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Abstract: Human skin offers a rich tactile sensing stream over large, contoured
areas, but replicating this in robotics remains challenging. We present DexSkin, a
soft, conformable capacitive skin that provides localized, calibratable sensing and
adapts to varied geometries. Integrated on gripper fingers with near-full coverage,
DexSkin enables learning-based manipulation, transfers across sensor instances
via calibration, and supports real-world online RL. This work has been published
at CoRL 2025 (main track).
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Figure 1: DexSkin sensors enable contact-rich robotic manipulation policies. We demonstrate the appli-
cations of DexSkin in in-hand pen reorientation, box packaging, and berry transporting tasks. In each frame,
we visualize tactile readings from DexSkin as heatmaps, where brighter readings correspond to larger forces.
DexSkin’s high-coverage sensing capabilities enable it to provide contact signals for a variety of robotic ma-
nipulation tasks. At the same time, it possesses desirable properties for learning-based manipulation systems.

1 Introduction

Tactile feedback is essential for dexterous manipulation, yet most robotic sensors remain rigid, low-
coverage, and poorly adaptable to complex surfaces. We introduce DexSkin, a soft capacitive skin
that conforms to end-effector geometry, offers high-density localized sensing, and can be calibrated
across hardware instances. Each taxel is individually addressable, allowing localization of contacts
across surfaces, and the sensor can be calibrated for consistent readings across hardware instances.

In this work, we describe DexSkin ’s design and integration with a robotic fingertip, then evaluate
its utility for robot learning. We test whether DexSkin’s coverage expands learnable manipulation
tasks, assess calibration for model transfer, and demonstrate real-world reinforcement learning on
a delicate object picking task. The results highlight DexSkin ’s practicality for contact-rich, data-
driven manipulation.

2 Related Work

Tactile sensing in robotics. Robotic tactile sensors generally fall into three categories: vision-based,
magnetic, and electrically addressable. Vision-based sensors such as GelSight [1, 2], GelSlim [3],
DIGIT [4], and DenseTact [5, 6] capture elastomer deformations with cameras, but are bulky and
difficult to miniaturize [7]. Magnetic sensors such as uSkin [8], ReSkin [9], and AnySkin [10]
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measure flux changes, but provide sparse signals and require data-heavy calibration. Electrically
addressable sensors include resistive [11, 12], impedance (e.g., BioTac [13]), and capacitive [14, 15,
16, 17]. Capacitive designs offer high sensitivity and low power consumption but often rely on costly
microfabrication. Our approach also employs a capacitive mechanism, but enables conformable
coverage and low-cost, rapid prototyping with individually addressable taxels.

Learning robotic manipulation with tactile sensors. Tactile sensing has been integrated into
learning robotic manipulation via reinforcement learning [18, 19, 20], predictive models [21, 22, 23,
4], and imitation learning [24, 25, 26, 27]. Since simulating contacts is difficult [28, 29, 30, 31],
many works rely on real-world data. We follow this paradigm, focusing on tasks requiring broad
coverage and simultaneous contacts.

3 The DexSkin Framework

We introduce the main components of the
DexSkin framework. While applicable to many 4
morphologies, we focus on fingertip-shaped grip-
per jaws for a parallel gripper, shown in Figure 2.
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Low-cost, high-performance, conformable
DexSkin sensors. Electrically addressable tactile
sensors remain rare in robotics [32, 26] due
to sensitivity, cost, and integration challenges.
DexSkin is a stretchable capacitive sheet fabri-
cated for under $10 per pair (at 1,000 units) using
accessible tools. It provides nearly full-finger
coverage, high sensitivity, and individually I
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Tailorable fabrication. Fabrication begins with Figure 2: Designs of electrode patterns. The 2D

computer-aided electrode pattern design, which
determines taxel layout and size. The electrode
layers are deposited onto a thin elastomer sub-

pattern design of the inner plate (top left) and outer
plate (bottom left) electrodes on the soft SEBS sub-
strate and its appearance after its vertical traces have

been conformed onto the dome and cylindrical cir-
cumference of the finger sleeve (top right and bottom
right). Note that SEBS is transparent and can be hard
to distinguish in the post-assembly photo (right).

strate and sealed into a flexible sheet. This single
continuous piece can be conformed around both
hemispherical domes and cylindrical finger sur-
faces, yielding dense tactile coverage (Figure 2).

We are committed to open-sourcing the detailed fabrication instructions and materials for DexSkin.

4 Evaluating DexSKkin for Learning Robotic Manipulation

We evaluate DexSkin for learning robotic manipulation from the following perspectives:

1. Can DexSkin’s coverage and tailorability enable robots to learn a range of manipulation tasks?
2. Can calibrating DexSkin allow learned policies to be transferred across sensor instances?
3. Is DexSkin suitable for applications to learning robot behaviors online?

4.1 Learning Manipulation with Expanded Coverage and Tailorability

We test whether DexSkin ’s coverage and resolution improve learned manipulation through two
tasks. Policies are trained from 50 teleoperated demonstrations using GELLO [33] and diffusion
policies [34, 35]. The first task is in-hand pen reorientation, where the robot must rely on tactile and
proprioceptive feedback to reorient a pen and remain robust to human perturbations. The second is
box packaging, where the robot must secure a container lid with an elastic band that may be intact
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Figure 3: Examples of box packaging task rollouts. (Top) With an initially provided perforated band, the
DexSkin policy correctly detects and discards the perforated band based on the tactile reading (col. 1),
retrieves the backup (col. 2), and wraps it around the box (cols. 3-5). We visualize DexSkin sensor readings
as if the viewer is facing the robot, looking at the gripper. (Bottom) With an initially provided unperforated
band, the policy without tactile information unnecessarily replaces the band (cols. 1-2) and then fails to
package the box as the band slips off the gripper fingers (cols. 3-5).

Pen reorientation Box: Non-Perforated Band Box: Perforated Band
Model No perturb Perturb Select Wrap Select Wrap
No tactile 19/20 0/20 0/20 0/20 19/20 6/20
DIGIT [4] 19/20 0/20 20/20" 20/20" 0/20 0/20
DexSkin (ablated) 12/20 0/20 19/20 14/20 1/20 0/20
DexSkin (ours) 19/20 19/20 18/20 17/20 19/20 15/20

Table 1: Pen reorientation and box packaging success rates. Policies with full DexSkin information achieve
the most consistent performance across tasks requiring high sensing coverage. For box packaging, we report
success in two cumulative stages for evaluation only: (1) determining the correct elastic band to use and (2)
physically wrapping the band around the box. *Placing the band around DIGIT’s bulkier geometry elongates
the band more, making wrapping it around the box easier.

or perforated, requiring it to detect band properties through dorsal fingertip sensing and adapt its
behavior accordingly.

Comparative evaluation. To test our hypothesis, we compare the following settings:

* DexSkin (ours): Uses the full 120 taxels of DexSkin readings, proprioception, and wrist camera
RGB images. Note wrist camera images are provided for the box task only.

* No tactile: A baseline identical to DexSkin (ours) but excluding all tactile information.

* Ablations include spatially pooled readings for the pen task (DexSkin (spatial pooling)), mimick-
ing low-resolution sensors (eg. load cells), and inner-column readings for the box task (DexSkin
(inner cols. only)), approximating flat sensors. These test the importance of DexSkin ’s resolution
and coverage.

* DIGIT: Uses a pair of DIGIT [4] sensors as gripper fingers and as input to the policy, comparing
our system to existing and commercially available sensors.

Pen task results. We test two settings: the training setup and one with human perturbation that
rotates the pen back to horizontal. Results (Table 1) show most policies succeed without perturba-
tion, but only the full DexSkin policy maintains success under disturbance. The no-tactile baseline
repeats the same motion regardless, spatial pooling often fails to estimate pose even unperturbed,
and DIGIT misses many contacts outside its limited sensing region.

Box packaging results. As shown in Table 1 and Figure 3, only the full DexSkin policy consistently
succeeds with both intact and perforated bands. Other policies adopt fixed strategies, misusing bands
that are visually indistinguishable, while DexSkin correctly selects based on perceived tension. Full
DexSkin input also improves wrapping success, completing 86% of rollouts versus 32% (No tactile)
and 70% (inner cols. only).



4.2 Calibration and Model Transfer Across Sensor Instances

Tactile sensors are difficult to manufacture consistently, as optical, magnetic, and resistive designs
often produce signal variations across units [10, 36]. Because learned models are highly sensitive
to such shifts, replacing sensors can render prior training unusable. We introduce a calibration
procedure for DexSkin to mitigate these issues and enable policy transfer across hardware instances.

Calibration procedure. We develop two calibration protocols. First, DexSkin is enclosed in a
3D-printed airtight chamber with an Ecoflex 00-50 membrane, and internal pressure is ramped from
0-6 psi to impose uniform stress; fitting each taxel’s response to an exponential curve provides both
a forward mapping (AC/Cy — pressure) and an inverse mapping to align new data with legacy
outputs. Second, DexSkin is mounted on a motorized stage with a force gauge, recording three
loading—unloading cycles per taxel to map outputs to normal force.

Policy transfer experiment. We revisit the
perturbed pen reorientation task using a policy

. A Sensor configuration Stage 1  Stage 2

trained on one sensor pair (Source) and trans- S 20/20  20/20
: : ource sensors

ferred to swapped fingers (Target), simulating Target sensors (no calib)  17/20 1220
sensor replacement. Results (Table 2) show Target sensors (calib.) 18/20  16/20
that DexSkin transfers reasonably well with-

t calibration and improves further with it Source sensors (DIGIT) 20720 0/20
ou p ’ Target sensors (DIGIT) 0/20 0/20

while DIGIT policies fail entirely when gel win-

dows are swapped due to appearance changes. Table 2: Pen reorientation policy performance when
transferred across sensor hardware. We report suc-
cesses across two stages: (1) successfully reorienting
the pen the first time and (2) detecting and fixing hu-

man perturbation.

4.3 Real-World
Online Robot Learning with DexSkin

Beyond imitation learning, tactile sensing can
provide reward signals for RL, but many sensors
lack durability and clear reward definitions. We evaluate DexSkin on a delicate blueberry grasp-
ing task (where a single excessive force causes failure), augmenting a non-tactile imitation policy
with DexSkin and training a residual policy via soft actor-critic [37, 38], with rewards penalizing
excessive forces, large actions, and failed grasps.

Figure 4 shows that the residual pol-
icy refines the base actions to produce
gentler grasps. Without tactile input,
the base policy crushes berries, while
the DexSkin-enhanced policy handles
them successfully. This demonstrates
that DexSkin can adapt policies trained
without tactile data and provide natural
reward signals without extra classifiers
or calibration.
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5 Conclusion

We present DexSkin, a soft tactile sen-
sor that conforms to varied geometries
for localized, high-coverage sensing.

Base imitation
learning policy

Residual RL w/ h
DexSKkin rewards (ours) ' Random residual policy

Figure 4: (Top) Residual policy learning curves showing re-
duced DexSkin-output forces above threshold (force reward) and

Integrated on a gripper, DexSkin im-
proves imitation learning for contact-
rich tasks, enables calibration-based
transfer across hardware, and provides
reward feedback in real-world rein-

balanced action costs (action reward). Training used a faux berry
until episode 150, then real berries for 30 episodes. (Bottom)
Berries after grasp and transport; the finetuned residual policy
causes much less damage.

forcement learning, advancing toward practical tactile sensors with human-skin-like coverage and

sensitivity.
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