
Ensemble sampler for infinite-dimensional inverse

problems

Jeremie Coullon1 and Robert J. Webber2

1Mathematics and Statistics, Lancaster University
2New York University

AABI 2021

Abstract

We introduce a new Markov chain Monte Carlo sampler for infinite-dimensional
Bayesian inverse problems. The new sampler is based on the affine invariant ensemble
sampler, which we extend for the first time to function spaces. The new sampler is more
efficient than preconditioned Crank-Nicolson, yet it requires no gradient information
or posterior covariance information, making the sampler broadly applicable.

1 Introduction

In Bayesian inverse problems, Markov chain Monte Carlo (MCMC) methods are needed to
approximate distributions on infinite-dimensional function spaces. Yet designing an efficient
and broadly applicable MCMC method for this context has proved challenging.

The first MCMC sampler for function spaces was preconditioned Crank-Nicolson (pCN,
[2]). This early approach can be used for a wide variety of Bayesian inverse problems,
yet pCN is inefficient, requiring a very large number of iterations to estimate statistics of
the posterior distribution [3]. In contrast, newly developed MCMC methods sample the
posterior distribution more efficiently [3, 4, 1, 8, 7], yet the new samplers require gradient or
posterior covariance information which is challenging to obtain for many inverse problems.

This raises the question: what function space sampler is more efficient than pCN without
requiring gradient or posterior covariance information? A gradient-free sampler is needed
when the forward model has a legacy code base and obtaining derivatives is difficult or
impossible. A covariance-free sampler is needed when estimating the posterior covariance
matrix is a challenging procedure that would use up excessive computational resources.

In the literature on finite-dimensional MCMC, there is a gradient-free sampler that
quickly “learns” the posterior covariance structure through an ensemble of interacting walk-
ers. This sampler, called the affine invariant ensemble sampler (AIES, [6]), is easy to tune,
easy to parallelize, and efficient at sampling spaces of moderate dimensionality (d ≤ 20).
AIES is used extensively due to its implementation in the well-known emcee package for
python [5].

The main contribution of this work is to extend the AIES to the setting of infinite-
dimensional inverse problems with a Gaussian prior distribution. We first identify the
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Karhunen–Loève (KL) expansion for the prior distribution. Then, we alternate between
AIES and pCN sampling steps. We use AIES to sample the posterior distribution on the
first few KL coefficients, while we use pCN to sample the posterior distribution on the
higher KL coefficients. By combining AIES with pCN, we obtain an ensemble sampler that
is stable, efficient, and broadly applicable across a large class of Bayesian inverse problems.

2 Background

In this section we briefly review the pCN and AIES samplers.
Firstly, pCN is a dimension-independent random walk sampler and has the following

proposal: starting from a position U , the pCN update takes the form

Ũ =
√

1− ω2U + ωξ, (1)

where ξ ∼ N (0, C) is a random draw from the Gaussian prior distribution and ω ∈ (0, 1]
is the step size parameter. This proposal is independent of dimension and has acceptance
probability

min
{

1, exp
(
φ(Ũ)− φ(U)

)}
, (2)

In contrast, AIES is a finite-dimensional sampler is defined by an ensemble of walkers−→
X = (X1, ...XL) to sample from a product density π (x1) · · ·π (xL) with each walker taking
values in RM . The proposal for walker Xi to the new position is:

X̃i = Xi + (1− Z) (Xj −Xi) , (3)

where Z ∈ [1/a, a] is a random number with density g (Z) ∝ 1/
√
z,.

This proposal has acceptance probability

min

{
1, ZM−1

π(X̃i)

π(Xi)

}
. (4)

3 New ensemble sampler

Under the posterior distribution π (du) ∝ exp (φ (u))π0 (du), the KL coordinates have an
unknown distribution, which must be approximated through sampling. However, the prior
distribution restricts the posterior distribution in substantial ways. The higher KL coeffi-
cients (ie: the coefficients of the high frequency basis elements) in particular, are already
highly constrained under the the prior distribution, so the prior and posterior distributions
must be similar. As a consequence, the pCN approach, which is designed for efficient sam-
pling from the prior distribution, works well for sampling the posterior distribution on the
higher KL coordinates.

The most difficult part of sampling the Bayesian posterior distribution is sampling the
first few KL coefficients. These coordinates are barely constrained under the prior distri-
bution, so the posterior distribution can take an arbitrary shape, which may be poorly
scaled or multimodal. As a consequence, the pCN sampler may work very slowly on these
coordinates, in which case an improved sampling strategy is required.

To address the sampling bottlenecks in Bayesian inverse problems, we propose a Metropolis-
within-Gibbs sampler that alternates between using pCN on the higher KL coefficients and
using the AIES sampler on the first few KL coefficients.
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The proposed function space ensemble sampler robustly improves the sampling perfor-
mance of pCN, as we show through two examples. Remarkably, this is the first known
sampler that improves on the performance of pCN without requiring gradients and without
requiring posterior covariance information.

Algorithm 1: Functional ensemble sampler (FES).

To sample a Bayesian posterior distribution π(du) ∝ exp (φ(u))π0(du) with a
Gaussian prior π (0, C), we perform the following steps:

1. Identify the matrix J whose columns are the first M eigenvectors of the covariance
operator. Set P = JJT and Q = I − JJT .

2. Initialise an ensemble of walkers
−→
X = (X1, ...XL).

3. Repeat the following sampling steps:

(a) For each walker Xi, propose the update

X̃i = PXi +Q
(√

1− ω2Xi + ωξ
)
, (5)

where ξ ∼ N (0, C). Accept the proposal with probability

min
{

1, exp
(
φ
(
X̃i

)
− φ (Xi)

)}
. (6)

(b) For each walker Xi, randomly choose a different walker Xj 6= Xi. Propose the
update

X̃i = Xi + (1− Z)P (Xj −Xi) , (7)

where Z ∈ [1/a, a] has density g (z) ∝ 1/
√
z. Accept with probability

min

1, ZM−1
π
(
X̃i

)
π (Xi)

 . (8)

4 Numerical experiments

In this section we will consider two examples to illustrate the performance of the FES
sampler on problems that have both scalar and functional parameters.

The first example - the advection equation - shows how the FES sampler can increase
mixing speed by two orders of magnitude over pCN. We also illustrate the effect of varying
the main tuning parameter M.

The second example - path reconstruction for langevin dynamics - shows the robustness
of FES to mild multimodality and model misfit. We compare FES to pCN as well as to
another gradient-free sampler (which is main competitor of our method) and find that FES
performs better.
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For both examples we fix the stretch move step size to a = 2, as recommended in [5] and
tune the pCN proposal ω to give an acceptance rate of 20%.

4.1 Advection equation

Our first example involves parameter estimation for the advection equation, which is linear
hyperbolic partial differential equation (PDE). This simple model is the special case of more
complicated nonlinear hyperbolic PDEs arising in fluid dynamics, acoustics, motorway traffic
flow, and many other applications.{

∂ρ
∂t + c ∂ρ∂x = 0, t > 0.

ρ = ρ0, t = 0.
(9)

We simultaneously estimate the advection speed c and the initial condition ρ0 from a set of
noisy observations.

In this example we set a uniform prior on the wave speed π0(c) ∼ U(0, 1.4), and set
a Gaussian process prior on the initial condition on [0, 10]. We use a squared exponential
kernel, with l = 1 and σ0 = 130:

k(x, x′) = σ0 exp{− 1

2l
(x− x′)2}

We discretise the initial condition using 200 points. We generate observations we set
ctrue = 0.5 and use a sample from the GP prior as initial condition. We consider 9 equally
spaced observation in the x-t plane and add Gaussian observational noise with standard
deviation σobs = 0.1.

We run FES with L = 100 walkers and M = 0, 1, 5, 10, 20 for 20, 20, 10, 2, 2 million
iterations respectively. The sampler uses Metropolis-with-Gibbs updates as in algorithm
(1); namely it alternates proposing the finite space and the complementary subspace.

We also run a ”vanilla” sampler that proposes a joint update for the wave speed and
initial condition. The proposals are a Gaussian random walk for the wave speed and pCN
for the initial condition.

We show the ACF plots in figure (1): these illustrate how FES can show a two orders
of magnitude speedup compared to pCN. We also see how M = 10 is optimal, and that
choosing M too large causes mixing to slow down again.
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Figure 1: FES and pCN for the advection equation: ACF curves for c and the first basis
coefficients. Choosing a reasonable value for M brings large perfomance gains

4.2 Path reconstruction for Langevin dynamics

In this example we compare the performance of pCN, FES, and the hybrid sampler developed
in [8]. This hybrid sampler also considers a truncation of the KL expansion, but has adaptive
Gaussian proposals for the finite-dimensional space.

We also compare the performance of FES for different number of walkers as well as
joint and MwG updates. We find that MwG updates are preferable, and that using a large
number of walkers is better (as recommended in [5]).

We consider Langevin dynamics on a single well potential giving the evolution of position
Xt and momentum Pt:

Our second example involves parameter estimation for the noisy harmonic oscillator
dXt = P dt,

dPt = −αXt dt+σ dWt,

X = P = 0, t = 0.

(10)

We use as true path X(t) = sin(4t) and generate noisy observations from it. Note that
this model misfit makes the sampling problem more challenging.

We simultaneously estimate the drift parameter α, the diffusion parameter σ, and the
driving Brownian motion W from noisy observations. We compare the performance of pCN,
the new ensemble sampler, and another gradient-free sampler in the literature.

This posterior exhibits multimodality in the alpha parameter which change the frequency
of the Xt paths (as seen in figure 2).
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(a) Posterior pdf (b) Posterior paths

Figure 2: (a) Posterior pdf for α and σ parameter for the joint
ensemble sampler (b) Posterior paths with multimodality for the
joint ensemble sampler with observations

We show the ACF plots of the different samplers in figure (3). We find that pCN works
slowly because of the multimodality of the α parameter. However, the new ensemble sampler
freely traverses the modes, leading to faster sampling than pCN and the other alternative
approach that explicitly estimates the posterior covariance matrix. FES is therefore more
robust than the other samplers to mild multimodality as well as model misfit (recall that
the data was generated from X(t) = sin(4t)).

We also find that as the hybrid sampler takes a large number of iterations for the adapta-
tion of the Gaussian proposal to stabilise (around 1 million iterations). This long adaptation
can be a problem when the forward model is computationally expensive, as is often the case
with ODE and PDE models.

Figure 3: ACF curves for the two scalar parameters in langevin dynamics

5 Conclusion

We introduce a new gradient-free sampler for function spaces which is shown to outper-
form a random walk proposal (pCN) as well as a specialised gradient-free sampler in the
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literature. In terms of limitations, there are two aspects to our work. Both work well but
both can potentially be improved further. First, we approximate the subspace where pCN
is not good enough for sampling using the KL expansion and keeping the first few basis
elements. It would beneficial to find a better way to estimate this low-dimensional subspace
without gradients. However, estimating the full covariance is difficult, especially for high
discretisation. After isolating the subspace where pCN is not good enough for sampling, the
AIES is a good gradient-free sampler, but there might be other better methods that can be
proposed, specifically, in the case of extreme multimodality, which is acknowledged [6] to be
the main limitation of AIES.
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