Trajectory-guided Control Prediction for End-to-end
Autonomous Driving: A Simple yet Strong Baseline

Penghao Wu*' Xiaosong Jia* Li Chen*
Shanghai AI Laboratory Shanghai Jiao Tong University ~ Shanghai Al Laboratory
Shanghai Jiao Tong University Shanghai Al Laboratory lichen@pjlab.org.cn

wupenghaocraig@sjtu.edu.cn jiaxiaosong@sjtu.edu.cn

Junchi Yan’ Hongyang Li Yu Qiao
Shanghai Jiao Tong University Shanghai AI Laboratory Shanghai AI Laboratory
Shanghai AI Laboratory Shanghai Jiao Tong University =~ qiaoyu@pjlab.org.cn

yanjunchi@sjtu.edu.cn lihongyang@pjlab.org.cn

Abstract

Current end-to-end autonomous driving methods either run a controller based on
a planned trajectory or perform control prediction directly, which have spanned
two separately studied lines of research. Seeing their potential mutual benefits to
each other, this paper takes the initiative to explore the combination of these two
well-developed worlds. Specifically, our integrated approach has two branches for
trajectory planning and direct control, respectively. The trajectory branch predicts
the future trajectory, while the control branch involves a novel multi-step prediction
scheme such that the relationship between current actions and future states can be
reasoned. The two branches are connected so that the control branch receives corre-
sponding guidance from the trajectory branch at each time step. The outputs from
two branches are then fused to achieve complementary advantages. Our results are
evaluated in the closed-loop urban driving setting with challenging scenarios using
the CARLA simulator. Even with a monocular camera input, the proposed approach
ranks first on the official CARLA Leaderboard, outperforming other complex can-
didates with multiple sensors or fusion mechanisms by a large margin. The source
code is publicly available at https://github.com/OpenPerceptionX/TCP.

1 Introduction

End-to-end autonomous driving methods, which directly map raw sensor data to a planned trajectory
or low-level control actions, show the virtue of simplicity, conceptually avoiding the cascading error of
complex modular design and heavy hand-crafted rules. The output prediction of the model for end-to-
end autonomous driving generally falls into two forms: trajectory/waypoints [48, 4, 11,46, 15,29, 10]
and direct control actions [17, 39, 18, 42, 12, 60, 9]. However, there is still no clear conclusion as to
which of these two forms is better for all circumstances or certain scenarios.

Different from control predictions that could be directly applied to the vehicle, for methods that
plan trajectory, additional controllers such as PID controllers are usually needed as a subsequent
step to convert the planned trajectory into control signals. One attractive and potential supremacy of
trajectory-based prediction is that it actually considers a relatively longer time horizon into the future
and could be further combined with other modules (e.g., multi-agent trajectory prediction [59, 10],

* Equal Contribution. Work done when PW and XJ were interns at Shanghai AT Laboratory.
t Correspondence author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/OpenPerceptionX/TCP

Ctl: % |__J‘> Collision
'I\:;j: s/»_(» Sicceﬁ
. ———

(@) (b)

Figure 1: Typical failure cases of two prediction paradigms. Red dots indicate the trajectory prediction,
blue dots are the actual path following the red trajectory with PID controllers, and green dots denote
the actual path from control-based method. (a) trajectory-based methods may struggle for big turns.
(b) control-based methods may have a reaction latency and suffer from abrupt obstacles due to
focusing on current time step only. These observations motivate us to propose a unified framework to
combine these two worlds for mutual benefits.

semantic or occupancy prediction modules [15, &, 25]) to reduce possible collisions. However, turning
the trajectory into control actions so that the vehicle could follow the planned trajectory is not trivial
[57]. The industry usually adopts sophisticated control algorithms such as model predictive control
to achieve reliable trajectory-following performance [5, 21]. Simple PID controllers may perform
worse in situations such as taking a big turn or starting at the red light due to the inertial problem
of end-to-end models [29]. For control-based methods, the control signals are directly optimized.
Nevertheless, their focus on the current step may cause deferred reactions to avoid potential collisions
with other moving agents. The independence between the control predictions of different steps also
makes the actions of the vehicle more unstable or discontinuous. Fig. 1 shows two typical cases
where two paradigms fail respectively. How to combine these two forms of prediction model as well
as their outputs is an interesting yet relatively rarely studied area, which motivates this work.

One straightforward (but in fact rarely studied in literature) idea is to train a control prediction model
and a trajectory planning model separately, and combine their ultimate outputs directly. It can be
viewed as an ensemble of two different models. However, such a naive approach not only doubles the
size of the model, but also ignores possible useful correlations between these two forms. To this end,
we introduce the TCP (Trajectory-guided Control Prediction) framework, packing these two branches
into a unified framework. It can be viewed as a multi-task learning (MTL) [7, 2] framework where a
shared backbone extracts common features with decreased computational complexity as well as the
increased ability of generalization due to the close relationship between the two tasks [38, 34, 13].
Furthermore, to address the drawbacks of current control prediction methods, we delicately devise a
novel multi-step control branch and a trajectory-guided control prediction scheme.

While trajectory planning considers several steps into the future, directly learning the control in
a behavior cloning fashion [44, 41, 17, 18, 11] often focuses on the current time step only, given
prior on each state-action pair as independent and identical distributed (IID). This assumption is not
accurate and may hamper the long-term performance since the driving task is a sequential decision-
making problem. To alleviate the problem, we propose to predict multi-step control actions into the
future. However, the multi-step control process needs interactions with the environment. Thus we
formulate a temporal module to learn the forward process and interactions between the ego agent
and the environment. A temporal module implemented with GRU [16] progressively deals with the
feature representation for each time step, implicitly taking into account the dynamic motion of agents,
interaction among them and dynamic environment information such as the changing of traffic lights.

Additionally, to generate accurate control signals in the multi-step prediction scheme, the model
should retrieve proper location information from current sensor input for different future time steps.
For example, an agent may pay more attention to nearby regions for a few early future time steps
and far away regions for the remote ones. Considering that the knowledge has already been partly
encoded in the trajectory branch, we adopt the attention mechanism to locate those critical and helpful
areas in the long-term trajectory prediction branch, and guide the control prediction branch to pay
attention to them at each future step in a corresponding way. As a result, our model is capable of
reasoning about how to optimize current control prediction so that the future states are similar to
those from the expert when the predicted control actions are applied.

With the predicted trajectory and control signals from two branches, we propose a situation based
fusion scheme to adaptively combine these two forms in a self-ensemble way to form the ultimate
output according to the experiments results and prior knowledge. It combines the best of these two
forms, which further boosts the performance under different scenarios.

TCP has shown superior performance when being validated in the CARLA driving simulator [20].
Our method, which only uses a monocular camera, achieves a 75.137 driving score and ranks 1st
on the public CARLA Leaderboard [1], even surpassing prior state-of-the-art methods using multiple
cameras and a LiDAR by 13.291 points. The main contributions of this paper include:

* We examine two dominant paradigms for end-to-end autonomous driving: trajectory plan-
ning and direct control, and propose to combine them in an integrated learning pipeline. To
our knowledge, this is the first time that such two branches are jointly learned and fused for
prediction.

* A multi-step control prediction branch with a temporal module and trajectory-guided at-
tention is devised to enable temporal reasoning. To combine the best of two branches, we
design a situation based scheme to fuse the two outputs.

* As a simple yet strong baseline, our method with only a monocular camera as input achieves
new state-of-the-art on the CARLA Leaderboard with many competitors using multiple
sensors. We conduct thorough ablation studies to verify the effectiveness of our approach.

2 Related Work

2.1 End-to-end Autonomous Driving

Learning-based end-to-end autonomous driving has emerged as an active research topic in recent
years. Studies usually fall into two categories: reinforcement learning (RL) and imitation learning. RL
is a promising way to address the problem of being more robust to the distribution shifts of datasets.
Liang et al. [39] use DDPG to train a policy which is pre-trained in a supervised way. Kendall et
al. [30] train their deep RL algorithm onboard to efficiently learn to drive a real-world vehicle. The
perception task is decoupled out of the online RL process in [50, 9, 62]. The model-based method
WoR [12] assumes world on rails and uses policy distillation to realize powerful performance.

Imitation learning (IL), especially behavior cloning, collects recorded data for models to mimic with
high data efficiency. The expert data typically has two forms, trajectories and control actions. Zeng
et al. [58] train a cost volume to generate the planning route, while [49, 8, 25] explicitly design
safety and comfort costs based on semantic occupancy maps to select the best one in the expert
trajectory sets. Zhang et al. [59] predict trajectories of surrounding vehicles with labeled BEV map.
LBC [I1] and NEAT [15] decode waypoints from a dense heatmap or offset map. These approaches
aforementioned all utilize a relatively dense representation to obtain results which increases model
complexity. Transfuser and its variants [46, 29] adopt a simple GRU to auto-regress waypoints. LAV
[10] adopts a temporal GRU module to further refine the trajectory. They unanimously achieve
impressive performance on the CARLA leaderboard, motivating us to adapt the auto-regression
scheme as well in our design. On the other hand, all trajectory-based methods use PID controllers to
get the ultimate actions, which may cause inferior effects in complicated scenarios.

Another genre to predict control actions directly is proposed in [44, 40, 3, 54]. CIL [17] adds a
measurement encoder and multiple branches for different high level commands with the image
encoder. CILRS [18] is proposed afterwards and further introduces a speed prediction head. They
stand as classic baselines for IL in the CARLA driving simulator. Diverse optimized approaches
are presented based on them, such as multi-modal inputs [22, 53], multi-task learning [56, 37, 24,

, 31, 26, 63], dataset aggregation [45] and knowledge distillation [61, 60]. However, the compact
control-based methods often have higher vehicles collision rates, remaining an interesting domain to
explore. Similar work exists in other related domains such as robotic navigation as well. [43] learns a
controller after a local trajectory planner to improve the overall navigation behavior.

2.2 Multi-task and Ensemble Learning for Autonomous Driving

Multi-task learning is a popular approach to train several related tasks simultaneously to help each
other and improve generalization [7, 2]. Combinations of various autonomous driving tasks such

as object detection, lane detection, semantic segmentation, depth estimation, efc. have been proved
to be capable of achieving incredible performance [38, 14, 47, 34, 52, 13]. MTL is also suitable in
the end-to-end problem since it is observed the performance of a direct mapping from an image to
control signals is limited. [56] adds a speed prediction task similar to CIL [17] and [63] separates
the lateral and longitudinal controls as two tasks. LAV [10] trains an extra scene mapping network,
and [24, 27, 29] additionally predict optical flow or dense depth. Our idea of training trajectory and
control simultaneously is closely related to FASNet [31]. FASNet predicts future positions of the
ego agent as an auxiliary task and adds a kinematic loss considering the relation between control and
locations. However, the constrain is based on a constant velocity model which neglects the important
throttle and brake, and it does not work at the inference time. On the other hand, our TCP framework
has feature interactions at an earlier stage to fully explore their potential mutual benefits.

Ensembles of models have long been utilized to improve the performance in computer vision [19, 33,
, 51,55, 45]. Besides the normal combination of models, two classic ensemble learning methods
are particularly preferred in the autonomous driving regime. One is the Test-Time Augmentation
(TTA), which is of great help to the 3D object detection task with LiDAR [6, 36]. Another one
is the fusion of experts [28] where experts are trained on a subset of the input space and a gating
network is trained to provide the fusion weights. LSD [42] and MoDE [32] divide a dataset into
sub-scenarios to get different sub-policies for end-to-end autonomous driving. These traditional
ensemble approaches combine models of the same structure while our approach tries to combine two
different representations. Also, the multiple experts design increases the complexity of the training
strategy and we seek to have a simpler situation based fusion scheme to boost the performance.

3 Trajectory-guided Control Prediction

3.1 Problem Setting

Problem formulation. Given the state x comprised of the sensor signal i, the speed of the vehicle
v, and the high level navigation information g including a discrete navigation command and the
coordinates of navigation target provided by the global planner, the end-to-end model needs to output
control signals a comprised of longitudinal control signals throttle € [0, 1] and brake € |0, 1], and
the lateral control signal steer € [—1, 1].

Conventional methods tackle this problem with either a trajectory-output or a control-output only
model. However, TCP combines both of them as two branches: a trajectory branch which predicts
the planned trajectory and a control branch which is guided by the trajectory one and outputs both
current and multi-step control signals into the future. Both branches are trained in a supervised
manner. Consider an expert which directly outputs the control signals at each step, supervising the
predicted trajectory with the ground truth trajectory makes it not strictly satisfy the setting of behavior
cloning in imitation learning. The ground truth trajectory indeed involves future expert actions and
future states about the environment, so we formulate it as a trajectory planning task with ground truth
trajectory as supervision for our trajectory branch. As for the control branch, training a control model
which makes current control prediction supervised by the expert control is just behavior cloning in
imitation learning, and it can be formulated as:

arg min E(x a-)~p[L(a", (%)), M

where D = {(x,a*)} is a dataset comprised of state-action pairs collected from the expert. g
denotes the policy of the control branch, and L is the loss measuring how close the action from the
expert and the action from our model is. The expert collects the dataset by controlling the vehicle
and interacting with the world. Each collected route is a trajectory & = (xg, ag, X1,a}, -+ ,XT) as a
sequence of state action pairs {(x;,a}')};L_,, which is then added into the whole dataset D.

Expert demonstration. Here we choose Roach [60] as the expert. Roach is a simple model trained
by RL with privileged information, including roads, lanes, routes, vehicles, pedestrians, traffic lights,
and stops, all being rendered into a 2D BEV image. Such a learning-based expert can transfer more
information besides the direct supervision signals compared with an expert made by hand-crafted
rules. Specifically, we have a feature loss which forces the latent features before the final output head
from the student model to be similar to that of the expert. A value loss is also added as an auxiliary
task for the student model to predict an expected return.

Ltra j
Image Encoder

1

/27 WP, -, WPk

. PID i

M 4 >| Trajectory Branch ’ ~atra

. — Guidance ‘\W >
Measurement Encoder Situation éé
i :
Speed. / Multi-step Control ctl
~ [Mutistep & 2

goal: () o

Lctl

Figure 2: Overview of Trajectory-guided Control Prediction (TCP). The encoded features are shared
by the trajectory and multi-step control branch. The trajectory branch provides per-step guidance for
multi-step control prediction. Outputs from two branches are combined according to our situation
based fusion scheme to generate the ultimate control actions.

3.2 Architecture Design

Overview. As illustrated in Fig. 2, the whole architecture is comprised of an input encoding stage and
two subsequent branches. The input image i goes through a CNN based image encoder, such as ResNet
[23], to generate a feature map F. In the meantime, the navigation information g is concatenated
with the current speed v to form the measurement input m, then an MLP based measurement encoder
takes m as its input and outputs the measurement feature j,,,. The encoded features are then shared
by two branches for subsequent trajectory and control predictions. Specifically, the control branch is
a novel multi-step prediction design with guidance from the trajectory one, which will be illustrated
in detail in the following sections. Finally, a situation based fusion scheme is adopted to combine the
best of the two output paradigms. We will go over each part in detail below.

3.2.1 Trajectory planning branch

Different from control prediction which directly predicts control actions, the trajectory planning
branch first generates a planned trajectory comprised of waypoints at K steps for the agent to follow,
and then the trajectory is processed by low-level controllers to get the final control actions. With the
shared feature from the input encoder, the image feature map F is average pooled and concatenated
with the measurement feature jy, to form jt2J. Inspired by [46], we feed j*® into a GRU [16] to
auto-regressively obtain future waypoints one by one to form the planned trajectory altogether.

We have two PID controllers for longitudinal and lateral control respectively. With the planned
trajectory, we first calculate the vectors between consecutive waypoints. The magnitudes of these
vectors represent the desired speed and are sent to the longitudinal controller to generate throttle and
brake control actions, and the orientations are sent to the lateral controller to get the steer action.

3.2.2 Multi-step control prediction branch

As discussed in Sec. 3.1, for a control model predicting current control actions based on current input
only, the supervised training is just behavior cloning, which relies on the independent and identically
distributed (IID) assumption. This assumption apparently does not hold because of the distribution
shifts in test cases, since the closed-loop tests require sequential decision making where the historical
actions will affect the future states and actions. Instead of modeling it as a Markov Decision Process
(MDP) and resorting to reinforcement learning, here we devise a simple way to mitigate the problem
by predicting multi-step control into the future.

Given the current state x, now our multi-step control prediction branch outputs multiple actions:
T = (A4, At41, " - , 4K). However, it is difficult to predict future control actions since we
only have sensor inputs at the current time step. Towards this problem, we devise a temporal module
to implicitly carry out the changing and interaction process of the environment and our agent. It is
supposed to provide mainly dynamic information about the environment and the status of the agent

itself, such as the motion of other objects, the changing of traffic lights, and the status of the ego
agent. Meanwhile, to improve the ability of incorporating critical static information (e.g., curbs and
lanes) and boost the spatial consistency of two branches, we propose to use the trajectory branch to
guide the control counterpart to attend to proper regions of the input image at each future time step.

Temporal module. Our temporal module is implemented with a GRU for better consistency with the
trajectory branch. Atstep ¢t (0 < ¢ < K — 1), the input for the temporal module is the concatenation
of the current feature j¢'! (more construction details in the next section) and current predicted action
ay, which is a compact representation about the current states of the environment and the agent itself.
The temporal module is supposed to reason about the dynamic changing process based on current
feature vector and the predicted action. Then the updated hidden state hgj} ; will contain dynamic
information about the environment and the updated status of the agent at time step ¢ + 1. To some
extent, the temporal module acts as a coarse simulator with the whole environment and the agent
being abstracted as a feature vector. It then simulates the interaction between the environment and
the agent based on current prediction of actions.

Trajectory-guided attention. With the sensor input at current step only, it is hard to pick out
desirable regions where the model should focus on at future steps. However, the location of the ego
agent contains important cues about how to find those regions containing critical static information
for control prediction at each step.

Therefore, we seek help from the trajectory

planning branch to get information about the

possible location of our agent at that corre-) - : m " WP
. h . . traj Waypoint

sponding step. As shown in Fig. 3, TCP im- 1

plements this by learning an attention map >

to extract important information from the en- ®| F

coded feature map. The interaction between S

two branches enhances the consistency of pett | ‘ N m , actl

these two strongly related output paradigms M"ij”]‘: '

and further elaborates the multi-task spirit.

Specifically, with the 2D feature map ex-

tracted by the image encoder F at time step Figgre 3: Detailed trajectory guiding process. For pr;dictions

. at time step ¢, the hidden states from the waypoint GRU
tl <t < [1()ﬁ WV% Cal.culate an attention o he temporal module are combined to learn an attention
map wy € RV using the correspond- weight map to re-aggregate the 2D image feature map for
ing hidden states from the control branch ¢ontrol prediction.

and the trajectory branch:
w; = MLP(Concat[h{™ he"]). (2)

The attention map wy € R™H*W i5 adopted to aggregate the feature map F for this step. We
then combine the attended feature map with h¢t! to form the informative representation feature jSt!
containing both static and dynamic information about the environment and the ego agent. The process

can be described as follows:

i = MLP(Concat[Sum(Softmax(w;) ® F), h{"]). 3)
The informative representation feature j¢! is fed into a policy head which is shared among all time
steps to predict the corresponding control action a;. Note that for the initial step, we only use the
measurement feature to calculate the initial attention map and combine the attended image feature
with the measurement feature to form the initial feature vector jgtl. To guarantee the feature j¢*! does
describe the state at that step and contain the important information for control prediction, we add a

feature loss at each step to make j°*! close to the feature of the expert as well.

To this end, our TCP framework endows the model with the reasoning ability along a short time
horizon. It emphasizes how to make current control prediction close to the one from the expert.
Furthermore, it takes into account what current control prediction can make the environment states
and status of ego agent in future time steps similar to the ones from the expert.

3.3 Loss Design

Our loss contains trajectory planning loss Ly, control prediction L., and auxiliary 10ss Ly

For the trajectory planning branch, the loss £;,.; can be expressed as:

K
Liraj = Y IWP, =Wy 1 + A - Le (5,35)
t=1

where wp, , wp; are the predicted and ground truth waypoint at the t*”* step respectively. £ indicates
the feature loss measuring the L distance between ji ™ and the feature j, " from the expert at the

current step as an additional supervision signal [60]. Ag is a tunable loss weight.
For the control prediction branch, we model the action as a beta distribution. The loss L is:

L1 =KL (Beta(ap)||Beta(ag)) + % Z KL (Beta(a;)||Beta(a))

t=1

- 5)
«ctl <Expert 1 sct]l sExpert
+ A Lp (.]Bt,.lo P) +Et§71 Lp (JE s Je)7

where Beta(a) denotes the beta distribution represented by the corresponding predicted distribution
parameters and KL-divergence is used to measure the similarity between the predicted control
distribution and the one from expert, i.e., Beta(a). Feature loss is applied here as well. Note that all
losses for future time steps (¢ > 1) are averaged and then added to the loss for the current time step
(t = 0), since the action executed immediately should be our key target to optimize.

To help the agent better estimate its current state, we add a speed prediction head to predict current
speed s from the image feature and a value prediction head to predict the expected return estimated
by the expert, similarly as in [60]. We take the L4 loss for the speed prediction and L loss for the
value prediction, denoting their weighted sum as L.

The overall loss is as follows, as weighted by A¢rqj, Actl, Aqua:

L=)\tr‘aj : Etraj + /\ctl ' Ectl + /\auw ' Eaux (6)

3.4 Output Fusion

Algorithm 1: Situation based fusion scheme to com-
We have two forms of output representations bine the two output paradigms

from our TCP framework: the planned tra- Tppyt: sensory input i, speed of the ego vehicle v,
jectory and the predicted control. To fur- high level navigation information g.

ther combine their advantages, we devise a Hyper parameters : combination weight o € [0, 0.5]
situation-based fusion strategy as depicted in Output: final control signals a

A.lgor.ithm 1.. Specifically, denpte o as a com- {WPt}i(: 0, 2" <~ TCP(, v, g)

blnapon welght Whosp value is between 0 to 4trai [ow_level Controller ({fwp, o)

0.5, in a certain situation where one represen- Get current situation

tation is more suitable according to our prior if situation is trajectory specialized then

belief, we combine the results from trajectory | a< a x a™ + (1 —a) x a"®
and control predictions by taking average with else
weight « so that the more suitable one takes | a+ ax a™ 4 (1 —a) x a™

up more weight (1 — «). Note that the com- end

bination weight « indeed does not need to be
a constant or symmetric, which means we can set it to different values under different situations
or different for specific control signals. In our experiment, we choose the situation according to
whether the ego vehicle is turning, implying that if it is turning, the situation is control specialized
otherwise trajectory specialized.

4 Experiments

4.1 Experimental Setup

Task & Evaluation metrics. Our method is validated and tested in the CARLA driving simulator
[20]. Given a route defined by a sequence of sparse navigation points together with high level
commands (straight, turn left/right, lane changing, and lane following), the closed-loop driving task

Table 1: Evaluation on the public CARLA Leaderboard [1] (accessed in May 2022). Our method
TCP and TCP-Ens achieve a driving score of 69.714 and 75.137 respectively with only a monocular
camera. More detailed infraction statistics can be found in the Supplementary.

Rank Method Sensor Inputs Key Metrics 1
#Cameras LiDAR Driving Route. Infraction
Score Completion Score
1 TCP-Ens (ours) 1 X 75.137 85.629 0.873
1 TCP (ours) 1 X 69.714 82.962 0.851
1 TCP-SB (ours) 1 X 68.695 82.957 0.833
2 LAV [10] 4 4 61.846 94.459 0.640
3 Transfuser 3 v 61.181 86.694 0.714
4 Latent Transfuser 3 X 45.029 75.366 0.618
5 GRIAD [9] 3 X 36.787 61.855 0.597
6 Transfuser+ [29] 4 v 34.577 69.841 0.562
7 WoR [12] 4 X 31.370 57.647 0.557
8 MaRLn [50] 1 X 24.980 46.968 0.518
9 NEAT [15] 3 X 21.832 41.707 0.650

Table 2: Comparison between the control and trajectory only model in terms of infractions frequency.
TurnRatio means the corresponding ratio of happening during turning.

Driving Collisions vehicles Collisions layout Off-road infractions Agent blocked
Score #/km | TurnRatio #/km] TurnRatio #km| TurnRatio #km| TurnRatio

Control-Only 32.4542.23 1.25 50.90% 0.23 10.00% 0.59 46.15% 0.41 50.00%
Trajectory-Only 28.29+3.03 0.85 38.70% 0.77 64.20% 0.74 62.90% 0.77 64.20%

Model

requires the autonomous agent to drive towards the destination point. It is designed to simulate
realistic traffic situations and includes different challenging scenarios such as obstacle avoidance,
crossing an unsignalized intersection, and sudden control loss. There are three major metrics: Driving
Score, Route Completion, and Infraction Score. Route Completion is the percentage of the route
completed by the autonomous agent. Infraction Score measures the number of infractions made
along the route, with pedestrians, vehicles, road layouts, red lights, and efc. Driving Score is the main
metric which is the product of Route Completion and Infraction Score.

Dataset. We use randomly generated routes under random weather conditions to collect 420K data
in the 8 public towns offered by the CARLA simulator. Similar to [10], we train TCP on 189K of
data in 4 out of 8 towns (TownO1, Town03, Town04, and Town06) for ablations and train with all
420K data for our online leaderboard submission.

4.2 State-of-the-art Comparison

Table 1 shows the result of the comparison between our method and the top 8 entries on the public
CARLA Leaderboard []. We report the results of TCP and two variants. TCP-SB replaces shared
encoders of TCP with two separate ones for two branches, and TCP-Ens is the ensemble of TCP
and TCP-SB. Our method TCP-Ens ranks first on the leaderboard with a 75.137 driving score and
highest infraction score, and TCP alone also surpasses prior methods. Note that our method only
uses a monocular camera while the top 2-4 methods all use multiple cameras and a LiDAR. Our
driving score is 50.157 higher than the second-best monocular camera method, MaRLn [50]. Our
route completion is slightly inferior to the LIiDAR candidates - one reason is that methods using
LiDAR may have a better object detection ability. Based on the detection results, they usually adopt a
crawling strategy, indicating that the vehicle would move slowly when it has stopped for a long time
and there are no obstacles ahead. As described in [29], this could alleviate ego vehicle’s blocking
problems to boost the route completion performance.

Figure 4: The trajectory-guided attention maps in two cases. In each case (row), from the left to right
we show that the input image with the predicted trajectory (the first waypoint is projected out of the
image), the predicted trajectory in the top-down view, the attention map w1, the attention map ws.

Table 3: Ablative study on the effectiveness Table 4: Comparison between MTL and en-

of different components design of our model. semble methods (v is 0.3 for all experiments).
Driving Route Infraction Driving

Exp. Score Completion Score Exp. Score #Param. FLOPs FPS

Control 32.45+2.23 76544322 0.454+0.03 Ensemble 45.03£1.28 46.81M 17.07G 69.47

+ traj-task 34.98+1.96 81.32+£5.50 0.49+0.05 MTL 48.27+£0.58 23.58M 854G 133.30

+ temporal 42.87+4.77 87.51+£3.63 0.49+0.07 TCP-SB 52.46+4.66 47.26M 17.07G 69.35

+ traj-attn ~ 46.08+£3.47 84.95£1.84 0.56+0.03 TCP 57.01+£1.88 25.77M 854G 125.71

+ fusion 57.01+1.88 85.27+1.20 0.67+0.01 TCP-Ens 59.09+£3.66 73.03M 25.61G 44.70

4.3 Control vs. Trajectory

In this section, we conduct quantitative experiments to compare the Control-Only model and the
Trajectory-Only model to demonstrate their advantages and disadvantages. For both models, we use
the same setting except for the output head and its corresponding loss. We use a ResNet-34 to encode
visual inputs and a measurement module to encode the navigation information. Similar to [60], we
add speed and value heads as auxiliary tasks to help the model better encode the environment. For
Control-Only, we predict the control distribution based on the concatenated latent feature from the
two encoders. As for Trajectory-Only, we feed the feature to a GRU decoder to generate waypoints.
As shown in Table 2, though Trajectory-Only collides with vehicles less frequently than Control-Only,
it has more layout collisions, off-road infractions, and agent blocks. We also count the ratio of each
kind of infraction that occurs during turning. It can be observed that for Trajectory-Only, a large
portion of such infractions happen when the ego agent is turning compared to Control-Only. This has
verified that Trajectory-Only performs worse when the agent is turning, which is probably caused by
the unsatisfactory trajectory following performance of simple PID controllers as discussed in Sec. 1.
As for the fact that Control-Only has a higher vehicle-collision rate, it is because the model focuses
on the current time step and the reaction to potential collisions tends to be late, as depicted in Sec. 1
as well. The results above further validate the necessity of combining the two output paradigms.

4.4 Ablative Study and Visualization

Component analysis. We first validate the effectiveness of the trajectory-guided multi-step control
prediction design, as shown in Table 3. We only employ the control branch output except for the last
complete one when fusion is applied for these ablations. Adding a trajectory branch as an auxiliary
task improves the performance by 2.5 points. The multi-step predictions with our temporal module
greatly help with 7.9 points gain, and adding the trajectory-guided attention further acquires an
improvement of 3.2 points. Finally, applying our situation based fusion scheme (« is set to 0.3)
significantly boosts the infraction score, leading the overall driving score to 57.

Multi-task vs. Ensemble. The comparison regarding their performances and computational com-
plexity is given in Table 4. Ensemble denotes directly combining the outputs of Control-Only and
Trajectory-Only with our situation based fusion scheme. MTL represents the model with a shared
CNN backbone and measurement encoders followed by a trajectory branch and a control branch,
but the control branch predicts current step prediction only and there are no interactions between
the two branches. We conclude that directly combining two models with our fusion scheme greatly
improves the performance, and using an MTL approach works better than ensemble but with a much

smaller model size and GFLOPs. A conventional ensemble approach to combine results from TCP
and TCP-SB as TCP-Ens brings further performance gain at the cost of computational complexity.

Situation based fusion weight. We investigate the choice &
of the combination weight « in the situation based fusion @

scheme and show the box plot of the driving scores in the fig- = ? i
ure to the right. Besides a € [0, 0.5], we additionally test 0.7

and 1, meaning that two results are conversely mixed with

our specialization definition. We see that only using the &,
control from the specialized branch o = 0 performs poorly
while directly taking the average or fusing conversely still ~ «
has comparable results. One reason is that the situation i

criterion used here is whether the vehicle is turning, making 7= ‘ ‘ ‘ ‘
most cases trajectory specialized, and the stronger con- o0 o3 apha o7 o
trol branch is not utilized enough if « is small. Note that the
situation based fusion scheme is general and flexible, and
the criterion or « value used here is relatively coarse.

50

score

Figure 5: Box plot of the driving score with
different o values (3 trials for each a).

Visualization. Fig. 4 visualizes the trajectory-guided attention maps. The trajectory branch provides
location-related information to guide the control branch to focus on important regions which are
useful for future control prediction. See more qualitative results in the Supplementary.

5 Conclusion

In this work, we study two learning and prediction paradigms based on trajectory and direct control,
respectively, for end-to-end autonomous driving. We propose a unified framework comprised of a
trajectory branch and a novel multi-step control branch with interactions in between. We design a
situation based fusion scheme to combine the results from two branches. Our method with only a
monocular camera has achieved state-of-the-art performance on the CARLA Leaderboard.

Acknowledgments

This work was partly supported by National Key Research and Development Program of China
(2020AAA0107600), NSFC (62206172, 61972250), Shanghai Municipal Science and Technol-
ogy Major Project (2021SHZDZX0102), and Shanghai Committee of Science and Technology
(21DZ1100100, 22511105100).

References
[1] CARLA autonomous driving leaderboard. https://leaderboard.carla.org/, 2022. 3,8

[2] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In NeurIPS,
2006. 2, 3

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016. 3

[4] Mariusz Bojarski, Chenyi Chen, Joyjit Daw, Alperen Degirmenci, Joya Deri, Bernhard Firner, Beat Flepp,
Sachin Gogri, Jesse Hong, Lawrence Jackel, et al. The nvidia pilotnet experiments. arXiv preprint
arXiv:2010.08776, 2020. 1

[5] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science & business
media, 2013. 2

[6] Manuel Carranza-Garcia, Pedro Lara-Benitez, Jorge Garcia-Gutiérrez, and José C Riquelme. Enhancing
object detection for autonomous driving by optimizing anchor generation and addressing class imbalance.
Neurocomputing, 2021. 4

[7] Rich Caruana. Multitask learning. Machine learning, 1997. 2, 3

[8] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A unified model to map, perceive, predict and plan.
In CVPR, 2021. 2,3

10

https://leaderboard.carla.org/

(9]

[10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]
[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, and Fabien Moutarde. Gri: General reinforced
imitation and its application to vision-based autonomous driving. arXiv preprint arXiv:2111.08575, 2021.
1,3,8

Dian Chen and Philipp Krihenbiihl. Learning from all vehicles. In CVPR, 2022. 1, 3, 4, 8

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krihenbiihl. Learning by cheating. In CoRL, 2020.
1,2,3

Dian Chen, Vladlen Koltun, and Philipp Kréhenbiihl. Learning to drive from a world on rails. In /ICCV,
2021.1,3,8

Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu, Xiangwei Geng, Hongyang Li, Conghui He,
Jianping Shi, Yu Qiao, et al. Persformer: 3d lane detection via perspective transformer and the openlane
benchmark. arXiv preprint arXiv:2203.11089, 2022. 2, 4

Sumanth Chennupati, Ganesh Sistu, Senthil Yogamani, and Samir A Rawashdeh. Multinet++: Multi-stream
feature aggregation and geometric loss strategy for multi-task learning. In CVPRW, 2019. 4

Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat: Neural attention fields for end-to-end
autonomous driving. In ICCV, 2021. 1,2, 3, 8

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder—decoder for statistical
machine translation. In EMNLP, 2014. 2, 5

Felipe Codevilla, Matthias Miiller, Antonio Lépez, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end
driving via conditional imitation learning. In /CRA, 2018. 1,2, 3,4

Felipe Codevilla, Eder Santana, Antonio M Lépez, and Adrien Gaidon. Exploring the limitations of
behavior cloning for autonomous driving. In /CCV, 2019. 1, 2, 3

Thomas G Dietterich. Ensemble methods in machine learning. In MCS, 2000. 4

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An
open urban driving simulator. In CoRL, 2017. 3,7

Hongyan Guo, Dongpu Cao, Hong Chen, Zhenping Sun, and Yunfeng Hu. Model predictive path
following control for autonomous cars considering a measurable disturbance: Implementation, testing, and
verification. MSSP, 2019. 2

Jeftrey Hawke, Richard Shen, Corina Gurau, Siddharth Sharma, Daniele Reda, Nikolay Nikolov, Prze-
mystaw Mazur, Sean Micklethwaite, Nicolas Griffiths, Amar Shah, et al. Urban driving with conditional
imitation learning. In ICRA, 2020. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016. 5

Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learning to steer by mimicking features
from heterogeneous auxiliary networks. In AAAI 2019. 3, 4

Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3: End-to-end
vision-based autonomous driving via spatial-temporal feature learning. In ECCV, 2022. 2, 3

Sebastian Huch, Aybike Ongel, Johannes Betz, and Markus Lienkamp. Multi-task end-to-end self-driving
architecture for cav platoons. Sensors, 2021. 3

Keishi Ishihara, Anssi Kanervisto, Jun Miura, and Ville Hautamaki. Multi-task learning with attention for
end-to-end autonomous driving. In CVPR, 2021. 3, 4

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local
experts. Neural computation, 1991. 4

Bernhard Jaeger. Expert drivers for autonomous driving. Master’s thesis, University of Tiibingen, 2021. 1,
2,3,4,8

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu
Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In ICRA, 2019. 3

11

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Inhan Kim, Hyemin Lee, Joonyeong Lee, Eunseop Lee, and Daijin Kim. Multi-task learning with future
states for vision-based autonomous driving. In ACCV, 2020. 3, 4

Inhan Kim, Joonyeong Lee, and Daijin Kim. Learning mixture of domain-specific experts via disentangled
factors for autonomous driving. In AAAI 2022. 4

Philipp Krihenbiihl and Vladlen Koltun. Learning to propose objects. In CVPR, 2015. 4

Varun Ravi Kumar, Senthil Yogamani, Hazem Rashed, Ganesh Sitsu, Christian Witt, Isabelle Leang, Stefan
Milz, and Patrick Méder. Omnidet: Surround view cameras based multi-task visual perception network for
autonomous driving. RA-L, 2021. 2,4

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NeurIPS, 2017. 4

Yingwei Li, Adams Wei Yu, Tianjian Meng, Ben Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen, Bo Wu,
Yifeng Lu, Denny Zhou, et al. Deepfusion: Lidar-camera deep fusion for multi-modal 3d object detection.
In CVPR, 2022. 4

Zhihao Li, Toshiyuki Motoyoshi, Kazuma Sasaki, Tetsuya Ogata, and Shigeki Sugano. Rethinking self-
driving: Multi-task knowledge for better generalization and accident explanation ability. arXiv preprint
arXiv:1809.11100, 2018. 3

Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task multi-sensor fusion for 3d
object detection. In CVPR, 2019. 2, 4

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable imitative reinforcement
learning for vision-based self-driving. In ECCV, 2018. 1, 3

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann Cun. Off-road obstacle avoidance through
end-to-end learning. In NeurIPS, 2005. 3

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann Cun. Off-road obstacle avoidance through
end-to-end learning. In NeurIPS, 2005. 2

Eshed Ohn-Bar, Aditya Prakash, Aseem Behl, Kashyap Chitta, and Andreas Geiger. Learning situational
driving. In CVPR, 2020. 1, 4

Ashwini Pokle, Roberto Martin-Martin, Patrick Goebel, Vincent Chow, Hans M Ewald, Junwei Yang,
Zhenkai Wang, Amir Sadeghian, Dorsa Sadigh, Silvio Savarese, et al. Deep local trajectory replanning and
control for robot navigation. In /CRA, 2019. 3

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In NeurIPS, 1988. 2, 3

Aditya Prakash, Aseem Behl, Eshed Ohn-Bar, Kashyap Chitta, and Andreas Geiger. Exploring data
aggregation in policy learning for vision-based urban autonomous driving. In CVPR, 2020. 3, 4

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-end
autonomous driving. In CVPR, 2021. 1, 3,5

Georgia Rajamanoharan, Ayta¢ Kanaci, Minxian Li, Shaogang Gong, et al. Multi-task mutual learning for
vehicle re-identification. In CVPR, 2019. 4

Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for flexible inference,
planning, and control. In /CLR, 2019. 1

Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, and Raquel Urtasun. Perceive,
predict, and plan: Safe motion planning through interpretable semantic representations. In ECCV, 2020. 3

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free reinforcement learning
for urban driving using implicit affordances. In CVPR, 2020. 3, 8

Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and Theodore L Willke.
Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In ECCV, pages
550-564, 2018. 4

Dong Wu, Manwen Liao, Weitian Zhang, and Xinggang Wang. Yolop: You only look once for panoptic
driving perception. arXiv preprint arXiv:2108.11250, 2021. 4

12

[53] Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M Lépez. Multimodal end-to-end
autonomous driving. 7-ITS, 2020. 3

[54] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of driving models from
large-scale video datasets. In CVPR, 2017. 3

[55] Jie Xu, Wei Wang, Hanyuan Wang, and Jinhong Guo. Multi-model ensemble with rich spatial information
for object detection. Pattern Recognition, 2020. 4

[56] Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end multi-modal multi-task
vehicle control for self-driving cars with visual perceptions. In /CPR, 2018. 3, 4

[57] Eloi Zablocki, Hédi Ben-Younes, Patrick Pérez, and Matthieu Cord. Explainability of vision-based
autonomous driving systems: Review and challenges. arXiv preprint arXiv:2101.05307, 2021. 2

[58] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and Raquel Urtasun.
End-to-end interpretable neural motion planner. In CVPR, 2019. 3

[59] Jimuyang Zhang and Eshed Ohn-Bar. Learning by watching. In CVPR, 2021. 1, 3

[60] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. End-to-end urban driving
by imitating a reinforcement learning coach. In ICCV, 2021. 1,3,4,7,9

[61] Albert Zhao, Tong He, Yitao Liang, Haibin Huang, Guy Van den Broeck, and Stefano Soatto. Sam:
Squeeze-and-mimic networks for conditional visual driving policy learning. In CoRL, 2021. 3

[62] Yinuo Zhao, Kun Wu, Zhiyuan Xu, Zhengping Che, Qi Lu, Jian Tang, and Chi Harold Liu. Cadre: A
cascade deep reinforcement learning framework for vision-based autonomous urban driving. In AAAI,
2022. 3

[63] Zeyu Zhu and Huijing Zhao. Multi-task conditional imitation learning for autonomous navigation at
crowded intersections. arXiv preprint arXiv:2202.10124,2022. 3, 4

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section XX.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the Supplementary.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the
Supplementary.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A |

13

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The zip file of
source code and the URL of data are in the Supplementary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4.1 and the Supplementary.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Sec. 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Supplementary.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We use the CARLA
simulator and pretrained ResNet model.

(b) Did you mention the license of the assets? [Yes] See the Supplementary.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The zip file of source code and the URL of data are in the Supplementary.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? CARLA is a public simulator.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? Data in the public simulator does not have these
issues.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	End-to-end Autonomous Driving
	Multi-task and Ensemble Learning for Autonomous Driving

	Trajectory-guided Control Prediction
	Problem Setting
	Architecture Design
	Trajectory planning branch
	Multi-step control prediction branch

	Loss Design
	Output Fusion

	Experiments
	Experimental Setup
	State-of-the-art Comparison
	Control vs. Trajectory
	Ablative Study and Visualization

	Conclusion

