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Abstract

Deep learning (DL) models have demonstrated significant potential in improving chest
X-ray (CXR) diagnosis. However, these models may exacerbate healthcare disparities.
Addressing the inherent biases of DL models is essential to ensure their safe and reliable
deployment in clinical practice. We suggest a novel bias mitigation approach that combines
embeddings extracted by a Convolutional Neural Network (CNN) with an eXtreme Gra-
dient Boosting (XGBoost) classifier. Our results show that this hybrid model significantly
reduces bias across the sensitive attributes sex, age, and race, while maintaining comparable
overall diagnostic performance and without the need for expensive model retraining. Our
approach demonstrates that integrating simple, interpretable, and computationally efficient
modifications into existing models can effectively enhance fairness in medical imaging.

Keywords: Bias Mitigation, Chest X-ray, Convolutional Neural Network, eXtreme Gra-
dient Boosting

1. Introduction

DL models have the potential to transform healthcare by increasing diagnostic accuracy,
personalizing treatment, and improving patient outcomes(Alowais, 2023). However, these
technologies risk exacerbating healthcare disparities if their performance varies among dif-
ferent subgroups of patients, for example according to sex, age, and race (Yang Y., 2024).
These biases may arise from training data that underrepresents certain populations, al-
gorithm designs that overlook the unique characteristics of different groups, or disparities
in healthcare access(Gianfrancesco, 2018). Biases are among the many barriers that pre-
vent the deployment of these models in clinical practice, where equitable outcomes are
crucial(Wiens, 2019). Current bias mitigation methods involve tradeoffs between fairness
and accuracy. Techniques such as rebalancing training datasets or modifying algorithms
often require extensive model retraining(Yang et al., 2024) and are thus impractical in
healthcare due to data scarcity and resource constraints. In response, our study proposes
a novel lightweight model adaptation strategy to mitigate biases related to sex, age, and
race in CXR diagnosis. Our solution is to replace the final classification layer of CNNs
with an XGBoost model, which is then retrained on a curated subset of data. This hybrid
approach leverages CNNs’ feature extraction capabilities and XGBoost’s effectiveness in
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handling class imbalances to reduce bias. Previous studies have shown better classification
performance when the last layer of CNNs is replaced by an XGBoost classifier(Shanmugam,
2023; Sugiharti et al., 2022; Hedhoud et al., 2023), but none have explored this combina-
tion to mitigate bias. Our hybrid CNN-XGBoost framework demonstrates that equitable
diagnostics are achievable without sacrificing accuracy, reducing bias across sex, age, and
race subgroups by 62.6% while improving the overall performance by 8.9%.

2. Method

We use the DenseNet-121 model from TorchXrayVision(Cohen et al., 2021) pretrained on
the CheXpert(Irvin et al., 2019) dataset to encode each X-ray image. For each image, we
first extract the last hidden layer of the CNNs, resulting in a 1024-dimensional embedding.
Next, we reduce their dimension with reduction techniques including Principal Component
Analysis (PCA) and encoder-decoder architectures. We select the method that maximizes
performance and minimizes bias on the validation data. The resulting vector serves as input
for an XGBoost classifier, which is then trained. XGBoost was chosen due to its ensemble
nature. Multiple trees are trained to correct the errors of the previous trees, inherently
focusing on harder-to-classify examples such as underrepresented groups. We expect this
integration to both reduce the performance gap among subgroups and increase the overall
performance. The pipeline is presented in Figure 1A.
This method is model-agnostic, which means that it can be adapted to other model architec-
tures designed for image feature extraction. Moreover, existing bias mitigation techniques,
including adversarial training, sample weighting, and data augmentation(Yang et al., 2024)
can easily be integrated into our framework by only retraining the XGBoost head.

3. Experiments

Datasets: We evaluate our method on two datasets to ensure the robustness and general-
ization of our model across different clinical environments. First, in-distribution data from
CheXpert(Chambon, 2024), a dataset consisting of 224,316 CXRs obtained at Stanford
Health Care. Second, Out-Of-Distribution (OOD) data from Medical Information Mart for
Intensive Care (MIMIC)(Johnson, 2019) comprising 377,110 CXRs performed at the Beth
Israel Deaconess Medical Center. Detailed dataset information are presented in Figure 1B.
Embedding Analysis: We first analyzed the embeddings extracted with DenseNet using
PCA, t-distributed Stochastic Neighbor Embedding (t-SNE)(Van der Maaten, 2008) plots,
and statistical tests such as the two-sample Kolmogorov–Smirnov test. Results, as shown
in the Appendix Figure 2, indicate significant differences across subgroups, suggesting that
the model could use shortcuts for disease classification, potentially leading to biased results.
Embeddings reduction: Results in the Appendix Table 1 show that reducing the size of
the embedding using PCA to select the components that retain 95% of the total variability
leads to a larger decrease in bias while maintaining a competitive overall performance.
Bias Mitigation: We focused the analysis on pleural effusion, due to its clinical signif-
icance and prevalence in the datasets. We used the Area Under Precision-Recall Curve
(AUPRC) as the primary performance metric, due to its effectiveness in imbalanced data
and in balancing precision and recall. We assessed the presence of bias related to the sub-
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groups using ∆AUPRC. For sex, we focused on the difference in performance between males
and females; for age, we used a threshold of 70 years old; for race, we focused our analysis
on White, Black, and Asian. Each experiment is run 5 times and results are averaged. The
XGBoost training parameters are described in the Appendix 4. As shown in Figure 1C, the
original CNN model leads to higher performance differences between the subgroups than
our novel approach. By incorporating XGBoost, the model leads to fairer and more consis-
tent results. Results show a decrease in bias of 79.2% for sex, 47.1% for age, and 61.7% for
race while improving the overall performance by 8.9%.
OOD adaptability: We test our method, using a DenseNet model trained on the CheXpert
dataset, on the MIMIC dataset to verify performance and bias mitigation consistency OOD.
While the classification performance on the MIMIC dataset is lower than on the CheXpert
dataset, our results demonstrate that our approach generalizes well OOD, reducing overall
bias by 39.2% and improving overall performance by 8.2%.

Figure 1: (A) Our CNN-XGBoost pipeline, (B) datasets information, (C) results
(AUPRC: higher is better ; ∆AUPRC: lower is better).

4. Conclusion and Future Work

This hybrid bias-reduction method improves performance and mitigates bias related to
sex, age, and race in pleural effusion prediction from CXR images. By using a model-
agnostic approach, the integration can be applied to existing CNN models without the
need for retraining, which is particularly beneficial for already trained models. Future work
includes extending this analysis to other model architectures, such as Vision Transformers
and Foundation Models, analyzing additional chest medical conditions, and combining other
bias mitigation strategies with our method.
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Appendix

Figure 2: (A) Densities of the embeddings reduced using PCA (top row) and t-SNE (bot-
tom row) according to the different values of pleural effusion and the sensitive
attributes, (B) statistical significance (p-values) of the difference between sub-
groups for all sensitive attributes obtained from different statistical tests, (C)
Area Under the Curve (AUC) of a Random Forest Classifier evaluating the abil-
ity of embeddings to predict the sensitive attributes.

XGBoost Hyperparameters: The hyperparameters were selected based on
model performance evaluated on the validation dataset. The optimized hyper-
parameters are as follows: eval metric = ’logloss’, learning rate = 0.05,
n estimators = 150, and max depth = 10.
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Table 1: Classification performance and bias on validation set when reducing the image
embeddings using an Encoder-Decoder architecture, a PCA framework, or keeping
the original embedding size.

Encoder-Decoder AUPRC ∆AUPRC ∆AUPRC ∆AUPRC
Output dimension sex race age

64 70.8 3.2 19.8 6.8

128 71.4 2.2 14.9 6.4

256 71.7 2.6 17.9 5.4

PCA AUPRC ∆AUPRC ∆AUPRC ∆AUPRC
Variance retained (in %) sex race age

98 70.8 1.7 16.6 4.8

95 71.1 1.2 14 5.1

90 71.9 0.7 18 5.5

85 71.1 3.2 14.7 4.2

Original size AUPRC ∆AUPRC ∆AUPRC ∆AUPRC
sex race age

72.7 2 17.7 5.9

6


	Introduction
	Method
	Experiments
	Conclusion and Future Work

