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Abstract

Deep learning models have demonstrated significant potential in improving chest X-ray
diagnosis. However, these models may exacerbate healthcare disparities. Addressing the
inherent biases of deep learning models is essential to ensure their safe and reliable de-
ployment in clinical practice. We suggest a novel bias mitigation approach that combines
embeddings extracted by a Convolutional Neural Network with an eXtreme Gradient Boost-
ing classifier. Our results show that this hybrid model significantly reduces bias across the
sensitive attributes sex, age, and race, while maintaining comparable overall diagnostic
performance and without the need for expensive model retraining. Our approach demon-
strates that integrating simple, interpretable, and computationally efficient modifications
into existing models can effectively enhance fairness in medical image analysis.
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1. Introduction

Deep Learning (DL) models have the potential to transform healthcare by increasing diag-
nostic accuracy, personalizing treatment, and improving patient outcomes(Alowais et al.,
2023). However, these technologies risk exacerbating healthcare disparities if their per-
formance varies across different subgroups of patients, for example according to sex, age,
and race (Yang Y., 2024). These biases may arise from training data that underrepresents
certain populations, algorithm designs that overlook the unique characteristics of differ-
ent groups, or disparities in healthcare access(Gianfrancesco, 2018). Biases are among the
many barriers that prevent the deployment of these models in clinical practice, where equi-
table outcomes are crucial(Wiens, 2019). Current bias mitigation methods involve tradeoffs
between fairness and accuracy. Techniques such as rebalancing training datasets or mod-
ifying algorithms often require extensive model retraining(Yang et al., 2024) and are thus
impractical in healthcare due to data scarcity and resource constraints. In response, our
study proposes a novel lightweight model adaptation strategy to mitigate biases related to
sex, age, and race in Chest X-ray (CXR) diagnosis. Our solution is to replace the final
classification layer of a Convolutional Neural Network (CNN) with an eXtreme Gradient
Boosting (XGBoost) model which is then retrained on a curated subset of data. This hy-
brid approach leverages CNNs’ feature extraction capabilities and XGBoost’s effectiveness
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in handling class imbalances to reduce bias. While previous studies have shown better
classification performance when the last layer of CNNs is replaced by an XGBoost classi-
fier(Shanmugam, 2023; Sugiharti et al., 2022; Hedhoud et al., 2023), none have explored
this combination to mitigate bias. Our hybrid CNN-XGBoost framework demonstrates that
equitable diagnostics are achievable without sacrificing accuracy, reducing bias across sex,
age, and race subgroups by 62.6% while improving the overall performance by 8.9%.

2. Method

We use the DenseNet-121 model from TorchXrayVision(Cohen et al., 2021) pretrained on
the CheXpert(Irvin et al., 2019) dataset to encode each X-ray image. For each image, we
first extract features from the last hidden layer of the CNN, resulting in a 1024-dimensional
embedding. Next, we reduce their dimension with reduction techniques including Principal
Component Analysis (PCA) and encoder-decoder architectures. We select the method that
maximizes performance and minimizes bias on the validation data. The resulting vector
serves as input to an XGBoost classifier, which is then trained. XGBoost was chosen due
to its ensemble nature. Multiple trees are trained to correct the errors of the previous trees,
inherently focusing on harder-to-classify examples such as underrepresented groups. We
expect this integration to both reduce the performance gap across subgroups and increase
the overall performance. The pipeline is presented in Figure 1A.
This method is model-agnostic, which means that it can be adapted to other model architec-
tures designed for image feature extraction. Moreover, existing bias mitigation techniques,
including adversarial training, sample weighting, and data augmentation(Yang et al., 2024)
can easily be integrated into our framework by only retraining the XGBoost head.

3. Experiments and Results

Datasets: We evaluate our method on two datasets to ensure the robustness and general-
ization of our model across different clinical environments. First, in-distribution data from
CheXpert(Chambon, 2024), a dataset consisting of 224,316 CXRs obtained at Stanford
Health Care. Second, Out-Of-Distribution (OOD) data from Medical Information Mart for
Intensive Care (MIMIC)(Johnson, 2019) comprising 377,110 CXRs performed at the Beth
Israel Deaconess Medical Center. Detailed dataset information are presented in Figure 1B.
Embedding Analysis: We first analyzed the embeddings extracted with DenseNet using
PCA, t-distributed Stochastic Neighbor Embedding (t-SNE)(Van der Maaten, 2008) plots,
and statistical tests such as the two-sample Kolmogorov–Smirnov test. Results, as shown
in the Appendix Figure 2, indicate significant differences across subgroups, suggesting that
the model could use shortcuts for disease classification, potentially leading to biased results.
Embeddings reduction: Results in the Appendix Table 1 show that reducing the size of
the embedding using PCA to select the components that retain 95% of the total variability
leads to a larger decrease in bias while maintaining a competitive overall performance.
Bias Mitigation: We focused the analysis on pleural effusion, due to its clinical signif-
icance and prevalence in the datasets. We used the Area Under Precision-Recall Curve
(AUPRC) as the primary performance metric, due to its effectiveness in imbalanced data
and in balancing precision and recall. We assessed the presence of bias related to the
subgroups using ∆AUPRC. For sex, we focused on the difference in performance between
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males and females; for age, we used a threshold of 70 years old; for race, we focused our
analysis on White, Black, and Asian. Each experiment is run five times and results are
averaged. The XGBoost training parameters are described in the Appendix 4. As shown
in Figure 1C, the original CNN model leads to higher performance differences between the
subgroups than our novel approach. By incorporating XGBoost, the model leads to fairer
and more consistent results. Results show a decrease in bias of 79.2% for sex, 47.1% for
age, and 61.7% for race while improving the overall performance by 8.9%.
Other classification heads: Linear regression, decision trees, random forests, and bal-
anced random forests were also tested. However, they either resulted in worse overall
performance or in a smaller reduction in bias in comparison to an XGBoost head.
OOD adaptability: We evaluate our method by applying a DenseNet model pretrained
on the CheXpert dataset to the OOD MIMIC dataset, assessing both performance and bias
mitigation consistency. While the classification performance on the MIMIC dataset is lower
than on the CheXpert dataset, our results demonstrate that our approach generalizes well
OOD, reducing overall bias by 39.2% and improving overall performance by 8.2%.

Figure 1: (A) Our CNN-XGBoost pipeline, (B) datasets information, (C) results
(AUPRC: higher is better ; ∆AUPRC: lower is better).

4. Conclusion and Future Work

Our hybrid bias-reduction method improves performance and mitigates bias related to sex,
age, and race in pleural effusion prediction from CXR images. By using a model-agnostic
approach, the integration can be applied to existing CNN models without the need for
retraining, which is beneficial for already trained models. Future work includes extending
this analysis to other model architectures, such as transformers, analyzing additional chest
medical conditions, and combining other bias mitigation strategies with our method.
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Appendix

Table 1: Classification performance and bias on validation set when reducing the image
embeddings using an Encoder-Decoder architecture, a PCA framework, or keeping
the original embedding size.

Encoder-Decoder AUPRC ∆AUPRC ∆AUPRC ∆AUPRC
Output dimension sex race age

64 70.8 3.2 19.8 6.8

128 71.4 2.2 14.9 6.4

256 71.7 2.6 17.9 5.4

PCA AUPRC ∆AUPRC ∆AUPRC ∆AUPRC
Variance retained (in %) sex race age

98 70.8 1.7 16.6 4.8

95 71.1 1.2 14 5.1

90 71.9 0.7 18 5.5

85 71.1 3.2 14.7 4.2

Original size AUPRC ∆AUPRC ∆AUPRC ∆AUPRC
sex race age

72.7 2 17.7 5.9
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Figure 2: (A) Densities of the embeddings reduced using PCA (top row) and t-SNE (bot-
tom row) according to the different values of pleural effusion and the sensitive
attributes, (B) statistical significance (p-values) of the difference between sub-
groups for all sensitive attributes obtained from different statistical tests, (C)
Area Under the Curve (AUC) of a Random Forest Classifier evaluating the abil-
ity of embeddings to predict the sensitive attributes.
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XGBoost Hyperparameters: The hyperparameters were selected based on
model performance evaluated on the validation dataset. The optimized hyper-
parameters are as follows: eval metric = ’logloss’, learning rate = 0.05,
n estimators = 150, and max depth = 10.
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