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Abstract

Multimodal large language models (MLLMs)
often underutilize visual information, leading
to imbalanced alignment and limited perfor-
mance. Through theoretical analysis, we reveal
that existing alignment objectives risk collaps-
ing into a unimodal, text-only training process.
To address this, we propose Visual Dynamic
Embedding-guided Pretraining (VDEP) a hy-
brid autoregressive framework that supervises
image-related hidden states via dynamic em-
beddings from an MLP appended to the visual
encoder. VDEP integrates visual tokens into
training without added architectural complexity,
reframing alignment as an information recov-
ery task focused on fine-grained visual seman-
tics. Our model-agnostic method consistently
outperforms strong baselines across 13 bench-
marks, setting a new standard for large-scale
vision-language alignment. Code and models
are available at https://github.com/anonymous-
gpu/VDEP_LLava_1.5.git.

1 Introduction

Large language models (LLMs) such as ChatGPT
(Schulman et al., 2022) have revolutionized natu-
ral language processing by demonstrating remark-
able zero-shot reasoning capabilities across diverse
tasks through flexible language instructions. In-
spired by this success, multimodal large language
models (MLLMs) have rapidly gained traction by
unifying vision and language modalities. Among
these, LLava has emerged as a dominant architec-
ture due to its simplicity and efficiency, bridging
image and text features via a lightweight linear
layer—Ilater enhanced to an MLP—enabling com-
petitive multimodal alignment with minimal com-
putational overhead (Li et al., 2022; Zhang et al.,
2024b).

However, despite their widespread adoption,
such streamlined MLLM architectures exhibit a
persistent modality imbalance. Training objectives

remain predominantly text-centric, which biases
the model towards textual signals and leads to un-
derutilization of visual features. This imbalance
manifests in well-documented issues including hal-
lucinations (Wang et al., 2024a, 2023), impaired
fine-grained visual understanding (Wu et al., 2024;
Lai et al., 2024), and suboptimal performance on
vision-language benchmarks (Lin et al., 2024). Our
empirical analysis of LLava’s layer-wise attention
maps (Fig. 1) further corroborates this: the model’s
attention to image tokens remains nearly static
across layers and shows minimal correlation with
textual queries, indicating insufficient engagement
with visual inputs and limited cross-modal seman-
tic fusion.

From a theoretical standpoint, we rigorously an-
alyze the multimodal alignment objective under the
assumption that image-text pairs are strongly corre-
lated. We prove that insufficient preservation of vi-
sual semantic content during training can cause the
alignment objective to degenerate into a unimodal,
text-only training task. In other words, the model
effectively ignores visual information, collapsing
the multimodal learning process and exacerbating
modality imbalance. This insight reveals a funda-
mental limitation of existing MLLM pretraining ob-
jectives, which focus exclusively on reconstructing
textual information while leaving visual semantics
unreconstructed and unregularized.

To address this critical issue, we propose Visual
Dynamic Embedding-guided Pretraining (VDEP),
a principled and effective approach that explicitly
incorporates visual semantic retention into the train-
ing objective. VDEP introduces a dynamic visual
semantic reconstruction task by supervising the
LLM’s hidden states corresponding to visual inputs
with dynamic embeddings generated by the MLP
following the visual encoder. This dynamic super-
vision encourages the model to maintain and recon-
struct rich visual semantic information throughout
the autoregressive training process, thereby pre-
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Figure 1: Visualization of layer-wise attention maps for the input image by LLava and VDEP. The example is
taken from LLava-Bench (Liu et al., 2024a) with the query "Describe this photo in detail". The results demonstrate
that VDEP significantly enhances the model’s ability to capture critical visual features, particularly excelling at

identifying object boundaries.

venting the alignment objective from collapsing
into text-only learning.

We provide theoretical guarantees demonstrat-
ing that this dynamic visual semantic reconstruc-
tion effectively mitigates alignment degeneration,
ensuring a more balanced and robust fusion of vi-
sual and textual modalities. Importantly, VDEP
achieves these benefits without modifying LLava’s
architecture or requiring additional data, preserving
the model’s efficiency and adaptability.

As shown in Fig. 1, VDEP substantially en-
hances the model’s sensitivity to critical visual fea-
tures, such as fine object boundaries and spatial
relationships. Our extensive experiments demon-
strate that VDEP consistently improves overall
VQA performance across different model scales
(3B and 7B). Notably, on the challenging MM-
Reasoning benchmark (MMStart), VDEP achieves
a remarkable 7.7% accuracy gain, underscoring
its effectiveness in enhancing visual understanding
and generation capabilities. These results compre-
hensively validate that our method significantly ad-
vances the visual grounding and reasoning abilities
of MLLMs.

In summary, our contributions are:

* We theoretically analyze the risk of alignment
collapse into unimodal text-only training due
to insufficient visual semantic preservation,
under strong image-text correlation assump-
tions, thereby providing a theoretical justifica-

tion for the necessity of incorporating visual
semantic training.

* We propose VDEP, a novel training paradigm
that integrates dynamic visual semantic recon-
struction into LLava’s pretraining, effectively
preventing alignment degeneration without ar-
chitectural changes or extra data.

* We conduct extensive experiments across mul-
tiple model scales and benchmarks, demon-
strating consistent and significant improve-
ments in visual understanding and reasoning,
including a 7.7% accuracy boost on MMStart.

2 Related Works

With the rise of multimodal large models, the
ViT-MLP-LLM architecture—popularized after
LLaVA(Liu et al., 2024b) has become mainstream
due to its strong adaptability. It enables LLMs to
efficiently gain visual capabilities via lightweight
pretraining and fine-tuning, accelerating progress
in the field. This section focuses on research re-
lated to text bias and modality alignment within
this architecture.

2.1 The issue of text bias in MLLM

Prior research has consistently revealed a pro-
nounced bias toward textual information in Multi-
modal Large Language Models (MLLMs), which
undermines effective multimodal integration. For
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Figure 2: Information flow of VDEP training. (a) Text pre-training: text tokens are embedded and predicted by the
LLM with cross-entropy loss. (b) Image pre-training: image patches are encoded into embeddings that guide the
LLM hidden states to reconstruct visual information without labels.

example, (Huang et al., 2024) identify that atten-
tion mechanisms tend to favor text inputs and pro-
pose adjustments to mitigate this imbalance. Sim-
ilarly, (Parcalabescu and Frank, 2024) find that,
across various vision-language models, textual con-
tributions outweigh visual ones in most tasks, al-
though images play a stronger role in explanation
generation than in answer prediction. Investiga-
tions by (Wang et al., 2024a) and (Zhang et al.,
2024b) further expose that hallucinations increase
with model depth, linked to an overreliance on tex-
tual cues, and suggest attention-based remedies.
Extending this line of work, (Leng et al., 2024)
systematically analyze hallucinations across lan-
guage, vision, and audio modalities, attributing
them to excessive unimodal priors and spurious
cross-modal correlations, and propose the “Curse
of Multimodality” benchmark to evaluate these ef-
fects. Together, these studies highlight the critical
challenge of text dominance in MLLMs and under-
score the need for alignment objectives that better
preserve multimodal semantics. Although many
studies have revealed the phenomenon of this pref-
erence, the exploration of the essential reasons for
this preference is still insufficient, lacking intuitive
and more in-depth theoretical research

2.2 Enhancing modal alignment in MLLM

Robust alignment between visual and textual
modalities is crucial for Multimodal Large Lan-
guage Models. (Zhao et al., 2024) address the
common assumption of uniform image-text align-
ment by grouping pairs based on alignment quality
and learning adaptive representations, improving
performance across tasks. Data-centric methods

like (Yin et al., 2024) and (Chow et al., 2024) en-
hance alignment by generating accurate synthetic
pairs and applying cross-modal contrastive learn-
ing. Architecturally, (Tong et al., 2024) introduce a
trainable MLP for image generation to boost vi-
sual semantics, while (Wang et al., 2024b) use
a denoising module to preserve visual features.
These works collectively advance modal alignment
through adaptive training, improved data, and tar-
geted model design. Although recent advances
have demonstrated the effectiveness of incorporat-
ing additional vision-related training to enhance
alignment in MLLMs, these approaches invariably
rely on modifying the original model architecture,
introducing extra trainable modules, or improving
data quality to indirectly boost alignment. Such
dependencies significantly constrain the generaliz-
ability and applicability of alignment methods.

3 Background

3.1 Problem statement

Modern multimodal large language models
(MLLMs) align vision and language modalities
by modeling the joint distribution of image repre-
sentations X, € RV*d and text representations
X; € RM*4 Given an image T partitioned into
patches {p; }j\le a vision transformer (ViT) with
MLP projection produces visual embeddings:

X, = MLP(ViT({p;}}1,)) (1)

The corresponding text sequence 7 is tokenized
into X; = [x1,...,2)]. During pretraining, the
model minimizes cross-entropy loss between pre-
dicted text X; and ground truth:
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Figure 3: The LLava-VDEP training paradigm incorporates two distinct training modes. The VDEP mode performs
supervised learning on image data, while the LLava mode is dedicated to supervised learning on text data. During
batch training, a ratio parameter is used to control the proportional occurrence of these two modes within each batch,

enabling an effective balance in the learning process.

M
Lo = — Zlog P2 Xy, v<) 2)
t=1

This parallels standard language model pretraining
where text tokens are predicted autoregressively:

M
Liv =~ _log P(xi]z) 3)
t=1

3.2 Information-theoretic reformulation

From an information-theoretic perspective, the
cross-entropy loss corresponds to conditional en-
tropy minimization:

min Lcg = min H(l'zt’Xm x<t) “)

Let H, € RV*dn and H; € RM*dr denote the
hidden states of visual and textual modalities re-
spectively. We express the conditional entropy
through mutual information:

H(z>i[Hy, Hy) = H(2>t) — Z(z>; Hy, Hy)
= min Lcg = max Z(x>¢; Hy, Hy)

&)

Applying the chain rule of mutual information to
5):
I(z>t; Hy, Hy)
= Z(z>;Hy) +Z(z>; Hy|H,)  (6)

Visual Contribution

Textual Flow

3.3 Visual semantic retention collapse

We analyze a critical failure mode in multimodal
large language models (MLLMs) where the model
fails to effectively capture and retain visual seman-
tics during pretraining.

Assumption 1 (No visual information in hidden
states).
I(Xy;Hy) =0

i.e., the hidden states H, contain no information
about the visual input X,,. This scenario can arise
because the LLM parameters remain frozen during
pretraining; even if a multilayer perceptron (MLP)
projects visual features into the LLM embedding
space, the LLM may fail to interpret or utilize these
visual semantics effectively.

Assumption 2 (Strong image-text correlation).
I(Xy;X;) >0

meaning the visual input X,, and the corresponding
textual description X; share substantial semantic in-
formation. This holds when the MLP successfully
projects visual semantics into the textual seman-
tic space, resulting in a strong correlation between
image and text modalities.

Under these assumptions, consider the mutual in-
formation between the visual hidden state H, and
the future text tokens x>;:

T(rsp; Hy) =0 )



Substituting Eq. (7) into the mutual information
decomposition (cf. Eq. 6), we have:

T(z>; Hy | Hy) 3)
=H(z> | Hy) — H(z> | Hy, Hy)

= H(z>e) — Hlz> | Hy)

=ZI(z>; Hy). ©)

Consequently, the joint mutual information reduces
to:

Z(z>t; Hy, Hy) = Z(x>¢; Hy). (10)

Interpretation. This analysis uncovers a criti-
cal degeneration phenomenon in multimodal align-
ment: when the visual feature representation H,,
carries no mutual information about the forthcom-
ing tokens, the multimodal pretraining objective
effectively reduces to a unimodal language mod-
eling task conditioned solely on H;. In essence,
the model disregards visual inputs entirely, collaps-
ing MLLM pretraining into conventional text-only
language modeling.

More importantly, this degeneration extends
beyond the extreme case. Under Assumption
2—which generally holds in practical scenar-
ios—insufficient retention of visual semantics
causes the alignment target to increasingly approx-
imate that of pure text modeling, revealing an in-
trinsic bias toward textual information that limits
the model’s ability to fully leverage multimodal
signals. This analysis not only highlights a funda-
mental limitation of current alignment objectives
but also substantiates the necessity of incorporat-
ing visual semantic training in MLLM alignment,
consistent with observations in related work (see
Section 2.2).

As depicted in Fig.2, existing MLLM alignment
objectives focus mainly on textual reconstruction
without explicitly preserving visual semantics, re-
inforcing the model’s text preference and under-
scoring the need for new alignment strategies that
integrate rich visual representations. While VDEP
introduces visual semantics in a concise way to
effectively balance the visual and text modalities.

4 The proposed method

4.1 Vision dynamic embedding pretraining

As illustrated in the upper panel of Fig. 2, text
tokens benefit from explicit instance-level labels,
enabling the use of cross-entropy loss to directly

supervise token reconstruction. This forms the pri-
mary information flow driving alignment. In con-
trast, image data lack such granular labels, and
consequently, the alignment objective imposes no
explicit constraints on reconstructing visual seman-
tics. As analyzed in Section 3.3, this imbalance
naturally biases the model towards optimizing text
reconstruction, undermining effective multimodal
alignment.

To mitigate this degeneration, we introduce Vi-
sion Dynamic Embedding Pretraining (VDEP),
which supplements the original alignment objective
with an explicit reconstruction loss on visual se-
mantic embeddings, as depicted in the lower panel
of Fig. 2. Formally, the joint optimization objective
is:

Lrotar = Lt + oLy, (11)

where £; and £; denote the losses for text and
image modalities, respectively, and « € [0, 1] bal-
ances their relative contributions. By tuning «,
we dynamically regulate the emphasis on visual
semantics, promoting robust cross-modal represen-
tation learning. This approach not only balances
the importance of visual and textual information
reconstruction during training from an informa-
tion flow perspective but also effectively prevents
the alignment objective degradation risk caused
by insufficient visual supervision, as discussed in
Section 3.3.

4.2 Quantifying visual reconstruction target

To quantify the visual reconstruction loss L£;, we
adopt the L2 distance between the hidden state
embedding H; and the target embedding x>,
as a proxy to estimate the mutual information
Z(H;,z>¢) between these two embeddings. In-
tuitively, minimizing this L2 distance encourages
the model to capture the shared semantic content,
effectively aligning their representations.

This L.2-based estimation provides a simple yet
effective measure to guide the reconstruction of
visual semantics. A theoretical justification and
detailed proof of the feasibility of using L.2 distance
to estimate mutual information are provided in the
Appendix D.

4.3 Hybrid multimodal alignment training

In multimodal LLMs, the visual token count often
dwarfs that of text tokens, with images represented
by hundreds of patches. Naively applying VDEP
jointly risks overemphasizing visual features, lead-



METHOD POPE SEEDB' AI2D MMSTAR MMTB OCRB _ MMBENCH
EN CN
TinyLLava-3B
TINYLLAVA 86.58  69.10  60.36  37.19 4873 337 67.04 4237
TINYLLAVA-VDEP (OURS) 86.98 69.35 60.85 37.65 49.08 343 66.70 41.87
CHANGE +0.40 4025  +0.49  +0.56 +0.35  +6.00 -0.26 -0.50
LLava-vl.5-7B
LLAVA 8585  66.10  55.63  33.48 48.86 297 6430 57.62
LLAVA-VDEP (OURS)  86.20  66.70  56.57  36.06 48.00 326  66.81 58.23
CHANGE +035  +0.60  +0.94  +2.58 2086 +29  +1.84 +033

Table 1: Comparison of VDEP (Ours) and LLava on General VLM Evaluation Benchmarks Across Model Sizes

METHOD VQA°® GQA VQAYZ VQAT RWQA SQA
TinyLLava-3B

TINYLLAVA 57.50 61.20 79.13 51.66 53.33 70.55
TINYLLAVA-VDEP (OURS) 57.97 61.67 79.24 51.73 54.25 71.39
CHANGE +0.47 +0.47 +-0.09 +0.07 +0.92 +0.84
LLava-vl.5-7B

LLAVA 53.44 62.00 78.50 46.07 55.82 66.80
LLAVA-VDEP (OURS) 57.68 62.50 79.20 46.76 57.64 68.36
CHANGE +3.36 +0.50 +0.70 +0.69 +1.86 +1.56

Table 2: Comparison of VDEP (Ours) and LLava on Visual Question Answering Datasets with Various Model Sizes

ing to overfitting on low-level image details and
suboptimal alignment.

To address this, we propose a hybrid alignment
scheme that decouples visual and textual optimiza-
tion during pretraining. Specifically, each batch is
stochastically split into two subsets, which alternate
between optimizing £; and £;. This decoupling sta-
bilizes the textual embedding space, which serves
as a reliable semantic anchor for aligning visual
representations. By preserving textual distribution
integrity and preventing visual dominance, our ap-
proach effectively suppresses noise and enhances
alignment fidelity.

This hybrid strategy is employed exclusively dur-
ing pretraining, integrating both VDEP and LLava
objectives. The subsequent supervised fine-tuning
stage adheres to the original LLava framework, fo-
cusing on instruction following. This two-stage
design allows pretraining to concentrate on modal-
ity alignment, while fine-tuning leverages rich tex-
tual supervision to refine multimodal fusion. Em-
pirical results validate the efficacy of our method
in substantially improving cross-modal alignment
quality.

5 Experiments Setting

In this section, we rigorously evaluate the effi-
cacy of our proposed Visual Dynamic Embedding-
guided Pretraining (VDEP) framework across a

diverse array of multimodal benchmarks. Our ex-
perimental design is meticulously crafted to vali-
date VDEP’s ability to enhance multimodal align-
ment and visual semantic retention without archi-
tectural modifications or additional data require-
ments. We benchmark against strong baselines,
including TinyLLava and LLava-v1.5, spanning
multiple model scales to demonstrate the general-
ity and robustness of our approach.

Datasets. The pre-training and fine-tuning datasets
used in this work are identical to those utilized in
LLava-v1.5. For pre-training, we use a subset of the
LAION/CC/SBU dataset filtered for balanced con-
cept coverage and enriched with BLIP-generated
captions. For instruction tuning, we use a combi-
nation of COCO(Lin et al., 2014), GQA(Hudson
and Manning, 2019), OCR-VQA(Mishra et al.,
2019), TextVQA(Singh et al., 2019), and Visu-
alGenome(Krishna et al., 2017) datasets. The de-
tails of the datasets are in the Appendix.

Tasks and evaluation. We conduct extensive
evaluations on a broad spectrum of visual ques-
tion answering (VQA) benchmarks, encompassing
OK-VQA (Marino et al., 2019), GQA (Hudson
and Manning, 2019),VQAV2(Goyal et al., 2017),
TextVQA (Singh et al., 2019), RealWorldQA (x.ai,
2024), and ScienceQA (Lu et al., 2022). To further
assess general multimodal understanding, we eval-
uate on comprehensive benchmarks such as MM-



Bench (Liu et al., 2025), POPE (Li et al., 2023b),
SEED (Li et al., 2023a), MMStar(Chen et al.,
2024), AI2D (Kembhavi et al., 2016), MMTB
(Ying et al., 2024), and OCR-VQA (Mishra et al.,
2019). MME (Fu et al., 2024) is used to evaluat-
ing model of granular perception We utilize the
Imms-eval framework (Zhang et al., 2024a; Li
et al., 2024), which integrates multiple benchmark
evaluation protocols, ensuring standardized and re-
producible performance comparisons.

Models. To comprehensively verify the effective-
ness of the VDEP, we employ base models of dif-
ferent parameter scales. Specifically, we utilize
TinyLLava (Zhou et al., 2024) and LLava-v1.5 (Liu
et al., 2024a) as our base models, whose model
sizes are 3B and 7B, respectively. A series of
carefully designed experiments are conducted to
evaluate their performance. We used SigLip on
Tinyllava to verify the capability of our method
under MLLMS with different Settings.

Baseline and implementation. To facilitate a fair
comparison, we double the input data during pre-
training, ensuring both LLava and VDEP receive
equivalent training exposure. We introduce a novel
special token <auto_image> to seamlessly switch
between autoregressive image embedding training
(VDEP mode) and conventional LLava training.
This hybrid training strategy dynamically alternates
between the two modes, stabilizing convergence
and preventing catastrophic forgetting.

5.1 Empirical results and analysis

Visual question answering performance. Ta-
ble 2 presents a detailed comparison of VDEP
and baseline LLava across six challenging VQA
datasets. Our method consistently outperforms the
baseline across all datasets and model scales. No-
tably, LLava-VDEP achieves a substantial +3.36
points(relative 6.28% gain) absolute improvement
on OK-VQA and a +1.86 points (3.33% gain) on
RealWorldQA with the 7B model, underscoring
VDEP’s effectiveness in enhancing external knowl-
edge integration and spatial reasoning. Improve-
ments on GQA and ScienceQA further demonstrate
enhanced compositional and domain-specific rea-
soning capabilities. These gains validate that ex-
plicitly incorporating visual semantic reconstruc-
tion into the training objective significantly bolsters
the model’s multimodal understanding.

General multimodal benchmark performance.
As demonstrated in Table 1 and Table 3, VDEP
consistently delivers notable performance improve-

ments across a diverse set of general multimodal
tasks. In particular, VDEP achieves substantial
gains on MMStar, with llava7b-VDEP improv-
ing by 2.58 points, corresponding to a 7.7% rel-
ative increase. Given that MMStar primarily eval-
uates vision-centric capabilities, this underscores
VDEP’s effectiveness in enhancing visual under-
standing.

On MME, which encompasses 14 subtasks
spanning perception and cognition, TinyL.Lava-
VDEP boosts the overall score by nearly 45 points
(+5.9%), while LLava-VDEP attains a gain of
+6.93 points. Similarly, on SEED-Bench, a bench-
mark designed to assess comprehensive visual com-
prehension, VDEP-augmented models exhibit supe-
rior performance in visual reasoning and informa-
tion integration. Although minor fluctuations are
observed in certain subtasks for instance, a slight
decrease in counting accuracy for LLava-VDEP
the overall trend strongly favors VDEP, indicating
enhanced robustness and generalization.

It is worth noting that Our 7B model drops on
MMTBench while the 3B model declines on MM-
Bench, mainly because MMBench relies more on
text, as prior MMStar(Chen et al., 2024) studies
show. Despite this, the 7B model still improves
on MMBench, revealing a trade-off between vi-
sual and text modal. The two models show op-
posite trends due to differences in scale and ViT
architecture. Although perfectly balancing modal-
ities remains challenging and causes slight bias,
VDEP consistently boosts overall benchmark per-
formance, demonstrating improved multimodal
alignment. The minor drop on one benchmark
further suggests that VDEP effectively mitigates
modality imbalance rather than fully resolving it.
Hallucination mitigation and visual attention.
VDEP achieves a consistent improvement of 0.4
points in F1 score on the hallucination benchmark
POPE for both the 3B and 7B models, demonstrat-
ing that our method further strengthens the preser-
vation of visual-semantic fidelity in MLLMs. Com-
plementing this quantitative gain, the qualitative
analysis of layer-wise attention maps (Fig. 1 and
Appendix Fig. 4) shows that VDEP significantly
enhances the model’s sensitivity to salient visual
cues, such as object boundaries and spatial rela-
tionships. This improved visual grounding aligns
with the observed reduction in hallucination rates
on POPE, providing strong evidence that VDEP’s
autoregressive latent space alignment effectively
addresses modality imbalance and mitigates hallu-



METHOD PERCEPTION COMMONSENSE QA COARSE-GRAINED PERCEPTION TASKS TOTAL
(REASONING) EXISTENCE COUNT POSITION COLOR SCORES

TinyLLava-3B

TINYLLAVA 1488.30 120.71 185.00 143.33 133.33 180.00 762.37

TINYLLAVA-VDEP (OURS) 1499.08 130.70 200.00 158.33 138.33 180.00 807.36

CHANGE +10.78 +9.99 +15.00 +15.00 +5.00 +0.00 +44.99

LLava-v1.5-7B

LLAVA 1510.72 135.71 190.00 158.33 128.33 175.00 787.37

LLAVA-VDEP (OURS) 1516.60 136.00 190.00 153.30 135.00 180.00 794.30

CHANGE +5.88 +0.29 +0.00 -5.03 +6.67 +5.00 +6.93

Table 3: Comparison of LLava-VDEP (Ours) and LLava-v1.5 on MME Tasks with Different Model Sizes.

a RWQA MME’ MMB VQA%¥
LLava-VDEP-7B

wl 0.1 55.42  1479.00 6225 57.33
w/ 0.01 56.73  1504.99 62.52  55.70
wl 0.001 57.64 1515.60 62.52  57.68

Table 4: Ablation study on the hyperparameter o

DATA RATIO RWQA MME? MMB VQA°¥
LLava-VDEP-7B

w/ 0.5 54.25  1439.16 58.90  55.80
w/ 0.8 57.12  1509.47 59.36  57.26
w/ 1.0 57.64 1515.60 62.52  57.68

Table 5: Ablation study on the hyperparameter Data
Ratio.

cination in multimodal language models.

5.2 Ablation study

Hyperparameters «. As illustrated in Table 4,
with decreasing hyperparameter «, the overall per-
formance of the model exhibits a consistent im-
provement in performance metrics across multiple
benchmarks. This observation suggests that reduc-
ing the weight assigned to the image loss notably
improves the model’s performance. The underlying
reason for this phenomenon lies in the disparity be-
tween the number of image tokens and text tokens,
with the former being significantly larger. This
imbalance often leads to a higher proportion of
background tokens in image data. When « is rela-
tively large, the model tends to overfit these back-
ground tokens, i.e., the model disproportionately
focuses on less informative regions of the image,
thereby introducing noise that impairs the effective-
ness of text alignment during training. By contrast,
a smaller « alleviates the constraints of image re-
construction, reducing the influence of background
noise and enabling more effective text-image align-

ment, thereby promoting superior performance in
multimodal tasks.

Hyperparameters data ratio. As shown in Ta-
ble 5, we utilize the VDEP framework to train
the model with varying text-to-image data ratios
and assess its performance across multiple mul-
timodal benchmarks. By adjusting the ratio of
VDEP mode to LLava mode within a batch during
pre-training, we control the proportion of image
reconstruction data, where a higher ratio indicates
a greater amount of image data. The results in
Table 5 demonstrate a clear trend: as the propor-
tion of image data increases, the model’s overall
performance improves consistently across multi-
ple test datasets. This phenomenon is attributed to
the greater challenge of simultaneously optimizing
regression tasks for both images and text, as it re-
quires balancing competing objectives compared
to optimizing only the text regression task. A lack
of sufficient image data during pre-training leads to
suboptimal learning of all tasks, resulting in weaker
alignment between modalities and ultimately de-
grading the model’s overall performance.

6 Conclusion

While previous works have identified the text bias
problem in multimodal large language models, we
provide a rigorous theoretical analysis revealing
that under the assumption of insufficient preserva-
tion of visual semantics, the common alignment
objective can degenerate into unimodal, text-only
training. From an information flow perspective, we
further expose the inherent modality imbalance in
existing optimization objectives. Therefore, we pro-
pose VDEP, a novel framework that explicitly in-
corporates dynamic visual semantic reconstruction
into the training process without modifying model
architecture. Experiments on 13 benchmarks show
VDEP reduces modality imbalance and boosts vi-
sual understanding.



7 Limitation.

Although VDEP exhibits outstanding performance
in improving image-text alignment, it relies on the
hyperparameter o. While we determine an appro-
priate range of « for models of varying scales, the
optimal value for a given model size remains un-
determined. Future work focuses on developing
methods to adaptively determine the value of the
hyperparameter based on model size and data char-
acteristics. Alternatively, it proposes an effective
strategy to eliminate the need for explicit hyperpa-
rameter tuning. During pre-training, to improve the
effectiveness of image-related tasks while ensuring
no degradation in the performance of text-related
tasks, we utilize a dataset with double the training
samples of the original. As a result, the training
time increases by around 3 hours.

Impact Statement

In this paper, we propose a novel paradigm for
multimodal alignment, named Vision Dynamic
Embedding-Guided Pre-training. Grounded in in-
formation theory, this approach incorporates the
image reconstruction task as an explicit compo-
nent of the autoregressive objectives in multimodal
large models. This paradigm offers a streamlined
and effective framework for aligning MLLMs, em-
phasizing the critical role and efficacy of image
reconstruction in facilitating image-text alignment.
The experimental setup and data processing in our
study adhere to the principles outlined by the LLava
dataset.

References

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, and 1 others. 2024. Are we
on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330.

Wei Chow, Juncheng Li, Qifan Yu, Kaihang Pan, Hao
Fei, Zhiqi Ge, Shuai Yang, Siliang Tang, Hanwang
Zhang, and Qianru Sun. 2024. Unified generative
and discriminative training for multi-modal large lan-
guage models. arXiv preprint arXiv:2411.00304.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji.
2024. Mme: A comprehensive evaluation benchmark
for multimodal large language models. Preprint,
arXiv:2306.13394.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa

matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904-6913.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,
Conghui He, Jiaqgi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. 2024. Opera: Alleviating
hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13418—
13427.

Drew A Hudson and Christopher D Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6700-6709.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min-
joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. In
Computer Vision—-ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11—
14, 2016, Proceedings, Part IV 14, pages 235-251.
Springer.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, and 1
others. 2017. Visual genome: Connecting language
and vision using crowdsourced dense image anno-
tations. International journal of computer vision,
123:32-73.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui
Yuan, Shu Liu, and Jiaya Jia. 2024. Lisa: Reason-
ing segmentation via large language model. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9579-9589.

Sicong Leng, Yun Xing, Zesen Cheng, Yang Zhou,
Hang Zhang, Xin Li, Deli Zhao, Shijian Lu, Chun-
yan Miao, and Lidong Bing. 2024. The curse of
multi-modalities: Evaluating hallucinations of large
multimodal models across language, visual, and au-
dio. arXiv preprint arXiv:2410.12787.

Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu,
Xinrun Du, Yuhao Dong, Haotian Liu, Yuanhan
Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. 2024.
Lmms-eval: Accelerating the development of large
multimodal models. * indicates equal contribution.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023a. Seed-bench: Bench-
marking multimodal 1lms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International conference on ma-
chine learning, pages 12888-12900. PMLR.


https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mo-
hammad Shoeybi, and Song Han. 2024. Vila: On pre-
training for visual language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 26689-26699.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Doll4r,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision—
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024a. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,

pages 26296-26306.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, and 1 others. 2025.
Mmbench: Is your multi-modal model an all-around
player? In European conference on computer vision,
pages 216-233. Springer.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507-2521.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Proceedings of the IEEE/cvf conference
on computer vision and pattern recognition, pages

3195-3204.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,
and Anirban Chakraborty. 2019. Ocr-vga: Visual
question answering by reading text in images. In
2019 international conference on document analysis
and recognition (ICDAR), pages 947-952. IEEE.

Letitia Parcalabescu and Anette Frank. 2024. Do vision
& language decoders use images and text equally?
how self-consistent are their explanations? arXiv
preprint arXiv:2404.18624.

John Schulman, Barret Zoph, Christina Kim, Jacob
Hilton, Jacob Menick, Jiayi Weng, Juan Felipe Ceron
Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
and 1 others. 2022. Chatgpt: Optimizing language
models for dialogue. OpenAl blog, 2(4).

10

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 8317-8326.

Shengbang Tong, David Fan, Jiachen Zhu, Yunyang
Xiong, Xinlei Chen, Koustuv Sinha, Michael Rab-
bat, Yann LeCun, Saining Xie, and Zhuang Liu.
2024. Metamorph: Multimodal understanding and
generation via instruction tuning. arXiv preprint
arXiv:2412.14164.

Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong
Tian, Haoming Xu, Shumin Deng, and Huajun Chen.
2024a. Mlm can see? dynamic correction de-
coding for hallucination mitigation. arXiv preprint
arXiv:2410.11779.

Haochen Wang, Anlin Zheng, Yucheng Zhao, Tiancai
Wang, Zheng Ge, Xiangyu Zhang, and Zhaoxiang
Zhang. 2024b. Reconstructive visual instruction tun-
ing. arXiv preprint arXiv:2410.09575.

Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang,
Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and Jitao
Sang. 2023. Amber: An llm-free multi-dimensional
benchmark for mllms hallucination evaluation. arXiv
preprint arXiv:2311.07397.

Shenggiong Wu, Hao Fei, Xiangtai Li, Jiayi Ji, Han-
wang Zhang, Tat-Seng Chua, and Shuicheng Yan.
2024. Towards semantic equivalence of tokenization
in multimodal llm. arXiv preprint arXiv:2406.05127.

x.ai. 2024. Grok-1.5 vision preview. Accessed: 2025-
01-26.

Yuanyang Yin, Yaqi Zhao, Yajie Zhang, Ke Lin, Jiahao
Wang, Xin Tao, Pengfei Wan, Di Zhang, Baoqun Yin,
and Wentao Zhang. 2024. Sea: Supervised embed-
ding alignment for token-level visual-textual integra-
tion in mllms. arXiv preprint arXiv:2408.11813.

Kaining Ying, Fanging Meng, Jin Wang, Zhiqgian Li,
Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi
Lin, Shuo Liu, and 1 others. 2024. Mmt-bench: A
comprehensive multimodal benchmark for evaluating
large vision-language models towards multitask agi.
arXiv preprint arXiv:2404.16006.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruogqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, and 1 others. 2024.
Mmmu: A massive multi-discipline multimodal un-
derstanding and reasoning benchmark for expert agi.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9556—
9567.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu,
Joshua Adrian Cahyono, Kairui Hu, Shuai Liu, Yuan-
han Zhang, Jingkang Yang, Chunyuan Li, and Zi-
wei Liu. 2024a. Lmms-eval: Reality check on the
evaluation of large multimodal models. Preprint,
arXiv:2407.12772.


https://x.ai/blog/grok-1.5v
https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/2407.12772

Xiaofeng Zhang, Chen Shen, Xiaosong Yuan, Shaotian
Yan, Liang Xie, Wenxiao Wang, Chaochen Gu, Hao
Tang, and Jieping Ye. 2024b. From redundancy to rel-
evance: Enhancing explainability in multimodal large
language models. arXiv preprint arXiv:2406.06579.

Fei Zhao, Taotian Pang, Chunhui Li, Zhen Wu, Jun-
jie Guo, Shangyu Xing, and Xinyu Dai. 2024.
Aligngpt: Multi-modal large language models with
adaptive alignment capability.  arXiv preprint
arXiv:2405.14129.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo,
Xien Liu, Ji Wu, and Lei Huang. 2024. Tinyllava: A
framework of small-scale large multimodal models.
arXiv preprint arXiv:2402.14289.

A Implementation Details.

We design a series of experiments to rigorously
evaluate the effectiveness of our proposed method
across models of varying scales. These experiments
involve two models with different parameter sizes:
3B, 7B. For the 3B model, we use the TinyLLava
architecture in our experiments. Within this frame-
work, SigLIP is the visual encoder, while Phi-2 is
the language model. For the 7B model, we use
the pre-trained CLIP ViT-L/14 (3362) as the visual
encoder, combined with the Vicuna v1.5 language
model for experiments. pre-training is conducted
on the CC-558K dataset with a 1 x 1073 learning
rate. After pre-training, fine-tuning is performed
on the mix-665K dataset with a learning rate of
2 x 107°. All experiments are conducted on a hard-
ware system with eight NVIDIA A100 GPUs, each
with 40GB of memory, to meet the computational
requirements. In addition, detailed training steps
and specific rules of the implementation plan are
fully presented in the appendix. Our training strat-
egy employs a mixed autoregressive pre-training
approach with a strict 1:1 ratio of image data to text
data. The image data is sourced from the CC-558K
dataset, as in pre-training.. During the SFT stage,
our experimental settings match the LLava models.

B BenchMarks.

B.1 Visual Question Answering

We conduct experiments on visual question-
answering benchmarks, including, OK-VQA,
GQA, VQAV2, TextVQA, RealWorldQA, and Sci-
enceQA. OK-VQA includes questions that necessi-
tate external knowledge beyond the multimodal
inputs provided. GQA is specifically designed
to assess the reasoning capabilities of the model.
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VQAV2 is one of the most widely used VQA eval-
uation sets. It covers a wide variety of visual
question-answering tasks, and the number of test
sets is huge enough to evaluate the visual capabil-
ities of the model very well. TextVQA places a
greater emphasis on evaluating the model’s abil-
ity to comprehend text within natural scenes. Re-
alWorldQA is a benchmark specifically designed
to evaluate the spatial understanding capabilities
of multimodal Al models in real-world contexts.
ScienceQA comprises multimodal multiple-choice
questions across a diverse range of science topics.
These datasets are strategically selected to evaluate
our method’s capacity to understand comprehen-
sively and reason across diverse visual contexts and
knowledge domains.

OK-VQA: OK-VQA(Outside Knowledge
VQA)(Marino et al., 2019) is a visual question
answering dataset that requires external knowledge.
The answers to the questions cannot be inferred
solely from the image but also need to incorporate
common sense or world knowledge. This dataset
evaluates the model’s ability in the intersection of
vision and knowledge reasoning.

GQA: GQA(Graph Question Answer-
ing)(Hudson and Manning, 2019) generates
questions and answers based on image scene
graphs, focusing on structured reasoning. It
emphasizes logical analysis and challenges the
model’s depth of understanding of semantics and
context.

VQAV2: VQAV2(Goyal et al., 2017) is a new
dataset containing open-ended questions about im-
ages. These questions require an understanding of
vision, language and commonsense knowledge to
answer. We used the test split to report Our result.

TextVQA: TextVQA(Singh et al., 2019) focuses
on textual information in images, requiring models
to recognize and comprehend text within images to
answer questions. It drives research on the integra-
tion of visual and textual information, expanding
the boundaries of visual question answering.

RealWorldQA: RealWorldQA(x.ai, 2024) fea-
tures images and questions sourced from real-world
scenarios, encompassing diverse content from daily
life. The dataset imposes higher requirements on
the model’s generalization ability and adaptability
to complex scenes.

ScienceQA: ScienceQA(Lu et al., 2022) is a
multimodal question answering dataset combining
images and scientific questions, covering multiple
scientific topics such as physics and biology. It



bridges Al technology with the field of science ed-
ucation, promoting intelligent question answering
applications in educational contexts.

B.2 General Multimodal Benchmarks

We evaluate our proposed method on general multi-
modal benchmarks, including MME, OCR-Bench,
MMBench, SEED-Bench, POPE, AI2D,MMStar,
and MMT-Bench. MME measures both percep-
tion and cognition abilities on a total of 14 sub-
tasks. MMBench comprehensively evaluates a
model’s multimodal capabilities in Chinese and
English contexts. OCR-Bench contains a col-
lection of 1,000 manually filtered and corrected
question-answer pairs, covering five representative
text-related tasks. MMStar primarily targets evalu-
ation tasks with a strong reliance on visual informa-
tion. Candidate samples are initially filtered from
existing benchmarks via an automated pipeline, fol-
lowed by manual verification to ensure that each
selected instance exhibits clear visual dependency,
minimal data leakage, and requires advanced mul-
timodal reasoning capabilities. SEED-Bench fo-
cuses on assessing generative comprehension in
multimodal large language models. POPE evalu-
ates the extent of multimodal hallucinations present
in amodel. AI2D assesses a model’s ability to inter-
pret scientific diagram inputs. MM-Vet evaluates
the multimodal conversational skills of a model
using GPT-4 as a benchmark. MMT-Bench is a
comprehensive benchmark developed to evaluate
MLLMs across a wide range of multimodal tasks
requiring expert knowledge and deliberate visual
recognition, localization, reasoning, and planning.

These diverse benchmarks provide a comprehen-
sive framework for evaluating the performance and
capabilities of our proposed method in multimodal
learning.

MME: MME(Fu et al., 2024), short for Multi-
modal Evaluation , is a comprehensive multimodal
benchmark designed to evaluate the ability of mod-
els to understand and process information across
multiple modalities, including vision, text, and au-
dio. It provides a standardized framework to mea-
sure performance on tasks requiring cross-modal
reasoning and understanding, making it an essential
tool for assessing the generalization of multimodal
large language models (MLLMs).

MMBench MMBench(Multimodal Bench-
mark)(Liu et al., 2025) is a task-driven benchmark
that focuses on systematically evaluating multi-
modal models across diverse real-world application
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scenarios, such as visual question answering,
image captioning, and video understanding. Its
emphasis on practical use cases highlights its
importance for assessing the practical utility of
MLLMs.

SEED: SEED(Spatial and Entity-aware Eval-
uation Dataset)(Li et al., 2023a) is a benchmark
specifically designed to evaluate the spatial and en-
tity reasoning capabilities of multimodal models.
By incorporating complex spatial relationships and
entity-based queries, SEED tests a model’s ability
to perform fine-grained reasoning, which is critical
for tasks such as scene understanding and object-
oriented question answering.

POPE: POPE(Perceptual and Object-aware Per-
formance Evaluation)(Li et al., 2023b) focuses
on evaluating the perceptual understanding and
object-centric reasoning of multimodal models. It
emphasizes tasks like object detection, recogni-
tion, and spatial awareness, making it a key bench-
mark for assessing models’ performance in visually
grounded tasks.

AI2D: AI2D(Allen Institute for AI Diagram
Dataset)(Kembhavi et al., 2016) is a dataset cen-
tered on diagram understanding, designed to evalu-
ate models’ abilities to process non-photographic
visual content. It focuses on reasoning over dia-
grams and charts, making it vital for tasks requiring
scientific and technical visual comprehension.

OCRB: OCRB (Optical Character Recognition
Benchmark)(Mishra et al., 2019) is a specialized
benchmark for assessing a model’s ability to rec-
ognize and interpret text in images. It focuses on
OCR-related tasks, such as text detection, transcrip-
tion, and contextual understanding, which are cru-
cial for applications like document analysis and
scene-text understanding.

MMStar: MMStar(Chen et al., 2024), an elite
vision-indispensable multi-modal benchmark com-
prising 1,500 samples meticulously selected by hu-
mans. MMStar benchmarks 6 core capabilities
and 18 detailed axes, aiming to evaluate LVLMs’
multi-modal capacities with carefully balanced and
purified samples.

MMMU: MMMU(Multimodal Multitasking
Understanding)(Yue et al., 2024) evaluates the mul-
titasking capabilities of multimodal models by test-
ing their performance on multiple simultaneous
tasks across different modalities. This benchmark
is essential for assessing the adaptability and effi-
ciency of models in dynamic, multitask scenarios.

MMTB: MMTB(Multimodal Task Bench-



VDEP

LLava-v1.5

LLava-vl.5

Figure 4: Layer-wise attention visualization of visual-to-instruction information flow. Displayed from top to bottom
are the attention heatmaps from LLava-v1.5-7B and LLava-v1.5-7B-VDEP, respectively. The example is derived
from LLava-Bench (Liu et al., 2024b) and the query is "Describe this photo in detail".

mark)(Ying et al., 2024) is a broad benchmark de-
signed to evaluate the performance of multimodal
models on a wide range of tasks, including vision-
and-language navigation, multimodal reasoning,
and image captioning. Its diversity makes it a
strong indicator of a model’s overall multimodal
proficiency.

OCRB: OCRB (Optical Character Recognition
Benchmark)(Mishra et al., 2019) is a specialized
benchmark for assessing a model’s ability to rec-
ognize and interpret text in images. It focuses on
OCR-related tasks, such as text detection, transcrip-
tion, and contextual understanding, which are cru-
cial for applications like document analysis and
scene-text understanding.

13

C Case Study

As shown in 4, we can see from the visualization of
cases in different scenarios that the VDEP method
significantly enhances the MLLLM’s perception of
fine-grained content in vision, and the visual se-
mantics are retained in depth at different layers of
the LLM. This is also consistent with our theoreti-
cal verification.

D Proof: Using £, Distance to Estimate
Mutual Information Between
Embeddings

Let X and Y be two random variables represent-
ing embedding vectors in a continuous space. We
aim to show that minimizing the squared Lo dis-
tance between X and Y can serve as a proxy to
maximizing their mutual information Z(X;Y).



D.1 Mutual Information Definition

Recall that the mutual information between X and
Y is defined as

I(X;Y) = H(X) - H(X]Y),

where H(X) is the differential entropy of X, and
H(X]Y) is the conditional differential entropy of
X given Y.

D.2 Conditional Entropy and Reconstruction
Error

Intuitively, if Y can reconstruct X with high fi-
delity, then the uncertainty of X given Y is low,
i.e., the conditional entropy H(X|Y) is small.

Suppose we measure the reconstruction error be-
tween X and Y by the expected squared Euclidean
(L9) distance:

L=E[X-Y[3].

When L approaches zero, it means Y nearly
perfectly reconstructs X, and thus the uncertainty
of X given Y becomes very small.

D.3 Linking £5 Distance to Conditional
Entropy

To make this intuition more precise, assume the
reconstruction error X — Y follows a Gaussian
distribution with zero mean and covariance matrix
3, ie.,

p(X[Y) = N(Y.%).

Under this assumption, the conditional differen-
tial entropy of X given Y is

HX|Y) = %log ((2re)der ).

where d is the dimensionality of X.
Since the expected squared error £ equals the
trace of the covariance matrix,

L=Ti(D),

minimizing £ corresponds to reducing the overall
variance of the reconstruction error.

As £ — 0, the covariance matrix 3 approaches
the zero matrix, and thus det ¥ — 0. Because
the logarithm of the determinant tends to negative
infinity, the conditional differential entropy satisfies

H(X|Y) = —oo.
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This reflects a fundamental property of differ-
ential entropy: when a continuous distribution be-
comes degenerate (variance tends to zero), its dif-
ferential entropy tends to negative infinity. In other
words, the uncertainty of X given Y vanishes in
the limit of perfect reconstruction.

D.4 Interpretation and Practical Implications

Although the conditional differential entropy tends
to negative infinity mathematically, this corre-
sponds to the intuitive notion that the uncertainty
of X given Y becomes negligible. In practice,
this means that minimizing the reconstruction er-
ror L effectively reduces the conditional entropy
H(X]Y).
Since mutual information can be expressed as

I(X; Y) = H(X) - H(X]Y),

reducing H(X]|Y) by minimizing £ increases the
mutual information Z(X;Y).

D.5 Conclusion

Therefore, minimizing the squared Lo reconstruc-
tion loss between embeddings X and Y serves as
a practical surrogate for maximizing their mutual
information. Formally,

lim Z(X;Y) = H(X),

L—0
which corresponds to the maximal mutual infor-
mation achievable when X is fully determined by
Y.

This justifies the use of the squared L5 distance
as a feasible and effective loss function to estimate
and maximize mutual information between embed-
ding vectors.

E Detailed experiments.

We present comprehensive ablation results derived
from LLava-v1.5 to substantiate the experimental
conclusions in the main text. Additionally, we per-
formed ablation studies on the image loss function
to demonstrate the simplicity and effectiveness of
the L2 loss.



DATA RATIO AI2D MM-VET MMMU MMT GQA VIizZWIizQA VQAT SQA!
LLava-v1.5-VDEP-7B

w/ 0.5 54.02 29.00 31.20 46.30 61.65 49.82 46.33  68.62
w/ 0.8 55.18 28.20 31.30 46.72  61.65 45.40 46.27  69.16
w/ 1.0 56.57 30.60 30.80 48.00 62.50 50.37 46.76  68.36

Table 6: Ablation study on the hyperparameter Data Ratio, which represents the proportion of different VDEP and
LLava patterns in the pre-training stage.

a AI2D MM-VET MMMU MMT GQA VIZWIzZQA VQAT SQA!
LLava-v1.5-VDEP-7B

w/ 0.1 55.57 30.50 30.60  47.64 61.45 46.76 46.52  67.72
w/ 0.01 56.64 32.20 31.30 48.48  62.63 52.72 46.94  67.77
w/ 0.001 56.57 30.60 30.80  48.00 62.50 50.37 46.76  68.36

Table 7: Ablation study on the hyperparameter o, which represents the variation of the image loss weight.

LoSss PERCEPTION COMMONSENSE QA COARSE-GRAINED PERCEPTION TASKS TOTAL
(REASONING) EXISTENCE COUNT POSITION COLOR SCORES

LLava-v1.5-VDEP-7B
/L2 1518.34 133.57 190.00 163.33 135.00 180.00 801.90
Sigmoid(L2) 1478.45 133.57 190.00 145.00 138.33 175.00 781.90
L2 1515.60 136.00 190.00 153.30 135.00 180.00 794.30

Table 8: Ablation study on the hyperparameter Loss Function on MME.

Loss VQA®®  GQA VizWiz VQAT RWQA SQA!
LLava-vl.5-VDEP-7B

1/L2 56.11 62.47  51.37 46.56 5438  69.01

Sigmoid(L2) 57.37  62.95  49.87 46.67  57.90  68.32

L2 57.68 62.50  50.37 46.76  57.64  68.36

Table 9: Ablation study on the hyperparameter Loss Function on VQA.

MMBENCH

Loss AI2D MM-VET MMMU MMTB OCRB POPE
EN CN
LLava-v1.5-VDEP-7B
/L2 65.97 58.52 57.09 31.10 31.20 47.93 320 85.62
Sigmoid(L2) 66.20 58.24 56.47 31.70 31.00 48.32 334 85.98
L2 66.81 58.23 56.57 30.60 30.80 48.00 326 85.95

Table 10: Ablation study on the hyperparameter Loss Function on benchmarks for insruction-following LMMs.
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