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KMD clustering: robust general-purpose clustering
of biological data
Aviv Zelig1,2,3, Hagai Kariti 2,3 & Noam Kaplan 2✉

The noisy and high-dimensional nature of biological data has spawned advanced clustering

algorithms that are tailored for specific biological datatypes. However, the performance of

such methods varies greatly between datasets and they require post hoc tuning of cryptic

hyperparameters. We present k minimal distance (KMD) clustering, a general-purpose

method based on a generalization of single and average linkage hierarchical clustering. We

introduce a generalized silhouette-like function to eliminate the cryptic hyperparameter k,

and use sampling to enable application to million-object datasets. Rigorous comparisons to

general and specialized clustering methods on simulated, mass cytometry and scRNA-seq

datasets show consistent high performance of KMD clustering across all datasets.
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C lustering is a ubiquitous set of machine learning techniques
that are widely used in data analysis to computationally
group sets of objects based on some measure of pairwise

distance or similarity. The application of clustering to complex
biological datasets is widespread1–6, and some notable recent
examples include the clustering of single cell RNA sequencing7

(scRNA-seq) and mass cytometry data8 with the aim of detecting
cell subpopulations. In complex biological applications, under-
performance of standard general-purpose clustering algorithms on
noisy high-dimensional data has led to the development of clus-
tering algorithms that specialize in specific subtypes of biological
data. While these algorithms outperform general-purpose cluster-
ing algorithms on these datasets, they are often not transferrable
to other types of data and their performance can vary significantly
even on datasets of the same type9,10. Several examples of such
specialized clustering methods exist, based on a variety of
approaches. In scRNA-seq clustering of cells, SCCAF11 uses a self-
projection machine learning approach on a pre-clustered dataset to
simultaneously identify distinct cell groups and a weighted list of
feature genes for each group. In mass cytometry, FlowSOM12

clusters the nodes of a constructed self organizing map (SOM)
connected by a minimal spanning tree using consensus hierarchical
clustering. One exception to these specialized methods is
PhenoGraph13 (other implementations include Scanpy14 Louvain
and Seurat15 Louvain and Bluster16 Louvain), which uses a shared
neighbor graph to perform Louvain community detection and can
be used on both types of biological datasets.

An important issue with many modern clustering methods,
including the aforementioned specialized clustering algorithms, is
the requirement of user-specified numerical hyperparameters.
Although the values of such hyperparameters can change the
clustering results dramatically1, they are often cryptic, in the
sense that they do not have a sufficiently clear interpretation in
the context of the biological problem such that a user would
be able to set them a priori based on biological knowledge.
Ultimately this leaves users to either use inadequate default
hyperparameter settings or to adjust the hyperparameter values
until they are happy with the outcome, which may lead to
undetectably biased results and overfitting. For example, SCCAF

is dependent on the self-projection machine learning parameters,
clustering parameters and minimum self-projection accuracy
parameter11; FlowSOM has several parameters regarding starting
population, clustering channels and SOM settings12; PhenoGraph
parameters include the number of nearest neighbors when con-
structing the cell contact graph13. Ideally, one would like a
clustering algorithm to either not have such hyperparameters or
have hyperparameters that are easy to set (e.g. interpretable and/
or do not significantly affect the results).

Here we present a new general-purpose clustering method which
we call k-minimal distances (KMD) clustering. Our method is
based on a natural generalization of average and single linkage,
within the framework of hierarchical clustering. Building on this
generalized linkage function, we demonstrate its efficient compu-
tation and combine it with a simple outlier-aware partitioning
scheme in order to improve performance in noisy scenarios. Next,
we propose a generalized silhouette-like function which matches
our generalized linkage function, and show that it is predictive of
clustering performance across different values of the hyperpara-
meter k. Using this, we are able to eliminate the need to choose a
value for the cryptic hyperparameter k. We then apply our method
to a range of simulated and experimental biological datasets in
which ground truth is known and find that our method compares
favorably to both standard general-purpose algorithms and
domain-specific state-of-the-art algorithms. Finally, we show how a
sampling-based extension of our approach can be used to apply our
method to very large datasets on the scale of millions.

Results
KMD linkage. We sought to generalize the notion of single and
average linkage within the framework of agglomerative hier-
archical clustering, in order to combine the most useful properties
of both linkage types (Fig. 1a). Agglomerative hierarchical clus-
tering starts with n clusters of size one and then iteratively merges
the two nearest (most similar) clusters, based on a nxn distance
matrix specifying the distance between each pair of objects. Since
only distance between objects is given, a key step is to define how
to calculate the distances between any two clusters, and this

Fig. 1 KMD clustering. a Illustration of single, average and KMD linkage methods. b Outlier-aware partitioning schematic example (Left: dendrogram;
Right: data points). Orange, pink and brown indicate core clusters; grey rectangles/points represent outliers; black arrows indicate merges between core
clusters.
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function is known as linkage. In single linkage, the distance
between two clusters is defined as the minimal pairwise inter-
cluster distance. Single linkage can detect both globular and
complex non-globular cluster shapes, but is highly prone to noise
due to its reliance on a single pairwise distance17. In average
linkage, the distance between two clusters is defined as the
average of all pairwise inter-cluster distances18,19. Average linkage
clustering is more robust to noise than single linkage17, but is
biased towards detecting globular clusters19. We propose a gen-
eralized form of linkage which we refer to as k minimal distances
linkage (KMD linkage), in which we define the distance between
two clusters as the average of the k minimal pairwise inter-cluster
distances, where k is an integer (Fig. 1a). Note that k= 1 gives
single linkage and k»n gives average linkage. Thus, we hypothe-
sized that an intermediate value of k might potentially capture the
best features of both worlds: be more robust to noise than single
linkage, yet less biased towards globular clusters than average
linkage. As we show later, prior knowledge of the value of k is not
needed since k can be estimated computationally. While the
implementation of a hierarchical clustering algorithm with an
arbitrary linkage function can be computationally impractical,
efficient algorithms for single and average linkage clustering are
known. Similarly, for KMD linkage we show a method for effi-
cient linkage update in linear time, as well as a quadratic memory
implementation which is importantly independent of k, making
computations with large k feasible (see Methods).

Outlier-aware partitioning. In the formulation of clustering that
we address, the number of clusters c is prespecified by the user
(see Discussion). In order to partition the data into c clusters in
standard single and average linkage clustering, the standard
approach is to stop the clustering (merging) process when c
clusters are left20. However, in noisy datasets where an unknown
number of outlier objects may exist in addition to the c clusters,
outliers will often be merged towards the end of the clustering
process (because they are far from other objects), leading to
incorrect merging of large clusters under the standard parti-
tioning approach.

To address this challenge, we implemented a simple size-based
outlier-aware partitioning scheme (Fig. 1b), akin to the approach
proposed in HDBSCAN21. We assumed that tiny clusters (smaller
than a prespecified size threshold) which are merged in the final
stages of the partitioning are likely outliers. Thus, our scheme
ignores such merges in the final clustering steps and maintains only
the last c-1 merges between clusters larger than the size threshold.
Clusters that are smaller than the size threshold are treated
separately as outliers, and the remaining c clusters are considered as
core clusters. Although the outlier cluster size threshold is set by the
user, it is interpretable and should be set to a value larger than a
cluster size that the user considers to be too small to be meaningful
and below the minimal expected cluster size. Additionally, we
observe that clustering performance is typically robust across a
large range of values for this threshold (Fig. S1, see “Evaluation on
simulated datasets” for details on datasets), so prior knowledge of
its exact value may not be required.

As it still may be useful to associate the outliers to one of the
core clusters after the initial clustering process, especially when
comparing predictive performance of different methods, it is
straightforward to assign outliers to core clusters by simply
calculating the KMD linkage of an outlier to each of the core
clusters and assigning it to the core cluster with the minimal
distance. In the interest of fairness, all comparisons of clustering
performance in this paper were done using these outlier
assignments, such that no objects were left out unless explicitly
stated otherwise. Finally, we assign each outlier classification a

confidence score such that 0.5 is the lowest confidence assign-
ment and 1 is the highest confidence assignment (Fig. S2).

Estimation of hyperparameter k by KMD silhouette. Due to the
drawbacks associated with cryptic hyperparameters, we asked
whether it is possible to eliminate the main hyperparameter k,
which we introduced as part of KMD linkage. We first examined
the effect of the hyperparameter k on our clustering method. The
hyperparameter k plays a vital role in the method, as small k values
increase sensitivity to noise and large k values favor globular
clusters. While testing the clustering accuracy for different datasets
across different values of k, we found that often neither k= 1
(single linkage) nor k>>n (average linkage) give the best solution,
and that clustering performance can vary dramatically for different
values of k (e.g. high-noise half moons dataset, see “Evaluation on
simulated datasets” for dataset details, Fig. 2). Thus, it would be
difficult for a user to prespecify k for a new dataset.

In order to eliminate the hyperparameter k, we asked whether
there exists some intrinsic property which may indicate the quality
of a clustering solution, thus allowing hyperparameter k to be
chosen automatically. A common method for measuring the
quality of a clustering solution is the silhouette score, which is
based on comparing each object’s intercluster vs intracluster
distances22. However, due to its similarity to the average linkage
calculation, the silhouette score tends to favor globular clusters and
thus will generally not be indicative of clustering performance
when clusters are non-globular. To overcome this limitation, we
propose a generalized modified form of the silhouette score which
naturally matches the KMD linkage. This new generalized function,
which we refer to as KMD silhouette, calculates the difference
between an object’s intercluster and intracluster distances by only
using KMD linkage rather than average linkae, where k is selected
to match the same k value used for clustering. In addition, we add a
factor that penalizes large values of k (see Methods). Thus, the
formula for calculating the KMD silhouette changes for different
values of k to match the changes in the linkage function. Next, we
tested whether the intrinsic KMD silhouette measure that we

Fig. 2 Selection of hyperparameter k. KMD clustering accuracy (red line)
and KMD silhouette score (blue line) on the high-noise half moons dataset
across a range of k values (1–100). Insets show true labels as well as cluster
assignments at k values of 1, 40, 50 and 80. Pearson correlation between
the clustering accuracy and KMD silhouette score is shown in the bottom
right corner.
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proposed is predictive of the actual clustering performance when
compared to ground truth, across different values of k (e.g. high-
noise half moons, Fig. 2). Testing this on 50 different instances of
high-noise half moons, we find that KMD silhouette is predictive of
all three performance metrics (median accuracy Pearson correla-
tion= 0.89, median NMI Pearson correlation= 0.85, median ARI
Pearson correlation= 0.87). Thus, we eliminate hyperparameter k
by running the clustering in parallel over several values of k and
picking the k value that has the highest KMD silhouette score.

Evaluation on simulated datasets. We first sought to evaluate
and characterize our method’s performance on a standard set of
simulated datasets, provided by the python package scikit-learn23.
The scikit-learn datasets consist of five synthetic two-dimensional
clustering problems (nested circles, half moons, globular clusters,
and anisotropic clusters; each containing 1000 datapoints), which
are generated from a mathematical function with a parameter
controlling the amount of variance/noise. While these datasets are
considerably different than experimental datasets, they are useful
in broadly characterizing the strengths and weaknesses of stan-
dard general-purpose clustering algorithms. Importantly, in this
data true cluster labels are known, allowing quantitative evalua-
tion of clustering performance. For each clustering problem, we
ran six different standard general-purpose clustering algorithms
(spectral clustering, average linkage hierarchical, single linkage
hierarchical, DBSCAN, HDBSCAN and gaussian mixture), as
well as KMD clustering. We quantified performance using three
standard performance metrics: accuracy, Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI), in which the
highest achievable score is 1 (see Methods for details). We did not
penalize algorithms that do not classify all object, even though
this likely boosts their score because the unclassified outliers are
often most difficult to classify. Comparing performance across all
datasets, we find that in each of the clustering problems, KMD

clustering is either highly competitive or outperforms the other
approaches (Fig. 3, Table S1). KMD clustering achieves high
performance scores on all datasets (nested circles: Accuracy= 1/
NMI= 1/ARI= 1, half moons: 1/1/1, globular clusters: 0.979/
0.915/0.938, anisotropic clusters: 0.991/0.955/0.973). HDBSCAN
also performs well on all datasets, but classifies 16% of the
globular clusters and 11% of anisotropic clusters as outliers. The
remaining clustering approaches each show a qualitative perfor-
mance weakness in at least one of the datasets. We asked whether
the KMD core clusters are identified with higher accuracy than
the detected outliers, and indeed we observed that in all cases the
performance metrics are higher when ignoring detected outliers,
validating our outlier detection method, that correctly excludes
irregular data objects. Taken together, we find that KMD clus-
tering performs well on all tested clustering problems.

As one of our goals was to develop a method that performs
robustly in noisy clustering problems, we next tested our algorithm
on the scikit-learn datasets with a high degree of noise added, such
that in some cases the clusters were even difficult to resolve visually
(Fig. 4). We then reevaluated each of the clustering algorithms on
these noisy datasets, and also compared to five additional clustering
methods (complete linkage hierarchical, Ward linkage hierarchical,
minimax linkage hierarchical, Scanpy Louvain, Scanpy Leiden)
(Tables S2–S4). Remarkably, we find that KMD clustering
performed well across the board (accuracy - nested circles: 0.989;
half moons: 0.933; globular clusters: 0.909; anisotropic clusters:
0.992). KMD clustering was the only method that correctly captures
the noisy nested circles. The second-best algorithm was gaussian
mixture, which identified gaussian cluster shapes but unsurprisingly
failed to capture irregular cluster shapes (accuracy - globular
clusters: 0.923, anisotropic clusters: 0.996; nested circles: 0.555, half
moons: 0.834). Taken together, we find that our method is the only
method amongst those tested, which performed well on all four
noisy clustering problems. We conclude that the KMD algorithm

Fig. 3 Evaluation on simulated datasets. a Comparison of clustering algorithm performance on standard scikit-learn simulated datasets (top to bottom:
nested circles, half moons, globular clusters, anisotropic clusters). Algorithms (left to right): Spectral clustering (1), hierarchical average linkage (2), single
linkage (3), DBSCAN (4), HDBSCAN (5), gaussian mixture (6), KMD clustering (7) and KMD clustering core clusters (outliers shown in black) (8).
Datasets (top-down): nested circles, half moons, globular clusters and anisotropic clusters. b Evaluation of algorithms by accuracy (blue), Normalized
Mutual Information (light pink), Adjusted Rand Index (green).
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consistently outperformed standard general clustering algorithms
across different simulated low-dimensional datasets, including in
high noise scenarios.

Evaluation on mass cytometry data. Next, we asked how KMD
clustering will perform on complex high-dimensional biological
data. To this end, we considered the problem of clustering mass
cytometry data. In mass cytometry, dozens of molecular markers
are measured for each cell within a sample, and we seek to
identify clusters representing cell populations. To assess the
performance of KMD clustering in an unbiased manner, we fol-
lowed the work of Liu et al.10, which benchmarked several state-
of-the-art clustering algorithms. Liu et al.10 use three bone mar-
row mass cytometry datasets for which the true labels are known
from manual gating, and repeatedly (n= 10) sample 20,000 cells
from each of these datasets (Levine15_13: 20,000 cells out of
167,044, 13 markers, 24 clusters; Levine15_32: 20,000 cells out of
265,627, 32 markers, 14 clusters; Samusik16: 20,000 cells out of
86,864, 44 markers, 24 clusters). We then compared the perfor-
mance of KMD clustering to leading algorithms that were spe-
cifically designed for clustering mass cytometry data Xshift,
DEPECHE, Accense, FlowSOM as well as the general clustering
algorithms kmeans and PhenoGraph (Fig. 5, Table S5). In order
to ensure consistency and correct usage of the algorithms, we did
not rerun the algorithms but took the performance results directly
from Liu et al.10. On the Levine15_32 dataset, we find that KMD
clustering outperforms all other tested clustering methods (KMD:
0.948 accuracy, 0.944 NMI, 0.971 ARI; DEPECHE (second best):
0.892 accuracy, 0.842 NMI, 0.927 ARI). On the Levine15_13
dataset, we also find that KMD clustering performs well (ranked
third) but the best is PhenoGraph (KMD: 0.812 accuracy, 0.807
NMI, 0.795 ARI; PhenoGraph: 0.918 accuracy, 0.883 NMI, 0.927
ARI). On the Samusik16 dataset, KMD clustering also performs

well (ranked second) but is slightly outperformed by PhenoGraph
(KMD: 0.922 accuracy, 0.887 NMI, 0.909 ARI; PhenoGraph:
0.924 accuracy, 0.899 NMI, 0.925 ARI). Considering averaged
performance across all three datasets, KMD clustering performs
best in all metrics (KMD: 0.894 avg. accuracy, 0.879 avg. NMI,
0.892 avg. ARI; PhenoGraph 0.834 avg. accuracy, 0.848 avg. NMI,
0.841 avg. ARI). Overall, we find that in contrast to competing
algorithms which tend to perform poorly on at least one of the
datasets, KMD clustering achieves consistently high performance
on each of the datasets.

Evaluation on single cell RNAseq data. We next asked how KMD
clustering performs on extremely high-dimensional biological data,
in which the number of clustered objects is much smaller than the
dimensionality. Unsupervised clustering is often used on single cell
RNA sequencing data in order to classify cell types based on tran-
scriptional similarity, but these datasets can be challenging to cluster
due to the sparse and noisy nature of the data7. To assess the per-
formance of KMD clustering, we used three datasets containing gold
standard labels determined by known markers: Lawlor1724 (638
cells, 19927 genes, 9 clusters) containing pancreas cells, Zeisel1525

(3005 cells, 2000 genes, 8 clusters) containing cortex and hippo-
campus cells and Li126 (561 cells, 57241 genes, 7 clusters) containing
human colorectal tumor cells. We note these datasets are relatively
small, and are often considered difficult to classify27.

In clustering of scRNA-Seq data, as well as in other use cases, the
number of clusters may not be known a priori, and it may be of
interest to estimate this number (as done by other methods). To
this end, we implemented an optimized calculation of the Density
Based Clustering Validation (DBCV) measure28, which is used to
evaluate clustering solutions without assuming globular cluster
shapes. We then estimated the cluster number by selecting the
KMD clustering solution that maximized the DBCV (seeMethods).

Fig. 4 Evaluation on simulated high noise datasets. a Comparison of clustering algorithm performance on standard scikit-learn simulated datasets with
added high noise (see Methods for details). Algorithms (left to right): Spectral clustering (1), average linkage (2), single linkage (3), DBSCAN (4),
HDBSCAN (5), gaussian mixture (6), KMD clustering (7) and KMD clustering core clusters (outliers shown in black) (8). Datasets (top-down): nested
circles, half moons, globular clusters and anisotropic clusters. b Evaluation of algorithms by accuracy (blue), Normalized Mutual Information (light pink),
Adjusted Rand Index (green).
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We then compared the performance of KMD clustering (with
cluster number estimation) to four methods that were designed
for clustering scRNA-seq data: SCCAF, Scanpy Louvain, Scanpy
Leiden and Seurat (Fig. 6, Table S6). In all single cell datasets, in
line with current practices, we reduced dimensionality to 50 with
PCA and used correlation rather than Euclidean distance as
recommended in previous studies for this type of data29. On the
Lawlor17 dataset, KMD clustering outperformed all other
clustering algorithms (KMD: 0.893 accuracy, 0.790 NMI, 0.831
ARI; SCCAF (second best): 0.808 accuracy, 0.760 NMI, 0.0.769
ARI). On the Zeisel15 dataset, KMD clustering was comparable to
best (KMD: 0.738 accuracy, 0.686 NMI, 0.523 ARI; SCCAF: 0.711
accuracy, 0.731 NMI, 0.586 ARI). On the Li17 dataset, KMD
clustering outperformed all other clustering algorithms (KMD:
0.838 accuracy, 0.821 NMI, 0.703 ARI; Louvain (second best):
0.729 accuracy, 0.764 NMI, 0.592 ARI). KMD clustering also
outperformed the competing methods on a previously suggested
simulated scRNA-Seq benchmark dataset30 (Table S7). We
conclude that KMD clustering, with cluster number estimation,
achieves excellent performance compared to standard scRNA-Seq
clustering methods on these datasets.

Scaling to large datasets. While we found that KMD clustering
works well on datasets containing tens of thousands of cells,
we asked whether the algorithm can be scaled to much larger
datasets. Indeed, recent advances in single-cell measurement

technologies have produced datasets as large as a million cells31,
posing a significant challenge for current clustering algorithms in
terms of clustering performance, run time, and memory. To scale
KMD clustering to large datasets, we utilized our outlier classi-
fication scheme, which classifies individual objects based on their
distance to the core clusters, where distance is measured by KMD
linkage with the optimal k found during clustering. Given a large
dataset, we randomly select a small subset of objects, run standard
KMD clustering on these objects, and assign the remaining
unsampled objects to clusters using the outlier classification
scheme. We note that this classification scheme is very efficient in
terms of computation time and memory, and thus scales well to
very large datasets. We first evaluated the sampled KMD clus-
tering approach on the full Levine15_32 mass cytometry dataset
which contains 104,184 assigned cells, 32 markers and 24 clusters
for which the true labels are known. To test the effect of sample
size on the performance, we repeated the clustering 5 times for
different sample sizes and compared the results to the true labels.
Interestingly, we found that sampling just 5000 was sufficient to
achieve optimal clustering performance (0.939 accuracy, 0.936
NMI, 0.966 ARI) (Figs. 7a, b, d and S3). In fact, the performance
slightly decreased with sample sizes greater than 5000, perhaps
suggesting that the sampling overcomes some noise effects. Next,
we evaluated sampled KMD clustering on a medium-sized single-
cell RNA-seq dataset (PBMC68k_Pure 62,517 cells, 17,786 genes,
6 clusters) which was previously used by Brown et al.32 and for

Fig. 5 Evaluation on mass cytometry data. a tSNE representation of mass cytometry data with clusters colored according to cell type predicted labels (left)
and true labels (right) of three datasets: Levine15_13 (20,000 out of 167,044 Cells, 13 markers, 14 clusters), Levine15_32 (20,000 out of 265,627 Cells, 32
markers, 24 clusters), Samusik16 (20,000 out of 86,864 Cells, 44 markers, 24 clusters). b Average performance of six clustering algorithms (kmeans,
Xshift, DEPECHE, Accense, FlowSOM, PhenoGraph) and KMD clustering by accuracy (blue), Normalized Mutual Information (light pink), Adjusted Rand
Index (green). Error bars represent standard deviation.
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which true labels are from experimental cell-type specific isola-
tion (see Methods). Here, we sampled 5000 cells (7.3% of total).
As evident from the tSNE plot, the clusters seem somewhat
intermingled, and we thus expected relatively low performance
from all clustering algorithms (Fig. 7b). Indeed, while the overall
performance of all algorithms was low, sampled KMD clustering
still performed best (KMD: 0.648 accuracy, 0.581 NMI, 0.468
ARI; Louvain: 0.577 accuracy, 0.541 NMI, 0.488 ARI) (Fig. 7e).
Finally, we sought to evaluate sampled KMD clustering on a
much larger scale of a million objects. While a few such datasets
are available, they do not offer gold-standard cluster labels. Thus,
we used Splatter33, a tool frequently used to simulate large
scRNA-seq datasets, to create a simulated dataset with 1,000,000
cells, 16,508 genes and 8 clusters. We performed sampled KMD
clustering with a sample of 5000 cells (0.5% of total). We note
that running KMD clustering without the sampling approach
would be infeasible (see algorithm timings for full and sampled
approaches in Fig. S4). We find that all algorithms performed well
on the simulated dataset, with sampled KMD clustering scoring
slightly higher (KMD: 0.956 accuracy, 0.876 NMI, 0.903 ARI;
Louvain: 0.951 accuracy, 0.864 NMI, 0.903 ARI) (Fig. 7c, f). In
conclusion, we found that a sampling-based extension of KMD
clustering can be used to significantly reduce required run time
and memory while maintaining high performance.

Discussion
Average linkage and single linkage hierarchical clustering are well-
established general-purpose clustering algorithms. Although they
share the same framework, the difference in the definition of

linkage often leads to dramatically different results from these two
algorithms18. Although it is well known that in machine learning
there is no free lunch, we attempted to capture the best properties
of both linkages by proposing a novel generalized linkage called
KMD linkage. The main challenge arising from this strategy is that
it introduces a cryptic hyperparameter k, i.e. the number of mini-
mal intercluster distances to average when calculating pairwise
cluster distance (linkage). In unsupervised learning settings, cryptic
uninterpretable hyperparameters pose a major hurdle7, because the
inability to correctly estimate them a priori often leads to post hoc
fitting and thus to hidden overfitting. We were thus motivated to
find a way of effectively eliminating this hyperparameter by using
some kind of intrinsic function which would be predictive of
clustering performance without using any external labels. The sil-
houette score is often used to evaluate and compare clustering
solutions, yet it is biased towards globular cluster shapes and is thus
not adequate. We speculated that this tendency towards globular
clusters may arise from the fact that in the silhouette score, the
distance from an object to a cluster is calculated as the average of all
pairwise distances22, which is effectively average linkage. Thus, we
considered a modified function, which we call KMD silhouette,
where the distance from an object to a cluster is calculated as the k
minimal distances (KMD linkage), and the value of k is set to
match the value of k used to calculate the KMD linkage. This may
seem odd, since it means that the way of scoring the clustering
results is different for each value of k and that two k values which
yield the same clustering results might be assigned different scores.
We also added a term that penalizes large k values, since larger k
values artificially inflate the score. Remarkably, we find that our

Fig. 6 Evaluation on scRNA-seq datasets. a tSNE representation of single cell transcriptomics data with clusters colored according to cell type predicted
labels (left) and true labels (right) of three datasets: Lawlor17 (638 cells,19,927 genes,9 clusters), Zeisel15 (3005 cells, 2000 genes, 8 clusters) and Li17
(630 cells, 57,241 genes, 7 clusters). b Performance of four clustering algorithms (Scanpy Louvain, Scanpy Leiden, SCCAF, Seurat) and KMD clustering
accuracy (blue), Normalized Mutual Information (light pink), Adjusted Rand Index (green).
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proposed KMD silhouette function predicts clustering performance
across k values very well. Given these results, the main hyper-
parameter k is effectively eliminated by running the clustering
across a range of k values (in all cases we limited k < 100) and
automatically selecting the solution with the highest KMD sil-
houette score.

The clustering performance of advanced or specialized clus-
tering algorithms, all of which have cryptic hyperparameters
(often multiple ones), can vary greatly even on data of the same
type1,7,10. For example, results from the benchmark study by Liu
et al.10 on mass cytometry data, which we utilize in the current
paper, show that the best tested algorithm in each mass cytometry
dataset typically performed poorly on some other mass cytometry
dataset. We speculate that the variation in the performance of
other algorithms may be in part due to post hoc over-tuning of
cryptic hyperparameters. In line with this, KMD clustering
showed strong performance across several datasets of different
types, even though it was not specifically customized for them.
This may also suggest the utility of KMD clustering for new data
types for which customized algorithms do not exist.

Noise and outliers in data pose a challenge for clustering
algorithms, especially in biological data. While single linkage is
especially prone to noise due to its calculation being based on a
single distance17, average linkage is also relatively sensitive to
noise as a single incorrect merge of an outlier can have fatal
consequences in later clustering stages17. Indeed, some clustering
algorithms such as DBSCAN and HDBSCAN have been specifi-
cally designed to deal with the challenges of noisy data21,34. In

addition to our new linkage strategy in automatic parameter
selection, we use a simple scheme for dealing with outliers, based
on the assumption that tiny clusters which are smaller than a size
threshold can be considered to be outliers. While the outlier
detection scheme is similar to that used in HDBSCAN, outlier re-
assignment is based on KMD linkage matching the optimal k
value found during clustering. We find that KMD clustering
performs extremely well with noisy data, outperforming algo-
rithms such as DBSCAN and HDBSCAN in scenarios where
noise was added to such a level that it is even difficult to discern
the clusters visually in two dimensions.

While in some clustering applications the number of clusters is
known in advance, in other cases the user may not have sufficient
prior knowledge to estimate this number. Indeed, some clustering
algorithms which we compared to do not take the number of
clusters as input and instead estimate the number of clusters
de novo, and this could potentially affect their prediction accu-
racy (although in some cases this could also increase performance
metrics). While KMD clustering in general allows the user to
determine the number of clusters, we also briefly explored de
novo estimation of cluster numbers based on the density measure
DBCV28. The initial results seem potentially promising based on
this strategy, but further research is needed to improve cluster
number estimation.

While KMD clustering performed well on the tested datasets,
we note a number of computational limitations of our approach.
First, we note that automatic selection of the hyperparameter k
requires running the clustering with a large range of k values and

Fig. 7 Evaluation of KMD clustering extension to large datasets. a–c tSNE representation of scRNA-Seq data with clusters colored according to cell type
predicted labels (left) and true labels (right) of three datasets: Levine15_32 (104,184 cells, 32 genes, 24 clusters), PBMC68k_Pure (62,517 cells, 32,738
genes, 6 clusters) and simZeisel15 (1,000,000 cells, 16,508 genes, 8 clusters). d KMD clustering ARI, NMI, accuracy score of whole dataset after cluster
inferring step on the core dataset, on the Levine32dim dataset across a range of subsampled dataset size (1000–20000). e, f Performance of three
clustering algorithms (Scanpy Louvain, Scanpy Leiden, SCCAF) and sampling-based KMD clustering accuracy (blue), Normalized Mutual Information (light
pink), Adjusted Rand Index (green).
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selecting the solution with the best KMD silhouette score. While
these can be run in parallel, it does require more computational
resources than a typical simple clustering approach such as
standard average linkage clustering. Second, our current imple-
mentation is in python/scipy. This makes the code more acces-
sible to users, but results in longer running times than widely
used clustering algorithms that are implemented with non-
interpreted languages and carefully optimized. Finally, even when
disregarding language of implementation, a single run of KMD
clustering may be inherently slower than some other approaches
(such as single and average linkage clustering) as it requires
maintaining for each pairs of clusters a list of the k minimal
distances between them. Due to these limitations, we proposed a
sampling-based extension to our approach, which makes it easily
scalable to modern datasets containing millions of objects. One
limitation of this sampling approach is that it may miss very small
clusters, in cases where they are not sampled well. A possible
solution to this is substituting the sampling scheme. Rather than
using uniform sampling, one could use a structurally-based
sampling approach such as submodular optimization sampling to
obtain a more representative core35.

In conclusion, KMD clustering is a general-purpose clustering
algorithm combining a novel generalized linkage function, auto-
matic hyperparameter selection using an intrinsic function and
outlier-aware partitioning. Compared to a set of tested general-
purpose and specialized algorithms, KMD clustering exhibits
excellent performance across a variety of datasets including
extreme noise and high dimension, without dataset-specific tun-
ing of cryptic hyperparameters.

Methods
KMD clustering algorithm. The input to the KMD clustering
algorithm is a nxm matrix (2d ndarray) where n is the number of
objects and m is the object dimensionality. Based on the input
matrix, a nxn symmetric distance matrix (2d ndarray) D between
all pairs of objects is computed. The default distance metric is the
Euclidean norm. Next, the pairwise distances are used to populate
a heap that can efficiently pop the two nearest clusters. Finally, a
symmetric matrix A containing the k minimal distances between
every pair of clusters is initialized. A is a nxn matrix (2d ndarray)
of pointers to lists and is initialized such that Ai,j is a list con-
taining the distance between objects i and j. Output is stored in
array Z.

Every iteration of the algorithm includes the following:

1. x, y = get_minimum(heap, D) # Return indices of two
nearest clusters

2. Ax,*= A*,x = merge(Ax,*, Ay,*) # Construct the k minimal
distances of the new cluster to every other cluster by
merging the respective k minimal distances of x and y to
every other cluster in order. Replace cluster x with the new
cluster.

3. Dx,*=D*,x = mean(Ax,*) # Update distance matrix
4. Dy,*=D*,y= Ay,*= A*,y = null # Eliminate cluster y
5. Z.append([x, y, dist(x,y)])
6. heap.update(Ax,*) # Update the heap with the new distances

The heap implementation is a modification of the Generic_-
Linkage algorithm described in ref. 36 in which candidates for
nearest neighbors of clusters are maintained in a priority queue to
speed up the search for the two nearest clusters.

Step 2 is a critical step since in general, updating the distances
of a new cluster with an arbitrary linkage can be very inefficient.
However, with KMD linkage an efficient update can be performed
in O(nk). To see this, consider finding KMD(z,i) - the KMD
linkage between a new cluster z, which was created by merging

x and y, and an existing cluster i. Since KMD(z,i) must be a subset
of KMD(x,i) ∪ KMD(y,i), we only need to search 2k distances.
Furthermore, if we start with lists of length 1 and update by
merge-sorting the lists and taking the minimal k elements, the
update will only take O(k) for a pair of clusters, and therefore
O(nk) for all clusters.

In addition, naively one might expect matrix A to require
O(n2k) space, since we must maintain the k minimal distances for
all pairs of clusters. However, we are able to avoid this with the
aforementioned implementation of A as an array of list pointers.
To see this, consider that initially A holds only lists of length 1,
and thus requires O(n2) space. At each iteration, rows Ax,* and
Ay,* are merged as explained above to create a new row, and then
rows Ax,* and Ay,* are effectively eliminated. Since the new row
cannot require more memory than the union of rows Ax,* and
Ay,*, the required space cannot surpass O(n2), and actually
decreases during the process. This type of implementation is
critical, as it allows running the algorithm with large k values,
which would be impractical if one was to maintain an array of
size O(n2k).

Outlier-aware partitioning. Once all clusters are merged, the
resulting binary tree is used to apply outlier-aware partitioning. We
start with parameters c (the number of clusters) and m (the
minimal cluster size / outlier size threshold). Starting from the root
of the tree, we first find the first c-1 merges where both clusters have
a size of at least m. The c clusters included at these merges are
defined as core clusters. Any objects which are not present in the
core clusters are defined as outliers. Note that in general this par-
titioning is not a fixed-height tree cut as the selected merges can
occur at different heights. As shown in Fig. S1, clustering results are
typically robust to the choice of this parameter. In general,m can be
chosen to be slightly smaller than the size of the smallest expected
cluster. If no a priori information is available, we suggest setting
m = max(2, n/(10*c)).

In order to assign each outlier to one of the core clusters, we
calculate the KMD linkage of the outlier to each of the core
clusters and assign it to the core cluster with the minimal
distance. In order to provide a confidence level to this assignment,
we define a confidence score that compares the KMD distance
between the outlier v and its two nearest core clusters C1 (nearest
cluster) and C2 (second nearest cluster):

confidence vð Þ ¼ 1� dist v;C1

� �
dist v;C1

� �þ dist v;C2

� � ð1Þ

The confidence score ranges between 0.5 (lowest confidence) to
1 (highest confidence). all comparisons of clustering performance
in the paper were done using these outlier assignments, such that
no objects were left out unless stated otherwise.

KMD silhouette. The KMD silhouette is an intrinsic function,
inspired by the silhouette function, that is used to assess the
quality of a clustering solution. The core component of the sil-
houette is the difference between ai, the average distance of object
i to the other objects of the assigned (nearest) cluster, and bi, the
average distance of object i to the objects of the second nearest
cluster. Let us denote this difference di = bi - ai. In KMD sil-
houette we use the same quantity di, except that we define ai and
bi slightly differently by using the average of the k minimal dis-
tances rather than all distances. For every run t of the clustering
algorithm with a k value of kt, we calculate the average of these
differences and denote this as st , i.e. st ¼ 1

n∑i
dti . Finally, the KMD
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silhouette of run t is defined as:

KMDsilhouette tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

st �miniðsiÞ
maxiðsiÞ �miniðsiÞ

s
� kt

n
ð2Þ

Clustering evaluation. In order to perform clustering evaluation
in an unbiased manner, we chose to work only with datasets where
true labels are known. Following Liu et al., we used three different
performance metrics: Accuracy, Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI). We denote the true and
predicted labels as vectors of integers t and p in which the i-th
element represents the true and predicted cluster, respectively.

Accuracy. Given a one-to-one matching between predicted and
assigned clusters, the accuracy is defined as

Accuracyðp; tÞ ¼ 1
n
∑1pi¼ti

ð3Þ

where 1pi¼ti
is an indicator function that counts when pi ¼ ti. The

optimal one-to-one matching that maximizes accuracy was found
by using the Hungarian algorithm37.

Normalized Mutual Information (NMI). We defined mutual
information of t and p as:

I t; p
� � ¼ ∑p;tPtp t; p

� �
logðPtp t; p

� �
=pp p
� �

pt tð ÞÞ ð4Þ
Where pt tð Þ and ppðpÞ are the probability distributions and
Ptpðt; pÞ is the joint distribution

NMI is the more commonly used normalized form:

NMI ¼ 2I p; t
� �

H tð Þ þH p
� �

 !
ð5Þ

Where H(t), H(p) are the information entropies. NMI is large if p
is an optimal clustering result. t= p corresponds to NMI= 1.

Adjusted Rand Index (ARI). Rand index (RI) can be computed
using the following formula:

RI ¼ TP þ TN
TP þ FP þ FN þ TN

ð6Þ

TP - objects in a pair are placed in the same group in t and in the
same group in p. FP - objects in a pair are placed in the same
group in t and in different groups in p. FN - objects in a pair are
placed in the same group in p and in different groups in t. TN -
objects in a pair are placed in different groups in t and in different
groups in p.

ARI is calculated by adjusting RI using the following scheme:

ARI ¼ RI � Expected RI
1� Expected RI

ð7Þ

Where the Expected_RI is defined as:

Expected RI ¼ TP þ FPð Þ TP þ FNð Þ þ ðTN þ FPÞðTN þ FNÞ
TP þ FP þ FN þ TNð Þ2

ð8Þ

Evaluation on simulated datasets. All simulated datasets were
generated using scikit-learn random sample generators with 1000
objects and seed= 1. The nested circles dataset was generated
using the make_circles generator with the parameters factor= 0.3
and noise= 0.05 (noise= 0.14 for high noise version). The half
moons dataset was generated using the make_moons generator
with noise= 0.05 (noise= 0.24 for high noise version). The
anisotropic clusters dataset was generated using a transformed

dataset generated by the make_blobs generator. The transfor-
mation was the dot product of the dataset with the array [[0.6,
−0.6], [−0.4, 0.8]]. The random state was set to 170 (185 for high
noise version). The globular clusters dataset was generated using
the make_blobs generator. The random state was set to 170 (185
for high noise version) and the standard deviation was set to
[1.0,2.5,0.5] ([2.0,2.0,2.0] for high noise version). All datasets
objects were standardized.

The noisy half moons dataset used in the analyses shown in
Figs. 1, 2 and Supplementary Fig. 2 was generated with
parameters noise= 0.24 and seed= 5 (Fig. 1) or seed= 3 (Fig. 2
and Supplementary Fig. 2).

In all cases where we did not use default running parameters
for competing algorithms, we selected new parameter settings
that improved the performance of those algorithms relative to the
performance under default settings.

Single linkage clustering was run with the AgglomerativeClus-
tering scikit-learn algorithm, using the non-default parameter
connectivity to specify the number of neighbors to use for each
dataset: 2 neighbors for nested circles and half moons, 10
neighbors for anisotropic clusters and globular clusters.

Average linkage was run with the AgglomerativeClustering
scikit-learn algorithm, using default parameters.

Complete and Ward linkages were run using Scipy’s cluster.-
hierarchy.linkage method using default parameters followed by
cluster.hierarchy.fcluster with criterion of maxclust to convert the
linkage matrix to cluster predictions.

Minimax linkage38 was run using pyminimax (https://pypi.org/
project/pyminimax/) with default parameters, followed by
cluster.hierarchy.fcluster with criterion of maxclust to convert
the linkage matrix to cluster predictions.

Spectral clustering was run with the SpectralClustering scikit-
learn algorithm, using non-default parameters eigen_solver= ’
arpack’ and affinity= ’nearest_neighbors’.

DBSCAN was run with the DBSCAN scikit learn algorithm,
using the non-default parameter setting: eps= 0.15 for nested
circles and half moons, eps= 0.18 for globular clusters, eps= 0.15
for anisotropic clusters.

HDBSCAN was run with the hdbscan python package39, using
the non-default parameter setting: minimal cluster size= max(2,
number of objects/(10*number of clusters)).

The Scanpy Louvain and Leiden algorithms were executed with
randomization seed of 0 and default parameters as follows: First, a
neighborhood graph was calculated with number of neighbors=
15, then the Louvain and Leiden clusterings were computed with
resolution= 1.

SCCAF was executed using the SCCAF_optimize_all function
with the following parameters: The start optimization point was
precomputed Louvain annotation; optimization name (prefix)
was set to ‘L1’; basis was set to ‘tsne’. The analysis was run 10
times and scores were averaged in order to eliminate the
heterogeneity of the dataset random split to train/test datasets.

Gaussian mixture was run with GaussianMixture scikit learn
algorithm, using default parameters.

KMD clustering was performed as described minimal cluster
size = max(2, number of objects/(10*number of clusters)).

Evaluation on mass cytometry datasets. The datasets Levine15_13
(167,044 Cells), Levine15_23 (265,627 cells) and Samusik16
(86,864 Cells) are known benchmarking mass cytometry datasets
and have been used in previous comparisons of algorithms8,10. The
true label annotations are known cell types that were manually
gated. The transformed and filtered datasets were downloaded
from the “flowrepository” repository (http://flowrepository.org/id/
FR-FCM-ZZPH)8. Cells that were unassigned or had ambiguous
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annotations were discarded. In the interest of consistency and
fairness, clustering results for kmeans, Xshift, DEPECHE, Accense,
FlowSOM and Phenograph were taken from ref. 8. Following Liu
et al., we randomly sampled 20,000 cells ten times from each
dataset, ran KMD clustering (minimal cluster size= 50, correlation
distance) and calculated the mean and standard deviation for each
performance metric. K value for KMD was found by scanning in
parallel from 1 to 100 with a step size of 5 and a randomization
seed of 1.

Evaluation on single cell RNA-seq datasets. The Townes et al.30

simulated dataset was created according to the data simulation
procedure in https://github.com/willtownes/glmpca/blob/master/
vignettes/glmpca.Rmd. The simulated profile is of 3 clusters, each
with 50 cells and 5000 genes, 500 of which are differentially
expressed between the clusters. In addition, cells are randomly
marked as having a high total count or a low total count, a
property that should be ignored by the clustering algorithm.

The Li17 dataset consists of 630 single cells sampled from 7
cell lines, with the expression profiling differing between
patients due to intratumoral heterogeneity. The dataset was
preprocessed by filtering out the 5% of highest and lowest
expressed genes.

The Lawlor17 dataset consists of single cell transcriptomes of
638 human islet cells obtained from five non-diabetic and three
type 2 diabetic cadaveric organ donors. The dataset was
preprocessed as suggested in ref. 11: Normalization by the natural
logarithm of one plus the input array; cells with under 200
expressed genes were filtered out; genes that were expressed in less
than 3 cells were filtered out; cells with ambiguous annotations
were filtered; each cell was normalized by total counts by all genes.

The Zeisel15 dataset consists single cell transcriptome of 3005
mice cerebral cortex cells. The dataset was preprocessed as
suggested in ref. 11: Normalization by the natural logarithm of
one plus the input array; genes that were expressed in less than 3
cells were filtered out; the 2000 genes with the highest variance
were selected for the analysis.

The Louvain and Leiden algorithms were executed with default
parameters as follows: First, PCA components were calculated
with number of components= 50; next, neighborhood graph was
calculated with number of neighbors= 15; finally, Louvain and
Leiden clusterings were computed with resolution= 1.

SCCAF was executed using the SCCAF_optimize_all function
with the following parameters: The start optimization point was
precomputed Louvain annotation; optimization name (prefix)
was set to ‘L1’ for Lowler17 and Li17, and ‘L2’ for Zeisel15; the
algorithm ran on PCA data calculated as explained above, and the
minimum self-projection accuracy was 0.93. The analysis was run
10 times and scores were averaged in order to eliminate the
heterogeneity of the dataset random split to train/test datasets.

Seurat was run by the following procedure (all with default
parameters): Preprocessed data was first scaled with ScaleData,
variable genes were found with FindVariableFeatures, dimensions
were reduced with RunPCA and then clustered with FindNeigh-
bors and FindClusters.

KMD clustering was run with correlation distance as
recommended in ref. 29 and with minimal cluster size of 10 due
to the small sizes of the clusters in these datasets. To estimate the
number of clusters, we first optimized the Python implementation
of DBCV from https://github.com/christopherjenness/DBCV
over 1000 fold. Our implementation is available at https://
github.com/hkariti/DBCV. Next, KMD silhouette was used to
find the best k value for every possible number of clusters (KMD
clustering identifies the possible range to be 2–14 clusters for
these datasets). Finally, for each number of clusters we calculate

the DBCV (after removing outliers) of the solution with the k
value selected by the KMD silhouette, and choose the number of
clusters maximizes the DBCV score.

Evaluation on large datasets. Levine_32dim was preprocessed as
detailed in the mass cytometry section.

The PBMC68K_Pure dataset was taken from Brown et al.32

and preprocessed according to their instruction as follows. Cells
were first filtered according to the main_process_pure_pbmc.R
script, followed by selection of 6 out of 11 populations for further
analysis. The resulting data matrix was then CPT-normalized and
log-transformed, the top 1000 variable genes were filtered and
scaled and finally dimensionality was reduced to 20 using PCA.

The simulated dataset was created using the python implementa-
tion of Splatter33. Splatter estimates general parameters of a given
dataset and then generates new data using those parameters. The
following parameters were estimated by Splatter from the Zeisel15
dataset: seed= 1, ncells= 1000000, ngenes= 6508, ngroups= 14,
libloc= 7.64, libscale= 0.78, mean_rate= 7.68, mean_shape= 0.34,
expoutprob= 0.00286, expoutloc= 6.15, expoutscale= 0.49, diffexp-
prob= 0.025, diffexpdownprob= 0, diffexploc= 1, diffexpscale= 1,
bcv_dispersion= 0.448, bcv_dof= 22.087, ndoublets= 0, nprog-
genes= 400, progdownprob= 0, progdeloc= 1, progdescale= 1,
progcellfrac= 0.35, proggroups= [1–4], minprogusage= 0.1, max-
progusage= 0.7. After simulation, data was preprocessed using
Scanpy: genes with less than 1 count were filtered out, total count of
cells was normalized with sc.pp.normalize_per_cell(key_n_counts=
‘n_counts_all’) and the top 1000 dispersed genes were chosen. Cell
counts were then normalized again, scaled and reduced to 50
dimensions using PCA.

Louvain and Leiden were run from Scanpy using neighbors=
15 and resolution= 1 (default). SCCAF was run 10 times with
default basis and initialized on Louvain results. KMD clustering
was run with minimal cluster size of 50, k range of 1 to 99,
internal subsampling of 5000 and random state of 1.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Code availability
KMD clustering is implemented in python using the numpy/scipy and scikit-learn
libraries and is available including at https://doi.org/10.5281/zenodo.8344742. The
repository includes python code and scripts and Jupyter notebooks for reproducing
shown results.

Data availability
Generated datasets and outputs of described pipelines is available at https://doi.org/10.
5281/zenodo.8345095.
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