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Abstract— Vision-based tactile sensors typically employ a
deformable elastomer and a camera to provide high-resolution
contact images. This work focuses on learning to simulate
and synthesize the volumetric mesh of the elastomer based on
the image imprints acquired from tactile sensors. Obtaining
accurate volumetric meshes for the elastomer can provide
direct contact information and benefit robotic grasping and
manipulation. Our method [1] proposes a train-then-adapt way
to leverage synthetic image-mesh pairs and real-world images
from finite element methods (FEM) and physical sensors. Our
approach can accurately reconstruct the deformation of the
real-world tactile sensor elastomer in various domains. While
the proposed learning approaches have shown to produce
solutions, we discuss some limitations and challenges for viable
real-world applications.

I. INTRODUCTION

Tactile sensing is essential for humans when interact-
ing with environments. Robotic tactile sensors can provide
contact profiles during grasping and manipulation tasks.
Among different designs, vision-based tactile sensors are
variants [2]–[9]. They use cameras to capture the deformation
of the contact elastomer with high-resolution images, as
shown in Fig. 1 (a) and (b).

Representing the deformable elastomer with volumetric
mesh can advance the development of vision-based tactile
sensors. Volumetric meshes provide accurate and direct in-
formation about the contact. This information can benefit
manipulation tasks like in-hand object localization [10]–
[12], vision-free manipulation [13]–[15], and contact profile
reconstruction [4], [5], [16]–[18]. Moreover, meshes can be
used for precise dynamics learning [19]–[21] and future state
prediction [22], [23].

Our method directly predicts the volumetric mesh from
images using vision-based tactile sensors, such as the Gel-
Slim [5], in a sim-to-real setting. We first employed su-
pervised training to synthesize the volumetric mesh from
image imprints gathered from synthetic 3D FEM. However,
directly deploying the network into the real-world yields poor
reconstruction results due to the sim-to-real gap. Thus, we
propose data augmentations and a self-supervised adaptation
method on real-world images to address this gap. Experi-
ments demonstrate that the proposed method can transfer
networks for sim-to-real, seen contact objects to novel con-
tact objects, and between different GelSlim sensor instances
(as shown in Fig. 1 (c) and (d)).
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Fig. 1: (a) the GelSlim visual-tactile sensor, (b) the construc-
tion of the sensor, with the elastomer (1), the transparent
lens (2), the lights (3), and the camera (4). (c) a depth image
observation obtained from the sensor, and (d) the correspond-
ing reconstructed volumetric mesh with our method. The red
rectangle denotes the camera’s view range, and the color
represents the displacement level.

In the remaining of this paper, we illustrate the method and
demonstrate the results in Section II and Section III. Then we
discuss the limitations and future directions in Section IV.

II. METHODS

This section first introduces the problem statement and
preliminaries. Next, the image-to-mesh projection and self-
supervised adaptation methods are discussed. Finally, the
datasets are described, including synthetic labeled data, real-
world unlabeled data, and data augmentation techniques.

A. Problem Statement and Preliminaries

This paper focuses on the problem of reconstructing an
elastomer’s volumetric mesh with image observations. The
non-injective projection from surface images to volumetric
vertex makes this problem nontrivial. Some preliminaries are:

1) Image Observations: Visual tactile sensors contact
objects with a silicone elastomer and use a camera to capture
the deformation of the surface, as shown in Fig 1. The
captured RGB image can be used to construct a depth map
using shape from shading [5], [24]. Compared to raw RGB
images, depth maps can better represent the geometry of
the contact surface and are much easier to simulate using
synthetic cameras. Thus we use (128×128) depth maps I as
the image observations in this paper.

2) Volumetric Meshes with FEM: In the FEM, geometri-
cal shapes are represented by volumetric meshes M. With
high-resolution meshes and small computation steps, FEM
can estimate the forward dynamics of soft bodies [19],
[25]. This paper uses graphs to represent volumetric meshes.
Specifically, volumetric meshes are defined as a set of
vertices and edges, M = (V,A), with n vertices in 3D
Euclidean space, V ∈ Rn×3. The adjacency matrix A ∈
{0, 1}n×n represents the edges.
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Fig. 2: Training structure. The image-to-mesh projection
network is optimized with pre-trained autoencoders. The
self-supervised adaptation transfers the projection network
to various domains with a differentiable render.

B. Supervised Image-to-Mesh Projection

The image-to-mesh projection is learned with latent repre-
sentations. Fig. 2 shows the training structure of the network.
The image variational autoencoder (VAE) reconstructs depth
maps I to Î and is trained as a β-VAE. We adopt the convo-
lutional mesh autoencoders (COMA) [26] for the volumetric
mesh VAE. COMA uses spectral graph convolutions [27]
to extract features and a hierarchical pooling operation to
reduce vertices. The latent projection model is comprised
of three fully connected layers. It is trained in a supervised
manner with the encoder and decoder frozen.

C. Self-Supervised Adaptation

When deploying the trained network to the real world,
covariate shift problems may reduce the performance sig-
nificantly [28]. Moreover, the real-world data only has
depth maps {Ij}, the ground-truth volumetric meshes are
not available, making it hard to fine-tune the network in
a supervised manner. Thus, we propose a self-supervised
adaptation framework (Fig. 2) to resolve the covariate shift.

The reconstructed mesh M̂ is rendered to the image Ĩ
using a differentiable renderer, which allows gradients to
propagate backward. In parallel, we use the pre-trained image
VAE to reconstruct the input depth map Î . The network is
adapted to minimize the difference between Ĩ and Î .

D. Datasets

Labeled synthetic data {(Ii,Mi)} and unlabeled real-
world data {(Ij)} are required to train the image-to-mesh
projection and adapt the network among different domains.

1) Synthetic Data: Labeled image-mesh pairs {(Ii,Mi)}
for i ∈ [1, ..., N ] can be simulated using FEM and synthetic

Fig. 3: Left: Primitive indenters. Right: Novel contact objects.

Fig. 4: Data samples. Top: Raw synthetic depth observations,
corresponding ground-truth meshes, and augmented synthetic
depth observations. Bottom: Real-world depth observations
for sample indenters.

cameras. In this work, FEM is performed using the GPU-
based Isaac Gym [29]. A FEM model for the GelSlim is
created as Fig 1(b). To generate data pairs, 16 primitive
indenters (Fig. 3–Left) are utilized to interact with the
elastomer at randomized positions and rotations. The Isaac
Gym simulator collects vertex positions M at each contact
trajectory. The depth map I is then rendered with a synthetic
camera. Fig. 4 shows examples of synthetic data pairs.

2) Real-World Data: Real-world datasets {Ij} are ob-
tained with physical GelSlim sensors and various indenters
(Fig. 4). Primitive indenters are 3D printed and interact with
the sensor is randomized. Besides primitive shapes, several
household and industrial objects are used as a novel set
(Fig. 3–Right). The novel set represents common objects that
the GelSlim will work with. Moreover, we use two GelSlim
sensors to collect real-world data.

3) Image Augmentations: The appearance of synthetic
images is quite different from that of real-world depth maps,
as in Fig. 4. The depth reconstruction process for the physical
GelSlim introduces significant noise into the image. To
enhance the performance in the real world, this paper injects
Perlin noise and adds a real-world reference noise image
into the synthetic images [28]. The Perlin noise provides a
realistic gradient for the image and imitates the real-world
camera noise. The reference image provides sensor-specific
noise.

In total, 1.28M unique labeled image-mesh pairs were
obtained from the simulator, and 1,651 real-world images
were obtained for 2 GelSlim sensors with 19 indenters.



Fig. 5: Image-to-mesh projection results with synthetic data.
First row: Input depth observations. Second row: Corre-
sponding ground-truth mesh. Third row: Reconstructed vol-
umetric mesh with our approach.

Fig. 6: Experiments with real-world primitive contact ob-
jects. First row: Input depth observations. Second row: Re-
constructed volumetric meshes. Third row: Rendered depth
images from reconstructed meshes.

III. RESULTS

In this section, we present the experiments for supervised
image-to-mesh projection and self-supervised adaptation.

A. Supervised Projection

Our proposed supervised image-to-mesh projection was
evaluated using synthetic data. The training yields 0.012cm
root-mean-square error (RMSE) between the ground-truth
vertex positions and predicted vertex positions. Fig. 5 shows
a batch of projection results. The results show that the re-
construction is accurate and captures the contact information.
We also investigate the usefulness of the VAE pre-training
as described in II-B. We trained the image-to-mesh network
from scratch and observed 0.009cm and 0.085cm training
and validation errors, respectively. This suggests that the
network overfits without the pre-training, which aligns with
the findings presented in [30].

B. Self-Supervised Adaptation

Section II-C and Section II-D.3 introduce a self-supervised
adaptation method and synthetic data augmentations to re-
solve the covariate shift problem. This section shows that nei-
ther adaptation nor augmentation can achieve the objective
alone. Moreover, experiments demonstrate that the proposed
methods can adapt networks in different domains.

The adaptation is performed with the real-world dataset
{Ij}, without ground-truth mesh availability. We use the
RMSE between Î and Ĩ to evaluate the performance of the
adaptations.

TABLE I: Domain adaptation results with real-world data.
The root-mean-square error (RMSE) is measured between
reconstructed images Ĩ and rendered images Î .

Source → Target RMSE before/after Adaptation (cm)
Sim-Prim. → Real-Prim 0.57 → 0.12

Sim-Prim → Real-Prim-2 0.77 → 0.20
Real-Prim → Real-Prim-2 0.35 → 0.16
Real-Prim → Real-Novel 0.64 → 0.41
Sim-Prim → Real-Novel 1.30 → 0.62

Networks were trained or tuned on source domains and then adapted to
target domains. The RMSEs were measured before and after the

adaptation.

Fig. 7: Experiments with real-world novel contact objects.
First row: Input depth observations. Second row: Recon-
structed volumetric mesh from the network.

1) Ablation Studies: We compare the effects of the adap-
tion model and the synthetic data augmentations. As a
baseline, models with neither augmentations nor adaptations
yield 1.03cm RMSE. We observe that using only adaptation
(0.79cm RMSE), or only augmentation (0.57cm RMSE),
results in lower performance. The reason for higher perfor-
mance when both are used (0.12cm RMSE) is two-fold. On
one hand, the data augmentation enlarges the distribution of
the synthetic dataset, which causes the real-world data to
be within distribution (or close to). On the other hand, the
adaptation model transfers the network from the simulated
distribution to the real-world distribution, ensuring invariant
feature encodings. A batch of qualitative reconstruction ex-
amples is shown in Fig 6.

2) Domain Adaptations: The network was adapted among
various data domains, including simulated data with primitive
contact objects (Sim-Prim), real-world data with primitive
contact objects (Real-Prim), real-world data with novel con-
tact objects (Real-Novel ), and real-world primitive data with
a second GelSlim sensor (Real-Prim-2 ).

Table I and Fig. 7 show the transfer results among do-
mains. The results suggest that the proposed method can
effectively improve the performance of the network under
both visual and shape differences. However, we conclude that
the covariate shifts for visual noise and shape differences are
not correlated, as for experiment Sim-Prim → Real-Novel is
less compared to the others. Adaptation for each separately
performs better compared to adaptation for both.

IV. DISCUSSION

This work presents a framework to synthesize volumetric
meshes of vision-based tactile sensors for novel contact
interactions. Our work has several contributions. First, we
present a 3D FEM simulator for vision-based tactile sensors
and a simulator calibration approach. Second, we generate a
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Fig. 8: Non-injective projection of the internal vertices. Black
nodes are surface vertices that the observations can supervise.
Gray nodes are internal vertices that can randomly move
without affecting the proposed adaptation loss. I.e., (a) and
(b) will yield the same observation on the surface, while (a)
is preferred.

dataset for the GelSlim sensor with both simulated and real-
world contacts. Third, we propose a label-free adaptation
method and image augmentations for domain transfers; this
approach can effectively transfer networks to various visual
and different shape scenarios. Lastly, our network efficiently
reconstructs the volumetric mesh with depth images and
precisely estimates the contact profiles of different shapes.
More details of the method and results are available in the
full version of the paper [1].

The present work also has some limitations. First, we do
not constrain internal vertices during the adaptation. In the
self-supervised training, the network is optimized with image
observations, which only capture the surface displacement of
the volumetric mesh. However, the surface displacement does
not provide injective supervision for unobservable internal
vertices. In other words, the internal vertices remain free-
floating during the adaptation; they can move freely in the
interior of the mesh without affecting the training loss, as
shown in Fig 8. Such unconstraint vertices can be detrimental
to reconstructing the mesh vertices using surface observation.
Our experiments demonstrate that the network begins to
predict random internal vertices after the first several epochs.
We hypothesize that the network has some self-regularity
at the beginning of the adaptation, inherited from the pre-
training dataset. There is a potential solution to such a
problem: adding penalty terms as a regulation. By leveraging
the minimum energy principle [31], [32], it is possible to
design a differentiable function that computes the energy of
deformations. Such energy should be minimized simultane-
ously during the adaptation to mitigate the randomness of
internal vertices.

The second limitation is that the current method does not
predict the dynamics of the elastomer. Instead, our proposed
method learns the mapping from surface observations to
the mesh states. Compared to other state representations,
e.g., images [13] and surface mesh [4], [5], [33], volumetric
mesh contains internal vertices and edges and thus can
better simulate the deformation of the objects [25], [34].
Learning the dynamics for volumetric meshes can allow
model predictive control (MPC) applications and benefit
reinforcement learning (RL). An MPC-based algorithm or
a model-based RL agent [35] can be designed to determine
actions for robotic manipulation. On the other hand, there

are many previous works on learning the dynamics for
meshes [19]–[21]. These methods, however, focus on simple
problem formulations in that the mesh vertices are known
exactly at each timestep. A more challenging and practical
scenario is to learn the dynamics with observations only since
the actual mesh states are unavailable in real-world data.
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