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Abstract
Generating expressive and contextually appropriate co-speech ges-
tures is crucial for naturalness in human-agent interaction. While
Large Language Models (LLMs) have shown great potential for
this task, questions remain regarding the optimal integration of
multimodal features and the capabilities of smaller, more acces-
sible models. This study presents a systematic and comparative
evaluation of seven gesture generation pipelines, using a robust
diffusion-based architecture as our foundation. We investigate the
impact of audio (WavLM, Whisper) and text (Word2Vec, Llama-3.2-
3B-Instruct) feature extractors to assess the relative contribution
of each modality to overall performance. We demonstrate that it
is possible to achieve state-of-the-art performance using a signif-
icantly smaller LLM (3B parameters) than previous benchmarks,
without sacrificing quality. Our results, based on objective metrics
and a comprehensive perceptual evaluation, reveal that pipelines
incorporating Llama-3.2-3B-Instruct not only outperform refer-
ences in semantic appropriateness and human-likeness but are also
perceived as more appropriate by human evaluators. This work
offers guidance for feature and model selection in gesture synthesis,
balancing generative quality with model accessibility.

CCS Concepts
• Computing methodologies→Machine learning; • Human-
centered computing → Human-computer interaction (HCI).
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1 Introduction
Human communication is a multimodal symphony where the spo-
ken word is intrinsically intertwined with non-verbal language.
Co-speech gestures, in particular, play a crucial role, enriching dis-
course with emotional nuances, emphasis, and contextual cues that
facilitate more natural and understandable interaction [10, 24]. In
the realm of conversational agents and virtual character anima-
tion, the ability to generate gestures that are not only temporally
synchronized with speech but also contextually appropriate and
expressive is fundamental to enhancing the realism and quality of
human-machine interaction. Historically, automatic gesture gen-
eration has predominantly focused on the use of audio features,
exploiting prosody and acoustic content to drive the animation [11].
While these approaches have made significant strides in synchro-
nization and rhythm, they often lack the semantic richness that
textual content can provide [29].

Recently, there has been a growing interest in incorporating
textual information to guide gesture synthesis, recognizing that
the meaning and intent behind words are key drivers of gestural
behavior [2]. Pioneering works such as LLAniMAtion [29] have
demonstrated the potential of Large Language Models (LLMs), like
Llama 2 [28], to generate gestures from text features. Notably, these
text-driven models are guided by word-level timings derived from
the audio, achieving remarkable semantic accuracy and even out-
performing audio-only models. These advancements suggest that
LLMs can encode deep linguistic structures relevant to gesture
generation. However, the focus on large-scale models, such as the
7B-parameter Llama 2 used in LLAniMAtion, introduces challenges
related to computational cost, inference speed, and accessibility.

In this context, our work investigates the potential of small-scale
LLMs to contribute to the realism of multimodal gesture genera-
tion. We examine how these models interact with audio features
and different fusion strategies to capture the nuances of timing,
expressiveness, and semantic intent in gestures—elements essen-
tial to believable human-machine interaction. This exploration is
particularly relevant given the practical demand for deployable
models in real-time settings, where computational resources are
limited. Understanding how far we can push gesture realism under
these constraints offers critical insights for building expressive and
accessible systems.

To this end, we conduct an exploratory and systematic evaluation
of various audio and text feature integration strategies for body
gesture synthesis, using the DiffuseStyleGesture+ [30] architecture,
a top-performing model from the GENEA Challenge 2023 [14], as
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our foundation. Rather than introducing a novel architecture, our
main contribution lies in the comparative analysis — both objective
and perceptual — of multiple generation pipelines. We investigate
how different feature extractors influence the quality, the realism,
and the appropriateness of the generated gestures. For audio, we
explore established extractors like WavLM [4] and, following the
same philosophy of using large pre-trained models, the Whisper
model [23]. For text, we compare word embedding models like
Word2Vec [3] with a more compact 3B-parameter variant of Llama
3.2 [6]. This research seeks to answer the key questions: Are text-
only models consistently superior? Can smaller LLMs drive realistic
behavior? How text-only approaches compare to fully multimodal
approaches?

To address these questions systematically, we build upon the
robust DiffuseStyleGesture+ [30] architecture and the GENEA 2023
dataset [14, 16]. Our primary contribution is a systematic and com-
parative analysis of seven different pipelines, pitting traditional
embeddings against modern language models in both text-only and
multimodal configurations. Through this evaluation, we make our
second key contribution: we demonstrate that a smaller language
model (Llama-3.2-3B-Instruct) is not only capable of driving gesture
synthesis, but can achieve state-of-the-art results, outperforming
established multimodal baselines.

This conclusion is supported by a comprehensive suite of ob-
jective metrics—including Fréchet Gesture Distance (FGD), GAC
Dice Score, Beat Alignment Score (BAS), and average jerk—as well
as a comprehensive perceptual evaluation. Our results extend the
findings of previous studies like LLAniMAtion [29] by showing
that high-quality, semantically appropriate gestures are not the
exclusive domain of massive-scale models; we also offer clear guid-
ance on feature selection for creating more realistic and appropri-
ate virtual agents. The full implementation, including the evalu-
ation framework and all pipeline configurations, is available at:
https://github.com/AI-Unicamp/LLM-Gesture-Pipelines.

2 Related Works
The automatic generation of co-speech gestures from speech has
been an active area of research for decades, evolving from rule-
based systems to increasingly sophisticated data-driven approaches.
The recent literature can be organized around the key question
this study seeks to answer. The comparison between multimodal
using both audio and text features versus those using text-based
approaches.

2.1 The Dominant Paradigm: Multimodal
Approaches

Recently, the dominant paradigm has been multimodality, based on
the premise that combining audio and text features should yield the
most robust results [20, 32]. Audio provides prosodic information
for the rhythm and synchronization of gestures [11], while text
contributes to semantic content [27]. Models like Gesticulator [12]
and most systems presented in the GENEA challenges [13–15] have
operated under this assumption, fusing audio representations (such
as MFCCs or WavLM) with text representations (such as Word2Vec
or BERT) to condition their generative models. DiffuseStyleGes-
ture+ itself, which serves as the foundation for our architecture, is

an example of this approach, combining multiple audio and text
features [5, 30]. These systems represent the state-of-the-art and
provide a benchmark that serves as a valuable reference for eval-
uating new approaches, particularly those that deviate from this
audio-text fusion.

2.2 The Rise of Text-Driven Models and the
Role of LLM Scale

Recently, a line of research has emerged that challenges the multi-
modal paradigm. The pioneering work LLAniMAtion [29] showed
that features extracted from an LLM (Llama 2) alone were not only
sufficient for high-quality gesture generation but also significantly
outperformed audio features. Furthermore, they found that com-
bining both modalities offered no substantial improvement over
using text exclusively [29]. This finding suggested that powerful
LLMs could implicitly capture prosodic and rhythmic information
from the context and structure of the language, rendering the audio
input redundant. Supporting this idea from a different angle, other
works have focused on using LLMs for gesture selection. Research
by Hensel et al. [7] and Torshizi et al. [27] has employed GPT-3.5-
turbo and GPT-4 to analyze the text of an utterance and suggest
appropriate gestures from a repertoire, demonstrating the profound
capacity of LLMs for contextual and semantic gestural reasoning.

Although this evidence points towards a potential superiority
of text-centric models, the works that established this potential
have relied on large-scale models. LLAniMAtion used a 7-billion-
parameter version of Llama 2 [29], while gesture selection studies
employed the APIs of OpenAI’s most powerful models, such as GPT-
4 [7, 27]. The use of these massive models, while effective, presents
significant barriers in terms of computational cost, accessibility for
research, and real-time applicability.

In the gesture generation literature, the performance of smaller
LLMs (in the 1-3B parameter range) in an end-to-end generation
task is a largely unexplored area. It is unclear whether the semantic
richness required for this task is an emergent property that only
appears in large-scale models, or if more compact models can be
sufficient. The exploration of this question is one of the central
contributions of our work.

2.3 The Challenge of Standardized Evaluation
Finally, a robust and standardized evaluation framework is indis-
pensable. As Nagy et al. note in their proposal for a GENEA leader-
board [19], evaluation in gesture generation has historically been
fragmented, making it nearly impossible to directly compare results
from different publications [19]. Objective metrics often show a
low correlation with human perception [15], and subjective studies
vary enormously in their design [19]. The GENEA Challenges [13–
15] were created to mitigate this problem, providing a controlled
ecosystem (same data, visualization, and evaluation protocol) for
fair comparison. This paper fully aligns with that philosophy. By
using the GENEA 2023 dataset [14, 16] and a rigorous objective
and perceptual evaluation protocol. However, for our perceptual
study on appropriateness, we adopt the direct pairwise comparison
methodology from [29], as it directly measures user preference
between competing models. This ensures our conclusions are em-
pirically sound and comparable to related state-of-the-art work.

https://github.com/AI-Unicamp/LLM-Gesture-Pipelines
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3 Proposed Method
Our work focuses on the comparative evaluation of seven gesture
generation pipelines and one reference. These pipelines were de-
signed to isolate and analyze the impact of three fundamental axes:
1) the audio feature extractor, 2) the text feature extractor, and 3)
the fusion and generation architecture.

The pipelines are grouped into four categories to facilitate anal-
ysis, as detailed in Table 1. This table serves as a central reference
for the nomenclature used throughout the paper.

The general workflow of our experiments is illustrated in Figure
1. All proposals share the same input data sources (Audio and Text)
and use the same base diffusion architecture, but they differ in the
intermediate "Fusion/Encoding" modules and, in some cases, in the
final "Generator" architecture. Each evaluated pipeline represents a
unique path through this diagram, allowing us to perform direct
and controlled comparisons.

3.1 Dataset
For all our experiments, we utilized the dataset from the GENEA
Challenge 2023. This dataset, derived from "Talking With Hands"
[14, 16], provides dyadic conversations with 30 fps motion captures
in BVH format, synchronized audio, and text transcriptions for
both interlocutors. The data is split into a training set containing
17 speakers and a test set with 3 speakers. Although the original
dataset contains dyadic interactions, our study focuses on amonadic
gesture generation task. Therefore, only the main-agent data were
used for training and testing, while the interlocutor data were
excluded from the experimental setup.

3.2 Base Generation Architecture
Our work is built upon the DiffuseStyleGesture+ architecture [30],
an influential model based on the Motion Diffusion Model (MDM)
[25]. To simplify referencing, we will denote the original, unmodi-
fied DiffuseStyleGesture+ pipeline as (Ref-Base) in this work.

Architectural Terminology: All pipelines in this study employ
a diffusion model with a Transformer backbone. To distinguish
between the two different conditioning strategies we evaluate, we
adopt the following convention:

• Transformer-based diffusion to refer to the architecture
inherited from DiffuseStyleGesture+, where conditioning
information (audio, text, speaker ID) is processed and then
concatenated with the noisy gesture representation before
being fed into the attention blocks.

• DiT (DiffusionTransformer) to specifically refer to pipelines
that implement the conditioning architecture proposed by
Peebles et al. [22]. This approach is characterized by in-
jecting the timestep and context conditions separately into
the Transformer blocks via mechanisms like Adaptive Layer
Norm (AdaLN) and PerceiverCrossAttention [8], respectively.

3.3 Training Strategy and Parameters
The original work that serves as the basis for our architecture, Dif-
fuseStyleGesture+, was trained for 1.2 million steps, and its authors
provide a pre-trained model at this checkpoint in their GitHub
repository [30]. One of the secondary hypotheses of our study is
that it is possible to achieve comparable synthetic gesture quality

with fewer training steps. To validate this hypothesis, we evalu-
ated different checkpoints of the training process in the Ref-Base
architecture.

The full 1.2M step training required approximately 14 days on an
NVIDIA RTX Quadro 5000 GPU. The performance of the different
checkpoints is shown in Figure 2. The model’s quality on the test
set, measured by both Fréchet Gesture Distance (FGD) and GAC
Dice Score associated to the Gesture Area Coverage (GAC) analysis,
does not improve monotonically. While the GAC Dice score peaks
at 0.78 and stabilizes, the FGD score reaches its best value (15.96) at
900k steps after a significant dip at 540k steps (16.03). However, the
marginal improvement in FGD between 540k and 900k steps comes
at the cost of nearly doubling the training time. Consequently, we
identified the 540k checkpoint as the optimal balance between high
performance and computational cost. Based on this finding, all
models in our study were trained for a maximum of 540k steps,
reducing the average training time to 6 days per model.

Figure 2: Performance metrics for the Reference Pipeline
(Ref-Base) at different training checkpoints. The results
demonstrate a non-monotonic improvement. The 540k step
checkpoint was selected as it offers a strong FGD score (16.03)
and the peak GAC Dice score (0.78), representing the best
trade-off between model quality and training resources.

3.4 LLM Text Feature Extraction
For pipelines incorporating advanced semantic information (those
using Llama-3.2-3B-Instruct), we developed a sophisticated pipeline
to extract and temporally align embeddings from a Large Language
Model (LLM). Unlike static embeddings like Word2Vec, this ap-
proach generates rich contextual representations for each word.
The process is as follows:

(1) Transcription Segmentation: Transcriptions, provided
as lists of words with timestamps (TSV format), are first
grouped into coherent sentences or speech units. Segmen-
tation is performed by detecting significant pauses (greater
than 1.0 second) between words or by the presence of final
punctuation marks.

(2) Tokenization and Offset Mapping: Each reconstructed
sentence is processed with the LLM’s tokenizer, which gen-
erates not only tokens but also an offset_mapping. This
mapping is crucial as it links each token to its exact character
position (start and end) within the sentence string.
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Table 1: Summary of gesture generation pipelines, divided into reference and proposed pipelines. Proposed pipelines are
grouped by category. The table details input components (audio and text) and encoding/generation architecture.

Category Pipeline ID Text Embedding (Dim) Audio Embedding (Dim) Encoding / Architecture

Reference
Pipeline

Ref-Base Word2Vec (300) + flags (2) WavLM (1024) + acoustic feat (109) Concatenation + Linear Projection/
Transformer-based diffusion

Proposed
Pipelines

Basic-Whisper Word2Vec (300) + flags (2) Whisper (1280)+ onset (1) Concatenation + Linear Projection/
Transformer-based diffusion

Multi-Fusion Llama 3.2 (3072) + flags (2) WavLM (1024) + acoustic feat (109) Concatenation + MLP /
Transformer-based diffusion

Multi-Dual Llama 3.2 (3072) + flags (2) WavLM (1024) + acoustic feat (109) Dual encoders + Latent fusion /
Transformer-based diffusion

Multi-Whisper Llama 3.2 (3072) + flags (2) Whisper (1280)+ onset (1) Dual encoders + Latent fusion /
Transformer-based diffusion

Text-Only Llama 3.2 (3072) + flags (2) — Text encoder/ Transformer-based
diffusion

Multi-DiT Llama 3.2 (3072) + flags (2) WavLM (1024) + acoustic feat (109) DiT with Perceiver Cross-Attention
(from Multi-Dual)

Text-DiT Llama 3.2 (3072) + flags (2) — DiT with Perceiver Cross-Attention
(from Text-Only)

flags (2) = laughter (1) + onset (1) , acoustic feat (109)= MFCC (40) + Spectrum (64) + Prosody (4) + Onset (1)

Figure 1: Flowchart of the evaluated experimental pipelines. Each pipeline represents a unique path from the data sources
(left), through a Fusion/Encoding module (center), to a Generator architecture (right). This structure allows for a systematic
comparison of the impact of each component on gesture generation.

(3) Contextual Embedding Generation: The hidden states
from the LLM’s last layer are obtained for the entire sentence.

(4) Word-Token Alignment: For each word from the original
transcription, its character range is used to identify all LLM
tokens whose offsets overlap with it. This step effectively
handles cases where a word is split into multiple sub-tokens.

(5) Embedding Pooling: The final embedding for a word is
calculated by averaging the hidden states of all tokens that

overlap with it. This pooling ensures that the word’s repre-
sentation is robust and informed by its full context in the
sentence.

(6) Feature Track Creation: Finally, the contextual embedding
of each word is assigned to the corresponding 30fps frames
of the sequence, using the original timestamps from the TSV
file. This results in a dense textual feature track temporally
aligned with audio and gesture.
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This method ensures that the diffusion model receives informa-
tion not only about what was said but also about how and when,
capturing the flow and structure of spoken language.

3.5 Evaluated Pipelines
To conduct our comparative study, we designed and evaluated eight
distinct pipelines, which are detailed in Table 1 and visualized in
Figure 1. These pipelines are grouped into four main categories,
and their specific conditioning mechanisms are detailed below.

3.5.1 Reference Pipelines. This group establishes the baselines for
our study using a simple fusion method.

Ref-Base: Our primary reference, a faithful implementation of
the DiffuseStyleGesture+ model [30]. Its fusion strategy consists
of concatenating the audio (1133 dims) and Word2Vec text (302
dims) features, followed by a single linear projection to reduce the
combined vector to a latent representation (1435→ 128).

Basic-Whisper: This alternative baseline maintains the same
structure but replaces the audio features with embeddings from
the Whisper encoder. The concatenated vector is projected to the
latent space (1583→ 128). This allows for a direct comparison of
audio extractors.

3.5.2 Multimodal LLM Pipelines. This category explores different
strategies for combining the rich semantic features from Llama 3.2
with audio information.

Multi-Fusion: This pipeline tests a "deep fusion" approach. The
Llama (3074 dims) and WavLM-based audio (1133 dims) features
are first concatenated. Then, a deep MLP performs a non-linear
dimensionality reduction on the combined vector (4207 → 1024 →
512 → 128).

Multi-Dual: This pipeline employs a "latent fusion" strategy
with specialized encoders. It uses two separate MLPs to process
each modality independently—one for audio (1133→ 512→ 128)
and one for text (3074 → 1500 → 512 → 128). Their resulting 128-
dimensional latent representations are then concatenated to form
the final 256-dimensional conditioning vector.

Multi-Whisper: This pipeline replicates the dual-encoder strat-
egy from Multi-Dual but substitutes WavLM with Whisper audio
features (1281 dims), which are processed by their own audio en-
coder path (1281 → 512 → 128).

3.5.3 Text-Only LLM Pipeline. This pipeline is designed to test the
"text is all you need" hypothesis.

Text-Only: This pipeline generates gestures using only Llama
3.2 features (3074 dims). The features are processed by a single
deep MLP encoder (3074→ 1500→ 512→ 256) that feeds the base
Transformer-based Difussion architecture.

3.5.4 Diffusion Transformer (DiT) Architecture Pipelines. This final
group evaluates the impact of replacing the base generator with a
more advanced Diffusion Transformer (DiT) architecture [22].

Multi-DiT: This pipeline applies the DiT architecture to the
256-dimensional multimodal context generated by the Multi-Dual
pipeline’s dual encoders.

Text-DiT: This pipeline combines the DiT generator with the
256-dimensional text-only context from the Text-Only pipeline
encoder.

4 Evaluation
To assess the performance of our gesture generation pipelines, we
conducted a comprehensive evaluation divided into two parts. First,
we employed a set of objective metrics to quantitatively measure
different aspects of the generated motion, such as distributional
similarity, spatial coverage, smoothest motion and rhythmic align-
ment. Second, we performed a perceptual study to understand how
these objective measures translate to human experience, focusing
on perceived human-likeness and contextual appropriateness.

4.1 Objective Metrics
4.1.1 Fréchet Gesture Distance (FGD) [31]. FGD is a standard met-
ric for evaluating the similarity between the distribution of gener-
ated and real gestures. It is calculated by extracting features from a
pre-trained autoencoder for both sets of motions (generated and
real). The distance is then computed as:

FGD = | |𝜇𝑟 − 𝜇𝑔 | |2 + Tr(Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)1/2) (1)

where 𝜇𝑟 and 𝜇𝑔 are the feature means, and Σ𝑟 and Σ𝑔 are their
covariance matrices for the real (r) and generated (g) gestures,
respectively. A lower FGD indicates greater similarity between the
distributions.

4.1.2 GAC Dice Score. To measure the similarity in the use of
gestural space, we use the Dice Score on the Gesture Area Coverage
(GAC), as proposed in [26]. The GAC is defined as the union of all
poses in a sequence, rasterized into a 2D image to create a coverage
map (grid). Given the GAC of real gestures (𝐺𝐴𝐶𝑟 ) and generated
gestures (𝐺𝐴𝐶𝑔), the Dice Score is defined as:

Dice =
2 × |𝐺𝐴𝐶𝑟 ∩𝐺𝐴𝐶𝑔 |
|𝐺𝐴𝐶𝑟 | + |𝐺𝐴𝐶𝑔 |

(2)

It quantifies the overlap between two sets, penalizing both the area
that the generated gesture did not cover (false negatives) and the
area that it overcovered (false positives). A value close to 1 indicates
high spatial overlap, i.e., more expressive and similar generated
gestures to real gestures, while a value close to 0 indicates the
opposite.

4.1.3 Beat Alignment Score (BAS) [17]. BASmeasures the rhythmic
synchrony between speech and gesture. It compares the timing of
velocity peaks in hand movements with the timing of speech beats,
which are extracted from the audio signal. A higher BAS indicates
that the gestures are better aligned with the rhythm of the speech.
It is formally defined as:

BAS =
1
𝑁

𝑁∑︁
𝑖=1

exp
©­­«−

(
min𝑗 |𝑡𝑎𝑖 − 𝑡

𝑔

𝑗
|
)2

2𝜎2
ª®®¬ (3)

where {𝑡𝑎1 , ..., 𝑡
𝑎
𝑁
} is the set of 𝑁 audio beat timestamps, and {𝑡𝑔

𝑗
}

is the set of gesture beat timestamps (velocity peaks). For each
audio beat 𝑡𝑎

𝑖
, the score is calculated based on the time difference

to the nearest gesture beat, penalized by a Gaussian kernel with a
tolerance parameter 𝜎 .
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4.1.4 Jerk (JM) [18]. Jerk is the third temporal derivative of the
joint positions and is used to quantify the smoothness of the motion.
A lower Jerk indicates a smoother movement. It is calculated as the
sum of the magnitudes of the changes in acceleration throughout
the sequence:

JM =
∑︁
𝑡

����𝑑3𝑃 (𝑡)𝑑𝑡3

���� (4)

where 𝑃 (𝑡) is the position of the joints at time 𝑡 .

4.2 Objective Results
The objective evaluation of our pipelines focused on four key met-
rics. The results, obtained after training all models for 540k steps,
are summarized in Table 2.

Table 2: Objective metric results for the proposed pipelines,
trained for 540k steps.

Pipeline ID FGD (↓) BAS (↑) Jerk (↓) GAC Dice (↑)
Ref-Base 16.03 0.74 0.24 0.78

Basic-Whisper 9.13 0.02 0.66 0.75
Multi-Fusion 11.20 0.76 0.49 0.78
Multi-Dual 10.81 0.75 0.47 0.78
Multi-Whisper 9.43 0.02 0.87 0.76
Text-Only 8.98 0.76 0.60 0.78
Multi-DiT 16.24 0.76 0.70 0.76
Text-DiT 9.05 0.76 0.54 0.75

The Fréchet Gesture Distance (FGD), which measures dis-
tributional similarity to real gestures, reveals the most significant
differences. The results clearly position the Llama 3.2-based strate-
gies as the most effective. Notably, the Text-Only pipeline, which
relies solely on textual input, achieved the best performance with
an FGD of 8.98. This is closely followed by the Text-DiT (9.05)
and the Whisper-based pipelines (9.13 and 9.43). This represents a
remarkable improvement of over 44% compared to the Ref-Base
multimodal pipeline (16.03) at the same training checkpoint. This
finding strongly suggests that high-quality textual representations
can bemore effective than standardmultimodal fusion for achieving
high-fidelity gesture generation, and can do so efficiently.

The GAC Dice, evaluating spatial overlap with ground-truth
gestures. The top-performing pipelines, including Text-Only,
Multi-Fusion, and Multi-Dual, all achieved a high score of 0.78,
indicating that their generated gestures occupy a gestural space
very similar to that of human speakers.

The Beat Alignment Score (BAS) presented the most polarized
results. All pipelines using WavLM or Llama 3.2 without Whisper
maintained a consistently good BAS in the 0.74-0.76 range. The fact
that the textual Text-Only pipeline, which receives word timings
from the audio transcript but no other acoustic features, achieves a
high BAS of 0.76 is a key finding. Conversely, both pipelines using
Whisper features (Basic-Whisper and Multi-Whisper) yielded an
extremely low BAS of 0.02, indicating a lack of alignment with
speech prosodic beats, which may primarily affect rhythmic ges-
tures, though not necessarily semantic ones.

Finally, the Jerk (JM) metric revealed an interesting trend. The
reference pipeline produced the smoothest motion (JM of 0.24). In
contrast, all pipelines incorporating the Llama 3.2 LLM produced
significantly higher jerk values (ranging from 0.47 to 0.87), indicat-
ing less smooth, more dynamic movements. The implications of
this are explored in the Discussion section 5.

Based on these objective results, we selected the following repre-
sentative subset of four conditions for the perceptual study to test
our core hypotheses:

(1) Text-Only: Chosen as the best-performing pipeline in ob-
jective metrics (especially FGD), to test the "text-only" hy-
pothesis.

(2) Text-DiT: Selected to directly compare the impact of the
DiT architecture against its non-DiT counterpart, isolating
the effect of the generator architecture on the same text-only
condition.

(3) Ref-high (Ref-Base@540k steps): Included as a high-quality
baseline, representing the best performance of the reference
pipeline.

(4) Ref-low (Ref-Base@180k steps): Included as a low-quality
anchor, a standard practice in MUSHRA-type tests.

4.3 Perceptual Evaluation
The perceptual evaluation was designed to capture human per-
ception of gesture quality and was conducted with 44 volunteer
participants recruited among University students. For this study,
we generated 12-second video clips for each evaluated stimulus.
The average time to complete the evaluation was 29 minutes. The
study was divided into two parts:

4.3.1 Part 1: Naturalness (Human-likeness). The objective of this
part was to measure the perceived human-likeness. The HEMVIP
evaluation [9] was used , based on the MUSHRA protocol [1]. In
each of the 8 trials, participants rated four videos (one for each
pipeline) corresponding to a unique speech segment, on a continu-
ous 0-100 scale, with semantic anchors such as "bad" (0-20), "poor"
(21-40), "fair" (41-60), "good" (61-80) and "excellent" (81-100).

4.3.2 Part 2: Appropriateness. This part focused on evaluating con-
textual appropriateness and synchrony using a pairwise comparison
(A/B test), following the methodology of LLAniMAtion [29]. This
method directly compares two independent models (e.g., model X
vs. model Y), differing from the GENEA challenge’s mismatching
paradigm [15]. In each of the 24 unique trials, participants viewed
two videos and indicated their preference for which was better in
terms of synchrony, disregarding pure naturalness, on a 5-point
scale (-2 to +2) [21]: left is clearly better (-2), Left slightly better (-1),
Both equal (0), Right slightly better (+1) and right is clearly better
(+2). We then calculated the Mean Appropriateness Score (MAS)
from the absolute value of these scores, providing a measure of the
preference strength for each pipeline.

Both parts of the study employed full randomization of the stim-
ulus order and video positions to minimize bias.

4.4 Perceptual Evaluation Results
The results for both human-likeness and appropriateness are sum-
marized in Figures 3, 4, and detailed in Table 3.
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Table 3: Summary of perceptual evaluation results. Values
represent Mean ± 95% Confidence Interval. Superscript let-
ters (a,b) denote statistical significance groups based on a
post-hoc Tukey HSD test (𝛼 = 0.05). Models not sharing a
common letter are significantly different from each other
within the same metric.

Pipeline Human-likeness Appropriateness (MAS)

Text-Only 57.21 ± 2.62a 1.34 ± 0.07a

Text-DiT 64.13 ± 2.37b 1.24 ± 0.08a

Ref-high 59.65 ± 2.42ab 0.62 ± 0.09b

Ref-low 57.20 ± 2.44a 0.61 ± 0.10b

For Human-likeness, the Text-DiT pipeline was perceived as
the most natural, achieving the highest mean score (64.13). A one-
way ANOVA confirmed a significant difference between the models
(𝑝 < 0.001). Post-hoc analysis revealed that Text-DiT was rated as
significantly more human-like than both Text-Only (p=0.0006) and
the low-quality reference Ref-low (p=0.0006). This suggests that
the DiT architecture plays a crucial role in improving the perceived
kinematic quality of the generated motion.

Figure 3: Boxplot of human-likeness scores from the
MUSHRA evaluation for each of the selected pipelines. The
line within the box is the median, and circles are outliers.
The yellow diamond represents the mean score for each con-
dition. Higher scores indicate greater perceived naturalness.

For Appropriateness, the results show a preference for LLM-
based pipelines. Both Text-Only (MAS=1.34) and Text-DiT (1.24)
were rated as significantly more appropriate than both Ref-high
(0.62) and Ref-low (0.61) (𝑝 < 0.001 for all comparisons). Table 4
details the win rates in these pairwise comparisons, offering a more
granular view. This breakdown reveals the extent of the LLM mod-
els’ superiority: Text-Only was preferred over the high-quality
reference (Ref-high) in 72.2% of trials, with only 18.8% of eval-
uators choosing the reference. A similar dominance is observed
for Text-DiT against the same reference (67.6% wins). In contrast,
the comparison between the two LLM-based pipelines is much
more balanced (Text-Only winning 45.5% vs. Text-DiT winning
39.8%), suggesting that while both are perceived as highly appro-
priate, neither has a definitive edge in these comparisons. These

results provide strong perceptual validation of the power of LLMs
to generate gestures that are not just kinematically plausible, but
semantically and contextually appropriate.

Figure 4: Mean Appropriateness Scores (MAS) absolute with
95% Confidence Intervals from the AB pairwise comparison
tests for each of the selected pipelines. Higher scores indicate
greater perceived appropriateness.

Table 4: Pairwise Comparison Results for Appropriateness:
Percentage of Wins (Left vs. Right) and Ties.

Pipeline Win Left Tie Win Right Pipeline

Text-Only 45.5% 14.8% 39.8% Text-DiT
Text-Only 72.2% 9.1% 18.8% Ref-high
Text-Only 73.9% 8.0% 18.2% Ref-low
Text-DiT 67.6% 13.6% 18.8% Ref-high
Text-DiT 66.5% 18.2% 15.3% Ref-low
Ref-high 29.5% 44.3% 26.1% Ref-low

5 Discussion
Our results, which combine objective metrics and rigorous per-
ceptual evaluation, offer a nuanced view of gesture generation.
A central finding is the resounding success of text-driven strate-
gies, particularly those using Llama 3.2-3B. The Text-Only and
Text-DiT pipelines not only dominated key objective metrics such
as FGD and GAC Dice, but also were perceived by participants
as significantly more appropriate than reference pipelines. This
strongly corroborates the thesis of LLAniMAtion [29] that rich
semantic encodings of text are a more potent driver for the con-
textual appropriateness of gestures than audio features alone. Our
work extends this finding by demonstrating that this level of per-
formance can be achieved with a considerably smaller LLM (3B),
challenging the notion that top-tier gesture generation is exclusive
to massive-scale models.

A particularly interesting observation arises from comparing the
Jerk (JM) metric with the perception of appropriateness. Table 5
compares these metrics for the perceptually evaluated pipelines.

Our LLM-based pipelines exhibited higher Jerk values than the
references, objectively indicating less smooth movement. However,
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Table 5: Comparison of Jerk (Objective) and Mean Appropri-
ateness Score (MAS, Subjective).

Pipeline Jerk (↓) MAS (↑)
Text-Only 0.60 1.34
Text-DiT 0.54 1.24
Ref-high 0.24 0.62
Ref-low 0.20 0.61

these same pipelines were rated as significantly more appropri-
ate. To validate the choice of a parametric correlation test, we first
assessed the data for normality using the Shapiro-Wilk test. The
results indicated that Jerk (W = 0.84, p = 0.21) and MAS (W = 0.79,
p = 0.09) significantly met the normality assumption. A Pearson
correlation test was conducted. The analysis revealed a strong,
statistically significant positive correlation (r = 0.997, p < 0.01),
quantitatively confirming that higher jerk is associated with higher
perceived appropriateness in our study. Furthermore, qualitative
feedback from the 44 volunteers described gestures from the LLM
pipelines as "very expressive", in stark contrast to the references,
often described as "unexpressive" or "robotic". This challenges the
simplistic interpretation that lower Jerk is always preferable, as
minimal jerk can also correspond to static or lifeless motion. In fact,
this disconnect between objective smoothness metrics and human
perception has been previously observed. The GENEA Challenge
2022 [15], for instance, found that most objective metrics, including
average jerk, were not well aligned with subjective human-likeness
ratings. In that study, some systems with objectively "good" smooth
motion were perceived as less human-like by evaluators. Our work
reinforces this finding, suggesting that for expressiveness and ap-
propriateness, higher jerk might even positively correlate with
more dynamic, varied, and energetic gestures, which humans per-
ceive as more contextually relevant, rather than merely "noisy" or
erratic.

In terms of human-likeness, the Text-DiT pipeline was the clear
winner. This suggests that while the LLM provides the crucial se-
mantic "what," the generator’s architecture determines the kine-
matic "how." The global attention mechanism of the Diffusion Trans-
former (DiT) may be inherently better at modeling the complex,
long-range dependencies of whole-body kinematics, resulting in
motion that is perceived as more coordinated and natural.

Finally, the low Beat Alignment Score (BAS) Whisper-based
pipelines warrants careful consideration. A plausible hypothesis is
that Whisper, optimized for automatic speech recognition (ASR)
[23], excels at extracting phonetic content but may abstract away
fine-grained prosodic variations crucial for tight rhythmic syn-
chrony in beat gestures. In contrast, models like WavLM, pre-
trained on raw waveforms, may better preserve this information.
However, given that the Multi-Whisper pipeline still achieved a
competitive FGD score, it appears the strong semantic guidance
from the LLM can partially compensate for rhythmic deficiencies.
This underscores that a single metric is insufficient to capture over-
all quality. The videos generated from each pipeline will be pub-
lished on our GitHub, allowing for a qualitative assessment of
whether this low BAS score is perceptually salient.

6 Limitations
While our study was designed for systematic comparison, it has
several limitations that open avenues for future work.

Although our study is systematic, it does not cover all possible
design combinations. For instance, we did not test Whisper fea-
tures with a DiT architecture, nor did we explore more complex
or attention-based fusion mechanisms beyond concatenation and
latent-space fusion. This leaves room for future work to investigate
other promising architectural configurations.

The poor performance of Whisper-based pipelines in rhythmic
alignment is a limitation of our specific configurations. It does
not rule out the possibility that Whisper could be effective with
different integration methods, fine-tuning, or if its features were
used to supplement a model with an already strong rhythmic base.

7 Conclusion and Future Work
In this work, we conducted a systematic evaluation of seven ges-
ture generation pipelines, focusing on the trade-offs between input
modalities, feature extractors, and architectural choices. Our find-
ings provide several key insights. First, we demonstrate that text-
driven pipelines using a smaller LLM (Llama-3.2-3B-Instruct) can
significantly outperform traditional audio-text models, particularly
in perceived semantic appropriateness. This confirms that the rich
contextual understanding of LLMs is a powerful driver for gesture
generation and that this capability is not exclusive to massive-scale
models. Second, our analysis reveals a statistically significant cor-
relation between objective metrics and human perception, where
higher motion jerk can correlate with greater perceived expres-
siveness, challenging the conventional wisdom that smoothness is
always optimal. Finally, we show that advanced generator archi-
tectures such as the Diffusion Transformer can further enhance
perceived naturalness. This work provides a clear guide for model
and feature selection in gesture synthesis.

Future work could move beyond simple concatenation and ex-
plore more sophisticated, attention-based fusion architectures. Such
models could learn to dynamically weigh audio and text features,
potentially combining the rhythmic strengths of audio with the
semantic power of text more effectively. Other future work could
investigate how to condition generative models not just on content,
but also on stylistic parameters, allowing animators or users to
dial between "smooth and reserved" and "energetic and expressive"
motion. To facilitate reproducibility and encourage further research,
the code and trained models, and generated videos for this study are
publicly available on our GitHub repository: https://github.com/AI-
Unicamp/LLM-Gesture-Pipelines.
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