatility of
the RaSim pipeline.

As shown in Fig. 2, we denote C{L,R} as the left and
right stereo cameras, S as the virtual scene, T as the total
frames per rendering, Zgt as the ground-truth depth, and
I{L,R} as the corresponding rendered left and right images
in the format of IR or RGB. The rendering procedure can
be formulated as follows

Zgt ={Zt | Zt = Render(CL,St)}Tt=1,

I{L,R} ={It | It = Render(C{L,R},St)}Tt=1,

St =Pt ◦ (O,B,L).
(2)

Thereby, O is the objects selected from the GSO [39] dataset,
B is an indoor or outdoor background selected from either
rooms textured by the CC0textures Library or scenes in
Poly Haven1, L is the global illumination varying with the
environment, and Pt stands for physical simulation working
on all the assets at frame t.

1https://polyhaven.com/hdris

The pipeline is implemented with Kubric [14], a dataset
generator interfacing with Blender [11] and PyBullet [40].

C. RaSim Dataset

Driven by RaSim, we create a large-scale synthetic RGB-
D dataset with domain randomization and physically-based
rendering techniques. It comprises more than 206K images
distributed across 9,835 diverse scenes. Each image is anno-
tated with pixel-level semantic information, alongside both
simulated and ground-truth depth maps, and other meta
information w.r.t. scene generation. Moreover, one million in-
stances featured with CAD models, poses, categories, and 3D
coordinates are also included. Thanks to rich annotations, the
dataset can be applied to numerous 3D vision tasks including
object manipulation [13], unseen pose estimation [41], [42],
and 3D semantic segmentation [1], [43].

IV. DOWNSTREAM TASKS

In this section, we introduce two downstream tasks,
i.e., depth completion and depth pre-training, where our
RaSim dataset effectively addresses the data scarcity issue
and assists in real-world applications.

A. Depth Completion

As depicted in Fig. 3, taking an RGB image I ∈ RH×W×3

and the repeated simulated depth Zsim ∈ RH×W×3 as
input, our SDRNet first respectively extracts hierarchical
color and depth features with two Swin Transformer [17]
backbones named SwinC and SwinD. The features are then
concatenated and fed into two UPerNet [44] based decoders
predicting a coarse depth map Zc

est and a confidence map C
as used in [21]. The final depth prediction is composed of
the input and predicted depth as

Zf
est = (1−C)⊗ Zsim +C⊗ Zc

est, (3)
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Fig. 3: The architecture of SDRNet.
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Fig. 4: The architecture for object pose estimation.

where ⊗ denotes element-wise production.
Apart from the ground-truth depth, surface normal and

gradient are also derived to supervise the coarse Zc
est and

fine Zf
est depth estimation. The loss function is written as

L = Lf + wcLc,

L{c,f} = L{c,f}
Z + wnL{c,f}

N + wgL{c,f}
G ,

(4)

where LZ,LN,LG denote the L1 losses of ground-truth and
estimated depth, surface normal and gradient, and wc, wn, wg

are the loss factors. This optimization target enables Zc
est to

target the easily predictable area like the background while
Zf

est could focus on the challenging area like the edge of
objects.

Notably, the network is trained with pure synthetic data
and tested with the ClearGrasp dataset [8] collected from the
real world.

B. Depth Pre-training

To alleviate the lack of data, one de-facto paradigm is to
pre-train neural networks on large-scale datasets and finetune
on downstream task-specific datasets. Inspired by the idea of
masked language modeling, i.e., masking part of the data and
then predicting the invisible content according to context,
we introduce the simulated depth restoration as a pre-text
task for depth-based Transformer pre-training. Specifically,
we first pre-train an SDRNet with the proposed RaSim

dataset. After pre-training, two homogeneous Swin back-
bones, i.e., SwinC to encode color information and SwinD
to encode depth information, are initialized by ImageNet-
21K [45] and our RaSim dataset pre-trained weights sepa-
rately. In this way, the pre-trained SwinD backbone gains
prior knowledge of 3D geometric structures, thus benefiting
various 3D tasks.

We choose object pose estimation as a verification task,
for which collecting real-world annotations is oftentimes
very expensive. The objective of pose estimation is solv-
ing the 6DoF object pose, i.e., 3DoF rotation and 3DoF
translation, in the camera coordinate system. As shown in
Fig. 4, the features extracted from zoomed-in RGB-D images
are first aggregated and then sent to a geometric head to
decode surface region, 3D coordinate map, and object mask.
Afterwards, the surface region along with a 2D-3D dense
correspondence map is fed into a Patch-PnP module to
solve allocentric continuous rotation R and scale-invariant
translation t as used in [7], [46], [47].

V. EXPERIMENTS
A. Depth Completion

Implementation Details. The model is trained on our RaSim
dataset with the backbone of Swin-tiny (Swin-T). To adapt
the input scale of the backbone, we resize the depth map to
224× 224 or 512× 512 with nearest-neighbor interpolation.
We employ the Ranger optimizer [48], [49], [50] with a
learning rate of 1 × 10−4 and a weight decay of 0.01. The
training epoch is set to 10 with a batch size of 32.
Dataset. We evaluate SDRNet with the ClearGrasp [8] test
split, which contains 286 real-world RGB-D images of
transparent objects along with their corresponding ground-
truth depth maps.
Evaluation Metrics. We follow the evaluation protocol of
[8], [9]. The predicted and ground-truth depth maps are first
resized to 144 × 256, and we use four evaluation metrics:
(1) root mean squared error (RMSE), (2) absolute relative
difference (REL), (3) mean absolute error (MAE), and (4)



TABLE I: Comparison with state-of-the-art methods on
ClearGrasp. ↓ means lower is better, ↑ means higher is
better. RGBD-FCN and [51] are implemented by [9].

Methods RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp Real-known

RGBD-FCN 0.054 0.087 0.048 36.32 67.11 96.26
NLSPN [51] 0.149 0.228 0.127 14.04 26.67 54.32
CG [8] 0.039 0.051 0.029 72.62 86.96 95.58
LIF [9] 0.028 0.033 0.020 82.37 92.98 98.63
DREDS [21] 0.022 0.017 0.012 91.46 97.47 99.86
Ours 0.021 0.017 0.011 94.14 97.47 99.58

ClearGrasp Real-novel
RGBD-FCN 0.042 0.070 0.037 42.45 75.68 99.02
NLSPN [51] 0.145 0.240 0.123 13.77 25.81 51.59
CG [8] 0.034 0.045 0.025 76.72 91.00 97.63
LIF [9] 0.025 0.036 0.020 76.21 94.01 99.35
DREDS [21] 0.016 0.008 0.005 96.73 98.83 99.78
Ours 0.014 0.010 0.005 95.74 98.26 99.87

the threshold δ which satisfies δ > max( d̃i

di
, di

d̃i
), where

δ ∈ {1.05, 1.10, 1.25}, di and d̃i denote ground-truth and
predicted depths.
Comparison with State of the Arts. We compare our
method with several top-performing methods in Table I. Our
SDRNet exceeds previous state-of-the-art methods [8], [9] by
a large margin and achieves comparable results with [21].
Note that [8], [9] are trained with data from ClearGrasp,
while our network is trained exclusively on the synthetic
RaSim dataset and demonstrates superior performance when
transferred to real-world scenes. These results confirm the
high quality of the RaSim dataset and its effectiveness in
bridging the sim-to-real domain gap.

B. Depth Pre-training for Object Pose Estimation

Implementation Details. The experiments are implemented
with PyTorch [52]. Pose estimation models are trained for
12 epochs using the Ranger optimizer with a batch size of
24 and a learning rate of 1 × 10−4, annealing at 50% of
the training phase leveraging a cosine schedule [53]. The
objects of interest are obtained using the detection results of
YOLOX [54]. In all experiments, one model is trained for
all objects.
Dataset. The experiments are conducted on the widely used
YCB-V [5] dataset. It comprises more than 110K images
in 92 RGB-D videos spanning 21 selected objects from the
YCB object set. The dataset is challenging due to severe
occlusions, symmetric objects, variable lighting conditions,
and noisy depth. Additionally, we also use the publicly
available PBR images [55], [15] to aid training.
Evaluation Metrics. We use the most common metric ADD
and its variants for evaluation. The error of ADD metric [56],
[57] calculates the average distance of the object vertices
transformed by the ground-truth pose [R|t] and the estimated
pose [R̃|t̃]

eADD =
1

Nv

Nv∑
i=1

∥(Rxi + t)− (R̃xi + t̃)∥. (5)

It is considered correct if eADD is below 10% of the object
diameter. For symmetric objects, the eADD-S is employed

input outputRGB

Fig. 5: Visualization results of depth restoration on YCB-V.

based on the distance to the closest model point

eADD-S =
1

Nv

Nv∑
i=1

min
xj∈V

∥(Rxi + t)− (R̃xj + t̃)∥. (6)

We also report the area under curve (AUC) of ADD and
ADD-S metrics by varying the distance threshold from 0cm
to 10cm following [5].
Zero-shot Depth Restoration on YCB-V. To appraise
whether the pre-trained model has a transfer ability on
datasets in different domains, we perform depth restoration
experiments on the YCB-V dataset. Although the lack of
ground-truth depth constraints the calculation of quantitative
results, the qualitative results still reveal that the SDRNet
trained from the synthetic dataset could generalize well in
real-world scenarios, as shown in Fig. 5. It further proves
the broad usage of the proposed RaSim dataset.
Comparison with State of the Arts. Table II presents
our quantitative results with other state-of-the-art methods
[58], [59], [60], [61] on YCB-V. Our pre-trained model
achieves 98.2% on AUC of ADD-S and 93.8% on AUC
of ADD(-S), surpassing all the compared methods without
any time-consuming refinement procedure. Note that [58],
[60] focus on designing complex fusion strategies for color
and depth features, while [61] directly concatenates the RGB
and depth map and feeds them into the network. However,
our strategy is moderate yet more reasonable: leveraging the
homogeneous Transformer backbones to extract multimodal
features while initializing them with heterogeneous pre-
trained weights. This simplifies the network architecture yet
maintains high accuracy and efficiency.
Ablation studies. Table III illustrates several ablations
w.r.t. depth pre-training strategies. We can observe that
initializing SwinD with ImageNet pre-trained weights brings
slight enhancement over PyTorch’s default random initial-
ization (Table III A1 v.s. A0). Nevertheless, our depth
pre-training shows more distinct superiority, achieving an
enhancement of 3.7% on ADD(-S) metric and 2.9% on the
AUC of ADD(-S) metric (Table III B0 v.s. A0).

Aside from pre-training on RaSim, a simpler approach
is applying randomization after rendering depth (Ren &
Ran), like adding Gaussian noise or randomly dropping



TABLE II: Comparison with state of the arts on YCB-V. Here ADD(-S) uses the symmetric metric only for symmetric
objects (denoted with ∗), while ADD-S uses the symmetric metric for all objects.

DenseFusion [58] PVN3D [59] FFB6D [60] Uni6D [61] Ours

Object
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can 95.3 70.7 96.0 80.5 96.3 80.6 95.4 70.2 100.0 80.2
003 cracker box 92.5 86.9 96.1 94.8 96.3 94.6 91.8 85.2 92.1 71.9
004 sugar box 95.1 90.8 97.4 96.3 97.6 96.6 96.4 94.5 99.9 99.6
005 tomato soup can 93.8 84.7 96.2 88.5 95.6 89.6 95.8 85.4 98.7 96.7
006 mustard bottle 95.8 90.9 97.5 96.2 97.8 97.0 95.4 91.7 100.0 100.0
007 tuna fish can 95.7 79.6 96.0 89.3 96.8 88.9 95.2 79.0 100.0 98.8
008 pudding box 94.3 89.3 97.1 95.7 97.1 94.6 94.1 89.8 99.2 92.7
009 gelatin box 97.2 95.8 97.7 96.1 98.1 96.9 97.4 96.2 100.0 99.9
010 potted meat can 89.3 79.6 93.3 88.6 94.7 88.1 93.0 89.6 95.9 90.6
011 banana 90.0 76.7 96.6 93.7 97.2 94.9 96.4 93.0 100.0 99.2
019 pitcher base 93.6 87.1 97.4 96.5 97.6 96.9 96.2 94.2 100.0 99.8
021 bleach cleanser 94.4 87.5 96.0 93.2 96.8 94.8 95.2 91.1 99.1 95.8
024 bowl∗ 86.0 86.0 90.2 90.2 96.3 96.3 95.5 95.5 94.0 94.0
025 mug 95.3 83.8 97.6 95.4 97.3 94.2 96.6 93.0 96.1 95.0
035 power drill 92.1 83.7 96.7 95.1 97.2 95.9 94.7 91.1 99.9 96.4
036 wood block∗ 89.5 89.5 90.4 90.4 92.6 92.6 94.3 94.3 96.9 96.9
037 scissors 90.1 77.4 96.7 92.7 97.7 95.7 87.6 79.6 94.6 70.6
040 large marker 95.1 89.1 96.7 91.8 96.6 89.1 96.7 92.8 99.8 94.3
051 large clamp∗ 71.5 71.5 93.6 93.6 96.8 96.8 95.9 95.9 99.2 99.2
052 extra large clamp∗ 70.2 70.2 88.4 88.4 96.0 96.0 95.8 95.8 97.6 97.6
061 foam brick∗ 92.2 92.2 96.8 96.8 97.3 97.3 96.1 96.1 99.9 99.9
Avg 91.2 82.9 95.5 91.8 96.6 92.7 95.2 88.8 98.2 93.8

TABLE III: Ablations on depth pre-training strategies.
We report the results of ADD(-S), and AUC of ADD-S and
ADD(-S) metrics on the YCB-V dataset. Ren & Ran is short
for randomization after rendering depth.

Row SwinC SwinD ADD(-S)
AUC of
ADD(-S)

AUC of
ADD-S

A0 ImageNet-21K Random 81.8 90.9 97.6
A1 ImageNet-21K ImageNet-21K 82.5 92.8 97.8
B0 ImageNet-21K RaSim 85.5 93.8 98.2
B1 ImageNet-21K Ren & Ran 84.6 93.3 97.6
C0 ImageNet-21K Stereo IR Split 83.9 93.4 98.0
C1 ImageNet-21K Stereo RGB Split 83.7 93.6 97.9

depth values. We observe this straightforward strategy is
also effective (Table III B1 v.s. A0), but worse than the
performance of RaSim initialization (Table III B1 v.s. B0).
This result reveals that the RaSim pipeline effectively shrinks
the sim-to-real domain gap.

As mentioned in Sec. III-B, the range-aware rendering
strategy broadens the depth range and enriches data diversity.
When the network is pre-trained solely on the stereo IR split
(Table III C0) or RGB split (Table III C1), the performance
drop distinctly on the ADD(-S) metric.

We illustrate the results of the baseline and our pre-training
v.s. iterations in Fig. 6. As is depicted, pre-training with the
RaSim significantly boosts the performance, especially in the
early stage of training. This indicates that pre-training on
the RaSim dataset effectively equips the Transformer-based
backbone with prior 3D geometric knowledge.

100 200 300 400 500
iterations (K)
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SwinD from Scratch

Fig. 6: AUC of ADD(-S) v.s. iterations on YCB-V.

VI. CONCLUSION

This work has introduced RaSim, a range-aware RGB-D
data simulation pipeline that excels in producing high-fidelity
RGB-D data. By imitating the imaging principle of real-
world depth sensors, we effectively bridge the sim-to-real
domain gap concerning depth maps. Notably, we incorporate
a range-aware rendering strategy to enrich data diversity,
making RaSim generalizable to a broader range of real-world
application scenarios. Experiments on 3D perception tasks
demonstrate that models trained with RaSim can be directly
applied to real-world datasets like ClearGrasp and YCB-V
without the need for finetuning. In the future, we aim to
explore the simulation of more types of depth sensors and
expand RaSim to more diverse applications.
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