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Abstract

We study online learning problems in which a decision maker has to take a sequence
of decisions subject to m long-term constraints. The goal of the decision maker is
to maximize their total reward, while at the same time achieving small cumulative
constraints violation across the T rounds. We present the first best-of-both-world
type algorithm for this general class of problems, with no-regret guarantees both in
the case in which rewards and constraints are selected according to an unknown
stochastic model, and in the case in which they are selected at each round by an
adversary. Our algorithm is the first to provide guarantees in the adversarial setting
with respect to the optimal fixed strategy that satisfies the long-term constraints. In
particular, it guarantees a ρ/(1 + ρ) fraction of the optimal reward and sublinear
regret, where ρ is a feasibility parameter related to the existence of strictly feasible
solutions. Our framework employs traditional regret minimizers as black-box
components. Therefore, by instantiating it with an appropriate choice of regret
minimizers it can handle the full-feedback as well as the bandit-feedback setting.
Moreover, it allows the decision maker to seamlessly handle scenarios with non-
convex rewards and constraints. We show how our framework can be applied in
the context of budget-management mechanisms for repeated auctions in order to
guarantee long-term constraints that are not packing (e.g., ROI constraints).

1 Introduction

We study online learning problems where a decision maker takes decisions over T rounds. At each
round t, the decision xt ∈ X is chosen before observing a reward function ft together with a set
of m time-varying constraint functions gt. The decision maker is allowed to make decisions that
are not feasible, provided that the overall sequence of decisions obeys the long-term constraints∑T
t=1 gt(xt) ≤ 0, up to a small cumulative violation across the T rounds. The problem becomes

that of finding a sequence of decisions xt which guarantees a reward close to that of the best fixed
decision in hindsight while satisfying long-term constraints. This type of framework was first proposed
by Mannor et al. [36], and it has numerous applications ranging from wireless communication [36]
and multi-objective online classification [13], to safe online learning [4].

Mannor et al. [36] show that guaranteeing sublinear regret and sublinear cumulative constraints
violation is impossible even when ft and gt are simple linear functions. Therefore, previous works
either focus on the case in which constraints are generated i.i.d. according to some unknown stochastic
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Algorithm Constr. Non-convex Bound — constant ρ Bound — arbitrary ρ
ft and gt Reward Violation Reward Violation

Yu et al. [44] STOC 7 OPT− Õ(T 1/2) Õ(T 1/2) — —

Ours STOC 3 OPT− Õ(T 1/2) Õ(T 1/2) OPT− Õ(T 3/4) Õ(T 3/4)

ADV 3 ρ
1+ρ

OPT− Õ
(
T 1/2

)
Õ(T 1/2) — —

Table 1: Comparison between the performance of our algorithm and previous work using the same
baseline as ours. Bounds for settings that were not previously tractable are highlighted in gray. OPT
is the reward of the baseline.

model, without providing any guarantees for the adversarial case, or provide results for adversarially-
generated constraints under some strong assumptions on the structure of the problem or using a
weaker baseline (a detailed discussion of related works can be found in Appendix A). A few examples
in the latter case are [16, 21, 40, 42]. In the former setting (i.e., stochastic constraints), Wei et al.
[41] consider a weaker baseline that is feasible for each constraint gt, going against the basic idea
of long-term constraints. A notable exception is the work by Yu et al. [44], who employ the same
baseline as ours, and provide an upper bound of Õ(T 1/2) for both regret and constraints violation
(see Table 1). We also mention that there are some works studying the problem in which constraints
are static (see, e.g., [31, 35, 43, 45]), or focus on specific types of constraints, such as knapsack
constraints [7, 30]. Our framework differs from those works as we deal with arbitrary and time-
varying constraints. Moreover, it also extends the online convex optimization framework introduced
by Zinkevich [46] by allowing for general non-convex loss functions ft, arbitrary feasibility sets X ,
and arbitrary time-varying long-term constraints.

1.1 Original contributions

Given the negative result by Mannor et al. [36], a natural question is what kind of guarantees we can
reach in the adversarial setting, when adopting the standard baseline of the best fixed decision in
hindsight satisfying (in expectation) the long-term constraints. We provide the first positive result
going in this direction, by designing a no-α-regret algorithm that guarantees a sublinear cumulative
constraints violation. Moreover, we make a step forward in the line of work initiated by Bubeck
and Slivkins [14], by showing that our algorithm is also the first best-of-both-worlds algorithm for
problems with arbitrary long-term constraints. This allows our algorithm to guarantee good worst-
case performance (adversarial case), while being able to exploit well-behaved problem instances
(stochastic case). The only assumption which we require is the existence of a decision that is strictly
feasible with respect to the sequence of constraints. We denote by ρ the “margin” by which this
decision is strictly feasible (see Section 2 for a definition). At the same time, we show that even
without this assumption, we can recover sublinear regret and violation with stochastic constraints.

Previous work usually assumes that ρ is a given constant. In that case, our algorithm matches the
guarantees by Yu et al. [44] when constraints are generated i.i.d. according to an unknown distribution,
and has no-α-regret with α = ρ/(1 + ρ) in the adversarial case (see Table 1). Our algorithm only
requires a lower bound on the real value of the feasibility parameter ρ. In the stochastic case, the lower
bound may even be unknown, and the algorithm can efficiently estimate it from data. Moreover, we
argue that if ρ is allowed to depend on T and take arbitrarily small values, then there are certain values
(ρ ≤ T−1/4), for which any regret bound depending on 1/ρ would be useless (i.e., not sublinear in T ,
see Section 3). This setting is usually overlooked by previous work, which assumes ρ to be a given
constant. We show that, in the case of an arbitrary feasibility parameter ρ, in the stochastic setting
our algorithm guarantees an upper bound of Õ(T 3/4) for regret and cumulative constraints violation.

Our framework employs traditional regret minimizers as black-box components. Therefore, by
instantiating it with an appropriate choice of regret minimizers it can handle full-feedback as well as
bandit-feedback settings. In the former case, after playing xt, the decision maker gets to observe ft
and gt, while in the latter case only the realized values ft(xt) and gt(xt) are observed. Moreover,
this allows the decision maker to seamlessly handle scenarios with non-convex reward and constraints,
by employing a suitable regret minimizer for non-convex losses (see, e.g., [39]). Our algorithm is
based on a two-stage approach in which primal and dual players interact through Lagrangian games.
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In the first (play) phase, the primal player tries to balance out the maximization of their rewards with
constraints violation. In the second (recovery) phase, the primal player only makes “safe decisions”
to avoid violating constraints too much. It is possible to prove that, in the case of stochastic rewards
and constraints, the algorithm never enters phase two. This property is particularly relevant for
budget-pacing mechanisms in repeated auctions, since it is related to how budget is allocated. Our
framework can also be instantiated to perform budget allocation subject to constraints that were
previously not tractable by traditional mechanisms, such as ROI constraints [11, 22].

2 Preliminaries

The decision maker has a non-empty set of available strategiesX (this set may be non-convex, integral,
and even non-compact). In each round t ∈ [T ],2 the decision maker first chooses xt ∈ X , and the
environment selects a reward function ft : X → [0, 1] and a constraint function gt : X → [−1, 1]m

conditioned on the past history of play up to time t − 1 (i.e., the environment chooses ft and gt
without knowledge of xt). Notice that both ft and gt need not be convex. The latter specifies a set of
m constraints of the form gt(x) ≤ 0, with gt,i(x) ≤ 0 denoting the i-th constraint.3 In the following,
we denote as F , respectively G, the set of all the possible ft, respectively gt, functions (e.g., F and
G may contain all the Lipschitz-continuous functions defined over X ). At each round t ∈ [T ], the
decision maker can condition their decision on prior feedbacks and on the sequence of prior decisions
x1, . . . ,xt−1, but no information about future rewards and constraint functions is available.

2.1 Strong duality through strategy mixtures

In the following, we define the optimization problem (Problem LPf,g) which is used to define the
baselines against which we compare the performances of the decision maker. Such a problem involves
probabilistic mixtures of strategies in X , which are crucial in order to recover strong duality.4

First, we introduce the set of probability measures on the Borel sets of X . We refer to such a set as
the set of strategy mixtures, denoted as Ξ. We endow X with the Lebesgue σ-algebra, and we assume
that all the functions in F and G are measurable with respect to every probability measure ξ ∈ Ξ.
This ensures that the various expectations taken are well-defined, since the functions are assumed to
be bounded above, and they are therefore integrable. In the following, for ease of presentation and
with a slight abuse of notation, whenever we write a ξ ∈ Ξ in place of an x ∈ X , we mean that we
are taking the expectation with respect to the probability measure ξ. For instance, given f ∈ F and
g ∈ G, we have that f(ξ) = Ex∼ξf(x) and g(ξ) = Ex∼ξg(x).

Then, given two functions f ∈ F and g ∈ G, we define the following optimization problem, which
chooses the strategy mixture ξ ∈ Ξ that maximizes the expected reward encoded by f , while
guaranteeing that the constraints encoded by g are satisfied in expectation.

OPTf,g :=

{
sup
ξ∈Ξ

f(ξ) s.t.

g(ξ) ≤ 0.
(LPf,g)

We denote by dg ∈ [−1, 1] the largest possible value for which there exists a strategy mixture ξ ∈ Ξ
satisfying the constraints g(ξ) ≤ 0 by a margin of at least dg . Formally,

dg := sup
ξ∈Ξ

min
i∈[m]

−gi(ξ). (1)

In order to ensure that OPTf,g is always well defined, we assume that it is always the case that dg ≥ 0.
Notice that, if dg > 0, then Problem LPf,g satisfies Slater’s condition.

In the following, we prove some auxiliary results relating to Problem LPf,g that will be useful in the
rest of the paper. First, we introduce a Lagrangian relaxation of the problem.

2In this work, we denote by [x] the set {1, . . . , x} of the first x natural numbers.
3Focusing on the case gt(x) ≤ 0 is w.l.o.g. since any set of constraints can be represented in such a form.
4The optimal fixed strategy mixture provides an arguably stronger baseline than the optimal fixed strategy. In

stochastic settings, this baseline is related to the best dynamic policy. In particular, if we consider the case in
which the observed functions are defined as the average of functions ft and gt across the T rounds, then the
optimal mixture provides the same utility as the best dynamic policy (see [7] for a similar result).
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Definition 2.1 (Lagrangian Function). Given two arbitrary functions f ∈ F and g ∈ G, the
Lagrangian function Lf,g : Ξ× Rm≥0 → R of Problem LPf,g is defined as

Lf,g(ξ,λ) := f(ξ)− 〈λ, g(ξ)〉.

If Problem LPf,g satisfies Slater’s condition, then Theorem 1 of Chapter 8.3 in [34] readily gives us
that strong duality holds even if f and g are arbitrary non-convex functions. Formally:
Corollary 2.2. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈Rm≥0

Lf,g(ξ,λ) = inf
λ∈Rm≥0

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.

Next, we show that, if dg > 0, then strong duality holds even when we restrict the admissible dual
vectors λ ∈ Rm≥0 to the set Ddg , where, for any q ∈ R>0, we let Dq :=

{
λ ∈ Rm≥0 : ‖λ‖1 ≤ 1/q

}
(omitted proofs can be found in Appendix B).
Theorem 2.3. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈Ddg

Lf,g(ξ,λ) = inf
λ∈Ddg

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.

2.2 Stochastic vs. adversarial: baselines and feasibility

We consider several settings, differing in how functions ft and gt are selected, either stochastically or
adversarially. We say that functions ft (respectively gt) are selected stochastically, when they are
independently drawn according to a given probability measure µF over F (respectively µG over G).
Instead, we say that functions ft (respectively gt) are selected adversarially if each ft (respectively
gt) is chosen by an adversary based on the sequence of prior decisions, namely x1, . . . ,xt−1.

Consistently with previous work (see, e.g., [36]), we compare the performance of the decision maker
(in terms of reward cumulated over the T rounds) against the baseline T OPTf̄,ḡ (as defined by
Problem LPf̄,ḡ), where f̄ and ḡ are suitably-defined functions. In particular:

• When functions ft, respectively gt, are selected stochastically, then we define function f̄ ,
respectively ḡ, so that f̄(x) := Ef∼µF [f(x)], respectively ḡ(x) := Eg∼µG [g(x)].

• When functions ft, respectively gt, are selected adversarially, then we define function f̄ ,
respectively ḡ, so that f̄(x) := 1

T

∑T
t=1 ft(x), respectively ḡ(x) := 1

T

∑T
t=1 gt(x).

Intuitively, in the stochastic case, the baseline is instantiated with an expectation of functions taken
with respect to the probability measure µF (respectively µG). Instead, in the adversarial case, the
baseline uses the average of functions ft (respectively gt) observed over the T rounds.

Let us remark that, when the set X is compact convex and functions ft and gt are convex, then
Problem LPf̄,ḡ defining our baselines can be equivalently re-written by using strategies x ∈ X rather
than strategy mixtures ξ ∈ Ξ, since there always exists an optimal solution to Problem LPf̄,ḡ that
places all the probability mass on a single strategy.

Our goal is to design online algorithms for the decision maker that output a sequence of decisions
x1, . . . ,xT such that both the cumulative regret with respect to the performance of the baseline,
defined as RT := T OPTf̄,ḡ −

∑T
t=1 ft(xt), and the cumulative constraints violation, defined as

V T := maxi∈[m]

∑T
t=1 gt,i(xt), grow sublinearly in the number of rounds T .

In conclusion, we introduce a problem-specific parameter that is strictly related to the feasibility of
Problem LPf̄,ḡ . We call it the feasibility parameter ρ ∈ R, which is formally defined as follows:

• When functions gt are selected stochastically, ρ := supξ∈Ξ mini∈[m]−ḡi(ξ).

• When functions gt are selected adversarially, ρ := supξ∈Ξ mint∈[T ] mini∈[m]−gt,i(ξ).

Intuitively, in the stochastic case, ρ is equal to dḡ, while in the adversarial case it is computed
similarly, but considering the worst case with respect to the functions gt observed at each round t.
Notice that, when ρ > 0, Slater’s condition is satisfied for Problem LPf̄,ḡ .
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In the following, we denote by ξ∗ ∈ Ξ a strategy mixture that is optimal for Problem LPf̄,ḡ . Moreover,
we always assume that functions ft and gt are such that Problem LPf̄,ḡ is feasible, and we let ξ◦ ∈ Ξ

be the feasible strategy mixture that is optimal for the problem defining ρ.5

2.3 Regret minimizers

A regret minimizer (RM) for a setW is an abstract model for a decision maker repeatedly interacting
with an environment. At each t, a RM performs two operations: (i) NEXTELEMENT(), which outputs
an elementwt ∈ W ; and (ii) OBSERVEUTILITY(·), which updates the internal state of the RM using
the feedback received from the environment. This is either a utility function ut :W → [a, b] having
range [a, b] ⊆ R (full feedback) or only the value ut(wt) (bandit feedback), with ut possibly depend-
ing adversarially on w1, . . . ,wt−1. The objective of the RM is to output a sequence w1, . . . ,wT
of points in W so that its cumulative regret, defined as supw∈W

∑T
t=1(ut(w)− ut(wt)), grows

asymptotically sublinearly in T . See [19] for a review of the various RMs available in the literature.

For the ease of presentation, we introduce the concept of regret minimizer constructor, which is a
procedure, say INIT(W, [a, b], η), that builds a RM on the basis of the three parameters given as input.
In particular, the procedure returns a RM instantiated for the setW , working with utility functions
having range [a, b], and such that its cumulative regret is guaranteed to grow sublinearly in the time
horizon T with probability at least 1− η.

3 A unifying meta-algorithm

In this section, we present our meta-algorithm. Its core idea is to instantiate suitable pairs of RMs,
where one is working in the domain X of primal variables and the other in a suitable subset of the
domain Rm+ of dual variables. At each round t ∈ [T ], the algorithm makes the RMs “play” against
each other in a Lagrangian game, where the utility functions observed by them are related to the
Lagrangian function Lft,gt(x,λ) of Problem LPft,gt .

6

Algorithm 1 provides the pseudo-code of the meta-algorithm, which takes as input: the total number
of rounds T , a failure probability δ ∈ (0, 1) such that the guarantees provided by the algorithm hold
with probability at least 1− δ, and a lower bound ρ̂ ≥ 0 on the value of the feasibility parameter ρ.

Algorithm description. The algorithm works in two phases. In the first one, called play phase, the
algorithm builds a primal RM, called RP

I , working in the primal domain X and a dual RM, called
RD

I , operating on the subset Dρ̃ of the dual domain Rm+ , where ρ̃ is set in Line 1. The algorithm
makes the two RMs playing against each other (see the call LAGRANGIANGAME(RP

I ,RD
I , 1)) until

either the cumulative violation V t incurred by the algorithm exceeds a given threshold (see Line 4,
where Mρ̃ is defined in Equation (2)) or round T is reached. Then, in the second phase, called
recovery phase, the algorithm constructs a new pair of primal, dual RMs, with the latter working
on the (m− 1)-dimensional simplex ∆m. The recovery phase uses the remaining rounds to make
these new RMs play against each other, with the primal RM observing modified utility functions
that do not account for functions ft (see the call LAGRANGIANGAME(RP

II,RD
II, 0)). Intuitively,

this is needed in order to ensure that the algorithm plays strategies xt that satisfy the constraints,
thus balancing out the cumulative constraint violation accumulated in the first phase. The pseudo-
code describing one “play” between two RMs, calledRP andRD, is defined by the sub-procedure
LAGRANGIANGAME(RP,RD, v) in Algorithm 2. The additional parameter v ∈ {0, 1} is used to
control the feedback fed into the primal RM RP; specifically, if v = 1, then RP observes a utility
function that also accounts for ft (play phase), otherwise, if v = 0, the observed utility function only
accounts for the term depending on gt (recovery phase).

Regret minimizer constructors. Algorithm 1 also needs access to two suitably-defined regret
minimizer constructors, namely INITP(W, [a, b], η) and INITD(W, [a, b], η), where the former is used

5Notice that ξ∗ and ξ◦ may not be well defined in all the cases in which the problem that defines them does
not admit a maximum. Nevertheless, in such cases, we assume that ξ∗ (or ξ◦) is a strategy mixture arbitrarily
“close” to the supremum, so that all of our results continue to hold up to negligible additive approximations that
are dominated by other approximation factors, and we can safely ignore them for ease of exposition.

6The idea of having pairs of primal, dual RMs playing a Lagrangian game was originally introduced
by Immorlica et al. [30], restricted to the case of knapsack constraints.
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Algorithm 1 META-ALGORITHM(T, δ, ρ̂)

1: ρ̃← max
{
ρ̂/2, T−1/4

}
, η ← δ/3, t← 1

. Phase I: Play
2: RP

I ← INITP
(
X ,
[
− 1/ρ̃, 1 + 1/ρ̃

]
, η
)

3: RD
I ← INITD

(
Dρ̃,

[
− 1/ρ̃, 1/ρ̃

]
, 0
)

4: while V t ≤ (T − t)ρ̃+Mρ̃ − 1 ∧ t ≤ T do
5: xt ← LAGRANGIANGAME(RP

I ,RD
I , 1)

6: t← t+ 1
7: T1 ← t− 1
. Phase II: Recovery

8: RP
II ← INITP (X , [−1, 1], η)

9: RD
II ← INITD (∆m, [−1, 1], 0)

10: while t ≤ T do
11: xt ← LAGRANGIANGAME(RP

II,RD
II, 0)

12: t← t+ 1

Algorithm 2 LAGRANGIANGAME(RP,RD, v)

1: xt ← RP.NEXTELEMENT()
2: λt ← RD.NEXTELEMENT()

3:
Play xt and get ft and gt . Full f.
Play xt and get ft(xt) and gt(xt) . Bandit f.
. Primal RM update

4:
Let uPt : x 7→ vft(x)−〈λt, gt(x)〉 . Full f.
uPt (xt)← vft(xt)− 〈λt, gt(xt)〉 . Bandit f.

5:
RP.OBSERVEUTILITY(uPt ) . Full f.
RP.OBSERVEUTILITY(uPt (xt)) . Bandit f.
. Dual RM update

6: Let uDt : λ 7→ 〈λ, gt(x)〉
7: RD.OBSERVEUTILITY(uDt )

to build RMs working in the primal domain and the latter for those operating on the dual one. Their
actual implementation depends on the specific problem at hand. In the following, we let EPt,η be the
regret upper bound (on t ∈ [T ] rounds) for primal RMs RP dealing with utility functions having
range [0, 1], as returned by the call INITP(X , [0, 1], η). Notice that, when the range is [a, b], the same
RM can be adopted by first normalizing utility values, so that the resulting regret upper bound is
(b− a)EPt,η . As for dual RMsRD, we let EDt be the regret upper bound (on t ∈ [T ] rounds) provided
by the RM defined for the set ∆m, while EDt /ρ̃ is the upper bound for the dual RM instantiated on the
set Dρ̃. Notice that, since dual RMs always have full feedback, we can safely assume that the regret
bounds EDt hold deterministically. We also assume that RMs provide bounds that increase with the
number of rounds, i.e., such that EPt,η ≤ EPt′,η and EDt ≤ EDt′ for all t ≤ t′.

How to construct RMs. INITD can be implemented by using online mirror descent (OMD) with
domain ∆m (or D1) and a negative entropy regularizer. Since the utility function uDt is linear in λ,
we get a regret bound for the primal RM of EDT = O(

√
T log(m)) (see, e.g., [12, 37]). The design of

INITP depends on the structure of X and functions ft and gt. For instance, in convex settings with
full feedback we can employ OMD [29], while with bandit feedback we can use [15]. Finally, for
non-convex functions we can employ, e.g., the RMs in [39]. All these RMs guarantee Õ(

√
T ) regret.

How to get away with no knowledge of ρ. In Section 7, we show that a lower bound ρ̂ is not
necessary when functions gt are selected stochastically. Indeed, it is sufficient to add a preliminary
phase to Algorithm 1, which is used to infer a suitable lower bound on ρ from experience. In order to
do this, only

√
T rounds are needed, so that the bounds on the cumulative regret and the cumulative

constraint violation achieved by the algorithm are not compromised. When functions gt are chosen
adversarially, as we show in Section 7, it is impossible to compute a lower bound on the feasibility
parameter ρ by only adding a preliminary phase to Algorithm 1 which uses

√
T rounds.

Remark 3.1 (Dependence on the lower bound ρ̂). Algorithm 1 can take as input any ρ̂ ≥ 0. However,
since our regret bounds include a factor 1/ρ̃, by choosing the trivial lower bound ρ̂ = 0 we incur in a
regret of Õ(

√
T/ρ̃) = Õ(T 3/4). In order to obtain optimal bounds, we would like to have ρ̃ = Ω(ρ).

Remark 3.2 (Dependence on the feasibility parameter ρ). In our analysis, we include the dependence
on the feasibility parameter ρ in the regret and constraint violation bounds achieved by the algorithm.
As customary, the goal is devising bounds of the form poly(instance) · h(T ), where the first term is a
polynomial function of the parameters defining the problem instance, and h(T ) = o(T ). Therefore,
we cannot include a factor 1/ρ in the regret bounds if ρ can be arbitrarily small. Even from a
practical standpoint, when ρ is too small, a 1/ρ regret bound is too large to be significant. For those
reasons, we set ρ̃ in Algorithm 1 to be the maximum between the feasibility parameter lower bound ρ̂
and T−1/4. Notice that the value T−1/4 has been carefully chosen so as to minimize the maximum
between the cumulative regret and the cumulative constraint violation when the lower bound on the
feasibility parameter ρ̂ is too small.

6



4 Analysis with stochastic constraints and adversarial rewards

We start by analyzing the performance of our meta-algorithm (Algorithm 1) when the reward and
constraint functions are selected stochastically and adversarially, respectively.

Given t ∈ [T ] and η ∈ (0, 1), we let Et,η :=
√

8t log(18mt2/η) be the value bounding differences
between expectations and empirical means of constraint functions, obtained by applying the Azuma-
Hoeffding inequality, and holding with probability at least 1 − η. Given γ ∈ (0, 1), we also let

Mγ :=
2

γ

√
T +

(
2 +

3

γ

)
Et,η +

(
1 +

2

γ

)
EPt,η +

1

γ
EDt , (2)

which is a recurring term related to the maximum violation that Algorithm 1 accepts in play phase.

First, we introduce a useful event E that encompasses all the cases in which Algorithm 1 successfully
terminates. Then, Lemma 4.2 shows that such an event holds with probability at least 1 − δ. In
particular, E holds when the regret bounds of RP

I and RP
II hold, and, additionally, the differences

between expectations and empirical means of constraint functions are bounded as desired.

Definition 4.1. We denote with E the event in which Algorithm 1 satisfies the following conditions
(recall that η = δ/3): (i) the regret incurred by RP

I after T1 rounds is upper bounded by EPT1,η
; (ii)

the regret cumulated byRP
II after the remaining T − T1 rounds is upper bounded by EPT−T1,η

; and
(iii) for every pair of rounds t, t′ ∈ [T ] : t ≤ t′ and resource i ∈ [m] it holds:

•
∣∣∣∑t′

τ=t gτ,i(xτ )−
∑t′

τ=t ḡi(xτ )
∣∣∣ ≤ Et′−t,η ,

•
∣∣∣∑t′

τ=t λτ gτ,i(xτ )−
∑t′

τ=t λτ ḡi(xτ )
∣∣∣ ≤ Et′−t,η maxτ∈[T ]:t≤τ≤t′ ||λτ ||1,

•
∣∣∣∑t′

τ=t gτ,i(ξ)−
∑t′

τ=t ḡi(ξ)
∣∣∣ ≤ Et′−t,η for ξ ∈ {ξ∗, ξ◦},

•
∣∣∣∑t′

τ=t λτgτ,i(ξ)−
∑t′

τ=t λτ ḡi(ξ)
∣∣∣ ≤ Et′−t,η maxτ∈[T ]:t≤τ≤t′ ||λτ ||1 for ξ ∈ {ξ∗, ξ◦}.

Lemma 4.2. After running Algorithm 1, the event E holds with probability at least 1− δ.

Next, we lower bound the cumulative reward obtained by Algorithm 1 during the play phase.
Intuitively, we show that, if the cumulative constraints violation is large, then the decisions xt in the
first T1 rounds provide a per-round reward much higher than that achievable by ξ∗. This allows us to
employ the following recovery phase to decrease constraints violation cumulated in the play phase,
while also ensuring that the cumulative regret stays low at the end of the algorithm. Formally:

Lemma 4.3. If event E holds, then after round T1 of Algorithm 1 the following inequality holds:∑T1

t=1 ft(xt) ≥
∑T1

t=1 ft(ξ
∗) + (T − T1)− 1

ρ̃ET1,η −
(

1 + 2
ρ̃

)
EPT1,η

− 1
ρ̃E

D
T1
.

In the recovery phase, the only goal of Algorithm 1 is to decrease constraints violation. In the
following Lemma 4.4, we show that, at each round of the recovery phase, the algorithm is “close” to
satisfying (in expectation) all the constraints by at least ρ. Formally:

Lemma 4.4. If event E holds, then after Algorithm 1 halts, the following holds for every i ∈ [m]:∑T
t=T1+1 gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η

+ EDT−T1
+ ET−T1,η.

Now, we are ready to present the two main results of this section. First, we provide a bound on the
cumulative regret and constraints violation when the lower bound ρ̂ is sufficiently large.

Condition 4.5. It holds that ρ̂ ≥ 2T−1/4.

Notice that, under Condition 4.5, ρ̃ = ρ̂/2. This gives us the following result:

Theorem 4.6. Suppose that functions ft and gt are selected adversarially and stochastically, re-
spectively. If Condition 4.5 is satisfied, then, with probability at least 1− δ, Algorithm 1 provides
RT ≤ 1

ρ̃ET,η +
(

1 + 2
ρ̃

)
EPT,η + 1

ρ̃E
D
T and V T ≤Mρ̃ + 2EPT,η + EDT + ET,η .

Finally, we also prove that even if Condition 4.5 is not satisfied, i.e., the lower bound ρ̂ is not
sufficiently large, the following holds:
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Theorem 4.7. Suppose that functions ft and gt are selected adversarially and stochastically, re-
spectively. Algorithm 1 guarantees that the following bounds hold with probability at least 1 − δ:
RT ≤ T 1/4ET,η +

(
1 + 2T 1/4

)
EPT,η + T 1/4EDT and VT ≤ T 3/4 +MT−1/4 + 2EPT,η + EDT + ET,η .

Remark 4.8. Notice that, by using primal and dual RMs whose regret bounds are of the order of
Õ(
√
T ), Theorem 4.6 allows us to recover Õ(

√
T/ρ̂) regret and Õ(

√
T/ρ̂) constraints violation for

the case in which Condition 4.5 holds. Theorem 4.7 still provides Õ(T 3/4) regret and constraints
violation when the condition is not met, which is necessary the case when ρ = 0.

5 Analysis with stochastic constraints and stochastic rewards

In this section, we focus on the case in which both reward and constraint functions are selected
stochastically. In this setting, we are able to show that Algorithm 1 never enters the recovery phase.
As we argue in Section 8, this is an important property for budget-management applications, since it
is related to the round in which the budget is fully depleted.

In order to prove our result, we extend the event E to capture also the Azuma-Hoeffding bounds for
the reward functions, which are stochastic in this setting.7 The core idea that we exploit to prove our
result is that we can think of the two RMs as if they are playing a stochastic repeated zero-sum game,
which is the repeated Lagrangian game whose functions are sampled according to the probability
measures µF and µG . By Theorem 2.3, strong duality holds, and the game has an equilibrium. Hence,
it is possible to show that the per-round utility of the primal RM is close to the value of the game,
which is OPTf̄,ḡ . At the same time, it is possible to show that, if the cumulative constraints violation
becomes large during the play phase (and, thus, T1 < T ), then the per-round utility of the primal RM
is below OPTf̄,ḡ , reaching a contradiction that proves the following theorem.

Theorem 5.1. Suppose that functions ft and gt are selected stochastically. With probability at least
1− δ, Algorithm 1 never enters the recovery phase, namely T1 = T .

Notice that regret bounds analogous to the ones in Theorems 4.6 and 4.7 also hold in the case in
which both reward and constraint functions are selected stochastically.

6 Analysis with adversarial constraints

In this section, we study settings in which the constraint functions gt are selected adversarially. As
shown by Mannor et al. [36], it is impossible to obtain sublinear cumulative regret and constraints
violation when using our baseline, i.e., the best fixed strategy mixture ξ∗ satisfying (in expectation)
the long-tern constraints. However, we show that it is possible to achieve a ρ/(1 + ρ) fraction
of the cumulative reward obtained by always playing ξ∗, while guaranteeing sublinear constraints
violation. The dependence of the approximation factor on the feasibility parameter ρ is similar to the
dependence on the per-round budget in problems with budget constraints (see the related works in
Appendix A for more details). Moreover, as we discuss later in Section 8, when restricted to the case
of budget constraints and adversarial reward/cost functions, our approximation factor matches the
state-of-the-art bounds provided by Castiglioni et al. [17].

As a first step to prove our result, we provide a lower bound on the cumulative reward of the primal
RM during the play phase. We show that it achieves at least a ρ/(1 + ρ) fraction of the value obtained
by the optimal solution in the first T1 rounds. Moreover, the algorithm provides an additional utility
compensating for the last rounds in which the algorithm only focuses in satisfying the constraints.
Finally, we show that, in the recovery phase, the constraints are satisfied by at least ρ at each round,
up to a term related to the regret ofRP

II andRD
II, proving the following theorem.

Theorem 6.1. Suppose that functions ft and gt are selected adversarially. If Condition 4.5 is
satisfied, then, with probability at least 1 − 2

3δ, Algorithm 1 guarantees that the following holds:∑T
t=1 ft(xt) ≥

ρ
1+ρ

∑T
t=1 OPTf̄,ḡ −

(
1 + 2

ρ̃

)
EPT,η − 1

ρ̃E
D
T and V T ≤Mρ̃ + 2EPT,η + EDT .

A similar result can be also derived for the case of stochastic rewards and adversarial constraints.

7Accounting for the martingale difference sequences ft(xt)− f̄(xt) and ft(ξ∗)− f̄(ξ∗).
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Corollary 6.2. Suppose functions ft and gt are selected stochastically and adversarially, respectively.
If Condition 4.5 is satisfied, then, with probability at least 1−δ, Algorithm 1 provides

∑T
t=1 ft(xt) ≥

ρ
1+ρ

∑T
t=1 OPTf̄,ḡ −

(
1 + 2

ρ̃

)
EPT,η − 1

ρ̃E
D
T − 2ET,η and V T ≤Mρ̃ + 2EPT,η + EDT + ET,η .

Remark 6.3. By using primal and dual RMs whose regret bounds are of the order of Õ(
√
T ),

Theorem 6.1 and Corollary 6.2 allows us to recover
∑T
t=1 ft(xt) ≥

ρ
1+ρ

∑T
t=1 OPTf̄,ḡ − Õ(

√
T/ρ̂),

and Õ(
√
T/ρ̂) constraints violation for the case in which Condition 4.5 holds.

7 How to get away with no knowledge about the feasibility parameter

We show how to extend Algorithm 1 in order to deal with settings in which a lower bound on the
feasibility parameter ρ is not known, when functions gt are selected stochastically. We propose
Algorithm 3, which runs Algorithm 1 by first devoting a given number T0 < T of rounds to inferring
a suitable lower bound ρ̂ on the feasibility parameter ρ. Ideally, we would like to have ρ̂ = Ω(ρ), so
as to recover bounds of the order Õ(

√
T/ρ). In particular, we show that we can run Algorithm 3 with

T0 = T 1/2 to obtain an approximation of ρ that has an additive approximation error of the order T 1/4.
This is sufficient to get ρ̂ = Ω(ρ), since a good approximation of ρ is only needed when ρ ≥ T 1/4.

Algorithm 3 META-ALGORITHM(T, T0, δ)

1: RP ← INITP
(
X ,
[
− 1, 1

]
, δ
)

2: RD ← INITD (∆m, [−1, 1], 0)
3: t← 1
4: while t ≤ T0: do
5: xt ← LAGRANGIANGAME(RP,RD, 0)
6: t← t+ 1

7: ρ̂← − 1
T0

(
maxi∈[m]

∑T0

t=1 gt,i(xt) + ET0,δ

)
8: Run Algorithm 1 with T − T0, δ, and ρ̂ as inputs

Let us remark that our approach only works
when constraints functions gt are selected
stochastically. When these are chosen adver-
sarially, it is easy to see that it is impossible
to compute a lower bound on the feasibility
parameter ρ by only using the first rounds.
For instance, think of a setting in which ρ
is very large in the first rounds, while it be-
comes small during the last ones.

To exploit the guarantees of Algorithm 1 pre-
sented in the previous sections, it is enough
to show that, after the first T0 rounds of Al-
gorithm 3, ρ̂ ≤ ρ holds with high probability.

Lemma 7.1. If T0 =
√
T , then Algorithm 3 guarantees that ρ̂ ≤ ρ with probability at least 1− δ.

In order to recover a good estimate of ρ, we need the value of ρ to be sufficiently large.
Condition 7.2. It holds that ρ ≥ 2

T0
(2ET0,δ + 2EPT0,δ

+ EDT0
).

Remark 7.3. Notice that, by using primal and dual RMs whose regret bounds are of the order
Õ(
√
T ) and by setting T0 =

√
T , Condition 7.2 is satisfied when ρ = ω(T−1/4).

Next, we show that ρ̂ = Ω(ρ), which allows us to exploit the guarantees proved for Algorithm 1 in
order to provide analogous ones for Algorithm 3. Formally:

Lemma 7.4. By setting T0 =
√
T , and assuming that Condition 7.2 is satisfied, after T0 rounds of

Algorithm 3 we have that ρ̂ ≥ ρ/2 with probability at least 1− 2δ.

By applying the results of the previous sections on the guarantees of Algorithm 1, and by using
primal and dual RMs whose regret bounds are of the order Õ(

√
T ), we get Õ(

√
T/ρ) and Õ(

√
T/ρ)

regret and violation bounds, respectively, when the functions gt are selected stochastically.

8 Applications to repeated auctions settings

Internet advertising platforms usually operationalize large auction markets by using proxy bidders that
place bids in repeated auctions on the advertisers’ behalf. A proxy-bidder selects bids according to a
budget-pacing mechanism, which manages the usage of the advertisers’ budget over time [1, 22, 9].
In this section, we discuss the application of our framework to budget-management in auctions,
arguing that it can deal with more general constraints on ad slots allocation with respect to what is
currently achievable with multiplicative pacing algorithms, which manage only knapsack constraints.
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We consider the problem faced by a bidder who takes part in a sequence of repeated auctions. We
focus on the case of second-price and first-price auctions, since they are the de facto standard in large
Internet advertising platforms. At each round t ∈ [T ], the bidder observes their valuation vt from a
finite set of nv possible valuations V ⊂ [0, 1]. Such valuation models targeting preferences of the
advertiser. Then, the bidder chooses a bid bt ∈ B, where B ⊂ [0, 1] is a finite set of nb possible bids
such that 0 ∈ B (i.e., the bidder is allowed to skip items without incurring in any cost). The utility of
the bidder depends on the largest among competing bids, denoted by βt. In particular, the utility is
computed as ft(bt) = (vt − ct(bt))1{bt ≥ βt}, where the cost ct is such that ct(bt) = β1{bt ≥ βt}
in second-price auctions, and ct(bt) = bt1{bt ≥ βt} for first-price ones. Finally, the bidder has
a target per-round budget of ρ > 0, which yields an overall budget B := ρT that limits the total
spending over the T rounds. In the case of budget-constrained bidding, a strictly feasible solution can
be easily achieved by always bidding 0. Using the target per-round budget ρ = B/T we can write
the budget constraint as

∑
t∈[T ] gt(bt) ≤ 0, with gt(b) = ct(b)− ρ for any b ∈ B. Notice that, in this

setting, we have the same feasibility parameter ρ for both the stochastic and the adversarial case.

As a benchmark to evaluate the algorithm, we consider the best feasible static policy π : V → B. The
set of static policies can be represented by X := Bnv , where a vector b ∈ Bnv encodes the policy’s
bids for each possible valuation. To apply our framework to this problem, it is sufficient to design a
primal regret minimizer constructor (recall that, in order to design dual RMs, we can employ OMD).
This can be implemented by instantiating a regret minimizer EXP3.P [5] for each possible valuation in
V . Given a failure probability ν ∈ (0, 1), each RM guarantees a regret bound O(

√
Tnb log(nb/ν))

with probability at least 1 − ν. Thus, given a desired failure probability η ∈ (0, 1), by setting
ν = η/nv we get that, with probability at least 1− η, the bounds of all the RMs hold. Hence, by a
union bound, we get that the regret of a primal RM is EPT,η = O(nv

√
Tnb log(nbnv/η)).

Guaranteed budget completion in the stochastic case. The crux of budget-pacing mechanisms
is ensuring that the advertisers’ budget is not depleted too early (thereby missing potentially valu-
able future advertising opportunities), while being fully depleted within the planned duration of
the campaign. Theorem 5.1 shows that, when inputs are generated according to some stochastic
model, Algorithm 1 never enters the recovery phase. This is crucial in the context of budget-pacing
mechanisms, because whenever the algorithm enters the recovery phase it will converge to always
bid 0 in order to mitigate constraints violation. Therefore, the bidder could miss out on potentially
valuable items. Moreover, if the platform wanted to guarantee that the bidder does not spend more
than the budget B, it would be enough to set a virtual budget of B − Õ(T 1/2) to compensate for the
potential constraints violation. Finally, we argue that, in large-scale markets, an individual bidder has
almost no impact on prices, and, thus, stochastic behavior of costs is a reasonable assumption.

Adversarial case. Theorem 6.1 of [17] shows how to construct an algorithm that provides a ρ
fraction of the optimal utility for problems with budget constraints and adversarial inputs. The ratio
ρ/(1 + ρ) obtained in Theorem 6.1 matches such result. The latter assumes that rewards and costs are
in [0, 1], and, thus, gt ∈ [−ρ, 1− ρ] (as they only model budget constraints). However, in our case we
have gt ∈ [−1, 1]. By normalizing the former range to match with ours, we get gt ∈ [−ρ/(1− ρ), 1].
Therefore, the feasibility parameter would be ρ′ = ρ/(1 − ρ). By rewriting our guarantees as a
function of ρ, we get ρ′/(1 + ρ′) = ρ, which is the same guarantee of [17].

Handling ROI constraints. Traditional budget-pacing mechanisms (see, e.g., [11, 8]) are based
on primal-dual algorithms that are near optimal in settings with knapsack constraints only, and they
cannot be generalized to deal with other types of long-term constraints. However, there are many real-
world situations in which guaranteeing other types of constraints is crucial for practical applications
(see, e.g., [26, 25]). One example is the case of return on investment (ROI) constraints [6, 26, 32].The
recent work by Golrezaei et al. [25] presents a threshold-based algorithm for repeated second-price
auctions under budget and ROI constraints. Our framework allows advertisers to reach a target ROI
while keeping expenses under control also in the setting of repeated first-price auctions. In particular,
given a target ROI ω, we define the ROI constraints as gt(bt) = (ω − vt/bt)1{bt ≥ βt} ≤ 0. Then,
it is enough to instantiate our framework as described before to immediately get that the cumulative
violation of the budget and ROI constraints are upper bounded by Õ(T 1/2). This holds both in the
fully stochastic and in the fully adversarial setting.

See Appendix C for a detailed discussion on the types of constraints that our framework can handle.
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