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ABSTRACT

Neural Radiation Field (NeRF) often produces many artifacts with sparse inputs.
These artifacts are primarily caused by learning in regions where position infer-
ence is not feasible. We assume that the main cause of this problem is the incorrect
setting of boundary conditions in the learning space. To address this issue, we pro-
pose a new regularization method based on two key assumptions: (1) the position
of density and color cannot be inferred in regions where the view frustum does not
intersect, and (2) information inside opaque surfaces cannot be observed and in-
ferred, and thus cannot contribute to the rendering of the image. Our method aims
to transform the NeRF model into a well-posed problem by regularizing learning
in regions where position inference is not possible, allowing the network to con-
verge meaningfully. Our approach does not require scene-specific optimization
and focuses on regions where position inference is not possible, thereby avoiding
degradation of model performance in main regions. Experimental results demon-
strate the effectiveness of our method in addressing the sparse input problem,
showing outstanding performance on the Blender synthetic datasets. Our method
is designed to integrate seamlessly with existing techniques, providing an effec-
tive solution for sparse input scenarios and offering a foundational approach that
serves as the first clue in addressing sparse input problems.

1 INTRODUCTION

Recently, the effectiveness of NeRF Mildenhall et al. (2021) has been witnessed in inferring scenes
from unobserved perspectives by training on multiple photographic inputs. However, existing NeRF
models often generate unrealistic scenes that are difficult for humans to comprehend. This problem
is less prominent when the input data is dense but becomes more noticeable when the input data is
sparse.

The ”Near-far plane” parameter is an important but often unaddressed issue in many experiments,
where it is frequently precisely tuned during experiments but not explicitly mentioned in previous
papers. If this parameter is not accurately tuned for the region of interest (ROI), especially in cases of
sparse input, it can result in poor object generation or numerous artifacts. This limitation is a critical
issue that undermines the practical usefulness of experimental results. We interpret the improper
tuning of the near-far threshold not only as a failure in setting training parameters, but also as a
misconfiguration of the ”spatial boundary conditions” during training.

”Proper boundary conditions” are essential for solving the problem effectively. As shown in Fig.1,
improper boundary conditions result in an ill-posed problem. To address this, our model is designed
to transform NeRF training into a well-posed problem, which we have named Well-NeRF.

An ”ill-posed problem” occurs when learning is permitted in regions where position inference is not
possible. In this situation, the NeRF training process may offer the model simpler but inaccurate
solutions, such as increasing the weight in regions like the red areas shown in Fig.1. However, the
result may deviate significantly from our intuition about the structure of the object, leading to critical
errors.
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Figure 1: Ill-posed problems caused by conventional NeRF models. (a) In the sparse input view,
the region labeled with red color indicates where the view frustum does not overlap (S = 1, as shown
in Equation equation 2). Position inference is not feasible in this area due to the ill-posed problem.
(b) If the positional inference domain is not adequately constrained, the model may converge on an
easier solution rather than generating a correct representation of the object. Consequently, the model
may produce artifacts in ill-posed areas (such as in front of or behind the object). While these results
may seem correct from the input view perspective, their inaccuracies become apparent as soon as
the viewpoint shifts even slightly. (c) Ill-trained methods produce artifacts that are more dispersed
along axes parallel to the visual field. The fragmentation of input view directions in reconstructed
3D models is a common phenomenon observed across various models under sparse data conditions.

We have developed an improved method for setting boundary conditions. Even with a finely tuned
near-far threshold, there are limitations in accurately defining the boundary conditions of the training
space, as it cannot clearly define the space where position inference is feasible.

We present two propositions that are true in order to develop a solution. First, in the non-overlapping
parts of the view frustum, we cannot infer density and color according to position. Second, the
information inside the opaque surface (shadow zone) cannot be observed and inferred, and cannot
contribute to the rendering of the image. Based on this, we propose two regularization methods.

• Frustum score based regularization: This method calculates how much the view frustums
overlap at the positions of points sampled in space and reflects this in the training process.
If the view frustums do not overlap (S = 1, as shown in Equation equation 2), learning
is heavily constrained. However, when two or more frustums overlap (S ≥ 2), learning
is allowed, and the gradient is scaled based on the degree of overlap, allowing different
gradients to be applied depending on the extent of the overlap.

• Shadow zone regularization: This method reasonably approximates the color of the back
of an opaque surface that cannot be learned. By constraining the complexity of the back
of an opaque surface, the method allows the NeRF network to converge on a meaningful
structure for the object.

Since this method automatically adjusts the training space based on the input data, no additional
parameter tuning is required. Our method improves the NeRF model by limiting learning in ar-
eas where ill-posed problems can occur, ensuring that the model focuses on well-posed problems.
Our approach works outside the main learning region of the model, effectively maintaining NeRF’s
core performance and potential. Furthermore, our method is built on top of the integrated model
Nerfacto Tancik et al. (2023), making it easy to combine with other methods.

The goal of our model is to provide key insights and an initial step toward enabling various models
to function effectively even with sparse input.

2 RELATED WORKS

2.1 NEURAL RADIANCE FIELD

Neural Radiance Fields (NeRF) Mildenhall et al. (2021) trains a deep neural network from a set
of photos to represent the continuous 3D scenes, and uses volume rendering to render the scene.
Since NeRF was first released to the public, various models Barron et al. (2021; 2022); Müller et al.
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(2022); Fridovich-Keil et al. (2022); Wang et al. (2021) have evolved to overcome the shortcomings
of the original NeRF. NeRF-W Martin-Brualla et al. (2021) improved the model to be trained on a
variety of data under different conditions of contrast, brightness, and other factors. The problem of
generating excessive noise for scenes with moving objects has also been solved by certain methods
Pumarola et al. (2021); Park et al. (2021a;b). Other methods Wang et al. (2021); Jeong et al. (2021);
Lin et al. (2021); Bian et al. (2023); Park et al. (2023) optimized the camera parameters of the input
image to solve the problem of reliance on camera calibration techniques. Mip-NeRF Barron et al.
(2021) improved rendering quality through an anti-aliasing method, while Mip-NeRF360 Barron
et al. (2022) used scene contraction to achieve efficient modeling in unbounded scenes. Instant-NGP
Müller et al. (2022) significantly accelerated training by using a hash encoding method. Nerfacto
Tancik et al. (2023) model integrated various methodologies and improved rendering performance.

2.2 NEURAL RENDERING WITH SPARSE DATASET

Conventional NeRF-based methods face rendering performance issues and noise artifacts with
sparse datasets. Although various models have been proposed to address these issues, limitations
still exist. For practical use, it is necessary to effectively render continuous scenes with only a few
datasets.

Methods such as Pixel-NeRF Yu et al. (2021) and Diet-NeRF Jain et al. (2021) required pre-training
to achieve high performance. However, this pre-training process can introduce unintended new
structures or artifacts that do not exist in the real view. Sparse-NeRF Wang et al. (2023) and DS-
NeRF Deng et al. (2022) relied on additional prior knowledge of the depth value of the input scene.
Obtaining this information typically requires additional sensors during image capture or separate
depth estimation algorithms. These requirements for this additional information limit the versatility
of the model.

Some methods have developed regularization techniques based on a cognitive view of geometric and
visual shapes. Reg-NeRF Niemeyer et al. (2022) applied regularization for geometric information
and appearance of the scene based on patches. However, this approach can induce additional learn-
ing costs and suffer from slow convergence problems. FreeNeRF Yang et al. (2023) improved ren-
dering performance for few-shot dataset using a frequency regularization method that sequentially
trains from low to high frequencies of positional-encoding. Additionally, it employed an occlusion
regularization method, which could push back artifacts that are close to camera. However, these
methods require optimized parameter settings for each scene, necessitating recursive experiments
for successful rendering. Regularization techniques designed based on an intuitive approach to 3D
geometric shapes or artifacts might work well in certain cases, but they had the potential to cause
irrational or over-regularization in certain scenes.

Furthermore, a common characteristic among these models is the precise setting of a near-far thresh-
old for the view frustum (ray). A near-far threshold that is precisely set to the region where the object
exists effectively helps learn 3D geometric structure. However, setting this threshold as a hyperpa-
rameter for each dataset is not always feasible in real-world scenarios. Our method, which does not
require this kind of heuristic hyperparameter value, is a highly versatile model that can be applied
to various datasets.

2.3 ARTIFACTS REMOVAL

Many models aiming to address the sparse input problem in NeRF attempt to remove artifacts that
obstruct the field of view. Floaters-no-more Philip & Deschaintre (2023) assumed that the scene
near the camera undergoes frequent updates due to the large number of samples per space along
the rays. Thus, it introduced a gradient scaling technique to reduce the learning rate for nearby dis-
tances, thereby mitigating the influence of proximity samples and eliminating artifacts. In addition,
NeRFbusters Warburg* et al. (2023) used strategies to clean up the field of view by sampling points
outside of the view frustum using random sampling and applying a regularization term to decrease
density. However, these models are inherently designed for dense inputs and have limitations with
sparse input datasets.
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Figure 2: Overall pipeline of the proposed method. Our model is based on Nerfacto Tancik et al.
(2023) and uses two regularization process. The solid line represents the path where parameters
are updated by back-propagation. Output values of the Nerfacto Field, cθ, σθ, are utilized in our
regularization method. Frustum Score Regularization uses the position xδ extracted from Proposal
Network Sampler fδ as input, yielding a score S through Frustration Score Calculator. This score
is utilized by the Custom Gradient and View Frustum Mask. The estimated color value of the 3D
point, c∗θ , σ∗

θ , generates the final color value through volume rendering. All three loss values are
used for the final loss in equation 9 for the training.

3 PROPOSED METHOD

Sections 3.2 and 3.3 describe the proposed frustum score based regularization and shadow zone
regularization, respectively. Fig.2 describes the overall pipeline of the proposed method.

3.1 PRELIMINARIES

3.1.1 NEURAL RADIANCE FIELDS

(NeRF) utilize a deep learning framework to reconstruct three-dimensional scenes from a set of
2D images and synthesize novel viewpoints. The model receives spatial coordinates x and direc-
tional vectors d as inputs, and through a neural network parameterized by θ, denoted fθ, it outputs
predicted color cθ and density σθ. This relationship is encapsulated in the following equation:

(cθ, σθ) = fθ(x,d). (1)

Volume rendering utilizes the predicted color and density to calculate the transmittance along each
ray, integrating these properties to synthesize the final color of the image. This process effectively
compiles the contributions of color and density across the depth of the scene, producing photoreal-
istic outputs.

3.1.2 NERFACTO.

The Nerfacto model integrates various methodological advancements since the NeRF method has
been introduced. Specifically, it combines techniques introduced in Mip-NeRF 360 Barron et al.
(2022) (scene contraction, proposal MLP) and Instant-NGP Müller et al. (2022) (multi resolution
hash encoding, spherical harmonics encoding). It extends the existing framework of NeRF and
incorporates a number of recent methods to achieve improved visual accuracy and computational
efficiency.

3.2 FRUSTUM SCORE REGULARIZATION

In regions where the View Frustum does not intersect at all(region observed from only a single input
view), three-dimensional positional inference is fundamentally impossible. In such regions, posi-
tional color and density cannot be inferred from the input data. The color and density depend only on
the characteristics of the neural network. This results in arbitrarily determined spatial information,
which is an ill-posed problem for spatial information, as shown in Fig.1. Areas where this problem
occurs can produce artifacts that are inconsistent with our understanding of the object. Therefore, it
is important to determine if view frustums intersect.
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Figure 3: Frustum scores. (a), (b), and (c) show frustum scores with random points. (a) shows
that there is a single viewpoint, where red points represent that the position of the point is inside the
frustum, while black points represent positions outside the frustum. Similarly, (b) indicates three
viewpoints, with the closeness of the dot to red indicating a higher number of overlapping frustum
regions in the position, and (c) indicates 100 viewpoints. (d) shows sample points in the frustum
viewpoint of three.

3.2.1 FRUSTUM SCORE CALCULATOR

The Frustum Score Calculator (FSC) in equation 2 evaluates whether the points(x) sampled during
the training process of the NeRF model are included in the view frustum of the input data. If
there are N image-transform matrix pairs of data with N viewpoints, the score of each point is
distributed from a minimum of 1 to a maximum of N . This score indicates how much of the view
frustum each sampling point is included in, which reflects the confidence in the spatial information
inferred from that point. Through the application of the FSC, the importance of spatial information
as view frustums intersect can be taken into account during the training process. This contributes to
improving the accuracy and efficiency of the NeRF model.

S = FSC(x) =
n−1∑
j=0

isInsidej(x), (2)

Where j represents the j-th view frustum, S is the Frustum Score, and x is the input sampling point.
The definition of the ”isInside” function is described in detail in the supplementary materials.

3.2.2 VIEW FRUSTUM MASK.

Learning should be strongly constrained because positional inference is not possible on the regions
with a frustum score of 1 (where the views frustum do not intersect). Thus, we mask the regions
with a frustum score of 1 using σmasked in equation 3 and enforce regularization such that sigma is
zero based on the loss function Lm in equation 4.

σmasked = σ ⊙M and M(i) =

{
1, if score(i) < 2

0, otherwise.
(3)

Lm = MSE(σmasked,0). (4)

3.2.3 CUSTOM GRADIENT FUNCTION.

Positional inference is possible in regions with a frustum score of 2 or more. However, due to
the occurrence of shadow zones, inaccurate positional inference may occur even in this region.
To alleviate this phenomenon, we apply a gradient difference in backpropagation so that regions
with more intersecting view frustum can be learned priorly. Within the NeRF model, utilizing
the score(S) obtained through the Frustum Score Calculator in equation 2, we designed a custom
gradient function fcg in equation 5 and equation 6 to ensure that cθ(color) and σθ(density) value
generated from 3D coordinate x through Fθ(Nerfacto Field) carry a gradient proportional to the
score during back-propagation.

fcg,Forward(cθ, σθ,S) = (c∗θ, σ
∗
θ), (5)
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Figure 4: Illustration of shadow zone. When observing an opaque object from a particular view-
point, the final color value is primarily determined by the color value of the object’s surface. As the
ray’s depth t increases, the weight value rapidly increases and decreases near the object’s surface, ts,
as shown in the graph. Undeterminable information inside an object can cause learning instability
and optical illusions when viewed from different perspectives.

fcg,Backward

(
∂L

∂c
,
∂L

∂σ

)
=

(
∂L

∂c
⊙ Snorm

2,
∂L

∂σ
⊙ Snorm

2

)
, (6)

where Snorm is the normalized score and L represents the input for the back-propagation gradient.

3.3 SHADOW ZONE REGULARIZATION

Information behind opaque surfaces with low transmittance is not observable. Therefore, informa-
tion observed at a particular view frustum cannot contribute to learning behind opaque surfaces.
Therefore, learning behind opaque surfaces may introduce unnecessary complexity to the model
without contributing to image rendering. Based on this finding, we develop a regularization method
that can reduce the complexity of RGB colors behind opaque surfaces. This implements boundary
conditions based on object surfaces.

3.3.1 RGB BLENDING

In the NeRF model, the color rendered by ray is largely determined by the surface of the opaque
object (the high weight points close to the origin of the ray). As training progresses, it becomes
increasingly likely that the color values at the back of opaque object surfaces are determined not by
input data, but solely by network characteristics, resulting in noisy values, as in Fig.4.

To address this issue, we develop a regularization method based on the loss function Lb in equation 7,
which gradually blends the color of the opaque surface into the interior of the object, ensuring a
more stable determination of interior object color. This constraint is computed via a self-feedback
mechanism, requiring no additional data input. Moreover, since it operates within a single ray, it can
be seamlessly integrated without altering the existing random ray sampling scheme. This method
reduces meaningless network complexity and helps the model converge to more meaningful values.

Lb = MSELoss(C ′
i, Ci), (7)

where C ′
i = (Ciwi + Ci−1wi−1)/(wi + wi−1) and the index i represents the i-th sampling point

along the ray. The color loss can be calculated as follows.

Lc = MSELoss(GT, C), (8)

where C =
∑

i(Ciwi). Then, the total loss can be designed by combining Lb in equation 7 with the
color loss Lc in equation 8 and the view frustum loss function Lm in equation 4.

LTotal = Lc + Lm + λLb, (9)

λ = clone(Lc). (10)
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Figure 5: Qualitative results in scenarios with sparse inputs. We demonstrate that when the near-
far threshold is set under broad conditions, severe fragmentation artifacts, as mentioned in Figure
1 are observed (1st row). Additionally, we observe that simply adjusting the near-far threshold,
without any modification to the model, significantly mitigates this issue (2nd row). Our method
shows that this problem is almost completely controlled (3rd row). Bottom value represents the
count ratio of Blender training dataset. For example, a value of 0.1 indicates the use of 10 datasets
as input (assuming the total count of Blender training datasets is 100).

The clone value of Lc, detached from the computation graph, is used as λ to facilitate initial conver-
gence. As learning progresses and Lc decreases, the regularization term is applied less.

4 EXPERIMENTS

Our experiments proceed as follows. First, we demonstrate that setting incorrect boundary condi-
tions in the learning space under sparse data conditions leads to critical errors. We also show that
previous models addressing the sparse data problem have overlooked this issue. Next, we present
how our model effectively resolves this problem.

4.1 EXPERIMENTAL SETTINGS

Datasets & Metrics. Using Synthetic Blender data, we conducted a comparison between our
method and FreeNeRF using the same setup (8 view training and 25 view evaluation). Addition-
ally, the image resolution was downsampled by 2x. For the other experiments, we utilized the
100 training views provided by NeRF Mildenhall et al. (2021) and divided them using the ”Train
split fraction” function of NerfStudioTancik et al. (2023). Our quantitative analysis includes PSNR,
SSIM, and LPIPS metrics. We also conducted experiments using the DTU LLFF dataset, a real-
world photography dataset, following the training and evaluation protocols of FreeNeRF. Detailed
descriptions and results can be found in the supplementary materials.

Configuration PSNR SSIM LPIPS

Ours 29.65 0.933 0.066
Nerfacto 28.51 0.909 0.101

Table 1: Performance Comparison with dense input data: Comparison of average metrics be-
tween Nerfacto and our model for Blender synthetic objects with 100-view training input. Our
model typically enhances performance even in the dense input conditions where NeRF is utilized.
This implies a lower risk of potential performance decline due to over regularization. This is an
important outcome for the application of our method in integrated models

7
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Figure 6: Qualitative comparison with FreeNeRF Yang et al. (2023). Our method shows out-
standing performance for sparse blender dataset even with no near-far threshold compared to FreeN-
eRF Yang et al. (2023) (Blender synthetic objects and 8 input views).

Implementation Details Our method was implemented based on Nerfacto v1.0.0. While we utilized
the core methods of Nerfacto, including proposal sampler, scene contraction, multi-resolution hash
encoding, spherical harmonics encoding, and volume rendering, we disabled additional methods
such as appearance embedding, distortion loss, and predict normal. However, our method has been
designed to function seamlessly even with these additional methods enabled. Please refer to the
supplementary material for further details. Our model maintains Nerfacto’s speed and accuracy
while solving the sparse input issue. It trains in about 10 minutes with 30k iterations on a single
RTX 4090 GPU.

Hyper-Parameters We used the default hyper-parameters from Nerfacto Tancik et al. (2023).The
near-far plane in Nerfacto is set to [0.05-1000] to cover a wide range of scenes. Our method was
implemented to work with hyperparameters Free, so no additional parameter settings were required.

4.2 COMPARISON WITH OTHER METHODS

Table 2 quantitatively compares our model with recently developed models that do not require pre-
training. In particular, FreeNeRF achieves high performance only when the near-far plane of the
view frustum is precisely set around the region of interest (ROI). While this approach provides
optimized results for a particular scene, it limits the generality of the model. We observed that the
performance of FreeNeRF is significantly lower when the near-far plane is set wide. The model
used as the backbone in this study also achieved a significant performance improvement when the
near-far plane is set precisely However, accurately setting the near-far plane becomes challenging
in the absence of detailed information about the acquisition equipment, method, and target object.
Failure to mention these factors may hinder the proper evaluation of the model. In contrast, our
proposed model was designed with the goal of reliably performing across a wide range of near-far

Configuration PSNR SSIM LIPS

Base Nerfacto (near, far opt) 21.48 0.797 0.228
Base Nerfacto (near,far broad) 13.97 0.614 0.481
FreeNeRF (near, far opt)Yang et al. (2023) 24.25 0.883 0.098

FreeNeRF (near, far broad) 10.41 0.657 0.367
Base Nerfacto + Ours (near,far broad) 24.37 0.866 0.105

Table 2: Comparison of our model with the baseline model (Nerfacto) and FreeNeRF: Evalua-
tion of the average metric of Blender synthetic objects. The yellow highlight indicates experiments
under broad near-far [0.05,1000] plane conditions, with ’opt’ meaning that the near-far is set to [2,6].
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chair drum ficus hotdog lego materials mic ship Average

Nerfacto 13.00 12.04 16.83 13.53 11.40 13.05 24.50 15.56 14.99
+fsm 19.89 14.24 23.60 20.14 21.89 21.59 29.15 18.44 21.12

+fsm+fsgs 21.89 19.33 25.46 20.97 23.60 22.28 30.23 20.00 22.97
+fsm+fsgs+sz 24.79 21.51 25.19 25.67 24.63 21.70 29.27 21.04 24.23

Table 3: Quantitative comparison for ablation study on our methods in terms of PSNR. fsm:
Frustum Score Mask, fsgs: Frustum Score Gradient Scale, sz: Shadow Zone (Blender synthetic
objects and 8 input views).

plane settings (0.05 to 1000), and we have achieved this objective. This suggests that the model has
the potential to be universally applicable across a variety of environments and conditions. Table 1
shows comparison of average metrics between Nerfacto and our model for Blender synthetic objects
with 100-view training input. Our model typically enhances performance even in the dense input
conditions where NeRF is utilized.

Fig.5 qualitatively compares our model with the Nerfacto model using the sparse dataset. As de-
picted in the figure, our model demonstrates significant superiority over the Nerfacto model in sce-
narios with sparse inputs. As shown in Fig.6, our method shows outstanding performance for sparse
blender dataset even with no near-far threshold compared to FreeNeRF Yang et al. (2023).

4.3 ABLATION STUDY

Figure 7: Qualitative comparison for ablation study. fsm: Frustum Score Mask, fsgs: Frus-
tum Score Gradient Scale, sz: Shadow Zone Regularization (Blender synthetic objects and 8 input
views).

Figure 8: Qualitative comparison for ablation study. Qualitative results for a wider range
of classes compared to those in Fig.7. Comparison between ”Nerfacto” model and ”Nerfacto +
ours(sz+ fsm+ fsgs)” (Blender synthetic objects and 8 input views).
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Figure 9: Experimental results combining additional methods. Our proposal is designed to seam-
lessly integrate with other methods, making it easy to assess the impact of combining our approach
with additional techniques for sparse data problems (Blender synthetic objects and 8 input views).

Table 3 shows clear quantitative improvements when our proposed method is applied incrementally.
Qualitatively, as shown in Figs.7 and 8, when using Nerfacto alone, the object does not converge in
the region we predict. This is because converging in areas where the view frustum does not intersect
(in ill-posed areas) is an easier solution for the NeRF model. When all the methods are combined,
we observe the cleanest convergence.

5 CONCLUSION

In this paper, we presented Well-NeRF, a universal solution to the sparse input problem in NeRF. The
key to our success lies in the foundation of our implementation, which starts from two true proposi-
tions, enabling our method to have fewer counterexamples. Since NeRF was first introduced, it has
undergone significant developments, and efforts to integrate solutions for different problems con-
tinue. However, a clear integration addressing the sparse input problem has not yet been proposed,
largely because of the existence of incompatible model structures or the potential for degrading the
base model’s performance. Our model does not compete with the base model, as it operates in differ-
ent domains without leading to negative interactions, thereby not degrading the performance of the
base model. Our model, developed on an integrated model framework, easily combines with various
models without conflict, as shown in Fig.9 Our proposal has some limitations. However, applying
the ’definition of the region where positional inference is possible’ as spatial boundary conditions
in a NeRF model to create a well-posed problem has clearly shown both qualitative and quantitative
effectiveness in sparse problems. We hope our approach contributes to the advancement of diverse
NeRF models, making them capable of addressing the sparse input problem.

6 LIMITATION

Distant backgrounds are difficult for our model to handle because it is nearly impossible to ensure
overlap in the view frustum under sparse data conditions. Therefore, we conducted experiments in a
limited manner for data captured under such conditions. The results can be found in the supplemen-
tary materials.

Frustum Score Calculator can be used to determine the most basic ill-posed areas. However, de-
termining ill-posed areas becomes more complicated when there are objects and walls in a large
complex structure. For example, the area behind a wall should not be counted even if it is inside the
view frustum. Our shadow zone regularization method partially solves this problem, but it is not yet
complete. In further study, we will develop a model that can efficiently determine ill-posed areas in
various situations.

Our method does not completely control optical illusion artifacts. The artifacts we do not control
occur in regions where inference is possible (S ≥ 2, as shown in equation 2) and where multiple so-
lutions may exist. Determining whether this is a true value or an optical illusion is not possible with
the basic Nerf model. Additional regularization is required to address this. However, regularization
designed with human intuitive assumptions about appearance and geometry is likely only applicable
to certain scenes. Therefore, even if it improves performance in some scenes, it is likely to have a
side effect on scenes in general. Therefore, we need to develop regularization methods that satisfy
most of the human intuition and do not degrade NeRF learning.
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A APPENDIX

A.1 EXPERIMENTAL RESULTS ON DTU AND LLFF DATASETS

Configuration PSNR SSIM LPIPS

FreeNeRF (near,far broad) 9.019 0.301 0.607
Base Nerfacto + Ours (near,far broad) 22.12 0.804 0.185

Table 4: Comparison of our model and FreeNeRF DTU 9 input views. Evaluation of the average
metric of the DTU dataset, with near and far values set to a broad range [0.05,1000]. It shows stable
convergence and high performance compared to FreeNeRF over a wide range of nearand far settings.

Configuration PSNR SSIM LPIPS

FreeNeRF (near,far broad) 12.34 0.209 0.641
Base Nerfacto + Ours (near,far broad) 19.68 0.687 0.215

Table 5: Comparison of our model and FreeNeRF LLFF 6 input views. Evaluation of the average
metric of the LLFF dataset, with near and far values set to a broad range [0.05,1000]. It shows
stable convergence and high performance compared to FreeNeRF over a wide range of near and far
settings.
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Figure 10: 9-view result of DTU dataset. Rendering result on the DTU dataset (9-view) comparing
FreeNeRF and our method, with near and far values set to 0.05 and 1000, respectively.
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Figure 11: 6-view result of LLFF dataset. Rendering result on the LLFF dataset (6-view) compar-
ing FreeNeRF and our method, with near and far values set to 0.05 and 1000, respectively.
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