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Abstract001

Multimodal large language models (MLLMs)002
often underutilize visual information, leading003
to imbalanced alignment and limited perfor-004
mance. Through theoretical analysis, we reveal005
that existing alignment objectives risk collaps-006
ing into a unimodal, text-only training process.007
To address this, we propose Visual Dynamic008
Embedding-guided Pretraining (VDEP) a hy-009
brid autoregressive framework that supervises010
image-related hidden states via dynamic em-011
beddings from an MLP appended to the visual012
encoder. VDEP integrates visual tokens into013
training without added architectural complexity,014
reframing alignment as an information recov-015
ery task focused on fine-grained visual seman-016
tics. Our model-agnostic method consistently017
outperforms strong baselines across 13 bench-018
marks, setting a new standard for large-scale019
vision-language alignment. Code and models020
are available at https://github.com/anonymous-021
gpu/VDEP_LLava_1.5.git.022

1 Introduction023

Large language models (LLMs) such as ChatGPT024

(Schulman et al., 2022) have revolutionized natu-025

ral language processing by demonstrating remark-026

able zero-shot reasoning capabilities across diverse027

tasks through flexible language instructions. In-028

spired by this success, multimodal large language029

models (MLLMs) have rapidly gained traction by030

unifying vision and language modalities. Among031

these, LLava has emerged as a dominant architec-032

ture due to its simplicity and efficiency, bridging033

image and text features via a lightweight linear034

layer—later enhanced to an MLP—enabling com-035

petitive multimodal alignment with minimal com-036

putational overhead (Li et al., 2022; Zhang et al.,037

2024b).038

However, despite their widespread adoption,039

such streamlined MLLM architectures exhibit a040

persistent modality imbalance. Training objectives041

remain predominantly text-centric, which biases 042

the model towards textual signals and leads to un- 043

derutilization of visual features. This imbalance 044

manifests in well-documented issues including hal- 045

lucinations (Wang et al., 2024a, 2023), impaired 046

fine-grained visual understanding (Wu et al., 2024; 047

Lai et al., 2024), and suboptimal performance on 048

vision-language benchmarks (Lin et al., 2024). Our 049

empirical analysis of LLava’s layer-wise attention 050

maps (Fig. 1) further corroborates this: the model’s 051

attention to image tokens remains nearly static 052

across layers and shows minimal correlation with 053

textual queries, indicating insufficient engagement 054

with visual inputs and limited cross-modal seman- 055

tic fusion. 056

From a theoretical standpoint, we rigorously an- 057

alyze the multimodal alignment objective under the 058

assumption that image-text pairs are strongly corre- 059

lated. We prove that insufficient preservation of vi- 060

sual semantic content during training can cause the 061

alignment objective to degenerate into a unimodal, 062

text-only training task. In other words, the model 063

effectively ignores visual information, collapsing 064

the multimodal learning process and exacerbating 065

modality imbalance. This insight reveals a funda- 066

mental limitation of existing MLLM pretraining ob- 067

jectives, which focus exclusively on reconstructing 068

textual information while leaving visual semantics 069

unreconstructed and unregularized. 070

To address this critical issue, we propose Visual 071

Dynamic Embedding-guided Pretraining (VDEP), 072

a principled and effective approach that explicitly 073

incorporates visual semantic retention into the train- 074

ing objective. VDEP introduces a dynamic visual 075

semantic reconstruction task by supervising the 076

LLM’s hidden states corresponding to visual inputs 077

with dynamic embeddings generated by the MLP 078

following the visual encoder. This dynamic super- 079

vision encourages the model to maintain and recon- 080

struct rich visual semantic information throughout 081

the autoregressive training process, thereby pre- 082
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Figure 1: Visualization of layer-wise attention maps for the input image by LLava and VDEP. The example is
taken from LLava-Bench (Liu et al., 2024a) with the query "Describe this photo in detail". The results demonstrate
that VDEP significantly enhances the model’s ability to capture critical visual features, particularly excelling at
identifying object boundaries.

venting the alignment objective from collapsing083

into text-only learning.084

We provide theoretical guarantees demonstrat-085

ing that this dynamic visual semantic reconstruc-086

tion effectively mitigates alignment degeneration,087

ensuring a more balanced and robust fusion of vi-088

sual and textual modalities. Importantly, VDEP089

achieves these benefits without modifying LLava’s090

architecture or requiring additional data, preserving091

the model’s efficiency and adaptability.092

As shown in Fig. 1, VDEP substantially en-093

hances the model’s sensitivity to critical visual fea-094

tures, such as fine object boundaries and spatial095

relationships. Our extensive experiments demon-096

strate that VDEP consistently improves overall097

VQA performance across different model scales098

(3B and 7B). Notably, on the challenging MM-099

Reasoning benchmark (MMStart), VDEP achieves100

a remarkable 7.7% accuracy gain, underscoring101

its effectiveness in enhancing visual understanding102

and generation capabilities. These results compre-103

hensively validate that our method significantly ad-104

vances the visual grounding and reasoning abilities105

of MLLMs.106

In summary, our contributions are:107

• We theoretically analyze the risk of alignment108

collapse into unimodal text-only training due109

to insufficient visual semantic preservation,110

under strong image-text correlation assump-111

tions, thereby providing a theoretical justifica-112

tion for the necessity of incorporating visual 113

semantic training. 114

• We propose VDEP, a novel training paradigm 115

that integrates dynamic visual semantic recon- 116

struction into LLava’s pretraining, effectively 117

preventing alignment degeneration without ar- 118

chitectural changes or extra data. 119

• We conduct extensive experiments across mul- 120

tiple model scales and benchmarks, demon- 121

strating consistent and significant improve- 122

ments in visual understanding and reasoning, 123

including a 7.7% accuracy boost on MMStart. 124

2 Related Works 125

With the rise of multimodal large models, the 126

ViT-MLP-LLM architecture—popularized after 127

LLaVA(Liu et al., 2024b) has become mainstream 128

due to its strong adaptability. It enables LLMs to 129

efficiently gain visual capabilities via lightweight 130

pretraining and fine-tuning, accelerating progress 131

in the field. This section focuses on research re- 132

lated to text bias and modality alignment within 133

this architecture. 134

2.1 The issue of text bias in MLLM 135

Prior research has consistently revealed a pro- 136

nounced bias toward textual information in Multi- 137

modal Large Language Models (MLLMs), which 138

undermines effective multimodal integration. For 139
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Figure 2: Information flow of VDEP training. (a) Text pre-training: text tokens are embedded and predicted by the
LLM with cross-entropy loss. (b) Image pre-training: image patches are encoded into embeddings that guide the
LLM hidden states to reconstruct visual information without labels.

example, (Huang et al., 2024) identify that atten-140

tion mechanisms tend to favor text inputs and pro-141

pose adjustments to mitigate this imbalance. Sim-142

ilarly, (Parcalabescu and Frank, 2024) find that,143

across various vision-language models, textual con-144

tributions outweigh visual ones in most tasks, al-145

though images play a stronger role in explanation146

generation than in answer prediction. Investiga-147

tions by (Wang et al., 2024a) and (Zhang et al.,148

2024b) further expose that hallucinations increase149

with model depth, linked to an overreliance on tex-150

tual cues, and suggest attention-based remedies.151

Extending this line of work, (Leng et al., 2024)152

systematically analyze hallucinations across lan-153

guage, vision, and audio modalities, attributing154

them to excessive unimodal priors and spurious155

cross-modal correlations, and propose the “Curse156

of Multimodality” benchmark to evaluate these ef-157

fects. Together, these studies highlight the critical158

challenge of text dominance in MLLMs and under-159

score the need for alignment objectives that better160

preserve multimodal semantics. Although many161

studies have revealed the phenomenon of this pref-162

erence, the exploration of the essential reasons for163

this preference is still insufficient, lacking intuitive164

and more in-depth theoretical research165

2.2 Enhancing modal alignment in MLLM166

Robust alignment between visual and textual167

modalities is crucial for Multimodal Large Lan-168

guage Models. (Zhao et al., 2024) address the169

common assumption of uniform image-text align-170

ment by grouping pairs based on alignment quality171

and learning adaptive representations, improving172

performance across tasks. Data-centric methods173

like (Yin et al., 2024) and (Chow et al., 2024) en- 174

hance alignment by generating accurate synthetic 175

pairs and applying cross-modal contrastive learn- 176

ing. Architecturally, (Tong et al., 2024) introduce a 177

trainable MLP for image generation to boost vi- 178

sual semantics, while (Wang et al., 2024b) use 179

a denoising module to preserve visual features. 180

These works collectively advance modal alignment 181

through adaptive training, improved data, and tar- 182

geted model design. Although recent advances 183

have demonstrated the effectiveness of incorporat- 184

ing additional vision-related training to enhance 185

alignment in MLLMs, these approaches invariably 186

rely on modifying the original model architecture, 187

introducing extra trainable modules, or improving 188

data quality to indirectly boost alignment. Such 189

dependencies significantly constrain the generaliz- 190

ability and applicability of alignment methods. 191

3 Background 192

3.1 Problem statement 193

Modern multimodal large language models 194

(MLLMs) align vision and language modalities 195

by modeling the joint distribution of image repre- 196

sentations Xv ∈ RN×d and text representations 197

Xl ∈ RM×d. Given an image I partitioned into 198

patches {pj}Nj=1, a vision transformer (ViT) with 199

MLP projection produces visual embeddings: 200

Xv = MLP(ViT({pj}Nj=1)) (1) 201

The corresponding text sequence T is tokenized 202

into Xl = [x1, . . . , xM ]. During pretraining, the 203

model minimizes cross-entropy loss between pre- 204

dicted text X̂l and ground truth: 205
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Figure 3: The LLava-VDEP training paradigm incorporates two distinct training modes. The VDEP mode performs
supervised learning on image data, while the LLava mode is dedicated to supervised learning on text data. During
batch training, a ratio parameter is used to control the proportional occurrence of these two modes within each batch,
enabling an effective balance in the learning process.

LCE = −
M∑
t=1

logP (xt|Xv, x<t) (2)206

This parallels standard language model pretraining207

where text tokens are predicted autoregressively:208

LLM = −
M∑
t=1

logP (xt|x<t) (3)209

3.2 Information-theoretic reformulation210

From an information-theoretic perspective, the211

cross-entropy loss corresponds to conditional en-212

tropy minimization:213

minLCE ≡ minH(x≥t|Xv, x<t) (4)214

Let Hv ∈ RN×dh and Hl ∈ RM×dh denote the215

hidden states of visual and textual modalities re-216

spectively. We express the conditional entropy217

through mutual information:218

H(x≥t|Hv,Hl) = H(x≥t)− I(x≥t;Hv,Hl)

⇒ minLCE ≡ max I(x≥t;Hv,Hl)
(5)219

Applying the chain rule of mutual information to220

(5):221

I(x≥t;Hv,Hl)

= I(x≥t;Hv)︸ ︷︷ ︸
Visual Contribution

+ I(x≥t;Hl|Hv)︸ ︷︷ ︸
Textual Flow

(6)222

3.3 Visual semantic retention collapse 223

We analyze a critical failure mode in multimodal 224

large language models (MLLMs) where the model 225

fails to effectively capture and retain visual seman- 226

tics during pretraining. 227

Assumption 1 (No visual information in hidden 228

states).
I(Xv;Hv) → 0 229

i.e., the hidden states Hv contain no information 230

about the visual input Xv. This scenario can arise 231

because the LLM parameters remain frozen during 232

pretraining; even if a multilayer perceptron (MLP) 233

projects visual features into the LLM embedding 234

space, the LLM may fail to interpret or utilize these 235

visual semantics effectively. 236

Assumption 2 (Strong image-text correlation).

I(Xv;Xl) ≫ 0 237

meaning the visual input Xv and the corresponding 238

textual description Xl share substantial semantic in- 239

formation. This holds when the MLP successfully 240

projects visual semantics into the textual seman- 241

tic space, resulting in a strong correlation between 242

image and text modalities. 243

Under these assumptions, consider the mutual in- 244

formation between the visual hidden state Hv and 245

the future text tokens x≥t: 246

I(x≥t;Hv) = 0 (7) 247
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Substituting Eq. (7) into the mutual information248

decomposition (cf. Eq. 6), we have:249

I(x≥t;Hl | Hv) (8)250

= H(x≥t | Hv)−H(x≥t | Hl,Hv)251

= H(x≥t)−H(x≥t | Hl)252

= I(x≥t;Hl). (9)253

Consequently, the joint mutual information reduces254

to:255

I(x≥t;Hv,Hl) = I(x≥t;Hl). (10)256

Interpretation. This analysis uncovers a criti-257

cal degeneration phenomenon in multimodal align-258

ment: when the visual feature representation Hv259

carries no mutual information about the forthcom-260

ing tokens, the multimodal pretraining objective261

effectively reduces to a unimodal language mod-262

eling task conditioned solely on Hl. In essence,263

the model disregards visual inputs entirely, collaps-264

ing MLLM pretraining into conventional text-only265

language modeling.266

More importantly, this degeneration extends267

beyond the extreme case. Under Assumption268

2—which generally holds in practical scenar-269

ios—insufficient retention of visual semantics270

causes the alignment target to increasingly approx-271

imate that of pure text modeling, revealing an in-272

trinsic bias toward textual information that limits273

the model’s ability to fully leverage multimodal274

signals. This analysis not only highlights a funda-275

mental limitation of current alignment objectives276

but also substantiates the necessity of incorporat-277

ing visual semantic training in MLLM alignment,278

consistent with observations in related work (see279

Section 2.2).280

As depicted in Fig.2, existing MLLM alignment281

objectives focus mainly on textual reconstruction282

without explicitly preserving visual semantics, re-283

inforcing the model’s text preference and under-284

scoring the need for new alignment strategies that285

integrate rich visual representations. While VDEP286

introduces visual semantics in a concise way to287

effectively balance the visual and text modalities.288

4 The proposed method289

4.1 Vision dynamic embedding pretraining290

As illustrated in the upper panel of Fig. 2, text291

tokens benefit from explicit instance-level labels,292

enabling the use of cross-entropy loss to directly293

supervise token reconstruction. This forms the pri- 294

mary information flow driving alignment. In con- 295

trast, image data lack such granular labels, and 296

consequently, the alignment objective imposes no 297

explicit constraints on reconstructing visual seman- 298

tics. As analyzed in Section 3.3, this imbalance 299

naturally biases the model towards optimizing text 300

reconstruction, undermining effective multimodal 301

alignment. 302

To mitigate this degeneration, we introduce Vi- 303

sion Dynamic Embedding Pretraining (VDEP), 304

which supplements the original alignment objective 305

with an explicit reconstruction loss on visual se- 306

mantic embeddings, as depicted in the lower panel 307

of Fig. 2. Formally, the joint optimization objective 308

is: 309

LTotal = Lt + αLi, (11) 310

where Lt and Li denote the losses for text and 311

image modalities, respectively, and α ∈ [0, 1] bal- 312

ances their relative contributions. By tuning α, 313

we dynamically regulate the emphasis on visual 314

semantics, promoting robust cross-modal represen- 315

tation learning. This approach not only balances 316

the importance of visual and textual information 317

reconstruction during training from an informa- 318

tion flow perspective but also effectively prevents 319

the alignment objective degradation risk caused 320

by insufficient visual supervision, as discussed in 321

Section 3.3. 322

4.2 Quantifying visual reconstruction target 323

To quantify the visual reconstruction loss Li, we 324

adopt the L2 distance between the hidden state 325

embedding Hi and the target embedding x≥t 326

as a proxy to estimate the mutual information 327

I(Hi, x≥t) between these two embeddings. In- 328

tuitively, minimizing this L2 distance encourages 329

the model to capture the shared semantic content, 330

effectively aligning their representations. 331

This L2-based estimation provides a simple yet 332

effective measure to guide the reconstruction of 333

visual semantics. A theoretical justification and 334

detailed proof of the feasibility of using L2 distance 335

to estimate mutual information are provided in the 336

Appendix D. 337

4.3 Hybrid multimodal alignment training 338

In multimodal LLMs, the visual token count often 339

dwarfs that of text tokens, with images represented 340

by hundreds of patches. Naively applying VDEP 341

jointly risks overemphasizing visual features, lead- 342
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METHOD POPE SEEDBI AI2D MMSTAR MMTB OCRB MMBENCH

EN CN

TinyLLava-3B
TINYLLAVA 86.58 69.10 60.36 37.19 48.73 337 67.04 42.37

TINYLLAVA-VDEP (OURS) 86.98 69.35 60.85 37.65 49.08 343 66.70 41.87
CHANGE +0.40 +0.25 +0.49 +0.56 +0.35 +6.00 -0.26 -0.50

LLava-v1.5-7B
LLAVA 85.85 66.10 55.63 33.48 48.86 297 64.30 57.62

LLAVA-VDEP (OURS) 86.20 66.70 56.57 36.06 48.00 326 66.81 58.23
CHANGE +0.35 +0.60 +0.94 +2.58 -0.86 +29 +1.84 +0.33

Table 1: Comparison of VDEP (Ours) and LLava on General VLM Evaluation Benchmarks Across Model Sizes

METHOD VQAOK GQA VQAV2 VQAT RWQA SQAI

TinyLLava-3B
TINYLLAVA 57.50 61.20 79.13 51.66 53.33 70.55
TINYLLAVA-VDEP (OURS) 57.97 61.67 79.24 51.73 54.25 71.39
CHANGE +0.47 +0.47 +-0.09 +0.07 +0.92 +0.84

LLava-v1.5-7B
LLAVA 53.44 62.00 78.50 46.07 55.82 66.80
LLAVA-VDEP (OURS) 57.68 62.50 79.20 46.76 57.64 68.36
CHANGE +3.36 +0.50 +0.70 +0.69 +1.86 +1.56

Table 2: Comparison of VDEP (Ours) and LLava on Visual Question Answering Datasets with Various Model Sizes

ing to overfitting on low-level image details and343

suboptimal alignment.344

To address this, we propose a hybrid alignment345

scheme that decouples visual and textual optimiza-346

tion during pretraining. Specifically, each batch is347

stochastically split into two subsets, which alternate348

between optimizing Li and Lt. This decoupling sta-349

bilizes the textual embedding space, which serves350

as a reliable semantic anchor for aligning visual351

representations. By preserving textual distribution352

integrity and preventing visual dominance, our ap-353

proach effectively suppresses noise and enhances354

alignment fidelity.355

This hybrid strategy is employed exclusively dur-356

ing pretraining, integrating both VDEP and LLava357

objectives. The subsequent supervised fine-tuning358

stage adheres to the original LLava framework, fo-359

cusing on instruction following. This two-stage360

design allows pretraining to concentrate on modal-361

ity alignment, while fine-tuning leverages rich tex-362

tual supervision to refine multimodal fusion. Em-363

pirical results validate the efficacy of our method364

in substantially improving cross-modal alignment365

quality.366

5 Experiments Setting367

In this section, we rigorously evaluate the effi-368

cacy of our proposed Visual Dynamic Embedding-369

guided Pretraining (VDEP) framework across a370

diverse array of multimodal benchmarks. Our ex- 371

perimental design is meticulously crafted to vali- 372

date VDEP’s ability to enhance multimodal align- 373

ment and visual semantic retention without archi- 374

tectural modifications or additional data require- 375

ments. We benchmark against strong baselines, 376

including TinyLLava and LLava-v1.5, spanning 377

multiple model scales to demonstrate the general- 378

ity and robustness of our approach. 379

Datasets. The pre-training and fine-tuning datasets 380

used in this work are identical to those utilized in 381

LLava-v1.5. For pre-training, we use a subset of the 382

LAION/CC/SBU dataset filtered for balanced con- 383

cept coverage and enriched with BLIP-generated 384

captions. For instruction tuning, we use a combi- 385

nation of COCO(Lin et al., 2014), GQA(Hudson 386

and Manning, 2019), OCR-VQA(Mishra et al., 387

2019), TextVQA(Singh et al., 2019), and Visu- 388

alGenome(Krishna et al., 2017) datasets. The de- 389

tails of the datasets are in the Appendix. 390

Tasks and evaluation. We conduct extensive 391

evaluations on a broad spectrum of visual ques- 392

tion answering (VQA) benchmarks, encompassing 393

OK-VQA (Marino et al., 2019), GQA (Hudson 394

and Manning, 2019),VQAV2(Goyal et al., 2017), 395

TextVQA (Singh et al., 2019), RealWorldQA (x.ai, 396

2024), and ScienceQA (Lu et al., 2022). To further 397

assess general multimodal understanding, we eval- 398

uate on comprehensive benchmarks such as MM- 399
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Bench (Liu et al., 2025), POPE (Li et al., 2023b),400

SEED (Li et al., 2023a), MMStar(Chen et al.,401

2024), AI2D (Kembhavi et al., 2016), MMTB402

(Ying et al., 2024), and OCR-VQA (Mishra et al.,403

2019). MME (Fu et al., 2024) is used to evaluat-404

ing model of granular perception We utilize the405

lmms-eval framework (Zhang et al., 2024a; Li406

et al., 2024), which integrates multiple benchmark407

evaluation protocols, ensuring standardized and re-408

producible performance comparisons.409

Models. To comprehensively verify the effective-410

ness of the VDEP, we employ base models of dif-411

ferent parameter scales. Specifically, we utilize412

TinyLLava (Zhou et al., 2024) and LLava-v1.5 (Liu413

et al., 2024a) as our base models, whose model414

sizes are 3B and 7B, respectively. A series of415

carefully designed experiments are conducted to416

evaluate their performance. We used SigLip on417

Tinyllava to verify the capability of our method418

under MLLMS with different Settings.419

Baseline and implementation. To facilitate a fair420

comparison, we double the input data during pre-421

training, ensuring both LLava and VDEP receive422

equivalent training exposure. We introduce a novel423

special token <auto_image> to seamlessly switch424

between autoregressive image embedding training425

(VDEP mode) and conventional LLava training.426

This hybrid training strategy dynamically alternates427

between the two modes, stabilizing convergence428

and preventing catastrophic forgetting.429

5.1 Empirical results and analysis430

Visual question answering performance. Ta-431

ble 2 presents a detailed comparison of VDEP432

and baseline LLava across six challenging VQA433

datasets. Our method consistently outperforms the434

baseline across all datasets and model scales. No-435

tably, LLava-VDEP achieves a substantial +3.36436

points(relative 6.28% gain) absolute improvement437

on OK-VQA and a +1.86 points (3.33% gain) on438

RealWorldQA with the 7B model, underscoring439

VDEP’s effectiveness in enhancing external knowl-440

edge integration and spatial reasoning. Improve-441

ments on GQA and ScienceQA further demonstrate442

enhanced compositional and domain-specific rea-443

soning capabilities. These gains validate that ex-444

plicitly incorporating visual semantic reconstruc-445

tion into the training objective significantly bolsters446

the model’s multimodal understanding.447

General multimodal benchmark performance.448

As demonstrated in Table 1 and Table 3, VDEP449

consistently delivers notable performance improve-450

ments across a diverse set of general multimodal 451

tasks. In particular, VDEP achieves substantial 452

gains on MMStar, with llava7b-VDEP improv- 453

ing by 2.58 points, corresponding to a 7.7% rel- 454

ative increase. Given that MMStar primarily eval- 455

uates vision-centric capabilities, this underscores 456

VDEP’s effectiveness in enhancing visual under- 457

standing. 458

On MME, which encompasses 14 subtasks 459

spanning perception and cognition, TinyLLava- 460

VDEP boosts the overall score by nearly 45 points 461

(+5.9%), while LLava-VDEP attains a gain of 462

+6.93 points. Similarly, on SEED-Bench, a bench- 463

mark designed to assess comprehensive visual com- 464

prehension, VDEP-augmented models exhibit supe- 465

rior performance in visual reasoning and informa- 466

tion integration. Although minor fluctuations are 467

observed in certain subtasks for instance, a slight 468

decrease in counting accuracy for LLava-VDEP 469

the overall trend strongly favors VDEP, indicating 470

enhanced robustness and generalization. 471

It is worth noting that Our 7B model drops on 472

MMTBench while the 3B model declines on MM- 473

Bench, mainly because MMBench relies more on 474

text, as prior MMStar(Chen et al., 2024) studies 475

show. Despite this, the 7B model still improves 476

on MMBench, revealing a trade-off between vi- 477

sual and text modal. The two models show op- 478

posite trends due to differences in scale and ViT 479

architecture. Although perfectly balancing modal- 480

ities remains challenging and causes slight bias, 481

VDEP consistently boosts overall benchmark per- 482

formance, demonstrating improved multimodal 483

alignment. The minor drop on one benchmark 484

further suggests that VDEP effectively mitigates 485

modality imbalance rather than fully resolving it. 486

Hallucination mitigation and visual attention. 487

VDEP achieves a consistent improvement of 0.4 488

points in F1 score on the hallucination benchmark 489

POPE for both the 3B and 7B models, demonstrat- 490

ing that our method further strengthens the preser- 491

vation of visual-semantic fidelity in MLLMs. Com- 492

plementing this quantitative gain, the qualitative 493

analysis of layer-wise attention maps (Fig. 1 and 494

Appendix Fig. 4) shows that VDEP significantly 495

enhances the model’s sensitivity to salient visual 496

cues, such as object boundaries and spatial rela- 497

tionships. This improved visual grounding aligns 498

with the observed reduction in hallucination rates 499

on POPE, providing strong evidence that VDEP’s 500

autoregressive latent space alignment effectively 501

addresses modality imbalance and mitigates hallu- 502
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METHOD PERCEPTION
COMMONSENSE QA COARSE-GRAINED PERCEPTION TASKS TOTAL

(REASONING) EXISTENCE COUNT POSITION COLOR SCORES

TinyLLava-3B
TINYLLAVA 1488.30 120.71 185.00 143.33 133.33 180.00 762.37
TINYLLAVA-VDEP (OURS) 1499.08 130.70 200.00 158.33 138.33 180.00 807.36
CHANGE +10.78 +9.99 +15.00 +15.00 +5.00 +0.00 +44.99

LLava-v1.5-7B
LLAVA 1510.72 135.71 190.00 158.33 128.33 175.00 787.37
LLAVA-VDEP (OURS) 1516.60 136.00 190.00 153.30 135.00 180.00 794.30
CHANGE +5.88 +0.29 +0.00 -5.03 +6.67 +5.00 +6.93

Table 3: Comparison of LLava-VDEP (Ours) and LLava-v1.5 on MME Tasks with Different Model Sizes.

α RWQA MMEP MMB VQAOK

LLava-VDEP-7B
w/ 0.1 55.42 1479.00 62.25 57.33
w/ 0.01 56.73 1504.99 62.52 55.70

w/ 0.001 57.64 1515.60 62.52 57.68

Table 4: Ablation study on the hyperparameter α

DATA RATIO RWQA MMEP MMB VQAOK

LLava-VDEP-7B
w/ 0.5 54.25 1439.16 58.90 55.80
w/ 0.8 57.12 1509.47 59.36 57.26

w/ 1.0 57.64 1515.60 62.52 57.68

Table 5: Ablation study on the hyperparameter Data
Ratio.

cination in multimodal language models.503

5.2 Ablation study504

Hyperparameters α. As illustrated in Table 4,505

with decreasing hyperparameter α, the overall per-506

formance of the model exhibits a consistent im-507

provement in performance metrics across multiple508

benchmarks. This observation suggests that reduc-509

ing the weight assigned to the image loss notably510

improves the model’s performance. The underlying511

reason for this phenomenon lies in the disparity be-512

tween the number of image tokens and text tokens,513

with the former being significantly larger. This514

imbalance often leads to a higher proportion of515

background tokens in image data. When α is rela-516

tively large, the model tends to overfit these back-517

ground tokens, i.e., the model disproportionately518

focuses on less informative regions of the image,519

thereby introducing noise that impairs the effective-520

ness of text alignment during training. By contrast,521

a smaller α alleviates the constraints of image re-522

construction, reducing the influence of background523

noise and enabling more effective text-image align-524

ment, thereby promoting superior performance in 525

multimodal tasks. 526

Hyperparameters data ratio. As shown in Ta- 527

ble 5, we utilize the VDEP framework to train 528

the model with varying text-to-image data ratios 529

and assess its performance across multiple mul- 530

timodal benchmarks. By adjusting the ratio of 531

VDEP mode to LLava mode within a batch during 532

pre-training, we control the proportion of image 533

reconstruction data, where a higher ratio indicates 534

a greater amount of image data. The results in 535

Table 5 demonstrate a clear trend: as the propor- 536

tion of image data increases, the model’s overall 537

performance improves consistently across multi- 538

ple test datasets. This phenomenon is attributed to 539

the greater challenge of simultaneously optimizing 540

regression tasks for both images and text, as it re- 541

quires balancing competing objectives compared 542

to optimizing only the text regression task. A lack 543

of sufficient image data during pre-training leads to 544

suboptimal learning of all tasks, resulting in weaker 545

alignment between modalities and ultimately de- 546

grading the model’s overall performance. 547

6 Conclusion 548

While previous works have identified the text bias 549

problem in multimodal large language models, we 550

provide a rigorous theoretical analysis revealing 551

that under the assumption of insufficient preserva- 552

tion of visual semantics, the common alignment 553

objective can degenerate into unimodal, text-only 554

training. From an information flow perspective, we 555

further expose the inherent modality imbalance in 556

existing optimization objectives. Therefore, we pro- 557

pose VDEP, a novel framework that explicitly in- 558

corporates dynamic visual semantic reconstruction 559

into the training process without modifying model 560

architecture. Experiments on 13 benchmarks show 561

VDEP reduces modality imbalance and boosts vi- 562

sual understanding. 563
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7 Limitation.564

Although VDEP exhibits outstanding performance565

in improving image-text alignment, it relies on the566

hyperparameter α. While we determine an appro-567

priate range of α for models of varying scales, the568

optimal value for a given model size remains un-569

determined. Future work focuses on developing570

methods to adaptively determine the value of the571

hyperparameter based on model size and data char-572

acteristics. Alternatively, it proposes an effective573

strategy to eliminate the need for explicit hyperpa-574

rameter tuning. During pre-training, to improve the575

effectiveness of image-related tasks while ensuring576

no degradation in the performance of text-related577

tasks, we utilize a dataset with double the training578

samples of the original. As a result, the training579

time increases by around 3 hours.580

Impact Statement581

In this paper, we propose a novel paradigm for582

multimodal alignment, named Vision Dynamic583

Embedding-Guided Pre-training. Grounded in in-584

formation theory, this approach incorporates the585

image reconstruction task as an explicit compo-586

nent of the autoregressive objectives in multimodal587

large models. This paradigm offers a streamlined588

and effective framework for aligning MLLMs, em-589

phasizing the critical role and efficacy of image590

reconstruction in facilitating image-text alignment.591

The experimental setup and data processing in our592

study adhere to the principles outlined by the LLava593

dataset.594
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A Implementation Details.797

We design a series of experiments to rigorously798

evaluate the effectiveness of our proposed method799

across models of varying scales. These experiments800

involve two models with different parameter sizes:801

3B, 7B. For the 3B model, we use the TinyLLava802

architecture in our experiments. Within this frame-803

work, SigLIP is the visual encoder, while Phi-2 is804

the language model. For the 7B model, we use805

the pre-trained CLIP ViT-L/14 (3362) as the visual806

encoder, combined with the Vicuna v1.5 language807

model for experiments. pre-training is conducted808

on the CC-558K dataset with a 1× 10−3 learning809

rate. After pre-training, fine-tuning is performed810

on the mix-665K dataset with a learning rate of811

2×10−5. All experiments are conducted on a hard-812

ware system with eight NVIDIA A100 GPUs, each813

with 40GB of memory, to meet the computational814

requirements. In addition, detailed training steps815

and specific rules of the implementation plan are816

fully presented in the appendix. Our training strat-817

egy employs a mixed autoregressive pre-training818

approach with a strict 1:1 ratio of image data to text819

data. The image data is sourced from the CC-558K820

dataset, as in pre-training.. During the SFT stage,821

our experimental settings match the LLava models.822

B BenchMarks.823

B.1 Visual Question Answering824

We conduct experiments on visual question-825

answering benchmarks, including, OK-VQA,826

GQA, VQAv2, TextVQA, RealWorldQA, and Sci-827

enceQA. OK-VQA includes questions that necessi-828

tate external knowledge beyond the multimodal829

inputs provided. GQA is specifically designed830

to assess the reasoning capabilities of the model.831

VQAV2 is one of the most widely used VQA eval- 832

uation sets. It covers a wide variety of visual 833

question-answering tasks, and the number of test 834

sets is huge enough to evaluate the visual capabil- 835

ities of the model very well. TextVQA places a 836

greater emphasis on evaluating the model’s abil- 837

ity to comprehend text within natural scenes. Re- 838

alWorldQA is a benchmark specifically designed 839

to evaluate the spatial understanding capabilities 840

of multimodal AI models in real-world contexts. 841

ScienceQA comprises multimodal multiple-choice 842

questions across a diverse range of science topics. 843

These datasets are strategically selected to evaluate 844

our method’s capacity to understand comprehen- 845

sively and reason across diverse visual contexts and 846

knowledge domains. 847

OK-VQA: OK-VQA(Outside Knowledge 848

VQA)(Marino et al., 2019) is a visual question 849

answering dataset that requires external knowledge. 850

The answers to the questions cannot be inferred 851

solely from the image but also need to incorporate 852

common sense or world knowledge. This dataset 853

evaluates the model’s ability in the intersection of 854

vision and knowledge reasoning. 855

GQA: GQA(Graph Question Answer- 856

ing)(Hudson and Manning, 2019) generates 857

questions and answers based on image scene 858

graphs, focusing on structured reasoning. It 859

emphasizes logical analysis and challenges the 860

model’s depth of understanding of semantics and 861

context. 862

VQAV2: VQAv2(Goyal et al., 2017) is a new 863

dataset containing open-ended questions about im- 864

ages. These questions require an understanding of 865

vision, language and commonsense knowledge to 866

answer. We used the test split to report Our result. 867

TextVQA: TextVQA(Singh et al., 2019) focuses 868

on textual information in images, requiring models 869

to recognize and comprehend text within images to 870

answer questions. It drives research on the integra- 871

tion of visual and textual information, expanding 872

the boundaries of visual question answering. 873

RealWorldQA: RealWorldQA(x.ai, 2024) fea- 874

tures images and questions sourced from real-world 875

scenarios, encompassing diverse content from daily 876

life. The dataset imposes higher requirements on 877

the model’s generalization ability and adaptability 878

to complex scenes. 879

ScienceQA: ScienceQA(Lu et al., 2022) is a 880

multimodal question answering dataset combining 881

images and scientific questions, covering multiple 882

scientific topics such as physics and biology. It 883
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bridges AI technology with the field of science ed-884

ucation, promoting intelligent question answering885

applications in educational contexts.886

B.2 General Multimodal Benchmarks887

We evaluate our proposed method on general multi-888

modal benchmarks, including MME, OCR-Bench,889

MMBench, SEED-Bench, POPE, AI2D,MMStar,890

and MMT-Bench. MME measures both percep-891

tion and cognition abilities on a total of 14 sub-892

tasks. MMBench comprehensively evaluates a893

model’s multimodal capabilities in Chinese and894

English contexts. OCR-Bench contains a col-895

lection of 1,000 manually filtered and corrected896

question-answer pairs, covering five representative897

text-related tasks. MMStar primarily targets evalu-898

ation tasks with a strong reliance on visual informa-899

tion. Candidate samples are initially filtered from900

existing benchmarks via an automated pipeline, fol-901

lowed by manual verification to ensure that each902

selected instance exhibits clear visual dependency,903

minimal data leakage, and requires advanced mul-904

timodal reasoning capabilities. SEED-Bench fo-905

cuses on assessing generative comprehension in906

multimodal large language models. POPE evalu-907

ates the extent of multimodal hallucinations present908

in a model. AI2D assesses a model’s ability to inter-909

pret scientific diagram inputs. MM-Vet evaluates910

the multimodal conversational skills of a model911

using GPT-4 as a benchmark. MMT-Bench is a912

comprehensive benchmark developed to evaluate913

MLLMs across a wide range of multimodal tasks914

requiring expert knowledge and deliberate visual915

recognition, localization, reasoning, and planning.916

These diverse benchmarks provide a comprehen-917

sive framework for evaluating the performance and918

capabilities of our proposed method in multimodal919

learning.920

MME: MME(Fu et al., 2024), short for Multi-921

modal Evaluation , is a comprehensive multimodal922

benchmark designed to evaluate the ability of mod-923

els to understand and process information across924

multiple modalities, including vision, text, and au-925

dio. It provides a standardized framework to mea-926

sure performance on tasks requiring cross-modal927

reasoning and understanding, making it an essential928

tool for assessing the generalization of multimodal929

large language models (MLLMs).930

MMBench MMBench(Multimodal Bench-931

mark)(Liu et al., 2025) is a task-driven benchmark932

that focuses on systematically evaluating multi-933

modal models across diverse real-world application934

scenarios, such as visual question answering, 935

image captioning, and video understanding. Its 936

emphasis on practical use cases highlights its 937

importance for assessing the practical utility of 938

MLLMs. 939

SEED: SEED(Spatial and Entity-aware Eval- 940

uation Dataset)(Li et al., 2023a) is a benchmark 941

specifically designed to evaluate the spatial and en- 942

tity reasoning capabilities of multimodal models. 943

By incorporating complex spatial relationships and 944

entity-based queries, SEED tests a model’s ability 945

to perform fine-grained reasoning, which is critical 946

for tasks such as scene understanding and object- 947

oriented question answering. 948

POPE: POPE(Perceptual and Object-aware Per- 949

formance Evaluation)(Li et al., 2023b) focuses 950

on evaluating the perceptual understanding and 951

object-centric reasoning of multimodal models. It 952

emphasizes tasks like object detection, recogni- 953

tion, and spatial awareness, making it a key bench- 954

mark for assessing models’ performance in visually 955

grounded tasks. 956

AI2D: AI2D(Allen Institute for AI Diagram 957

Dataset)(Kembhavi et al., 2016) is a dataset cen- 958

tered on diagram understanding, designed to evalu- 959

ate models’ abilities to process non-photographic 960

visual content. It focuses on reasoning over dia- 961

grams and charts, making it vital for tasks requiring 962

scientific and technical visual comprehension. 963

OCRB: OCRB (Optical Character Recognition 964

Benchmark)(Mishra et al., 2019) is a specialized 965

benchmark for assessing a model’s ability to rec- 966

ognize and interpret text in images. It focuses on 967

OCR-related tasks, such as text detection, transcrip- 968

tion, and contextual understanding, which are cru- 969

cial for applications like document analysis and 970

scene-text understanding. 971

MMStar: MMStar(Chen et al., 2024), an elite 972

vision-indispensable multi-modal benchmark com- 973

prising 1,500 samples meticulously selected by hu- 974

mans. MMStar benchmarks 6 core capabilities 975

and 18 detailed axes, aiming to evaluate LVLMs’ 976

multi-modal capacities with carefully balanced and 977

purified samples. 978

MMMU: MMMU(Multimodal Multitasking 979

Understanding)(Yue et al., 2024) evaluates the mul- 980

titasking capabilities of multimodal models by test- 981

ing their performance on multiple simultaneous 982

tasks across different modalities. This benchmark 983

is essential for assessing the adaptability and effi- 984

ciency of models in dynamic, multitask scenarios. 985

MMTB: MMTB(Multimodal Task Bench- 986
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Figure 4: Layer-wise attention visualization of visual-to-instruction information flow. Displayed from top to bottom
are the attention heatmaps from LLava-v1.5-7B and LLava-v1.5-7B-VDEP, respectively. The example is derived
from LLava-Bench (Liu et al., 2024b) and the query is "Describe this photo in detail".

mark)(Ying et al., 2024) is a broad benchmark de-987

signed to evaluate the performance of multimodal988

models on a wide range of tasks, including vision-989

and-language navigation, multimodal reasoning,990

and image captioning. Its diversity makes it a991

strong indicator of a model’s overall multimodal992

proficiency.993

OCRB: OCRB (Optical Character Recognition994

Benchmark)(Mishra et al., 2019) is a specialized995

benchmark for assessing a model’s ability to rec-996

ognize and interpret text in images. It focuses on997

OCR-related tasks, such as text detection, transcrip-998

tion, and contextual understanding, which are cru-999

cial for applications like document analysis and1000

scene-text understanding.1001

C Case Study 1002

As shown in 4, we can see from the visualization of 1003

cases in different scenarios that the VDEP method 1004

significantly enhances the MLLM’s perception of 1005

fine-grained content in vision, and the visual se- 1006

mantics are retained in depth at different layers of 1007

the LLM. This is also consistent with our theoreti- 1008

cal verification. 1009

D Proof: Using L2 Distance to Estimate 1010

Mutual Information Between 1011

Embeddings 1012

Let X and Y be two random variables represent- 1013

ing embedding vectors in a continuous space. We 1014

aim to show that minimizing the squared L2 dis- 1015

tance between X and Y can serve as a proxy to 1016

maximizing their mutual information I(X;Y). 1017
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D.1 Mutual Information Definition1018

Recall that the mutual information between X and1019

Y is defined as1020

I(X;Y) = H(X)−H(X|Y),1021

where H(X) is the differential entropy of X, and1022

H(X|Y) is the conditional differential entropy of1023

X given Y.1024

D.2 Conditional Entropy and Reconstruction1025

Error1026

Intuitively, if Y can reconstruct X with high fi-1027

delity, then the uncertainty of X given Y is low,1028

i.e., the conditional entropy H(X|Y) is small.1029

Suppose we measure the reconstruction error be-1030

tween X and Y by the expected squared Euclidean1031

(L2) distance:1032

L = E
[
∥X−Y∥22

]
.1033

When L approaches zero, it means Y nearly1034

perfectly reconstructs X, and thus the uncertainty1035

of X given Y becomes very small.1036

D.3 Linking L2 Distance to Conditional1037

Entropy1038

To make this intuition more precise, assume the1039

reconstruction error X − Y follows a Gaussian1040

distribution with zero mean and covariance matrix1041

Σ, i.e.,1042

p(X|Y) = N (Y,Σ).1043

Under this assumption, the conditional differen-1044

tial entropy of X given Y is1045

H(X|Y) =
1

2
log

(
(2πe)d detΣ

)
,1046

where d is the dimensionality of X.1047

Since the expected squared error L equals the1048

trace of the covariance matrix,1049

L = Tr(Σ),1050

minimizing L corresponds to reducing the overall1051

variance of the reconstruction error.1052

As L → 0, the covariance matrix Σ approaches1053

the zero matrix, and thus detΣ → 0. Because1054

the logarithm of the determinant tends to negative1055

infinity, the conditional differential entropy satisfies1056

H(X|Y) → −∞.1057

This reflects a fundamental property of differ- 1058

ential entropy: when a continuous distribution be- 1059

comes degenerate (variance tends to zero), its dif- 1060

ferential entropy tends to negative infinity. In other 1061

words, the uncertainty of X given Y vanishes in 1062

the limit of perfect reconstruction. 1063

D.4 Interpretation and Practical Implications 1064

Although the conditional differential entropy tends 1065

to negative infinity mathematically, this corre- 1066

sponds to the intuitive notion that the uncertainty 1067

of X given Y becomes negligible. In practice, 1068

this means that minimizing the reconstruction er- 1069

ror L effectively reduces the conditional entropy 1070

H(X|Y). 1071

Since mutual information can be expressed as 1072

I(X;Y) = H(X)−H(X|Y), 1073

reducing H(X|Y) by minimizing L increases the 1074

mutual information I(X;Y). 1075

D.5 Conclusion 1076

Therefore, minimizing the squared L2 reconstruc- 1077

tion loss between embeddings X and Y serves as 1078

a practical surrogate for maximizing their mutual 1079

information. Formally, 1080

lim
L→0

I(X;Y) = H(X), 1081

which corresponds to the maximal mutual infor- 1082

mation achievable when X is fully determined by 1083

Y. 1084

This justifies the use of the squared L2 distance 1085

as a feasible and effective loss function to estimate 1086

and maximize mutual information between embed- 1087

ding vectors. 1088

E Detailed experiments. 1089

We present comprehensive ablation results derived 1090

from LLava-v1.5 to substantiate the experimental 1091

conclusions in the main text. Additionally, we per- 1092

formed ablation studies on the image loss function 1093

to demonstrate the simplicity and effectiveness of 1094

the L2 loss. 1095
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DATA RATIO AI2D MM-VET MMMU MMT GQA VIZWIZQA VQAT SQAI

LLava-v1.5-VDEP-7B
w/ 0.5 54.02 29.00 31.20 46.30 61.65 49.82 46.33 68.62
w/ 0.8 55.18 28.20 31.30 46.72 61.65 45.40 46.27 69.16
w/ 1.0 56.57 30.60 30.80 48.00 62.50 50.37 46.76 68.36

Table 6: Ablation study on the hyperparameter Data Ratio, which represents the proportion of different VDEP and
LLava patterns in the pre-training stage.

α AI2D MM-VET MMMU MMT GQA VIZWIZQA VQAT SQAI

LLava-v1.5-VDEP-7B
w/ 0.1 55.57 30.50 30.60 47.64 61.45 46.76 46.52 67.72
w/ 0.01 56.64 32.20 31.30 48.48 62.63 52.72 46.94 67.77
w/ 0.001 56.57 30.60 30.80 48.00 62.50 50.37 46.76 68.36

Table 7: Ablation study on the hyperparameter α, which represents the variation of the image loss weight.

LOSS PERCEPTION
COMMONSENSE QA COARSE-GRAINED PERCEPTION TASKS TOTAL

(REASONING) EXISTENCE COUNT POSITION COLOR SCORES

LLava-v1.5-VDEP-7B
1/L2 1518.34 133.57 190.00 163.33 135.00 180.00 801.90

Sigmoid(L2) 1478.45 133.57 190.00 145.00 138.33 175.00 781.90
L2 1515.60 136.00 190.00 153.30 135.00 180.00 794.30

Table 8: Ablation study on the hyperparameter Loss Function on MME.

LOSS VQAOK GQA VIZWIZ VQAT RWQA SQAI

LLava-v1.5-VDEP-7B
1/L2 56.11 62.47 51.37 46.56 54.38 69.01

Sigmoid(L2) 57.37 62.95 49.87 46.67 57.90 68.32
L2 57.68 62.50 50.37 46.76 57.64 68.36

Table 9: Ablation study on the hyperparameter Loss Function on VQA.

LOSS
MMBENCH AI2D MM-VET MMMU MMTB OCRB POPE
EN CN

LLava-v1.5-VDEP-7B
1/L2 65.97 58.52 57.09 31.10 31.20 47.93 320 85.62

Sigmoid(L2) 66.20 58.24 56.47 31.70 31.00 48.32 334 85.98
L2 66.81 58.23 56.57 30.60 30.80 48.00 326 85.95

Table 10: Ablation study on the hyperparameter Loss Function on benchmarks for insruction-following LMMs.
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