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Continuous machine learning on Euclidean graphs with unordered vertices

Abstract
Molecular graphs can change their chemical prop-
erties under non-rigid deformations in Euclidean
space. Hence it is vitally important to distinguish
rigid classes of molecular graphs under composi-
tions of translations and rotations. Also, robust
outputs of machine learning on molecular graphs
embedded in Euclidean space should continuously
change under perturbations, motivated by atomic
vibrations and experimental noise. We developed
a complete invariant that can be inverted back to
an embedded graph, uniquely under rigid motion,
and has a Lipschitz continuous distance satisfying
all metric axioms. For a fixed dimension, the in-
variant and metric can be computed in polynomial
time of the number m of unordered vertices and
hence avoiding exponentially many permutations.
The new invariants distinguish all chemically dif-
ferent graphs in the world’s largest databases of
3D molecules in a few hours on a modest desktop.

1. Motivations for complete and continuous
invariant inputs in application-driven ML

This paper formalizes necessary conditions for ML on real
data with ambiguous representations and develops complete
and Lipschitz continuous invariants satisfying these condi-
tions on any Euclidean graphs and justifying a rigorous con-
cept of a molecular structure. Many real structures from star
constellations to molecules are represented by graphs em-
bedded in a Euclidean space (Bonchev, 1991). A Euclidean
graph G ⊂ Rn is a finite set of m unordered (unlabeled)
vertices located at distinct points of Rn and connected by
straight-line edges. Forgetting all edges of G ⊂ Rn gives
us the vertex set V (G) ⊂ Rn of m unordered points. A
Euclidean graph can be disconnected and can have vertices
v of any degree that is the number of edges whose endpoint
is v. Loops and multiple edges (with the same endpoints)
do not appear in Euclidean graphs because all edges are
straight line segments and can also intersect in theory.

. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
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Graphs can be considered under any equivalence relation
that should satisfy the axioms: 1) reflexivity: G ∼ G, 2)
symmetry: if G ∼ F then F ∼ G, 3) transitivity: if G ∼ F
and F ∼ H then G ∼ H . In chemistry, the simplest equiva-
lence is by chemical composition, which is insufficient in
practice, e.g. stereoisomers in Fig. 1 (right) have the same
chemical compositions and non-equivalent rigid shapes with
different chemical properties (Rieder et al., 2023).

Figure 1. Top: graphs T1, T2, T3, T4 ⊂ R3 on the same ver-
tices with solid edges are not isomorphic to each other. Bottom:
stereoisomers are isomorphic combinatorially, not geometrically.

For molecules, the strongest equivalence (distinguishing as
many graphs as practically possible) is a geometric isomor-
phism G ∼= F , i.e. an orientation-preserving transformation
of Rn that bijectively maps the vertices and edges: G → F .
Geometric isomorphisms are also called rigid motions (com-
positions of translations and rotations), which form the spe-
cial Euclidean group SE(n). The slightly weaker equiv-
alence (not distinguishing mirror images) is an isometry,
which is any distance-preserving transformation including
reflections. Any geometrically isomorphic molecules have
the same chemical properties. If a flexible molecule changes
its rigid shape, its functional properties can change, so it is
important to distinguish rigid shapes (Wilson et al., 1991).

To reliably distinguish at least some Euclidean graphs
G ⊂ Rn, we need an invariant I defined as a numerical de-
scriptor preserved by any rigid motion in Rn. Alternatively,
if I(G) ̸= I(F ), then G ̸∼= F , so any invariant has no false
negatives that are pairs of different representatives of rigidly
equivalent graphs (denoted by G ∼= F ) having equal values
of a (non-invariant) descriptor. The number of vertices (or
edges) of G is an integer-valued weak invariant that can-
not separate any graphs in Fig. 1. The strongest invariant
I separating all non-equivalent graphs is called complete
meaning that if I(G) = I(F ) then G ∼= F . Alternatively, a
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Continuous machine learning on Euclidean graphs

complete invariant I has no false positives that are pairs of
non-equivalent graphs G ̸∼= F with I(G) = I(F ).

Since all real data (such as inter-point distances) are noisy,
a more practically important answer is not binary (‘same
or different’) but should be continuously quantified by a
distance metric between isometry classes. The atomic
vibrations (Feynman, 1971) imply that rigid classes of
molecules graphs on m unordered atoms form a contin-
uous Graph Isometry Space GIS(R3;m). Only for tri-
angular graphs with m = 3, their space was previously
known due to the side-side-side theorem saying that any
triangles are isometric if and only if they have the same
triple of sides (inter-point distances) a, b, c considered up
to 6 permutations. Hence the space of triangular graphs is
{0 < a ≤ b ≤ c ≤ a+b} ⊂ R3, where c ≤ a+b guarantees
that distances a, b, c are realizable by a real triangle.

Problem 1.1 (complete invariant of Euclidean graphs with
a polynomial-time continuous metric). Find a function I :
{Euclidean graphs with of unordered vertices in Rn} → a
space X with a distance d satisfying the conditions below:

(a) completeness of the invariant: any graphs G,F are
related by rigid motion in Rn if and only if I(G) = I(F );

(b) Lipschitz continuity: there is a constant λ and a metric
d satisfying the axioms 1) d(α, β) = 0 if and only if α = β,
2) d(α, β) = d(β, α), 3) d(α, β) + d(β, γ) ≥ d(α, γ) for
all α, β, γ ∈ X , such that if F is obtained by perturbing
every vertex of G up to ε > 0, then d(I(G), I(F )) ≤ λε;

(c) invertibility: any Euclidean graph G can be recon-
structed (uniquely up to rigid motion in Rn) from I(G);

(d) computability: for a fixed dimension n, the invariant
I , d, and a reconstruction of G ⊂ Rn from I(G) can be
obtained in polynomial time of the number of vertices.

Condition 1.1(a) means that a complete invariant I has the
strongest expressivity (Zhang et al., 2024) by uniquely iden-
tifying any Euclidean graph under geometric isomorphism.
To be useful for noisy inputs, a complete invariant should
continuously change under perturbations in a suitable metric.
The axioms in 1.1(b) are the foundations of metric geometry
(Melter & Tomescu, 1984) and accepted in chemistry (Wein-
hold, 1975). If the triangle axiom fails with any additive
error, the classical k-means and DBSCAN clustering are
open to adversarial attacks in (Rass et al., 2024). If the first
axiom is ignored, d ≡ 0 satisfies all other axioms. The first
axiom implies the completeness of I in 1.1(a) but the conti-
nuity is much stronger. Indeed, for any complete invariant
I , one can define the discrete metric d(I(G), I(F )) = 1 for
G ̸∼= F , which unhelpfully treats all non-equivalent graphs
(even near-duplicates) as equally distant. The Lipschitz
continuity in 1.1(b) is necessary for smoothness, which is
implicitly assumed by any gradient-based optimization.

Condition 1.1(c) requires I to be not only complete and
continuous but also efficient to explicitly reconstruct G,
even better than a DNA code that is does not explain how
to grow a living organism. Computability 1.1(d) prevents
brute-force attempts, e.g. defining I(G) as the infinite set of
images of G under all rigid motions or taking m! distance
matrices over all permutations of m unordered vertices.

The main contribution is the new invariant Nested Cen-
tered Distribution, which solves Problem 1.1, including the
new Lipschitz continuity, for all Euclidean graphs in Rn.

2. Past work on distances for Euclidean graphs
Ordered clouds. The vertex set V (G) of a Euclidean graph
G ⊂ Rn is called a point cloud C. If all points p1, . . . , pm
of C are ordered (not under the action of all m! permuta-
tions), a complete invariant of C under isometry (composi-
tions of translations, rotations, reflections) is the classical
m×m matrix (Li et al., 2023) of pairwise distances |pi−pj |
due to Theorem 9 in (Grinberg & Olver, 2019) or, after shift-
ing the center of mass to the origin, the Gram matrix of
scalar products piṗj by Theorem 1 in (Dekster & Wilker,
1987). This multidimensional scaling (Schoenberg, 1935)
can also provide an embedding C ⊂ Rk preserving all
distances of C for a dimension k ≤ m. This embedding
C ⊂ Rk uses eigenvectors whose ambiguity up to signs
gives an exponential time that can be close to O(2m), not
polynomial in the number m of ordered points as in 1.1(d).

Unordered clouds. Computational geometry developed
many algorithms for detecting geometric isomorphism (or
isometry, also called congruence) between point sets with-
out edges (Huttenlocher et al., 1993; Chew & Kedem, 1992;
Chew et al., 1999; Goodrich et al., 1999). For a set A ⊂ Qn

of m points, Theorem 3 in (Arvind & Rattan, 2016) com-
puted in time nO(n)poly(mM) a canonizing function f(A),
which can be considered a complete isometry invariant of
A, where M upper bounds the binary encodings of the ra-
tional coordinates in the input. For point clouds under rigid
motion (also distinguishing mirror images), Theorem 4.7
in (Widdowson & Kurlin, 2023) described a metric com-
putable in time O(n(mn−1/n!)3 logm). (Hordan et al.,
2024; Delle Rose et al., 2024; Nigam et al., 2024; Amir
et al., 2024; Maennel et al., 2024) also achieved the com-
pleteness for point clouds but without a Lipschitz continu-
ous metric as in 1.1(b). Energy potentials written as infinite
series of spherical harmonics, are often considered com-
plete representations of atomic environments, which holds
in the limit but not for a finite size(Pozdnyakov et al., 2020).
For a fixed set of m vertices in general position, one can
choose any of m(m− 1)/2 edges and produce 2m(m−1)/2

non-isometric graphs. Problem 1.1 for arbitrary graphs is
computationally much harder than for point clouds due to
exponentially many different graphs on the same vertex set.
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Continuous machine learning on Euclidean graphs

The graph isomorphism problem (Grohe & Schweitzer,
2020) for abstract (non-Euclidean) graphs is another ver-
sion of Problem 1.1 without continuous metrics. The lat-
est advances (Babai, 2019; Helfgott et al., 2017) achieved
only quasipolynomial time. While many partial cases were
solved, e.g. for planar graphs (embedded in R2 without inter-
secting edges), see (Kiefer et al., 2019), the k-dimensional
Weisfeiler-Leman test (Leman & Weisfeiler, 1968) fails for
3-regular graphs of size O(k). The key limitation of WL
tests is their local nature when invariants are gradually ex-
panded from a vertex or a k-tuple. Then covering a graph on
m vertices needs O(m) expansions leading to exponential
sizes in m. Section 3.9 in (Dym & Gortler, 2024) discussed
that a complete invariant (under all permutations of m ver-
tices) that has a polynomial time in the dimension n would
also solve the graph isomorphism problem in polynomial
time. Condition 1.1(d) is easier for a fixed dimension n,
e.g. n = 2, 3 are practical cases. The number m of vertices
can be dozens or hundreds, e.g. for molecular graphs in
R3, where vertices are centers of atoms and edges are inter-
atomic bonds that keep atoms together in a stable molecule.

Geometric Deep Learning in (Bronstein et al., 2021) pio-
neered an axiomatic approach to geometric classifications
beyond Euclidean space Rn in (Bronstein et al., 2017).
Some neural networks were proved to be universal (Maron
et al., 2019; Zhou, 2020; Abbe & Sandon, 2020) in the sense
of approximating any continuous function on given data
with sufficiently many layers. This universality property has
been strengthened in Problem 1.1 to the full completeness
of an explicit invariant that should be computable in poly-
nomial time and invertible to an original graph up to rigid
motion. The key challenge was to compute an exact (not
approximate) metric that is also Lipschitz continuous.

Equivariants (Kondor & Trivedi, 2018; Cohen et al., 2019;
Fuchs et al., 2020; Deng et al., 2021) are defined as de-
scriptors E satisfying E(f(G)) = Tf (E(G)) for any rigid
motion f and all graphs G ⊂ Rn, where Tf can be any
map, not only the identity as for invariants. Any linear com-
bination of points, e.g. the center of mass, is equivariant
but cannot distinguish graphs under translation. Equivari-
ants (Gao et al., 2020; Qi & Luo, 2020; Tu et al., 2022;
Batzner et al., 2022) help predict forces acting on atoms to
move them to a more optimal configuration. These time-
dependent graphs Gt can be studied directly by invariant
values I(Gt) without computing intermediate atomic forces.

Many neural networks optimize millions of parameters, e.g.
see Table 4 (Goyal et al., 2021), to achieve great accura-
cies (Dong et al., 2018; Akhtar & Mian, 2018; Laidlaw &
Feizi, 2019; Guo et al., 2019; Colbrook et al., 2022) but
require re-training on any new data. All known descriptors
of molecular graphs (Duvenaud et al., 2015; Choo et al.,
2023) have no proofs of all conditions 1.1(a,b,c,d).

Gromov-Wasserstein metrics (Mémoli, 2011) are defined
for any metric-measure spaces (Brécheteau, 2019) by min-
imizing over infinitely many correspondences between
points, but cannot be approximated with a factor less than
3 in polynomial time unless P=NP by Corollary 3.8 in
(Schmiedl, 2017) and Theorem 3.3 in (Agarwal et al., 2018),
see fast algorithms for important cases in (Mémoli et al.,
2021; Lim et al., 2023; Majhi et al., 2024). (Nikolentzos
et al., 2017; Majhi & Wenk, 2022; Buchin et al., 2023) made
significant advances in the related problems of matching and
finding distances between fixed Euclidean graphs without
considering isometry. Computing a metric between rigid
classes is only a small part of Problem 1.1. Indeed, to effi-
ciently navigate on Earth, in addition to distances between
cities, we need a map of the planet and hence an invertible
continuous invariant I similar to geographic coordinates.

3. Graph invariants: from fastest to complete
Let |p−q| denote the Euclidean distance between any points
p, q ∈ Rn. We always translate any graph G ⊂ Rn so that

the center of mass O(G) =
1

m

∑
p∈V (G)

p of the vertex set

V (G) is at the origin 0 ∈ Rn. Then Problem 1.1 reduces to
the SO(n)-invariance under orthogonal transformations.

Definition 3.1 (signed distance d(p, q) and invariants
SRD,SPD,PDD). Let G ⊂ Rn be any Euclidean graph
on m arbitrarily ordered vertices p1 . . . , pm. If any pi, pj ∈
V (G) are connected by an edge of G, define the signed
distance as d(p, q) = |p− q|, else set d(p, q) = −|p− q|.

(a) The vector SRD(G) of sorted radial distances consists
of m distances |p| for all p ∈ V (G) in decreasing order.

(b) The vector SPD(G) of sorted pairwise distances consists
of all distances d(pi, pj) in decreasing order.

(c) Let D(G) be the m× (m−1)-matrix whose the i-th row
consists of d(pi, pj), j ∈ {1, . . . ,m}\{i}, in increasing or-
der. The Pointwise Distance Distribution PDD(G) consists
of these unordered rows with equal weights 1/m.

If any k > 1 rows of D(G) are equal, they can be collapsed
in PDD(G) to a single row with the weight k/m. The PDD
was defined for clouds as a local distribution of distances
in Definition 5.5 of (Mémoli, 2011) and for periodic sets in
(Widdowson & Kurlin, 2022) but not for Euclidean graphs.

Table 1. Acronyms of all main invariants and metrics in the paper.

SRD SORTED RADIAL VECTOR DEF 3.1
SPD SORTED DISTANCE VECTOR DEF 3.1
PDD POINTWISE DISTANCE DISTRIBUTION DEF 3.1
CR CENTERED REPRESENTATION DEF 3.3
NCD NESTED CENTERED DISTRIBUTION DEF 3.5
NBM NESTED BOTTLENECK METRIC DEF 4.5
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Continuous machine learning on Euclidean graphs

The PDD(G) includes every signed distance twice, once as
d(p, q) in the row of a vertex p, and as d(q, p) in the row of
a vertex q. Hence SPD(G) can be obtained from PDD(G)
by (1) combining all distances into one vector, (2) sorting
them in decreasing order, and (3) keeping only one copy of
every two repeated distances. Example 3.2 shows that the
invariant PDD(G) is strictly stronger than SPD(G).
Example 3.2 (invariants SRD,SPD,PDD for tetrahedral
graphs in Fig. 1). (a) Since the vertex sets of Ti ⊂ R3

are regular tetrahedra with all pairwise distances 1, these
graphs have identical SRD(Ti) of 4 equal circumradii of
the same vertex set V (Ti) independent of i = 1, . . . , 4.

The first graph T1 has two edges contributing +1 and four
non-edges (dashed lines) contributing −1 to the Sorted Dis-
tance Vector SPD(T1) = (+1,+1,−1,−1,−1,−1). The
graph T2 also has two edges, so SPD(T2) = SPD(T1)
doesn’t distinguish T1 ̸∼= T2 up to rigid motion. Similarly,
the graphs T3 ̸∼= T4 are not distinguished by the invariants
SPD(T3) = (+1,+1,+1,−1,−1,−1) = SPD(T4).

(b) In T1, every vertex has exactly one edge and two
non-edges (dashed lines), hence its signed distances are
+1,−1,−1. The matrix PDD(T1) = (100% | −1,−1,+1)
consists of a single row, where the weight 100% indicates
that all vertices of T1 have the same row in PDD. The
graph T2 has one vertex (25%) with no edges, two vertices
(50%) with one edge, and one vertex (25%) with two edges,

so PDD(T2) =

 25% −1 −1 −1
50% −1 −1 +1
25% −1 +1 +1

 ̸= PDD(T1),

so PDD distinguishes the rigidly non-equivalent graphs
T1 ̸∼= T2 with SPD(T1) = SPD(T2). The graph T3 has one
vertex (25%) with no edges and three vertices (75%) with

two edges, so PDD(T3) =

(
25% −1 −1 −1
75% −1 +1 +1

)
.

The graph T4 has two vertices (50%) with one edge and
two vertices (50%) with two edges. Then PDD(T4) =(

50% −1 −1 +1
50% −1 +1 +1

)
, so PDD distinguishes the

graphs T3 ̸∼= T4 with equal SPD(T3) = SPD(T4).

For a graph G with m unordered vertices, PDD(G) has
m− 1 columns. The reduced version PDD(G; k) includes
only the first k columns for 1 ≤ k < m− 1. Though PDDs
have unordered rows, they can be continuously compared
by Earth Mover’s Distance (Rubner et al., 2000).

Fig. S4 in (Pozdnyakov et al., 2020) described infinitely
many non-isometric pairs of clouds C,C ′ ⊂ R3 with
PDD(C) = PDD(C ′). These counter-examples inspired
the stronger invariants for graphs below. For simplicity, we
will introduce all invariants and metrics in dimension n = 2.
All higher dimensions n > 2 are covered in appendices.
While PDD(G) includes signed distances to a single (arbi-
trary) vertex pi ∈ V (G), a stronger invariant below include

triples of signed distances to three base points, one of which
is the center of mass of V (G) because any point in R2 is
uniquely determined by its distances to three fixed points.

Definition 3.3 (Centered Representation CR(G;A) of a
graph with A ⊂ V (G)). Let G ⊂ R2 be a graph on m
unordered points with the center of mass p0 = O(G) = 0.

(a) For any vertex p1 ∈ V (G), the matrix R(G; p1) has
m − 1 unordered columns, one for each vertex q ∈
V (G)\{p1}, consisting of the signed distances d(q, p0) and
d(q, p1). Here p0 = 0 is not considered as a vertex of G, so
d(q, p0) = −|q|. The Centered Representation CR(G; p1)
is the pair [d(p0, p1), R(G; p1)], where d(p0, p1) = −|p1|.

(b) Fix a base pair A of ordered vertices p1, p2 ∈
V (G). Let sign(A) be the sign of the 2 × 2 deter-
minant on the vectors p1, p2. Let D(A) be the ma-
trix of signed distances between p0, p1, p2. The matrix
R(G;A) has m − 2 unordered columns, one for each
vertex q ∈ V (G) \ A, consisting of signed distances
d(q, p0), d(q, p1), d(q, p2). The Centered Representation
CR(G;A) is the triple [sign(A), D(A), R(G;A)].

After fixing p0 = 0, the matrix D(A) and sign(A) help
reconstruct base vertices p1, p2 ∈ R2, uniquely under rota-
tion around 0. Any other q ∈ V (G) \ A is fixed relative
to p0, p1, p2 by its column in R(G;A). A positive sign of
d(pi, pj) indicates an edge between vertices pi, pj . This
argument will later be formalized in Theorem 4.6(b).

Example 3.4 (CRs for 2-vertex bases in R2). Let G ⊂ R2

be the triangular cycle on p1 = (2, 0), p2 = (−1, 1),
p3 = (−1,−1), so O(G) = 0 and all signed distances
are positive, see Fig. 2 (top left). For A = (p1, p2),

sign(A) = sign

∣∣∣∣ 2 −1
0 1

∣∣∣∣ = 1. The distance matrix on

0, p1, p2 is D(p1, p2) =

 0 −2 −
√
2

−2 0
√
10

−
√
2

√
10 0

. Then

R(G; p1, p2) =

 −|p3|
|p3 − p1|
|p3 − p2|

 =

 −
√
2√

10
2

. Then

CR(G; p1, p2) = [+1, D(p1, p2), R(G; p1, p2)]. Replac-

ing p2 with p3, we find sign(p1, p3) = sign

∣∣∣∣ 2 −1
0 −1

∣∣∣∣ =
−1, D(p1, p3) =

 0 −2 −
√
2

−2 0
√
10

−
√
2

√
10 0

, and

R(G; p1, p3) =

 −|p2|
|p2 − p1|
|p2 − p3|

 =

 −
√
2√

10
2

. The final

triple is CR(G; p1, p3) = [−1, D(p1, p3), R(G; p1, p3)].

Though a Centered Representation CR(G; p1, p2) will suf-
fice to reconstruct G ⊂ R2 uniquely under rigid motion
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Continuous machine learning on Euclidean graphs

in Theorem 4.6(b), CR(G; p1, p2) for all vertices p1, p2 ∈
V (G) should be considered in a joint unordered collection
below to guarantee the independence of points p1, p2.

Definition 3.5 (Nested Centered Distribution NCD(G;h)).
Let G ⊂ R2 be any Euclidean graph with m unordered
vertices and the center of mass at the origin 0 ∈ Rn.

(a) The Nested Centered Distribution NCD(G; 1) of order 1
is the unordered set of Centered Representations CR(G; p1)
from Definition 3.3 for all vertices p1 ∈ V (G).

(b) For any vertex p1 ∈ V (G), the Centered Distribution
CD1(G; p1) is the unordered set of CR(G; p1, p2) for all
p2 ∈ V (G) \ {p1}. The Nested Centered Distribution
NCD(G; 2) of order 2 is the unordered set of CD1(G; p1)
for all vertices p1 ∈ V (G), see Fig. 2 (top). The mirror im-
age NCD(G; 2) is obtained from NCD(G; 2) by reversing
sign(p1, p2) of 2× 2 determinants in all CR(G; p1, p2).

The nested structure of NCD(G; 2) helps identify edges
between all vertices from G. After any vertex q ∈ V (G) \
{p1, p2} is uniquely located by using one CR(G; p1, p2),
we can use unsigned distances to associate any such q with
its unique CR(G; p1, q) in the collection {CR(G; p1, pi)}
for all pi ∈ V (G) \ {p1}. The resulting CR(G; p1, q) con-
tains signed distances and hence detects edges from q to all
other vertices, see details in the proof of Theorem 4.6(b).

s

Figure 2. Top: building the Nested Centered Distribution NCD
in Definition 3.5 from Centered Representations in Definition 3.3
with metrics in section 4. Bottom: hierarchy of graph invariants.

SRD(G) can be considered NCD(G; 0) of order 0, con-
taining signed distances from the center of mass p0 to all
vertices of G, additionally written in increasing order.

4. Continuous metrics on graph invariants
When points 0 ∪A = (p0, p1, p2) ⊂ R2 pass through a de-
generate configuration in a straight line, i.e. p1, p2 become
collinear, sign(A) discontinuously changes. To guarantee
the Lipschitz continuity, we multiply such a sign by the
strength σ below, which smooths the sign change, while the
area of the triangle on p0, p1, p2 is not Lipschitz continuous.

Definition 4.1 (strength σ(C)). Any triple C =
{p0, p1, p2} ⊂ R2 defines a triangle with inter-point dis-
tances a, b, c, and half-perimeter p = 1

2 (a + b + c). The

strength is σ(C) =
(p− a)(p− b)(p− c)

p2
.

Lemma 4.2 (Theorem 4.4 in (Widdowson & Kurlin, 2023)).
Let B be obtained from a set C ⊂ R2 of 3 points by
perturbing every point within its ε-neighborhood. Then
|σ(B)− σ(C)| ≤ 2ελ2 for λ2 = 2

√
3.

The strength σ(A) will be normalized by λ2 below to guar-
antee the final Lipschitz constant 2 for a metric in Theo-
rem 4.6(c). For any k × k matrices M,N of real numbers,
the metric L∞ is max

i,j=1,...,k
|Mij −Nij |. The bottleneck dis-

tance between any clouds A,B of (the same number of)
m unordered points in a metric space with a distance d is
W∞(A,B) = min

bijections g:A→B
max
p∈A

d(g(p), p).

Definition 4.3 (max metric M∞ on CRs). Let Euclidean
graphs G,F ⊂ Rn have m unordered vertices.

(a) For order h = 1, take any base vertices p ∈
V (G) and q ∈ V (F ). Define the max metric
M∞(CR(G; p),CR(F ; q) as the maximum of | |p| − |q| |
and the bottleneck distance W∞ between the fixed clouds
of unordered points { (−|p′|, d(p′, p)) | p′ ∈ V (G)− {p} }
and { (−|q′|, d(q′, q)) | q′ ∈ V (F )− {q} } in R2.

(b) For order h = 2, take any base sequences A ⊂
V (G) and B ⊂ V (F ) of two vertices. Consider
the m − 2 columns of R(G;A) from Definition 3.3 as
a cloud of m − 2 unordered points in R2, also for
R(F ;B). The max metric M∞(CR(G;A),CR(F ;B)) is

the maximum of
2

λ2
|sign(A)σ(0∪A)− sign(B)σ(0∪B)|,

L∞(D(A), D(B)), and W∞(R(G;A), R(F ;B)).

The maximum of several distances in Definition 4.3
is needed to guarantee the first metric axiom, i.e.
M∞(CR(G;A),CR(F ;B)) = 0 should imply that 0 ∪ A
should be exactly matched by rotation with 0 ∪B and then
CR(G;A) = CR(F ;B) up to a permutation of columns
will imply that G coincides with F , see Lemma D.7.

To get a metric on Nested Centered Distributions, we will
use the distance on bipartite graphs whose edge weights are
the max metrics M∞ on Centered Representations.

Definition 4.4 (Bottleneck Matching Distance BMD(Γ)).
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Let Γ be a complete bipartite graph with m white vertices
and m black vertices so that every white vertex is connected
to every black vertex by a single edge e of a weight w(e) ≥
0. A vertex matching of the graph Γ is a collection E of
m disjoint edges with 2m distinct vertices. The weight
W (E) = max

e∈E
w(e) is the largest weight of an edge in E.

The Bottleneck Matching Distance BMD(Γ) = min
E

W (E)

is the minimum weight of a vertex matching E of Γ.

Since a graph Γ is complete bipartite, any edge from a vertex
matching E in Γ joins a white vertex with a black vertex.
Then BMD(Γ) is minimized for all bijections E between
all white vertices and all black vertices of Γ.

Definition 4.5 (Nested Bottleneck Metric NBM on NCDs).
Let G,F ⊂ R2 be any graphs on m unordered vertices.

(a) For order h = 1, the Nested Bottleneck Met-
ric NBM(NCD(G; 1),NCD(F ; 1)) is the max metric
M∞(CR(G; p),CR(F ;β(p))) minimized for all bijections
β : V (G) → V (F ) between vertices of G and F .

(b) For order h = 2, any base vertices p1 ∈ V (G) and q1 ∈
V (F ), let the complete bipartite graph Γ(G; p1;F ; q1) have
m− 1 white vertices and m− 1 black vertices representing
CR(G; p1, p2) and CR(F ; q1, q2) for all p2 ∈ V (G)−{p1}
and q2 ∈ V (F )−{q1}, respectively. Set the weight w(e) of
an edge e joining the vertices represented by CR(G; p1, p2)
and CR(F ; q1, q2) as the max metric M∞ between these
distributions, see Definition 4.3. Then Definition 4.4 gives
the bottleneck matching distance BMD(Γ(G; p1;F ; q1)).

Let the complete bipartite graph Γ(G,F ) have weight
BMD(Γ(G; p1;F ; q1)) on each edge connecting vertices
representing p1 ∈ V (G) and q1 ∈ V (F ). The Nested
Bottleneck Metric NBM(NCD(G; 2),NCD(F ; 2)) is the
Bottleneck Matching Distance BMD(Γ(G,F )).

SRD(G) coincides with NCD(G; 0) after sorting, so NBM
can be defined as L∞(SRD(G),SRD(F )) for order h = 0.
The metrics W∞,M∞,NBM compare objects of the same
size. To compare graphs with different numbers of vertices,
M∞ in Definition 4.5 can be replaced with Earth Mover’s
Distance EMD in Definition C.2. All metric axioms and
main Theorem 4.6 below are proved in appendices C and D
for any dimension n ≥ 2 and orders 1 ≤ h ≤ n.

Theorem 4.6 (NCD solves Problem 1.1). (a) The Nested
Centered Distribution NCD(G;h) in Definition 3.5 is in-
variant under any rigid motion for all Euclidean graph
G on m unordered vertices and can be computed in time
O(n2mh+1) with space O(n3 + hmh+1) for h ≤ n = 2.

(b) NCD(G; 2) is a complete invariant of all graphs G ⊂
R2 under rigid motion from the group SE(2).

(c) Perturbing each vertex of a graph G ⊂ R2 within its ε-
neighborhood changes NCD(G;h) up to 2ε in both metrics

NBM and EMD for any order h = 1, 2.

(d) For any graphs G,F ⊂ R2 on m unordered vertices, the
metrics NBM and EMD between the invariants NCD(G;h)
and NCD(F ;h) is computed in time O(m2h+1.5 logh+1 m)
with space O(m2h+1 logh−1 m) for h ≤ n = 2.

Theorem 4.6(b) implies that any graphs G,F ⊂ R2 are
related by rigid motion if and only if NCD(G; 2) =
NCD(F ; 2). This equality is interpreted as a bijection
NCD(G;n) → NCD(F ;n) matching all CRs, which is
equivalent to NBM = 0 by the first metric axiom. Since
every CR can be stored in a vector form, the complete in-
variant NCD(G; 2) for n = 2 can be considered vectorial.

Table 2 emphasizes that most graphs should be first com-
pared (or represented for machine learning) by simpler and
faster invariants, so the complete NCD(G;n) is used only
in rare cases but is still needed to distinguish all graphs.

Table 2. Invariants and metrics on graphs G ⊂ R2 with m un-
ordered vertices: from the fastest (linear-time) to complete.

INVARIANT TIME METRIC TIME

SRD(G) O(m logm) L∞ O(m)
SPD(G) O(m2) L∞ O(m2)
PDD(G) O(m2 logm) EMD O(m3)
NCD(G; 1) O(m2) NBM O(m3.5 log2 m)
NCD(G; 2) O(m3) NBM O(m5.5 log3 m)

Example 4.7 (version of Theorem 4.6(b) for n = 1). For
a graph G ⊂ R with the center of mass O(G) = 0, take
any base vertex p ∈ G. Then sign(p) is the usual sign
of p ∈ R, D(p) is the signed distance −|p|, R(G; p) is
the 2 × (m − 1) matrix whose column for any vertex q ∈
V (G)−{p} consists of the signed distances d(q, 0) = −|q|
and d(q, p) = ±|q − p|, where the plus sign + indicates an
edge between q, p, while the minus sign − means no edge.

For order h = 1, the Centered Representation is the pair
CR(G; p) = [sign(p),−|p|, R(G; p)]. The base vertex p
is fixed in the line R by sign(p) and |p|. Any other vertex
q ∈ V (G) − {p} is uniquely determined in R by its Eu-
clidean distances |q|, |q − p| to the origin and the already
fixed p. The location of any point q ∈ R is characterized
by sign(q) and |q|, which helps unambiguously identify its
Centered Representation CR(G; q) in the unordered collec-
tion NCD(G; 1) of all these CRs. The signs of d(q, q′) in
each R(G; q) determine the presence or absence of an edge
of G ⊂ R between any vertices q, q′ ∈ V (G).

5. Experiments on largest molecular databases
The world’s largest databases of 3D molecular geometry
are QM9 (130K+ entries) (Ramakrishnan et al., 2014) and
GD (GEOM drugs of 31M+ entries) (Axelrod & Gomez-
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Bombarelli, 2022), which have hundreds of 3D conformers
of unordered atoms for each of 621 and 61607 chemical
compositions, respectively. The Protein Data Bank has
backbones of ordered atoms classified by simpler invariants
(Anosova et al., 2025). All experiments took a few hours on
Ryzen 9 3950X 3.5 GHz, 64 MB of L3 cache, RAM 82GB.

The ICML guide for reviewing application-driven ML says
that “novel ideas that are simple to apply may be especially
valuable”. To demonstrate the chemical importance of the
linear-time invariant SRD, we extracted clouds of k = 10
neighbors around every atom, see their counts in Table 3.

Table 3. Counts of atoms by chemical elements in QM9 (2,407,753
atoms), GD0 (GEOM drugs 0th conformers, 12,917,980 atoms).

QM9: H QM9: C QM9: N QM9: O QM9: F
1,230,122 846,557 139,764 187,996 3,314

GD0: H GD0: C GD0: N GD0: O GD0: F
5,660,986 5,267,096 842,562 854,400 64,299
GD0: P GD0: S GD0: Cl GD0: Br GD0: I
1,350 159,648 53,404 14,010 225

Though the data was skewed towards more popular ele-
ments H (hydrogen) and C (carbon), a default network in
TensorFlow with 80/20 split for train/test achieved over 98%
accuracy in predictions of the chemical element of a central
atom by distances to only k = 3 nearest neighbours, see
Table 4. Appendix A has all implementation details.

Table 4. Accuracies in percentages for predicting the chemical
element of a central atom by a 4-layer network using only the k
shortest distances to atomic neighbors within a molecular graph.

data k = 2 k = 3 k = 4 k = 5 k = 6

QM9 94.63 98.64 98.24 98.54 98.77

In chemistry, both ML and non-ML predictions of elements
achieved only 86% on similar size data, see Table 7 sum-
marized in (Vasylenko et al., 2025), because the underlying
descriptors were not invariant, e.g. under permutations of
atoms, which creates exponentially many representations of
the same molecule, incomplete, or their similarities failed
the triangle axiom, e.g. see (Steck et al., 2024).

High accuracies in Table 4 are rigorously explained by the
cascade comparisons on all atomic clouds (environments)
from QM9. Split all clouds from by the 1st distance (to the
nearest neighbor of a central atom p) rounded to 3 decimal
places in Å. This is a typical experimental precision, where
1Å = 10−10m is approximately the smallest interatomic
distance. Second, split each subset with equal 1st distances
by 2nd distances, and so on up to k = 5 distances. All 2.4M+

atomic clouds of different elements in QM9 were separated
by the shorest distances to only 4 atomic neighbors.

The hierarchy of invariants in Fig. 2 and Table 2 trans-
parently explained the reconstruction of chemical elements
from distances to k nearest neghbors and inspired the harder
task to reconstruct a chemical composition from a molecule-
level (not atomwise) invariant of only atomic centers.

For molecular graphs from QM9, we computed the pseudo-
metric L∞ (max absolute difference of corresponding coor-
dinates) on all 873,527,974 pairs of SRDs, then 8,735,279
distances L∞ on the stronger SPDs for the 1% closest pairs,
then 87,352 EMDs on PDDs for the 1% closest pairs, dis-
tances NBM on NCD(G; 1) and NCD(G; 2) for the top
10K closest pairs, and 64 NBMs on complete NCD(G, 3).

The invariants in Table 5 distinguish all chemically differ-
ent molecules with NBM on complete invariants giving
the largest separation. All chemical compositions in QM9
and GD were distinguished by the vector SRD of Euclidean
distances (rounded to 3 decimal places in Å) from the molec-
ular center of mass to 5 and 7 farthest atoms, respectively.

This transparent reconstruction of the full chemistry from
precise enough atomic geometry gives hope to rigorously
infer other molecular properties from geometric invariants.

Table 5. Chemically different molecules (given by QM9 ids) are
geometrically distinguished by invariant metrics, see Fig. 3 (right).

smallest distances in Å, molecule A ̸= molecule B

SRD, L∞ = 0.021, H3C4N3O2(131923) ̸=H4C5N2O(5365)
SPD, L∞ = 0.055, H3C4N5(123533) ̸=H3C5N3O(24547)
PDD, EMD = 0.051, H3C4N5(123533) ̸=H3C5N3O(24521)
NCD, NBM = 0.071, H4C5N4(123532) ̸=H4C6N2O(24513)

Figure 3. Left: the smallest NBM ≈ 0.07Å on NCD(G; 3) for
chemically different molecules 123533 and 24521. Right: near-
duplicate (almost flat) molecules 123532 and 24513 have the same
composition and tiny EMD ≈ 2.37× 10−7Å (not distinguishing
mirror images) but a 100× higher NBM ≈ 2.95× 10−5Å.

For QM9 molecul graphs, Fig. 4 and 9 NBM distances for
different NCD invariants of orders h = 1, 2, 3.
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Figure 4. Each dot is a comparison of molecular graphs from
QM9: x = NBM on NCD(G; 1) vs y = NBM on NCD(G; 2).

6. Discussion: conclusions and limitations
The comparisons of molecular graphs from QM9 and GD
imply that all chemically different molecules are rigidly
different, see the smallest distance NBM ≈ 0.07Å on com-
plete invariants in Table 5. So the map {molecules} →
{graphs on atomic centers (without chemical elements)} is
injective on rigid classes and can be inverted on its image.

Hence the most important property (chemical composition)
is reconstructable from precise enough geometry. Using
only a few radial distances (5 at the atomic level and 7
at the molecular level, rounded to 3 decimal places) for
uniquely identifying all chemical elements in QM9 and GD
demonstrates the transparency of application-driven ML.

The solution to Problem 1.1 settled the long-standing chal-
lenge of properly defining a molecular structure. A tradi-
tional approach is to describe such a structure as “a set of
unlabeled configurations that are relatively similar to each
other”, quoted from the paragraph to the left of the caption
of Fig. 1 in (Lang et al., 2024). If this ‘similarity’ is treated
as an equivalence allowing perturbations of atoms up to a
positive threshold, sufficiently many perturbations can make
all molecules (of the same number of atoms) equivalent
by the transitivity axiom. A justified way to resolve this
paradox is to embrace uncertainty and continuously quan-
tify this similarity not by ignoring any perturbations up to a
threshold but by computing an exact distance satisfying all
metric axioms and Lipschitz continuity in Problem 1.1.

The question of whether to put close neighbors like near-
duplicates in Fig. 3 (left) into one cluster of the “same”
molecules is rather administrative similar to assigning close
houses to one village (cluster) instead of different ones.

Studying molecules by fixing a composition is similar to
drawing artificial boundaries between countries on Earth.
Because some molecules of different compositions have
close shapes as in Fig. 5, they should have similar properties.
Now any properties of molecules should be possible to
predict only from the complete invariant NCD(G; 3) even
without chemistry in the same way as any precise geographic
location uniquely determines all physical properties of this
place such as the average annual temperature. Chemical
compositions can be still helpful similar to the location’s
altitude, which easier predicts (say) the average temperature
than theoretically sufficient geographic coordinates.

Any vertex p and edge of G can have an attribute and a
weight respected by any isometry that maps one graph to
another. These vertex attributes and edge weights can be
incorporated as extra columns and rows in CRs from Defi-
nition 3.3, and then incorporated into NCD and NBM. We
can compare graphs of different numbers of vertices because
EMD works for both PDD and NCD as weighted distribu-
tions of any finite size. This comparison splits the vertices
from V (G) into parts (subvertices) that are optimally ‘trans-
ported’ to a splitting of another vertex set V (F ).

The main contribution is Theorem 4.6 and its extension
in Theorem D.1 to all dimensions n ≥ 2 fully solving
Problem 1.1. The limitation is the time O(n2mn+1) of the
complete invariant NCD(G;n) of any graphs G ⊂ Rn. For
a fixed dimension n, this polynomial complexity resolves
two exponential-size challenges: m! permutations of m un-
ordered vertices and up to 2m(m−1)/2 non-isometric graphs
with up to m(m− 1)/2 edges on m fixed vertices in Rn.

In practice, all comparisons and property predictions can
start from much faster (linear-time) invariants SRD and only
in cases of close distances (potential confusions) progress
to stronger invariants SPD,PDD,NCD. This hierarchi-
cal (cascade) computation can better address the curse of
dimensionality instead of the one-size-fits-all approach.

A map f : objects → descriptors → properties is invertible
only if objects are faithfully represented by complete invari-
ants. Any non-invariant maps a single object to (usually
infinitely) many values or representations. Any incomplete
invariant can fail to differentiate between objects with dif-
ferent properties. Hence a generative approach (inverting
f above) can succeed only after the discriminative problem
is solved. The space GRS(R3;m) of rigid classes of all
graphs on m vertices in R3 contains all possible shapes of
molecules (all already known and also all not yet discov-
ered ones). The complete invariant NCD(G) of G ⊂ R3

defines geographic-style coordinates on a continuous map
of GRS(R3;m) containing QM9 and GD. Since the space
GRS(R3;m) is high-dimensional, we really need complete
invariants to separate all known molecules and look for
unexplored gaps containing new future molecules.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Extra details of experiments on the world’s largest 3D molecular databases QM9 and GD
The default 4-layer network from TensorFlow used a ”sequential” mode, 3 epochs, and the settings in Table 6.

Table 6. Parameters of the TensorFlow network for predictions in Table 4.

LAYER (TYPE) OUTPUT SHAPE NUMBER OF PARAMETERS

DENSE (DENSE) (NONE, 32) 352
BATCH NORMALIZATION (NONE, 32) 128
RE LU (RELU) (NONE, 32) 0
DENSE 1 (DENSE) (NONE, 5) 165

Past maps of QM9 in Fig. 5 based on eigenvalues are too dense without clear separation. Even if we zoom in, these two
or three incomplete invariants will not provide any extra separation. The complete invariants NDP contain much more
geometric information.

Figure 5. Left: each dot represents one QM9 molecule whose atomic cloud has two largest roots l1 ≥ l2 of eigenvalues (moments of
inertia (Nemec, 2022) or elongations in two principal directions) in Angstroms (1Å = 10−10m ≈ smallest interatomic distance). The
color represents the free energy G characterizing molecular stability. Right: each dot represents one QM9 molecule whose atomic cloud
has coordinates x, y expressed via the roots l1 ≥ l2 ≥ l3 ≥ 0 of three eigenvalues.

Fig. 7 shows the simplest geographic-style map of QM9 as a finite sample within
29⋃

m=3
GRS(R3;m) projected to the

invariants SRD1 ≥ SRD2. All molecules on the horizontal axis y = SRD1 − SRD2 = 0 have SRD1 = SRD2 (due to two
equidistant atoms from the center of mass) and can be projected (like any subset of QM9) to other coordinates as in Fig. 8.
Molecular properties can be visualized on these geographic maps as ‘mountainous’ landscapes.

Table 7. Past ML and non-ML predictions of chemical elements have lower accuracies than by distance invariants in Table 4.

METHOD DESCRIPTION ACCURACY REFERENCE

LEAF LOCAL COORDINATION GEOMETRY 86% (VASYLENKO ET AL., 2025)
MATSCHOLAR ML-DERIVED FROM LITERATURE 81% (WESTON ET AL., 2019)
MAT2VEC ML-DERIVED FROM LITERATURE 80% (TSHITOYAN ET AL., 2019)
ATOM2VEC ML-DERIVED FROM COMPOSITIONAL CONTENT 79% (ZHOU ET AL., 2018)
GNOME FREQUENCY OF ELEMENTS AT THE SAME ATOMIC SITES 79% (MERCHANT ET AL., 2023)
MAGPIE ELEMENTAL PHYSICAL CHARACTERISTICS 78% (WARD ET AL., 2016)
OLIYNYK ELEMENTAL PHYSICAL CHARACTERISTICS 75% (OLIYNYK ET AL., 2016)
MEGNET ML-DERIVED FROM ATOM, BOND AND GRAPH ATTRIBUTES 73% (CHEN ET AL., 2019)
SKIPATOM ML-DERIVED FROM ATOM CONNECTIVITY GRAPHS 68% (ANTUNES ET AL., 2022)
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Figure 6. Left: the heatmap of all molecular graphs from QM9 in the simplest continuous invariants. Right: 18336 graphs with 19 atoms.
The color indicates the number of molecules at every pixel.

Figure 7. Every dot represents a molecular graph with the invariant coordinates x = SRD1, y = SRD1 − SRD2, all in Angstroms,
where 1Å = 10−10m ≈ the smallest interatomic distance.
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Figure 8. The projection of QM9 to x = SRD1, y = SRD2 − SRD3.

B. Invariants and metrics on Euclidean graphs in any dimension n ≥ 2

This section extends all new concepts and results from sections 3 and 4 to any dimension n ≥ 2. Any n vectors
p1, . . . , pn ∈ Rn can be written as columns in the n× n matrix whose determinant has sign(p1, . . . , pn), which is ±1 or 0
(if p1, . . . , pn are linearly dependent).

Definition B.1 (Centered Representation CR(G;A) of a graph with a sequence A ⊂ V (G)). Let G ⊂ Rn be a graph on
m unordered points with the center of mass O(G) = 0. For any 1 ≤ h ≤ n, fix a base sequence A of ordered vertices
p1, . . . , ph ∈ V (G). If h = n, let sign(A) be the sign of the n× n determinant on the vectors p1, . . . , pn, else sign(A) = 0.
Let D(A) be the matrix of signed distances between the ordered points 0 = p0, p1, . . . , ph. The matrix R(G;A) has m− h
unordered columns, one for each vertex q ∈ V (G) − A, consisting of h + 1 distances d(q, pi) for i = 0, . . . , h, where
p0 = 0. The Centered Representation CR(G;A) is the triple [sign(A), D(A), R(G;A)].

Definition B.2 (Nested Centered Distribution NCD(G;h) of order h). Let G ⊂ Rn be any Euclidean graph on m unordered
vertices and the center of mass at the origin 0 ∈ Rn. Fix an order 1 ≤ h ≤ n.

(a) For any h − 1 distinct ordered vertices p1, . . . , ph−1 ∈ V (G), the Centered Distribution CD
(h)
h−1(G; p1, . . . , ph−1)

of index h − 1 is the unordered set of Centered Representation CR(G; p1, . . . , ph) from Definition B.1 for all ph ∈
V (G)− {p1, . . . , ph−1}.

(b) Now we will iteratively decrement an integer k from h− 1 down to 1 and define CD
(h)
h−2 of index h− 2, and so on until

CD
(h)
1 of index k = 1. For the initial k = h− 1, we use CD

(h)
k = CD

(h)
h−1 defined in part (a) above. For any k − 1 distinct

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Continuous machine learning on Euclidean graphs

Figure 9. Each dot is a comparison of molecular graphs from QM9 by the distances on the progressively stronger invariants: NCD(G; 2)
vs NCD(G; 3).

ordered vertices p1, . . . , pk−1 ∈ V (G), the Centered Distribution CD
(h)
k−1(G; p1, . . . , pk−1) of index k − 1 is the unordered

collection of CD(h)
k (C; p1, . . . , pk) of index k for all vertices pk ∈ V (G)− {p1, . . . , pk−1}.

(c) The Nested Centered Distribution NCD(G;h) of order h is the unordered collection of CD(h)
1 (G; p1) of index 1 for

all vertices p1 ∈ V (G). For the order h = n, the mirror image NCD(G;n) is obtained from NCD(G;n) by reversing
sign(p1, . . . , pn) of n× n determinants in all CR; p1, . . . , pn).

If a sequence 0 ∪ A = (p0, p1, . . . , pn) ⊂ Rn degenerates to a lower dimensional subspace, i.e. the vectors p1, . . . , pn
become linearly dependent, then sign(A) of discontinuously changes. To guarantee the Lipschitz continuity, we multiply
these signs by the strength σ below, while the volume vol(0 ∪A) of the simplex on 0 ∪A is not Lipschitz continuous.

Definition B.3 (strength σ(C)). For any sequence C of n + 1 ordered points p0, . . . , pn ∈ Rn, the half-perimeter

p(C) =
1

2

∑
1≤i<j≤n

|pi − pj | is the half-sum of pairwise distances between points of C. Let vol(C) denote the volume of the

n-dimensional simplex on C. The strength of the simplex C is σ(C) =
vol2(C)

p2n−1(C)
.

In dimension n = 1, for any pair C = {p0, p1} ⊂ R, the volume vol(C) is the length |p0 − p1|, the half-perimeter distance
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p(C) is the half-distance 1
2 |p0 − p1|, so the strength is σ(C) =

vol2(C)

p(C)
= 2|p0 − p1|.

Lemma B.4 (Theorem 4.4 in (Widdowson & Kurlin, 2023)). Let B be obtained from a sequence A ⊂ Rn of n points by
perturbing every point within its ε-neighborhood. Then |σ(A)−σ(B)| ≤ 2ελn for a constant λn, where λ1 = 2, λ2 = 2

√
3,

λ3 ≈ 0.43.

Definition B.5 (max metric M∞ on CRs). Let Euclidean graphs G,F ⊂ Rn on m unordered vertices have base sequences
A,B of h ≤ n vertices. Consider the m − h columns of R(G;A) as a cloud of m − h unordered points in Rh, also

for R(F ;B). The max metric M∞(CR(G;A),CR(F ;B)) is the maximum of
2

λn
|sign(A)σ(0 ∪A)− sign(B)σ(0 ∪B)|,

L∞(D(A), D(B)), and the bottleneck distance W∞(R(G;A), R(F ;B)), where all signs are zeros for h < n.

In Definition B.5, λn is the Lipschitz constant of σ from Lemma 4.2.

Definition B.6 (Nested Bottleneck Metric NBM on NCDs). Let G,F ⊂ Rn be any Euclidean graphs on m un-
ordered vertices. For any ordered vertices p1 . . . , ph−1 ∈ V (G) and q1 . . . , qh−1 ∈ V (F ), the complete bipar-
tite graph Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1) has m − h + 1 white vertices and m − h + 1 black vertices repre-
senting CR(G; p1, . . . , ph) and CR(F ; q1, . . . , qh) for all m − h + 1 vertices ph ∈ V (G) − {p1, . . . , ph−1} and
qh ∈ V (F ) − {q1, . . . , qh−1}, respectively. Set the weight w(e) of an edge e joining the vertices represented by
CR(G; p1, . . . , ph), CR(F ; q1, . . . , qh) as the max metric M∞ between these distributions, see Definition B.5. Then
Definition 4.4 gives the bottleneck matching distance BMD(Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1)).

For any integer 1 ≤ i < h and ordered vertices p1 . . . , pi−1 ∈ V (G) and q1 . . . , qi−1 ∈ V (F ), the com-
plete bipartite graph Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) has m − i + 1 white vertices and m − i + 1 black
vertices representing CD

(h)
i (G; p1, . . . , pi) and CD

(h)
i (F ; q1, . . . , qi) for all m − i + 1 variable vertices pi ∈

V (G) − {p1, . . . , pi−1} and qi ∈ V (F ) − {q1, . . . , qi−1}, respectively. Set the weight w(e) of an edge e join-
ing the vertices represented by CD

(h)
i (G; p1, . . . , pi) and CD

(h)
i (F ; q1, . . . , qi) as the previously computed distance

BMD(Γ(G; p1, . . . , pi;F ; q1, . . . , qi)) for a smaller number i of fixed vertices. Then Definition 4.4 gives the bottle-
neck matching distance BMD(Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1)). For i = 1, the graph Γ(G,F ) has m + m ver-
tices representing CD1(G; p1), CD

(h)
1 (F ; q1) for all p1 ∈ V (G) and q1 ∈ V (F ). The Nested Bottleneck Metric

NBM(NCD(G;h),NCD(F ;h)) is the Bottleneck Matching Distance BMD(Γ(G,F )).

C. Metrics on graphs and their continuity under perturbations
This appendix verifies the axioms and Lipschitz continuity for all auxiliary metrics in section 4.

Lemma C.1 (metric axioms for the bottleneck matching distance BMD). Let S,Q be any unordered distributions of the
same number of objects with a base metric d. Define the complete bipartite graph Γ(S,Q) whose every edge e joining
objects RS ∈ S and RQ ∈ Q has the weight w(e) = d(RS , RQ). Then the bottleneck matching distance BMD(Γ(S,Q))
from Definition 4.4 satisfies all metric axioms on such unordered distributions.

Proof of Lemma C.1. The coincidence axiom means that NBM(S,Q) = 0 if and only if the weighted distributions S,Q
are equal in the sense that there is a bijection g : S → Q so that d(g(R), R) = 0 for any R ∈ S.

Indeed, if the weighted distributions S,Q can be matched by a bijection, we get a vertex matching E of Γ(S,Q) whose all
edges have weights w(e) = 0. Definition 4.4 implies that BMD(Γ(S,Q)) = 0 as required.

Conversely, if BMD(Γ(S,Q)) = 0, there is a vertex matching E in Γ(S,Q) with all w(e) = 0. This matching E defines
a required bijection S → Q. The symmetry BMD(Γ(S,Q)) = BMD(Γ(Q,S)) follows from Definition 4.4 and the
symmetry of the base metric d.

To prove the triangle inequality

BMD(Γ(S,Q)) + BMD(Γ(Q,T )) ≥ BMD(Γ(S, T )),

let ESQ, EQT be optimal vertex matchings in the graphs Γ(S,Q),Γ(Q,T ), respectively, such that

BMD(Γ(S,Q)) = W (ESQ),BMD(Γ(Q,T )) = W (EQT ),
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see Definition 4.4. The composition ESQ ◦EQT is a vertex matching in Γ(S, T ), so W (ESQ ◦EQT ) ≥ BMD(Γ(S, T )).
It suffices to prove that

W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT ).

Let eST be an edge with a largest weight from ESQ ◦EQT , so W (ESQ ◦EQT ) = w(eST ). The edge eST can be considered
the union of edges eSQ ∈ ESQ, eQT ∈ EQT .

By the triangle inequality for the base metric d,

w(eSQ) + w(eQT ) ≥ w(eST ) = W (ESQ ◦ EQT )

implies that
W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT )

because both terms on the left-hand side are maximized for all edges (not only eSQ, eQT ) from ESQ, EQT .

Definition C.2 below makes sense for any distributions {[R1, w1], . . . , [Rm, wm]}, where R1, . . . , Rm are objects with a
base metric d and weights w1, . . . , wm ∈ [0, 1]. Each Ri can be CBR or CBD of any depth with a base metric M∞ or
BMD from Definitions B.5, B.6.

Definition C.2 (EMD). Let S = {[Ri(S), wi(S)]}m(S)
i=1 and Q = {[Rj(Q), wj(Q)]}m(Q)

j=1 be weighted distributions of
objects Ri(S), Rj(Q), which live in a space with a metric d. A flow from S to Q is an m(S) × m(Q) matrix whose
element fij ∈ [0, 1] represents a partial flow from Ri(S) to Rj(Q). The Earth Mover’s Distance is the minimum cost

EMD(S,Q) =
m(S)∑
i=1

m(Q)∑
j=1

fijd(Ri(S), Rj(Q)) for variable ‘flows’ fij ∈ [0, 1] subject to the conditions
m(Q)∑
j=1

fij ≤ wi(S)

for i = 1, . . . ,m(S),
m(S)∑
i=1

fij ≤ wj(Q) for j = 1, . . . ,m(Q), and
m(S)∑
i=1

m(Q)∑
j=1

fij = 1.

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S) of Ri(S) ‘flows’ into all Rj(Q) via ‘flows’

fij , j = 1, . . . ,m(Q). The second condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij from Ri(S) for i = 1, . . . ,m(S)

‘flow’ into Rj(Q) up to the maximum weight wj(Q). The last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to ‘flow’ all rows Ri(S)

to all rows Rj(Q).

The EMD satisfies all metric axioms, see the appendix in (Rubner et al., 2000), needs O(m3 logm) time for distributions of
a maximum size m and is approximated in O(m) time, see (Shirdhonkar & Jacobs, 2008; Sato et al., 2020).

Definition C.2 can be adapted for the EMD between NDDs by (1) replacing the bottleneck distance W∞ in Definition B.5
with EMD between clouds of equally weighted points, and (2) replacing BMD(Γ) for a bipartite graph Γ with EMD(Γ)
between the unordered sets (of potentially different sizes) of BDDs with weights on all white vertices and BDDs on all
black vertices.

The Lipschitz continuity of NDD and EMD in Theorem D.1(c) needs Lemmas C.3, C.4, D.9.

If a metric graph G lives in an ambient metric space X , a natural perturbation of G is a shift of every vertex of G up to ε in
the metric of X . Then the distance d(p, q) between any vertices p, q of G changes by at most 2ε.

We will prove the continuity in more general settings by only assuming that d(p, q) changes by at most 2ε for any p, q ∈ V (G)
without requiring an ambient space X .

Lemma C.3 (Lipschitz continuity of BMD). Let Γ be a complete bipartite graph with a vertex matching E such that any
e ∈ E has a weight w(e) ≤ ε. Then BMD(Γ) ≤ ε.

Proof of Lemma C.3. By Definition 4.4, the given matching E has the weight W (E) = max
e∈E

w(e) ≤ ε. Since BMD(Γ) =

min
E

W (E) is minimized for all vertex matchings, we get BMD(Γ) ≤ ε.
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Continuous machine learning on Euclidean graphs

Lemma C.4 (Lipschitz continuity of EMD). In Definition C.2, let distributions S,Q have a bijection Ri(S) ↔ Ri(Q)
between equally weighted objects such that d(Ri(S), Ri(Q)) ≤ ε for all i = 1, . . . ,m, where m = m(S) = m(Q). Then
EMD(S,Q) ≤ ε.

Proof of Lemma C.4. In Definition C.2, choose partial flows fij =
1

m
for i = j, otherwise fij = 0. Then EMD(S,Q) ≤

m∑
i=1

m∑
j=1

fijd(Ri(S), Rj(Q)) =
m∑
i=1

1

m
d(Ri(S), Ri(Q)) ≤ 1

m

m∑
i=1

ε = ε.

D. Proofs for Euclidean graphs from section 3
This appendix rigorously proves all parts of Theorem D.1.

Theorem D.1 (NCD solves Problem 1.1). (a) The Nested Centered Distribution NCD(G;h) in Definition B.2 is invariant
under any rigid motion for all Euclidean graph G on m unordered vertices and, for a fixed dimension n, can be computed in
time O(n2mh+1) with space O(n2mh+1) for any order 1 ≤ h ≤ n.

(b) NCD(G; 2) is a complete invariant of all graphs G ⊂ R2 under rigid motion from the group SE(n) in any dimension
n ≥ 1.

(c) Perturbing each vertex of a graph G ⊂ Rn within its ε-neighborhood changes NCD(G;h) up to 2ε in both metrics
NBM and EMD for any order 1 ≤ h ≤ n.

(d) For any graphs G,F ⊂ Rn on m unordered vertices, the metrics NBM and EMD between the invariants NCD(G;h)
and NCD(F ;h) from Definition B.6 can be computed in time O(m2h+1.5 logh+1 m) with space O(n2m2h+1 logh−1 m)
for any order 1 ≤ h ≤ n.

The affine dimension 0 ≤ aff(A) ≤ n of a cloud A = {p1, . . . , pm} ⊂ Rn is the maximum dimension of the vector space
generated by all inter-point vectors pi − pj , i, j ∈ {1, . . . ,m}. Then aff(A) is an isometry invariant and is independent of
an order of points of A. Any cloud A of 2 distinct points has aff(A) = 1. Any cloud A of 3 points that are not in the same
straight line has aff(A) = 2.

Lemma D.2 provides a simple criterion for a matrix to be realizable by squared distances of a point cloud in Rn.

Lemma D.2 (realization of distances). (a) A symmetric m × m matrix of sij ≥ 0 with sii = 0 is realizable as a
matrix of squared distances between points p0 = 0, p1, . . . , pm−1 ∈ Rn if and only if the (m − 1) × (m − 1) matrix

gij =
s0i + s0j − sij

2
has only non-negative eigenvalues.

(b) If the condition in (a) holds, aff(0, p1, . . . , pm−1) equals the number k ≤ m− 1 ≤ n of positive eigenvalues. Also in
this case, gij = pi · pj define the Gram matrix GM of the vectors p1, . . . , pm−1 ∈ Rn, which are uniquely determined in
time O(m3) up to an orthogonal map in Rn.

Proof of Lemma D.2. (a) We extend Theorem 1 from (Dekster & Wilker, 1987) to the case m < n + 1 and justify the
reconstruction of p1, . . . , pm−1 in time O(m3) uniquely in Rn up to an orthogonal map from O(n).

The part only if ⇒. Let a symmetric matrix S consist of squared distances between points p0 = 0, p1, . . . , pm−1 ∈ Rn. For
i, j = 1, . . . ,m− 1, the matrix with the elements

gij =
s0i + s0j − sij

2
=

p2i + p2j − |pi − pj |2

2
= pi · pj

is the Gram matrix, which can be written as GM = PTP , where the columns of the n× (m− 1) matrix P are the vectors
p1, . . . , pm−1 . For any vector v ∈ Rm−1, we have

0 ≤ |Pv|2 = (Pv)T (Pv) = vT (PTP )v = vTGMv.

Since the quadratic form vTGMv ≥ 0 for any v ∈ Rm−1, the matrix GM is positive semi-definite meaning that GM has
only non-negative eigenvalues, see Theorem 7.2.7 in (Horn & Johnson, 2012).
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Continuous machine learning on Euclidean graphs

The part if ⇐. For any positive semi-definite matrix GM, there is an orthogonal matrix Q such that QTGMQ = D is the
diagonal matrix, whose m− 1 diagonal elements are non-negative eigenvalues of GM. The diagonal matrix

√
D consists of

the square roots of eigenvalues of GM.

(b) The number of positive eigenvalues of GM equals the dimension k = aff({0, p1, . . . , pm−1}) of the subspace in Rn

linearly spanned by p1, . . . , pm−1. We may assume that all k ≤ n positive eigenvalues of GM correspond to the first k
coordinates of Rn. Since QT = Q−1, the given matrix GM = QDQT = (Q

√
D)(Q

√
D)T becomes the Gram matrix of

the columns of Q
√
D. These columns become the reconstructed vectors p1, . . . , pm−1 ∈ Rn.

If there is another diagonalization Q̃TGMQ̃ = D̃ for Q̃ ∈ O(n), then D̃ differs from D by a permutation of eigenvalues,
which is realized by an orthogonal map, so we set D̃ = D. Then GM = Q̃DQ̃T = (Q̃

√
D)(Q̃

√
D)T is the Gram matrix

of the columns of Q̃
√
D.

The new columns differ from the previously reconstructed vectors p1, . . . , pm−1 ∈ Rn by the orthogonal map QQ̃T . Hence
the reconstruction is unique up to O(n)-transformations. Computing eigenvectors p1, . . . , pm−1 requires a diagonalization
of GM in time O(m3) (?)section 11.5]press2007numerical.

Though Lemma D.2 gives a two-sided criterion for realizability of distances by points p1, . . . , pm ∈ Rn, the space of
distance matrices is highly singular and cannot be easily sampled. Even m = 4 points in R2 have 6 distances that should
satisfy a polynomial equation saying that the tetrahedron with these 6 edge lengths has volume 0. So a randomly sampled
matrix of potential distances for m > n+ 1 is unlikely to be realizable by a cloud of m ordered points in Rn.

Chapter 3 in (Liberti & Lavor, 2017) discusses realizations of a complete graph given by a distance matrix in Rn.
Lemma D.3(a) and later results hold for all clouds including degenerate ones, e.g. for 3 points in a straight line.

Any points p1, . . . , pn−1 ∈ A have aff(p1, . . . , pn−1) ≤ n− 2. For example, any two distinct points in A ⊂ R3 generate a
straight line. In R2, any point p1 ̸= O(A) forms a suitable {p1}. In R3, one can choose any distinct points p1, p2 ∈ A so
that the infinite straight line via p1, p2 avoids O(A).

If there are no such p1, p2, then A ⊂ R3 is contained in a straight line L, so aff(A) = 1. In this degenerate case, the stronger
condition aff(O(A)∪ {p1, . . . , pn−1}) = aff(A) will help reconstruct A ⊂ L by using any point p1 ̸= O(A). The first step
is to reconstruct any ordered sequence from its distance matrix in Lemma D.3(a).

Lemma D.3(a) holds for all degenerate clouds, e.g. for three points are in a straight line.

Lemma D.3 (reconstruction of ordered points). (a) Any sequence of ordered points A = (p1, . . . , pm) in Rn can be
reconstructed (uniquely up to isometry) from the matrix of the Euclidean distances |pi − pj | in time O(m3). If all distances
are divided by R = max

i=1,...,m
|pi|, the reconstruction of A ⊂ Rn is unique up to isometry and uniform scaling.

(b) If m ≤ n, the uniqueness of reconstructions in part (a) holds if we replace isometry with rigid motion. Hence any n− 1
ordered points p1, . . . , pn−1 can be uniquely reconstructed from all pairwise distances between 0, p1, . . . , pn−1 up to SO(n)
rotation around the origin 0 ∈ Rn.

Proof of Lemma D.3. (a) By translation, we can put p1 at the origin 0 ∈ Rn. Let GM be the (m− 1)× (m− 1) matrix

gij =
p2i + p2j − |pi − pj |2

2
= pi · pj constructed from squared distances between p1 = 0, . . . , pm for i, j = 2, . . . ,m. By

Lemma D.2(b) if GM has k ≤ n positive eigenvalues, then p1 = 0, . . . , pm can be uniquely determined up to isometry in
Rk ⊂ Rn in time O(m3). If all distances are divided by the same radius R, the above construction guarantees uniqueness
up to isometry and uniform scaling.

(b) If m ≤ n, any mirror image of A ⊂ Rn after a suitable rigid motion in Rn can be assumed to belong to an
(n − 1)-dimensional hyperspace H ⊂ Rn, where they are matched by a mirror reflection H → H with respect to an
(n− 2)-dimensional subspace S ⊂ H . This reflection is realized by the SO(n) rotation through 180◦ around S.

Lemma D.3(b) for m = n = 3 implies that any triangle is determined by its sides up to rigid motion in R3. For example,
the sides 3, 4, 5 define a right-angled triangle whose mirror images are not related by rigid motion inside a plane H ⊂ R3,
but are matched by composing a suitable rigid motion in H and a 180◦ rotation of R3 around a line in H .
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Lemma D.4 (time of determinant). Any n× n determinant can be computed in time O(n3) with space O(n3).

Proof of Lemma D.4. Any n× n determinant can be computed by Gaussian elimination in time O(n3) with space O(n3),
see (Bunch & Hopcroft, 1974). The more recent theoretical estimate is O(n2.373) by (Fisikopoulos & Penaranda, 2016).

Proof of Theorem D.1(a). Any rigid motion of Rn mapping a Euclidean graph G ⊂ Rn to another graph F is a bijection
preserving distances and signs of determinants, and hence induces a bijection CBR(G; p1, . . . , pi) → CBR(F ; q1, . . . , qi)
for all p1, . . . , pi ∈ V (G) and corresponding vertices q1, . . . , qi ∈ V (F ) for any i = 1, . . . , h, which implies a bijection
NCD(G;h) → NCD(F ;h). By Definition 3.5, if G has m unordered vertices, the NCD(G) consists of m(m−1) . . . (m−
h+ 1) = O(mh) Centered Base Representations CBR(G;A) for all base sequences A ⊂ V (G) of h ordered vertices.

Every CBR(G;A) consists of the three components sign(A),CD(A),CR(G;A). For h = n, sign(A) is the n × n
determinant computable in time O(n3) with space O(n3) by Lemma D.4. The distance matrix CD(A) needs O(h2) time
and O(h2) space. The (h + 1) × (m − h) matrix CR(G;A) has O(hm) distances, each computable in time O(n). So
CBR(G;A) can be computed in time O(n2m) with space O(n3 + hm), where n ≤ m. Multiplying these complexities by
the number O(mh) of base sequences gives the final time O(n2mh+1) and space O(n3 + hmh+1) for NCD(G).

The proof of Theorem D.1(b) will use the fact that any point in Rn is uniquely determined by n + 1 distances to n + 1
ordered points that affinely span Rn, and also Lemma D.5.

Lemma D.5 (equal CBRs). Let a Euclidean graph G ⊂ Rn have the vertex set V (G) with the center of mass at
p0 = 0 ∈ Rn. Let n − 1 ordered vertices p1, . . . , pn−1 linearly span an (n − 1)-dimensional subspace S ⊂ Rn. Let
G(p1, . . . , pn−1) be the subgraph of G on the vertex set V (G) and all edges of G at p1, . . . , pn−1. For any other vertex p, let
CBR′(G; p1, . . . , pn−1, p) be obtained from the Centered Base Representation BR(G; p1, . . . , pn−1, p) by removing signs
of distances from all vertices q ∈ V (G) \ {p1, . . . , pn−1, p} to p. If BR′(G; p1, . . . , pn−1, p) = BR′(G; p1, . . . , pn−1, p

′)
for some vertices p, p′ ∈ V (G) \ {p1, . . . , pn−1}, the mirror reflection with respect to S maps G(p1, . . . , pn−1) to itself
and p to p′.

Proof of Lemma D.5. Under the reflection fS of Rn with respect to the subspace S ⊂ Rn, the vertices p, p′ should be
swapped because they have equal (signed) distances to the ordered points p0, . . . , pn−1 ∈ S. The equality of given
CBR′s means that V ′ = V (G) \ {p1, . . . , pn−1, p, p

′} bijectively maps to itself via q 7→ q′ so that any matched q, q′

have the same distances to the n + 1 ordered points p0, . . . , pn−1, p as to p0, . . . , pn−1, p
′, respectively. Any point

in Rn is determined by its distances to the n affinely independent points p0, . . . , pn−1 up to the mirror reflection fS .
Since fS fixes p0, . . . , pn−1, the reflection fS should swap q, q′ in such pairs and all their edges, so we conclude that
fS(G(p1, . . . , pn−1)) = G(p1, . . . , pn−1) and fS(p) = p′.

Proof of Theorem D.1(b). The completeness is proved by reconstructing any Euclidean graph G ⊂ Rn from NCD(G;n)
uniquely up to rigid motion.

We prove that any Euclidean graph G ⊂ Rn can be reconstructed from its Nested Distance Distribution NCD(G;n) by
induction on the dimension n.

The inductive base n = 1 is Example 4.7. Assume that any graph G on m unordered vertices can be reconstructed
in Rk in time O(k3m) for any k < n. Below we prove the inductive step for the dimension n > 1. Start from any
CBR(G;A) = [sign(A),CD(A),CR(G;A)] from Definition 3.5, where A is a sequence of some n ordered (not yet
geometrically fixed) vertices p0, . . . , pn ∈ V (G). The first point p0 is fixed at the origin 0 ∈ Rn as usual by translation.

Lemma D.2(b) for the matrix CD(A) gives the number k ≤ n of positive eigenvalues of the Gram matrix of the n
vectors p1, . . . , pn in time O(n3). If aff(A) = k < n, we use the nested structure of NCD(G;n) to take another
CBR(G; p1, . . . , pk, q, . . . , pn) for a new vertex q ∈ V (G)−A. Check if aff(p1, . . . , pk, q) = k+1 again by Lemma D.2(b)
using the matrix D(p1, . . . , pk, q). If the affine dimension has not increased, we take another CBR with the same points
p1, . . . , pk and a new (k + 1)-st point from V (G)− {A ∪ q} and so on.

This search through Centered Base Representations involving the remaining vertices of G requires a maximum of m−n− 1
steps with O(n3) time for every computation of the affine dimension. Hence in time O(n3m), we can find a Centered Base
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Representation CBR(G;A) whose base sequence A affinely generates the subspace of dimension k = aff(V (G)) in Rn. If
k < n, the proof follows from the inductive hypothesis for the smaller dimension k.

If aff(V (G)) = n, use the same notations for the fixed vertices 0 = p0, . . . , pn that linearly generate Rn. Lemma D.3(a)
for m = n+ 1 and the distance matrix D(A) allow us to reconstruct n+ 1 ordered points 0 = p0, . . . , pn up to isometry
in Rn in time O(n3). By Definition 3.5 every column of CR(G;A) contains Euclidean distances from the vertices
0 = p0, . . . , pn ∈ Rn, which affinely generate Rn, to another vertex q ∈ V (G)−A.

These n+ 1 distances uniquely determine the position of q in Rn whose coordinates can be found as follows. Each scalar

product q · pi can be computed as |q| · |pi| cos∠(q, 0, pi) =
|q|2 + |pi|2 − |q − pi|2

2
for i = 1, . . . , n. On another hand,

q · pi is a linear combination of unknown coordinates of q with coefficients equal to the coordinates of pi. One can find all
coordinates of q in time O(n3) by solving the system of linear equations, where the n× n determinant on the linear basis
p1, . . . , pn is not zero. The total time is O(n3m).

Since all vertices q ∈ V (G)−A are geometrically unique, they can be (arbitrarily) ordered, say pn+1, . . . , pm, following
p0, . . . , pn. The signs of distances in the matrix CR(G;A) also tell us about (present or absent) edges from p0, . . . , pn to
all other vertices q ∈ V (G)−A.

The nested structure of NCD(G;n) allows us to consider m−n unordered Base Representations CBR(G; p1, . . . , pn−1, pj)
for all vertices pj with j = n, . . . ,m. Every vertex pj ∈ V (G) is uniquely determined in Rn by the column of its signed
distances to p0, . . . , pn in the (n+ 1)× (m− n− 1) matrix R(G; p0, . . . , pn) for j = n+ 1, . . . ,m.

By Lemma D.5, this distance list of pj (without edges between pj , pk for j, k > n) suffices to identify one or maximum two
Base Representations among all m− n unordered CBRs with the fixed n points p0, . . . , pn−1 and variable n-th vertices. If
there is a choice of two CBRs, we can take any of them for pj . Indeed, choosing another vertex pk, which should be mirror
symmetric to pj , will produce a mirror image of the reconstructed subgraph G(p1, . . . , pn, pj) by Lemma D.5.

The matrix CR(G; p1, . . . , pn−1, pj) from the found CBRs contains signs that determine the (present or absent) edges from
pj to all other vertices pk for k = n+ 1, . . . ,m.

To guarantee the uniqueness of G ⊂ Rn under rigid motion and not only under isometry, we additionally use sign(p1, . . . , pn)
from CBR to fix an orientation of the simplex on p0, . . . , pn.

The strength σ(A) depends only on the distance matrix D(A), we write σ(A) for brevity. When the simplex on A
degenerates, the strength σ(A) vanishes and is Lipschitz continuous by Lemma 4.2, while the volume of the simplex on B
is not Lipschitz continuous as shown below.

In R2, consider the triangle with two vertices fixed at (±l, 0) and one moving vertex (0, tε) for t ∈ [−1, 1]. The signed area
of the triangle changes from −lε (unbounded because l can be large for any fixed small ε) to 0 (when t = 0 and the triangle
degenerates), then to lε (when t = 1). The area changes by 2lε while only one vertex moves by 2ε, so the ratio of the area
change over a point perturbation can be as large as a half-distance between given points.

Lemma D.6 (time of strength). For any base sequence A of n ordered points p1, . . . , pn ∈ Rn, the strength σ(A) can be
computed in time O(n3).

Proof of Lemma D.6. The half-perimeter p(A) is computable via all pairwise distances in time O(n2). The squared volume
vol2(A) can be expressed by the Cayley-Menger (n+2)× (n+2) determinant from (Sippl & Scheraga, 1986) in inter-point
distances, which can be computed in time O(n3) by Lemma D.4.

Lemma D.7 (axioms and time of M∞ on CBRs). Let G,F ⊂ Rn be Euclidean graphs with m unordered vertices and
base sequences A ⊂ V (G) and B ⊂ V (F ) of h ≤ n ordered vertices. The metric M∞(CBR(G;A),CBR(F ;B)) from
Definition B.5 satisfies all metric axioms and is computable in time O(h2+m1.5 logh+1 m) with space O(h2+m logh−1 m).

Proof of Lemma D.7. The metric axioms for M∞ follow from the same axioms for the metrics L∞ and W∞ because
the maximum of metrics is still a metric, see metric transforms in section 4.1 of (Deza & Deza, 2009). The first metric
2

λn
|sign(A)σ(A) − sign(B)σ(B)| can be computed in time O(n3) by Lemma D.6. The metric L∞(CD(A),CD(B))
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requires time O(h2) and space O(h2). The bottleneck distance W∞(CR(G;A)),CR(F ;B)) between (h+ 1)× (m− h)
matrices CR(G;A), CR(F ;B) with unordered columns (considered as clouds of m− h unordered points in Rh+1) needs
time O(m1.5 logh+1 m) and space O(m logh−1 m) by Theorem 6.5 in (Efrat et al., 2001).

Lemma D.8 (metric axioms for NBM on NCDs). The Nested Bottleneck Metric NBM from Definition B.6 satisfies all
metric axioms on Nested Distance Distributions.

Proof of Lemma D.8. Induction on the depth i = n, . . . , 1. The inductive base i = n follows from the metric axioms in
Lemma D.7 for M∞ in Definition B.5.

The inductive step from a depth i (between 1, n) to the smaller value i− 1 follows from Lemma C.1 and the metric axioms
in the inductive hypothesis for the depth i.

Lemma D.9 (Lipschitz continuity of M∞). Let A be a base sequence of 1 ≤ h ≤ n ordered vertices in a Euclidean graph
G ⊂ Rn. Let B,F be obtained from A,G, respectively, by perturbing every vertex of G within its ε-neighborhood in Rn.
Then CBR(G;A) changes in M∞ from Definition B.5 by at most 2ε, so M∞(CBR(G;A),CBR(F ;B)) ≤ 2ε.

Proof of Lemma D.9. Order all vertices of the graphs G,F so that every vertex pi ∈ V (G) has the same index as its
perturbation qi ∈ V (F ). The bijection pi ↔ qi induces the bijections between the corresponding elements of the
matrices CD(A) ↔ CD(B) and CR(G;A) ↔ CR(F ;B), which all differ by at most 2ε. Lemma 4.2 implies that
2

λn
|sign(A)σ(A) − sign(B)σ(B)| ≤ 2ε Since all three components of the max metric M∞ in Definition B.5 have the

upper bound 2ε, conclude that M∞ ≤ 2ε.

Definition C.2 can be adapted for the EMD between NCDs by (1) replacing the bottleneck distance W∞ in Definition B.5
with EMD between clouds of equally weighted points, and (2) replacing BMD(Γ) for a bipartite graph Γ with EMD(Γ)
between the unordered sets (of potentially different sizes) of CBDs with weights on all white vertices and CBDs on all
black vertices.

Proof of Theorem D.1(c). We first prove the Lipschitz continuity of the metric NBM on NCDs. Order all vertices of the
graphs G,F so that every pi ∈ V (G) has the same index as its ε-perturbation qi ∈ V (F ). In Definition B.6, for any base
sequence A of p1, . . . , ph ∈ V (G), there is a base sequence B of vertices q1, . . . , qh ∈ V (F ), which are ε-perturbations of
p1, . . . , ph, respectively, such that M∞(CBR(G;A),CBR(F ;B)) ≤ 2ε by Lemma D.9.

These distances M∞ are weights of edges in the index-preserving vertex matching E of the complete bipar-
tite graph Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1) for any p1, . . . , ph−1 and their ε-perturbations q1, . . . , qh−1. Then
BMD(Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1)) ≤ 2ε by Lemma C.3. Since this conclusion holds for all (choices of)
p1, . . . , ph−1 ∈ V (G), we iteratively apply this argument for the bipartite graphs Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1)
for 1 ≤ i < n and finally conclude that NBM(NCD(G;h),NCD(F ;h)) ≤ 2ε. The proof that
EMD(NCD(G;h),NCD(F ;h)) ≤ 2ε is similar by using Lemma C.4 instead of C.3.

Proof of Theorem D.1(d). In Definition B.6, for any fixed 1 ≤ i ≤ h and ordered vertices p1 . . . , pi−1 ∈ V (G) and
q1 . . . , qi−1 ∈ V (F ), the complete bipartite graph Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) has V = 2(m − i + 1) = O(m)
vertices and E = (m− i+ 1)2 = O(m2) edges.

For i = h, the weight w(e) of each edge e equals M∞, which needs time O(m1.5 logh+1 m) and space O(m logh−1 m)
by Lemma D.7 for any h ≤ n ≤ m. For all O(m2) edges of Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1), the time is
O(m3.5 logh+1 m), the space is O(m3 logh−1 m). The bottleneck matching distance BMD for such a graph is com-
puted by (Hopcroft & Karp, 1973) in time O(E

√
V ) = O(m2.5), which is dominated by the time O(m3.5 logh+1 m)

preparing the weighted graph.

For all O(m2(h−1)) choices of ordered vertices p1, . . . , ph−1 ∈ V (G) and q1, . . . , qh−1 ∈ V (F ), the Bottleneck Matching
Distance for all graphs Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1) are found in time

O(m2(h−1))O(m3.5 logh+1 m) = O(m2h+1.5 logh+1 m)
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Continuous machine learning on Euclidean graphs

with space O(m2h+1 logh−1 m). For every next iteration i = h− 2, . . . , 1, the parameter i goes down by 1 every time. We
can compute all distances BMD(Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) in time

O(m2(i−1))O(m3.5 logh+1 m) = O(m2i+1.5 logh+1 m).

The sum of all these times for i = 1, . . . , h− 1 is still O(m2h+1.5 logh+1 m) from the first step.

All CBDs in Definition 3.5 have sizes at most m, which is the maximum number of points in the given clouds. The EMD
between weighted distributions of a maximum size m can be computed in near-cubic time O(m3 logm), see (Fredman &
Tarjan, 1987; Goldberg & Tarjan, 1987). Since this complexity is dominated by the time O(m3.5 logh+1 m) for computing
O(m2) weights M∞, each in time O(m1.5 logh+1 m) by Lemma D.7, the total time for the EMD is the same as for the
NBM, similarly for space complexities

24


