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Abstract
We investigate certified robustness for GNNs un-
der graph injection attacks. Existing research
only provides sample-wise certificates by veri-
fying each node independently, leading to very
limited certifying performance. In this paper, we
present the first collective certificate, which cer-
tifies a set of target nodes simultaneously. To
achieve it, we formulate the problem as a binary
integer quadratic constrained linear programming
(BQCLP). We further develop a customized lin-
earization technique that allows us to relax the
BQCLP into linear programming (LP) that can
be efficiently solved. Through comprehensive
experiments, we demonstrate that our collective
certification scheme significantly improves cer-
tification performance with minimal computa-
tional overhead. For instance, by solving the
LP within 1 minute on the Citeseer dataset, we
achieve a significant increase in the certified ra-
tio from 0.0% to 81.2% when the injected node
number is 5% of the graph size. Our paper marks
a crucial step towards making provable defense
more practical. Our source code is available at
https://github.com/Yuni-Lai/CollectiveLPCert.

1. Introduction
Graph Neural Networks (GNNs) have emerged as the domi-
nant models for graph learning tasks, demonstrating remark-
able success across diverse applications. However, recent
studies (Zügner et al., 2018; Zügner & Günnemann, 2019;
Liu et al., 2022) have revealed the vulnerability of GNNs to
adversarial attacks, raising significant concerns regarding
their security. Notably, a new type of attack called Graph
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Figure 1: While the sample-wise certificate verifies target
nodes one by one, our collective certificate verifies a set of
target nodes simultaneously by linear programming.

Injection Attack (GIA) has raised considerable attention.
Unlike the commonly studied Graph Modification Attack
(GMA), which involves inserting and deleting edges, GIA
will inject carefully crafted malicious nodes into the graph.
Recent research (Chen et al., 2022; Tao et al., 2023; Ju
et al., 2023) has demonstrated that GIA is not only more
cost-efficient but also more powerful than GMA.

To counteract these attacks, significant efforts have been
dedicated to robustifying GNNs. Representative defense
approaches include adversarial training (Gosch et al., 2023),
the development of robust GNN architectures (Jin et al.,
2020; Zhu et al., 2019; Zhang & Zitnik, 2020), and the detec-
tion of adversaries (Zhang et al., 2019; 2020). While these
approaches are quite effective against known attacks, there
remains a concern that new adaptive attacks could under-
mine their robustness. To tackle the challenge of emerging
novel attacks, researchers have explored provable defense
approaches (Cohen et al., 2019; Li et al., 2023; Bojchevski
et al., 2020; Scholten et al., 2022; Schuchardt et al., 2023)
that offer certified robustness for GNN models: the predic-
tions of models are theoretically guaranteed to be consistent
if the attacker’s budget (e.g., the number of edges could be
modified) is constrained in a certain range.

Sample-wise vs. Collective certification The certifica-
tion against attacks over graphs can be categorized into two
types: sample-wise and collective. Sample-wise certifica-
tion approaches (Cohen et al., 2019; Bojchevski et al., 2020;
Lai et al., 2023) essentially verify the prediction for a node
one by one, assuming that the attacker can craft a different
perturbed graph each time to attack a single node (Figure
1, top). However, in reality, the attacker can only produce
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a single perturbed graph to simultaneously disrupt all pre-
dictions for a set of target nodes T (Figure 1, bottom). Such
a discrepancy makes sample-wise certificates rather pes-
simistic. In contrast, more recent works (Schuchardt et al.,
2020; 2023) aim to certify the set of nodes at once, provid-
ing collective certification that can significantly improve
the certifying performance.

In the domain of certifying GNNs, the majority of research
works (Bojchevski et al., 2020; Wang et al., 2021; Jia et al.,
2020; 2022; Scholten et al., 2022) focus on sample-wise
certification against GMA. The only collective certification
scheme against GMA proposed by Schuchardt et al. (2020),
however, is not applicable to GIA. This is because the cer-
tification scheme assumes a fixed receptive field of GNNs,
while GIA, which involves adding edges after injecting
nodes, inevitably expands the receptive field. Although
there are emerging works (Lai et al., 2023; Jia et al., 2023)
specifically designed to tackle GIA, they only offer sample-
wise certificates, resulting in limited certified performance.

We are therefore motivated to derive the first collective
certified robustness scheme for GNNs against GIA. To
achieve collective robustness, we leverage the inherent lo-
cality property of GNNs, where the prediction of a node
in a k-layer message-passing GNN is influenced solely by
its k-hop neighbors. This ensures that injected edges by
the attacker only impact a subset of the nodes. We address
the collective certification problem by transforming it into
a budget allocation problem, considering the attacker’s ob-
jective of modifying the predictions of as many nodes as
possible with a limited number of malicious nodes and max-
imum edges per node. By overestimating the number of
modified nodes, we can certify the consistent classification
of the remaining nodes.

However, the above problem yields a binary integer
polynomial-constrained program, which is known to be NP-
hard. We then propose a customized linearization technique
to relax the original problem to a linear programming (LP),
which can be solved efficiently. The LP relaxation provides
a lower bound on the achievable certified ratio, ensuring the
soundness of the verification process. We conduct compre-
hensive experiments to demonstrate the effectiveness as well
as the computational efficiency of our collective certifica-
tion scheme. For example, when the injected node number
is 5% of the graph size, our collective robustness models
increase the certified ratio from 0.0% to over 80.0% in both
Cora-ML and Citeseer datasets, and it only takes about 1
minutes to solve the collective certifying problem.

Overall, we propose the first collective certificate for GNNs
against graph injection attacks. In particular, it is computa-
tionally efficient and can significantly improve the certified
ratio. Moreover, this certification scheme is almost model-
agnostic as it is applicable for any message-passing GNNs.

2. Background
2.1. Graph Node Classification

We focus our study on graph node classification tasks. Let
G = (V, E , X) ∈ G represent an undirected graph, where
V = {v1, · · · , vn} is the set of n nodes, E = {eij =
(vi, vj)} denotes the set of edges with each edge eij con-
necting vi and vj , and X ∈ Rn×d represents the features
associated with nodes. Equivalently, we can use an adja-
cency matrix A ∈ {0, 1}n×n with Aij = 1 if eij ∈ E and
Aij = 0 if eij /∈ E to encode the graph structure of G.
Each node has its label y ∈ Y = {1, · · · ,K}, but only a
subset of these labels are known. The goal of a multi-output
graph node classifier f : G → {1, · · · ,K}n is to predict
the missing labels given the input graph G.

2.2. Message-Passing Graph Neural Networks

In this paper, we study certified robustness approaches that
are applicable to the most commonly used GNNs that oper-
ate under the message-passing framework based on neigh-
bor aggregation. These message-passing GNNs (Kipf &
Welling, 2016; Gilmer et al., 2017; Veličković et al., 2018;
Geisler et al., 2020) encode the local information of each
node by aggregating its neighboring node features (i.e., em-
bedding) through various aggregation functions. During the
inference, the receptive field of a node v in k-layer GNN
is just its k-hops neighbors, and the nodes/edges beyond
the receptive field would not affect the prediction of the
node when the model is given. This locality enables the
application of collective certificates.

2.3. Certified Robustness from Randomized Smoothing

Certified robustness aims to provide a theoretical guarantee
of the consistency of a model’s prediction under a certain
perturbation range on the input. Randomized smoothing is
a widely adopted and versatile approach for achieving such
certification across a range of models and tasks (Jia et al.,
2020; Bojchevski et al., 2020; Li et al., 2023). Take the
graph model as an example; it adds random noise (such as
randomly deleting edges) to the input graph. Then, given
any classifier f , it builds a smoothed classifier g which
returns the “majority vote” regarding the random inputs.
Certification is achieved based on the fact that there is a
probability of overlap between the random samples drawn
from the clean graph and the perturbed graph, in which the
predictions must be the same.

3. Problem Statements
3.1. Threat Model: Graph Injection Attack

We focus on providing robustness certificates against graph
injection attacks (GIAs) under the evasion threat model,
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where the attack perturbation occurs after the model training.
The adversaries aim to disrupt the node classifications of a
set of target nodes, denoted by T, as many as possible. To
this end, it can inject ρ additional nodes Ṽ = {ṽ1, · · · , ṽρ}
into the graph. These injected nodes possess arbitrary node
features represented by the matrix X̃ ∈ Rρ×d. Additionally,
Ẽ represents the set of edges introduced by the injected
nodes. To limit the power of the adversaries and avoid being
detected by the defender, we assume that each injected
node ṽ is only capable of injecting a maximum of τ edges.
Thus, the degree of each injected node δ(ṽ) is no more
than τ . Let us represent the perturbed graph as G′, with its
corresponding adjacency matrix denoted as A′. We formally
define the potential GIA as a perturbations set associated
with a given graph G = (V, E , X):

Bρ,τ (G) := {G′(V ′, E ′, X ′)|V ′ = V ∪ Ṽ, E ′ = E ∪ Ẽ ,
X ′ = X ∪ X̃, |Ṽ| ≤ ρ, δ(ṽ) ≤ τ,∀ṽ ∈ Ṽ}. (1)

Given the absence of a collective certificate to address these
types of perturbations, our first contribution is to define the
problem of collective robustness.

3.2. Problem of Collective Certified Robustness

Following (Scholten et al., 2022), we employ randomized
smoothing to serve as the foundation of our certification. In-
tuitively, by adding random noise to the graph, the message
from the injected node to a target node has some proba-
bility of being intercepted in the randomization, such that
the GNN models will not aggregate the inserted node’s fea-
ture for prediction. We adopt node-aware bi-smoothing
(Lai et al., 2023), which was proposed to certify against
the GIA perturbation, as our smoothed classifier. Given a
graph G, random graphs are created by a randomization
scheme denoted as ϕ(G) = (ϕe(G), ϕn(G)). It consists
of two components: edge deletion smoothing ϕe(G) and
node deletion smoothing ϕn(G). Specifically, the former
randomly deletes each edge with probability pe, and the
latter randomly deletes each node (together with its incident
edges) with probability pn. Based on these random graphs,
a smoothed classifier g(·) is constructed as follows:

gv(G) := argmax
y∈{1,··· ,K}

pv,y(G), (2)

where pv,y(G) := P(fv(ϕ(G)) = y) represents the prob-
ability that the base GNN classifier f returned the class y
for node v under the smoothing distribution ϕ(G), and g(·)
returns the “majority votes” of the base classifier f(·).

Given a specific attack budget ρ and τ , our objective is to
provide certification for the number of target nodes in T that
are guaranteed to maintain consistent robustness against any
potential attack. We assume that the attacker’s objective is to
maximize the disruption of predictions for the target nodes,

∑
v∈T I{gv(G′) ̸= gv(G)}, through the allocation of insert-

ing edges. By modeling a worst-case attacker that leads to
a maximum number of non-robust nodes, we can certify
that the remaining number of nodes is robust. Such that the
collective certification can be formulated as an optimization
problem as follows:

min
G′∈Bρ,τ (G)

|T| −
∑
v∈T

I{gv(G′) ̸= gv(G)}, (3)

s.t. |Ṽ| ≤ ρ, δ(ṽ) ≤ τ, ∀ṽ ∈ Ṽ.

Typically, when setting the T as a single node, the problem
degrades to a sample-wise certificate.

4. Collective Certified Robustness
In this section, we derive the collective certificate for the
smoothed classifier with any message-passing GNNs as the
base classifier. To ensure the clarity of the presentation, we
begin by providing an overview of our approach.

4.1. Overview

The derivation of the robustness certificate relies on a worst-
case assumption: in the message-passing process, if a node
receives even a single message from any injected node, its
prediction will be altered. It is important to note that this
assumption exaggerates the impact of the attack, thereby
validating the guarantee of the defense. Accordingly, we
define message interference for a node v as the event Ev

that the node v receives at least one message from injected
nodes in message passing.

The achievement of collective certification then constitutes
the following crucial steps. First, we derive an upper bound
on the probability of the message interference event, de-
noted as p(Ev) (Section. 4.2.1). Second, we establish
the relation between the probability p(Ev) and the pre-
diction probability pv,y(G), which allows us to bound the
change of pv,y(G) under the perturbation range Bρ,τ (G)
(Section. 4.2.2). Third, we derive the certifying condition
for smoothed classifier g based on the results from the pre-
vious sections (Section. 4.2.3). Finally, we formulate the
collective certified robustness problem as an optimization
problem (Section. 4.3).

4.2. Condition for Certified Robustness

4.2.1. MESSAGE INTERFERENCE EVENT

We begin by introducing some necessary notations. We
use P k

ṽv to represent all the existing paths from an injected
node ṽ ∈ Ṽ to a testing node v, where the length or dis-
tance of these paths is smaller than k. Each path q in P k

ṽv

consists of a series of linked edges. To simplify notation,
we define ϕe(A) as an equivalent representation of ϕe(G),
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where ϕe(A)ij = 0 if the edge (i, j) does not exist after the
sampling, and ϕe(A)ij = 1 if the edge (i, j) remains. Sim-
ilarly, we represent ϕn(G) as ϕn(A)i, where ϕn(A)i = 0
indicates the deletion of node i, and ϕn(A)i = 1 denotes
that the node remains unchanged. Then, we formally define
the event Ev as:

∃ṽ ∈ Ṽ : (∃q ∈ P k
ṽv : (∀ni ∈ q : ϕn(A

′)ni
= 1) (4)

∧ (∀(i, j) ∈ q : ϕe(A
′)ij = 1)).

That is at least one path from a malicious node ṽ to the
testing node v is effective (all edges and nodes are kept in the
smoothing). Below, our goal is to quantify the probability
of Ev , so that we can provide an estimation of the potential
impact of injected nodes on the prediction probability.

However, directly estimating the event probability p(Ev) is
difficult because we need to find out all the possible paths
P k
ṽv for each node. Similar to (Scholten et al., 2022), we

have an upper bound for p(Ev) ≤ p(Ev) by assuming the
independence among the paths:

Lemma 1. Let A be the adjacency matrix of the perturbed
graph with ρ injected nodes, and the injected nodes are in
the last ρ rows and columns. With smoothing pn > 0 and
pe > 0, we have the upper bound of p(Ev):

p(Ev) ≤ p(Ev) (5)

=1− p
||An:(n+ρ),v||1
1 p

||A2
n:(n+ρ),v||1

2 · · · p||A
k
n:(n+ρ),v||1

k ,

where pi := 1 − (p̄ep̄n)
i, ∀i ∈ {1, 2, · · · , k}, and adja-

cency matrix A contains the injected nodes encoded in the
(n+ 1)th to (n+ ρ)th row, and || · ||1 is l1 norm.

Proof. (Sketch) Let p(Ēṽ
v ) denote the probability that all

paths are intercepted from an injected node ṽ to node v in
the case that of considering each path independently. We
have p(Ēṽ

v ) =
∏

q∈Pk
ṽv
(1− (p̄ep̄n)

|q|), where p̄e := 1− pe,
p̄n := 1− pn and |q| ∈ {1, · · · , k} represent the length of
the path q ∈ P k

ṽv from ṽ to v. Furthermore, ||Ak
n:(n+ρ),v||1

quantifies the number of paths with a length of k originating
from any malicious node and reaching node v. Finally,
by considering multiple injected nodes, we have p(Ev) =
1−

∏
ṽ∈Ṽ p(Ēṽ

v ). See Appendix. A for complete proof.

4.2.2. BOUNDING THE CHANGE OF PREDICTION

Next, we first provide Lemma 2 to demonstrate that the
occurrence of the complement event of Ev , denoted as Ēv , is
the condition for the consistent prediction of base classifier
f . Then, we prove that the change of prediction probability
for the smoothed classifier g is bounded by p(Ev):

Lemma 2. Given a testing node v ∈ G, perturbation
range Bρ,τ (G), pn > 0 and pe > 0, we have fv(ϕ(G)) =

fv(ϕ(G
′)), ∀G′ ∈ Bρ,τ (G) if event Ēv occurs:

∀ṽ ∈ Ṽ : (∀q ∈ P k
ṽv : (∃ni ∈ q : ϕn(A

′)ni = 0) (6)
∨ (∃(i, j) ∈ q : ϕe(A

′)ij = 0)).

Proof. For each path q ∈ P k
ṽv, the message from the in-

jected node ṽ to the target node v is intercepted if at least
one of the edges or nodes along the path is deleted. Con-
sequently, if all the paths are intercepted as a result of the
smoothing randomization ϕ(G′), the prediction for the tar-
get node v remains unchanged.

Now, we can establish a bound on the change in prediction
probability of the smoothed classifier g, which serves as a
crucial step for deriving the certifying condition.
Theorem 1. Given a base GNN classifier f trained on
a graph G and its smoothed classifier g defined in (2), a
testing node v ∈ G and a perturbation range Bρ,τ (G), let
Ev be the event defined in Eq. (4). The absolute change in
predicted probability |pv,y(G)−pv,y(G

′)| for all perturbed
graphs G′ ∈ Bρ,τ (G) is bounded by the probability of the
event Ev: |pv,y(G)− pv,y(G

′)| ≤ p(Ev).

Proof. (Sketch) pv,y(G) − pv,y(G
′) ≤ P(fv(ϕ(G)) =

y ∧ Ev) = p(Ev) · P(fv(ϕ(G)) = y|Ev) ≤ p(Ev). See
Appendix. A for complete proof.

4.2.3. CERTIFYING CONDITION

With the upper bound of the probability change pv,y(G)
provided in Theorem 1 and upper bound of p(Ev) provided
in Lemma 1, we can derive the certifying condition for
smoothed classifier g under a given perturbation range:
Corollary 1. Given a base GNN classifier f trained on
a graph G and its smoothed classifier g, a testing node
v ∈ G and a perturbation range Bρ,τ (G), let Ev be the
event defined in Eq. (4). We have gv(G

′) = gv(G) for all
perturbed graphs G′ ∈ Bρ,τ (G) if:

p(Ev) < [pv,y∗(G)−maxy ̸=y∗pv,y(G)]/2, (7)

where y∗ ∈ Y is the predicted class of gv(G).

Proof. With Theorem 1, we have gv(G
′) = gv(G) if

pv,y∗(G) − p(Ev) > maxy ̸=y∗pv,y(G) + p(Ev), which
is equivalent to p(Ev) < [pv,y∗(G)−maxy ̸=y∗pv,y(G)]/2.

Nevertheless, quantifying p(Ev) is still challenging due to
the unknown paths P k

ṽv or the perturbed adjacency matrix.
To tackle the challenge, we introduce the following col-
lective certifying framework that models the problem of
certifying node injection perturbation as an optimization
problem. More importantly, we can certify a set of nodes at
the same time to enhance the certifying performance.
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4.3. Collective Certification as Optimization

With Corollary 1, we know that node v is not certifiably
robust if p(Ev) ≥ [pv,y∗(G)−maxy ̸=y∗pv,y(G)]/2. Under
a limited attack budget, the worst-case attacker can lead to a
maximum number of non-robust nodes among target nodes
in T, which can be formulated as follows:

max
G′∈Bρ,τ (G)

M =
∑
v∈T

I{p(Ev) ≥ cv/2}, (8)

s.t. |Ṽ| ≤ ρ, δ(ṽ) ≤ τ, ∀ṽ ∈ Ṽ,

where cv := pv,y∗(G) −maxy ̸=y∗pv,y(G), is the classifi-
cation gap of smoothed classifier. To obtain the certifiably
robust node number among all testing nodes, the optimal
objective value M∗ of (8) can serve as an upper bound for
non-robust nodes, and hence the remaining |T| −M∗ nodes
are certified robust. Plugging in p(Ev) with (5), and taking
the logarithm of the p(Ev), we transformed the problem (8)
to a binary integer polynomial-constrained programming
(We put the problem and formulation details in Appendix.
B).

Typically, for two-layer GNNs (k = 2), we formulate the
problem into a binary integer quadratic constrained linear
programming problem (BQCLP). Let A0 be the original
adjacency matrix of the existing n nodes in the graph G, and
A1 denote the adjacency matrix from injected ρ malicious
nodes to the existing nodes, and A2 be the adjacency matrix
representing the internal connection between the malicious
nodes. Then the problem (8) becomes the BQCLP problem
as follows (See Appendix. B for detailed formulation):

max
A1,A2,m

M = t⊤m, (9)

s.t. p̃1A
⊤
1 1ρ + p̃2(A1A0 +A2A1)

⊤1ρ ≤ C ◦m,

A11n +A21ρ ≤ τ, A⊤
2 = A2,

A1 ∈ {0, 1}ρ×n, A2 ∈ {0, 1}ρ×ρ, m ∈ {0, 1}n,

where t is a constant zero-one vector that encodes the po-
sition of the target node set T, m is a vector that indi-
cates whether the nodes are non-robust, p̃1 = log(p1) and
p̃2 = log(p2) are two negative constants, C ∈ Rn is a
vector with negative constant elements log(1− cv

2 ), 1n de-
notes all-ones vector with length n, ⊤ represents matrix
transposition, and ◦ denotes element-wise multiplication.

5. Effective Optimization Methods
The BQCLP problem (9) is non-convex and known to be
NP-hard. In this section, we introduce two effective methods
to relax problem (9) to a Linear Programming (LP) to solve
it efficiently. The first method (termed Collective-LP1)
relies on standard techniques to avoid quadratic terms; the
second method (termed Collective-LP2) employs a novel

customized reformulation that can significantly improve the
solution quality and computational efficiency.

5.1. Standard Linear Relaxation (Collective-LP1)

To solve problem (9) efficiently, one common solution is
to replace the quadratic terms in the constraint with linear
terms by introducing extra slack variables. We adopt the
standard technique (Wei, 2020) to address the quadratic
terms in A2A1. Specifically, let A2(ij) denotes the element
of ith row and jth column in matrix A2 and A1(jv) de-
notes the element in matrix A1. For each quadratic term
A2(ij)A1(jv) (∀i ∈ {1, · · · , ρ},∀j ∈ {1, · · · , ρ},∀v ∈
{1, · · · , n}) in A2A1, we can equivalently reformulate
Qv(ij) := A2(ij)A1(jv) with corresponding constraints:
Qv(ij) ∈ B, Qv(ij) ≤ A2(ij), Qv(ij) ≤ A1(jv), and
A2(ij) + A1(jv) − Qv(ij) ≤ 1. We further relax all the
binary constraints to the box constraints [0, 1], leading to an
LP as follows:

max
A1,A2,m,

Q1,Q2,··· ,Qn

M = t⊤m, (10)

s.t. p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2O ≤ C ◦m,

A11n +A21ρ ≤ τ, A⊤
2 = A2,

Qv = (Qv(ij))ρ×ρ, v ∈ {1, 2, · · · , n},
O = [1⊤

ρ Q11ρ,1
⊤
ρ Q21ρ, · · · ,1⊤

ρ Qn1ρ]
⊤,

Qv ≤ 1ρ[A1(:,v)]
⊤
, Qv ≤ A2, Qv ∈ [0, 1]ρ×ρ,

1ρ[A1(:,v)]
⊤
+A2 −Qv ≤ 1,

A1 ∈ [0, 1]ρ×n, A2 ∈ [0, 1]ρ×ρ, m ∈ [0, 1]n.

The more detailed formulation of problem (10) is supplied
in Appendix. B. This transformation makes our collective
robustness problem solvable in polynomial time.

Validity of relaxation for certification. It is important
to note that the relaxed LP problem always has a larger
feasible region than the original BQCLP problem. As a
result, the optimal M̄∗ (i.e., the maximum number of non-
robust nodes) of the relaxed problem is always greater than
the original problem. That is, the number of robust nodes
(|T|−M̄∗) certified by the relaxed problem is always smaller
or equal to that obtained from the original problem, such
that the relaxation always yields sound verification.

Nevertheless, this technique results in introducing O(ρ2|T|)
(extra) variables among the matrix O. To improve efficiency,
we next design a more efficient reformulation that only
requires O(ρ|T|) extra variables.

5.2. Customized Linear Relaxation (Collective-LP2)

To reduce the number of the extra variables, we notice that
there is a vector in the quadratic term A⊤

1 A
⊤
2 1ρ, and we can
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first combine the A⊤
2 1ρ to reduce the dimension. We define

a vector variable z := A⊤
2 1ρ to replace the term A⊤

2 1ρ in
the problem (9). Then we can reformulate it as:

max
A1,z,m

M = t⊤m, (11)

s.t. p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2A

⊤
1 z ≤ C ◦m,

A11n + z ≤ τ, A1 ∈ {0, 1}ρ×n,

z ∈ {0, 1, · · · ,min(ρ, τ)}ρ×1, m ∈ {0, 1}n.

To linearize the problem, we need to deal with the quadratic
term A⊤

1 z. If a binary variable x ∈ B, and a continu-
ous variable z ∈ [0, u], then w := xz is equivalent to
(Wei, 2020): w ≤ ux,w ≤ z, ux + z − w ≤ u, 0 ≤ w.
To apply it, we first relax the z to [0,min(τ, ρ)]. As-
suming that τ ≤ ρ, for each quadratic term A⊤

1(ij)zj

(∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , ρ}) in A⊤
1 z, we create

a substitution variable Q(ij) = A⊤
1(ij)zj with corresponding

constraints: 0 ≤ Q(ij), Q(ij) ≤ τA⊤
1(ij), Q(ij) ≤ zj , and

τA⊤
1(ij) + zj − Q(ij) ≤ τ . We further relax all the binary

constraints to [0, 1] interval constraints. Then the problem
(9) can be relaxed to an LP as follows:

max
A1,m,

Q∈Rn×ρ

M = t⊤m, (12)

s.t. p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2Q1ρ ≤ C ◦m,

A11n + z ≤ τ, A1 ∈ [0, 1]ρ×n,

Q ≤ τA⊤
1 , Q ≤ 1nz

⊤,

τA⊤
1 + 1nz

⊤ −Q ≤ τ,

Q ∈ [0, τ ]n×ρ, z ∈ [0, τ ]ρ×1, m ∈ [0, 1]n.

We put the detailed formulation in Appendix. B. Next, we
analyze the complexity of problem (10) and (12).

5.3. Comparison of Computational Complexity

For problem (10), in the first constraints, the rows corre-
sponding to the nodes that do not belong to the target node
set T will not affect the objective M . Although we define n
matrix Qv for the sake of convenience, only |T| of them are
actually effective. For the node with ti = 0, the value mi

will not affect the objective M , such that we can always set
mi = 0, and the first constraint always holds. Hence, there
are O(3ρ2|T| + ρ2 + ρ + |T|) effective linear constraints,
and O(ρ2|T|+ ρ2 + ρn+ |T|) effective variables.

For problem (12), similar to (10), only |T| rows of Q are
actually effective. There are O(3ρ|T|+ ρ+ |T|) effective
linear constraints, and O(ρn + ρ|T| + |T|) effective vari-
ables. Our well-designed formulation makes the collective
problem scalable regarding the number of injected nodes ρ
or the target node number |T|. In the next section, we show
that this improved LP formulation is both more efficient and
effective by experimental evaluation.

6. Experimental Evaluation
In this section, we conduct a comprehensive evaluation of
our proposed collective certificate. Given the absence of
other collective baselines for graph injection attacks (GIA),
we compare our collective certification Collective-LP1 and
Collective-LP2, with the existing Sample-wise approach
(Lai et al., 2023). We present a detailed analysis of the exper-
imental results, highlighting the strengths and advantages
of our collective certification methods.

6.1. Experimental Setup

Datasets and Base Model. We follow the literature
(Schuchardt et al., 2020; Lai et al., 2023) on certified robust-
ness and evaluate our methods on two graph datasets: Cora-
ML (Bojchevski & Günnemann, 2017) and Citeseer (Sen
et al., 2008). The Cora-ML dataset contains 2, 810 nodes,
7, 981 edges, 7 classes, and the Citeseer contains 2, 110
nodes, 3, 668 edges, 6 classes. We employ two representa-
tive message-passing GNNs, Graph Convolution Network
(GCN) (Kipf & Welling, 2016) and Graph Attention Net-
work (GAT) (Veličković et al., 2017), with a hidden layer
size of 64 as our base classifiers. We use 50 nodes per class
for training and validation respectively, while the remaining
as testing nodes. We also train the base model with random
noise augmentation following (Lai et al., 2023).

Threat Models and Certificate. We set the degree con-
straint per injected node as the average degree of existing
nodes, which are 6 = ⌈5.68⌉ and 4 = ⌈3.48⌉ respectively
on Cora-ML and Citeseer datasets. We evaluate our pro-
posed collective certificate with various amounts of injected
nodes ρ ∈ {20, 50, 80, 100, 120, 140, 160}. Grid search
is employed to find the suitable smoothing parameters pe
and pn from 0.5 to 0.9 respectively. We exclude those pa-
rameters that lead to poor accuracy that are worse than the
Multilayer Perceptron (MLP) model which does not depend
on graph structure. Following (Bojchevski et al., 2020;
Lai et al., 2023), we employ Monte Carlo to estimate the
smoothed classifier with a sample size of N = 100, 000.
We apply the Clopper-Pearson confidence interval with Bon-
ferroni correction to obtain the lower bound of pA and upper
bound of pB . We set the confidence level as α = 0.01. Due
to the overwhelming computation cost of the original col-
lective certifying problem known as NP-hard, we solve our
proposed relaxed LP problems by default. All our collective
certifying problem is solved using MOSEK (ApS, 2019)
through the CVXPY (Diamond & Boyd, 2016) interface.

Evaluation Metrics. Among the testing nodes that are
correctly classified, we randomly select 100 nodes as the
target node set T. We report the certified ratio on the target
nodes set, which is the ratio of nodes that are certifiably
robust under a given threat model. We repeat 5 times with
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different random selections and report the average results.
Additionally, we evaluate the global attack scenario in which
the T is all the nodes in the graph in Appendix. D.5.

6.2. Effectiveness of Collective Certified Robustness

In this section, we aim to verify the effectiveness of our
proposed collective approach in enhancing the certified ro-
bustness performance.

6.2.1. COMPARING COLLECTIVE WITH SAMPLE-WISE.
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Figure 2: Comparison of certified performance (More re-
sults with other parameters are shown in Appendix. D).

In Figure 2 and Table 1, we exhibit the certified ratio of
the three certificates regarding various numbers of injected
nodes ρ. With the same smoothing parameter, both proposed
collective certificates achieve a higher certifiable radius,
outperforming the sample-wise approach significantly when
the ρ is large. For example, in the Citeseer dataset, when
ρ = 140, our Collective-LP1 and Collective-LP2 have the
certified ratios of 73.0%, and 81.2%, while sample-wise
can certify 0.0% nodes. Moreover, the improvement of our
collective certificate is even more significant in the global
attack setting (Appendix. D.5).

When the ρ is small, the LP collective robustness does not
outperform the sample-wise robustness. This can be at-
tributed to the integrality gap of the relaxation technique
utilized in the LP formulation, which we further illustrated
in Section. 6.3. Interestingly, this difference becomes negli-
gible in the case of a global attack, as shown in Appendix.
D.5. Nevertheless, in practical scenarios, we can easily
combine the sample-wise and collective certificates with
minimal effort to achieve stronger certified performance in
both small and large attack budgets. Since the sample-wise

and collective models share the same smoothed model, we
only need to estimate the smoothing prediction once to avoid
extra computation. By integrating both certificates, we can
leverage their respective strengths and enhance the overall
robustness of the system.

Table 1: Comparison of certified ratio between sample-wise
and collective certifying schemes under various parameters.

Cora-ML (τ = 6) ρ
parameters

(pe-pn) methods 20 50 100 120 140

0.7-0.9
Sample-wise 1.000 0.000 0.000 0.000 0.000
Collective-LP1 0.920 0.768 0.452 0.316 0.178
Collective-LP2 0.926 0.836 0.686 0.624 0.564

0.9-0.8
Sample-wise 1.000 0.000 0.000 0.000 0.000
Collective-LP1 0.950 0.878 0.730 0.666 0.600
Collective-LP2 0.950 0.894 0.800 0.760 0.726

0.9-0.9
Sample-wise 1.000 1.000 1.000 0.000 0.000
Collective-LP1 0.978 0.948 0.900 0.880 0.862
Collective-LP2 0.978 0.948 0.900 0.880 0.862

Citeseer (τ = 4) 20 50 100 120 140

0.7-0.9
Sample-wise 1.000 0.990 0.000 0.000 0.000
Collective-LP1 0.950 0.846 0.640 0.546 0.452
Collective-LP2 0.950 0.892 0.796 0.756 0.718

0.8-0.7
Sample-wise 0.000 0.000 0.000 0.000 0.000
Collective-LP1 0.856 0.504 0.000 0.000 0.000
Collective-LP2 0.894 0.756 0.534 0.446 0.360

0.9-0.8
Sample-wise 1.000 0.000 0.000 0.000 0.000
Collective-LP1 0.970 0.920 0.820 0.775 0.730
Collective-LP2 0.970 0.930 0.862 0.840 0.812

A superior certifying scheme should not only possess a
higher certified ratio but also a higher clean accuracy that
represents the initial performance of the model. We also
evaluate the trade-off between the certified ratio and the
clean accuracy of the smoothed model in Figure 3. As
we employ the same smoothed model, both the collective
scheme and the sample-wise scheme exhibit the same clean
accuracy when they share identical smoothing parameters,
while our collective approach consistently achieves a higher
certified ratio, particularly when ρ exceeds the certifiable
radius of the sample-wise approach. Finally, these results
highlight the advantageous trade-off achieved by our pro-
posed collective approach in both smaller ρ and larger ρ.

6.2.2. COMPARING TWO COLLECTIVE CERTIFICATES.

In comparing our two LP-based collective certificates, it
is evident that our customized relaxation (Collective-LP2)
consistently achieves higher or equivalent certified ratios
compared to the standard technique (Collective-LP1). For
instance, in the Cora-ML dataset, when pe = 0.7, pn = 0.9,
and ρ = 140, Collective-LP2 improves the certified ratio by
216% compared to Collective-LP1 (Table 1). Furthermore,
with the same clean accuracy, Collective-LP2 is always
superior to Collective-LP1 in certified ratios (Figure 3).

7



Collective Certified Robustness against Graph Injection Attacks

(a) smaller ρ (GCN) (b) smaller ρ (GCN)

(c) larger ρ (GCN) (d) larger ρ (GCN)

(e) larger ρ (GAT) (f) larger ρ (GAT)

Figure 3: Trade-off between clean accuracy and certified
ratio (More results with other ρ are shown in Appendix. D).

In Figure 4, we present a comparison of the runtime be-
tween our two LP-based collective certificates. It is evident
that Collective-LP2 exhibits a significantly lower runtime
compared to Collective-LP1, particularly as ρ increases. Re-
markably, even for a larger value of ρ like ρ = 140, our
Collective-LP2 can be solved in approximately 1 minute.
This indicates the practicality and efficiency of our pro-
posed method, making it feasible for real-world scenarios
with larger attack budgets.

6.3. Effectiveness of Linear Relaxation

In this section, we investigate the impact of our LP relax-
ation technique on the certified performance of our col-
lective certification method. Specifically, we compare the
certified ratios obtained from both the original integer prob-
lem (BQCLP) and the LP problem (Collective-LP2). Figure
5 provides a graphical representation of these results. Due to
the computational overhead associated with solving the inte-
ger problem, we limit our analysis to a smaller attack budget,
ρ ≤ 12. We observe that the certified ratio of the integer
problem remains relatively stable as ρ increases. However,
the certified ratio of Collective-LP2 undergoes a decline of
approximately 5%. This decrease in certified performance
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Figure 4: Runtime comparison of LP collective models.
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Figure 5: Certified ratio comparison between optimizing
original BQCLP problem and relaxed LP problem.

is attributed to the sacrifice made in the relaxation process
of the LP formulation. It also partially explains why our
approach may exhibit a weaker certified ratio compared to
the sample-wise approach when ρ is small.

7. Related Work
In this section, we summarize the previous work that is
closely related to certified robustness. Randomized smooth-
ing has emerged as a prominent black-box technique that
provides certified robustness. It was first proposed for de-
fending against l2 norm ball perturbation in the computer
vision models (Cohen et al., 2019). Recent work extends it
to certify graph node classification tasks (Bojchevski et al.,
2020; Wang et al., 2021; Jia et al., 2020; 2022; Scholten
et al., 2022) against l0-norm ball perturbation, typically
the graph modification attacks (GMAs). To improve the
certified performance, some researchers (Schuchardt et al.,
2020; 2023) develop collective robustness schemes. These
schemes assume a realistic attacker whose objective is to
perturb a set of nodes simultaneously, thereby improving
the overall robustness against adversarial attacks.

Despite the progress made in defending against GMAs,
the robustness against graph injection attacks (GIAs) has
received relatively little attention. (Jia et al., 2023; Lai et al.,
2023) further extended it to certify against GIAs. However,
these models provide sample-wise certificates instead of
collective ones. To the best of our knowledge, there is
currently no collective certificate designed for GIAs.
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8. Limitations and Future Works
Our collective certificate is obtained through the solution
of a relaxed linear programming (LP) problem, which ef-
fectively reduces the computational complexity to linear
time. However, this relaxation does come at a cost, as it
introduces an integrality gap that compromises the certified
performance. Consequently, in situations where the attack
budget ρ is small and the sample-wise certificate proves
effective, the collective certificate may not yield superior
results.

Nevertheless, in practical scenarios, we can easily combine
the sample-wise and collective certificates with minimal ef-
fort to achieve stronger certified performance across a range
of attack budgets, whether small or large. It is worth noting
that since both the sample-wise and collective models share
the same smoothed model, we only need to estimate the
smoothing prediction once, avoiding computational over-
head. By integrating both certificates, we can leverage their
respective strengths and enhance the overall robustness of
the system.

It is important to note that, despite the improvement ob-
tained by collective certification, sample-wise certification
is still irreplaceable. The choice between sample-wise and
collective certificates depends on the specific threat model
being considered. If the focus is on ensuring the robustness
of an individual node, the sample-wise certificate is more
suitable. On the other hand, if the objective is to ensure
the overall robustness of a majority of nodes, the collective
certificate is more appropriate.

In future research, we plan to explore the development
of tighter relaxations, such as semi-definite programming
(SDP), to better handle the quadratic constraints. This could
potentially yield improved certified performance and further
enhance the robustness of our approach. Furthermore, we
plan to extend the relaxation technique to accommodate
polynomial constraints for deeper GNNs with k > 2. This
extension will allow us to address more complex scenarios
and further strengthen the applicability of our approach in
real-world settings.

9. Conclusion
In this paper, we present the first collective robustness cer-
tificate specifically designed for defending against graph
injection attacks (GIAs), which encompass edge addition
perturbations known to be more challenging to certify than
edge deletions. Our collective certificate improves the certi-
fied performance by assuming that the attacker’s objective
is to disrupt the predictions of as many target nodes as pos-
sible, using a shared single graph instead of different graphs
for each node. We model the collective certifying problem
by upper-bounding the number of non-robust nodes under a

worst-case attacker, such that the remaining nodes are guar-
anteed to be robust. However, it yields a binary quadratic
constrained programming that is NP-hard. To address this,
we propose novel relaxations to formulate the problem into
linear programming that can be efficiently solved. Extensive
experimental results demonstrate that our proposed collec-
tive certificate achieves significantly higher certified ratios
and larger certifiable radii compared to existing approaches.
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D., and Günnemann, S. Adversarial training for graph
neural networks: Pitfalls, solutions, and new directions.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Jia, J., Wang, B., Cao, X., and Gong, N. Z. Certified robust-
ness of community detection against adversarial structural
perturbation via randomized smoothing. In Proceedings
of The Web Conference 2020, pp. 2718–2724, 2020.

Jia, J., Wang, B., Cao, X., Liu, H., and Gong, N. Z. Almost
tight l0-norm certified robustness of top-k predictions
against adversarial perturbations. In International Con-
ference on Learning Representations, 2022.

Jia, J., Liu, Y., Hu, Y., and Gong, N. Z. Pore: Provably ro-
bust recommender systems against data poisoning attacks.
In 32nd USENIX Security Symposium (USENIX Security
23), pp. 1703–1720, 2023.

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J.
Graph structure learning for robust graph neural networks.
In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.
66–74, 2020.

Ju, M., Fan, Y., Zhang, C., and Ye, Y. Let graph be the go
board: gradient-free node injection attack for graph neural
networks via reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 4383–
4390, 2023.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Lai, Y., Zhu, Y., Pan, B., and Zhou, K. Node-aware bi-
smoothing: Certified robustness against graph injection
attacks. arXiv preprint arXiv:2312.03979, 2023.

Li, L., Xie, T., and Li, B. Sok: Certified robustness for deep
neural networks. In 2023 IEEE Symposium on Security
and Privacy (SP), pp. 1289–1310. IEEE, 2023.

Liu, Z., Luo, Y., Wu, L., Liu, Z., and Li, S. Z. Towards
reasonable budget allocation in untargeted graph struc-
ture attacks via gradient debias. Advances in Neural
Information Processing Systems, 35:27966–27977, 2022.

Scholten, Y., Schuchardt, J., Geisler, S., Bojchevski, A.,
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Günnemann, S. Collective robustness certificates: Ex-
ploiting interdependence in graph neural networks. In
International Conference on Learning Representations,
2020.
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Günnemann, S. Localized randomized smoothing for
collective robustness certification. In International Con-
ference on Learning Representations, 2023.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Tao, S., Cao, Q., Shen, H., Wu, Y., Hou, L., Sun, F., and
Cheng, X. Adversarial camouflage for node injection
attack on graphs. Information Sciences, 649:119611,
2023.
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A. Theorectical Proofs
Lemma 1. (Restate) Let A be the adjacency matrix of the perturbed graph with ρ injected nodes, and the injected nodes are
in the last ρ rows and columns. With smoothing pn > 0 and pe > 0, we have the upper bound of p(Ev):

p(Ev) ≤ p(Ev) (13)

=1− p
||An:(n+ρ),v||1
1 p

||A2
n:(n+ρ),v||1

2 · · · p||A
k
n:(n+ρ),v||1

k ,

where pi := 1− (p̄ep̄n)
i, ∀i ∈ {1, 2, · · · , k}, and adjacency matrix A contains the injected nodes encoded in the (n+1)th

to (n+ ρ)th row, and || · ||1 is l1 norm.

Proof. According to (Scholten et al., 2022), we have an upper bound for p(Ev) ≤ p(Ev) by assuming the independence
among the paths. Let p(Ēṽ

v ) denote the probability that all paths are intercepted from an injected node ṽ to node v in the case
that of considering each path independently. We have p(Ēṽ

v ) =
∏

q∈Pk
ṽv
(1− (p̄ep̄n)

|q|), where p̄e := 1− pe, p̄n := 1− pn

and |q| ∈ {1, · · · , k} represent the length of the path q ∈ P k
ṽv from ṽ to v. (p̄ep̄n)|q| is the probability that all edges and all

nodes in the path q are not deleted, 1− (p̄ep̄n)
|q| is the probability that at least one of edges or one of nodes are deleted, such

that the path q is intercepted. Then, by considering multiple injected nodes, we have p(Ev) = 1−
∏

ṽ∈Ṽ p(Ēṽ
v ). Finally,

we have the p(Ev) as follows:

p(Ev) (14)

= 1−
∏
ṽ∈Ṽ

p(Ēṽ
v )

= 1−
∏
ṽ∈Ṽ

{
∏

q∈Pk
ṽv

(1− (p̄ep̄n)
|q|)}

= 1−
∏
ṽ∈Ṽ

{(1− p̄ep̄n)
Aṽv (1− (p̄ep̄n)

2)A
2
ṽv · · · (1− (p̄ep̄n)

k)A
k
ṽv}

= 1− p
||An:(n+ρ),v||1
1 p

||A2
n:(n+ρ),v||1

2 · · · p||A
k
n:(n+ρ),v||1

k ,

where pi := 1− (p̄ep̄n)
i. In particular, the constant pk denotes the probability that a path with a length of k is intercepted.

According to graph theory, Ak
ṽv is the number of paths from node ṽ to node v with distance/length/steps of exactly k in

the graph. Let An:(n+ρ),v denote the slicing of matrix A, taking the vth column and the rows from (n+ 1)th to (n+ ρ)th.
Then ||Ak

n:(n+ρ),v||1 quantifies the number of paths with a length of k originating from any malicious node and reaching
node v.

Theorem 1. (Restate) Given a base GNN classifier f trained on a graph G and its smoothed classifier g defined in (2),
a testing node v ∈ G and a perturbation range Bρ,τ (G), let Ev be the event defined in Eq. (4). The absolute change in
predicted probability |pv,y(G) − pv,y(G

′)| for all perturbed graphs G′ ∈ Bρ,τ (G) is bounded by the probability of the
event Ev: |pv,y(G)− pv,y(G

′)| ≤ p(Ev).

Proof. By the law of total probability, we have

P(fv(ϕ(G′)) = y)

= P(fv(ϕ(G′)) = y ∧ Ev) + P(fv(ϕ(G′)) = y ∧ Ēv).

Note that, we define the event Ev based on the sampling of perturbed graph ϕ(G′). However, the clean graph G is smaller
than G′, and the intersection/overlap graph of them is G ∩G′ = G. Subtly, we can still use the event Ev defined on ϕ(G′)
to divide the sample space of ϕ(G) by regarding the model fv(ϕ(G)) only take part of the ϕ(G′) as input, which is the
intersected part of G: ϕ(G′)∩G, and the result does not relate to the part that beyond G (i.e., the injected nodes). Such that,
we also have

P(fv(ϕ(G)) = y)

= P(fv(ϕ(G)) = y ∧ Ev) + P(fv(ϕ(G)) = y ∧ Ēv).

12
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Due to the fact that the injected node does not have any message passing to v would not affect the pv,y(G), we have
P(fv(ϕ(G′)) = y|Ēv) = P(fv(ϕ(G)) = y|Ēv), so that P(fv(ϕ(G)) = y ∧ Ēv) = P(fv(ϕ(G′)) = y ∧ Ēv). Following
(Scholten et al., 2022), we have similar deduction as follows:

pv,y(G)− pv,y(G
′)

= P(fv(ϕ(G)) = y ∧ Ev) + P(fv(ϕ(G)) = y ∧ Ēv)

− P(fv(ϕ(G′)) = y ∧ Ev)− P(fv(ϕ(G′)) = y ∧ Ēv)

= P(fv(ϕ(G)) = y ∧ Ev)− P(fv(ϕ(G′)) = y ∧ Ev)

≤ P(fv(ϕ(G)) = y ∧ Ev)

= p(Ev) · P(fv(ϕ(G)) = y|Ev)

≤ p(Ev).

A.1. More discussion on the single-node certifying condition (Corollary 1).

In Corollary 1, we present a single-node certifying condition. Here, we aim to further discuss its theoretical implications by
comparing it with the work of (Lai et al., 2023).

Assuming that pv,y∗(G)−maxy ̸=y∗pv,y(G) = 1, in this case, our certifying condition is p(Ev) < 1/2, while the certifying
condition of (Lai et al., 2023) is 1− p̃ < 1/2. Note that p(Ev) is the probability that there exists at least one message from
injected nodes to the target node within its receptive field, and 1− p̃ is the probability that there exists at least one inserted
edge that is not deleted in the whole graph. As a result, p(Ev) is always smaller than 1− p̃. That is, for a node with the
same confidence gap pv,y∗(G)−maxy ̸=y∗pv,y(G), our condition is easier to satisfy, thus providing better robust ratio. This
advantage can be attributed to the gray-box knowledge of the target model. In our paper, we assume that the target model
belongs to message-passing Graph Neural Networks (GNNs), following the approach of (Scholten et al., 2022).

B. Details of Optimization Formulation
B.1. Formulating problem (8) as polynomial constrained programming.

For problem (8), we plug in p(Ev) with (5), and then we have the following optimization problem:

max
An:,:,m

M =
∑
v∈T

mv, (15)

s.t. 2 p(Ev) ≥ cv ·mv, ∀v ∈ T,

p(Ev) = 1− (p
||An:(n+ρ),v||1
1 p

||A2
n:(n+ρ),v||1

2 · · · p||A
k
n:(n+ρ),v||1

k ),

||Aṽ:||1 ≤ τ, ∀ṽ ∈ {n+ 1, · · · , n+ ρ},
Aij ∈ {0, 1}, ∀i ∈ {n+ 1, · · · , n+ ρ}, ∀j ∈ {1, · · · , n+ ρ},
mv ∈ {0, 1},∀ v ∈ {1, · · · , n},

where mv = 1 (the element in vector m) indicates that the robustness for node v can not be verified. Specifically, it means
that 2 p(Ev) ≥ cv , and it disobeys our certifying condition.

There are exponential terms in p(Ev), which is difficult to solve by existing optimization tools. We further formalize the
problem. By taking the logarithm of the p(Ev), we are able to transform the exponential constraint in problem (15) into
polynomial constraint:

P̃v ≤ log(1− cv
2
) ·mv, (16)

P̃v = ||An:(n+ρ),v||1 · p̃1 + ||A2
n:(n+ρ),v||1 · p̃2 + · · ·+ ||Ak

n:(n+ρ),v||1 · p̃k,

where p̃k = log(pk) is a constant, and P̃v is equivalent to log(1− p(Ev)). Then the problem (15) is transformed to a binary

13
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polynomial constrained programming:

max
An:,:,m

M =
∑
v∈T

mv, (17)

s.t. P̃v ≤ log(1− cv
2
) ·mv,

P̃v = ||An:(n+ρ),v||1 · p̃1 + ||A2
n:(n+ρ),v||1 · p̃2 + · · ·+ ||Ak

n:(n+ρ),v||1 · p̃k,
||Aṽ:||1 ≤ τ, ∀ṽ ∈ {n+ 1, · · · , n+ ρ},
Aij ∈ {0, 1}, ∀i ∈ {n+ 1, · · · , n+ ρ}, ∀j ∈ {1, · · · , n+ ρ},
A⊤ = A,

mv ∈ {0, 1},∀ v ∈ {1, · · · , n}.

B.2. Formulating problem (17) as BQCLP (9).

In this section, we discuss the process from (17) to (9). In the case of k = 2, the problem (17) becomes a binary quadratic
constrained problem as follows:

max
An:,:,m

M =
∑
v∈T

mv, (18)

s.t. ||An:(n+ρ),v||1 · p̃1 + ||A2
n:(n+ρ),v||1 · p̃2 ≤ log(1− cv

2
) ·mv,

||Aṽ:||1 ≤ τ, ∀ṽ ∈ {n+ 1, · · · , n+ ρ},
Aij ∈ {0, 1}, ∀i ∈ {n+ 1, · · · , n+ ρ}, ∀j ∈ {1, · · · , n+ ρ},
A⊤ = A,

mv ∈ {0, 1},∀ v ∈ {1, · · · , n}.

Next, we divide the adjacency matrix A into four parts as shown in Fig.6, and then the A2 can be interpreted as:

!! !"#

!" !$
!×! !×#

#×! #×#

existing 
! nodes

injected
" nodes

! =

Figure 6: Illustration of adjacency matrix notation.

A2 =

[
(A0A0 +A⊤

1 A1)(n×n) (A0A
⊤
1 +A⊤

1 A2)(ρ×n)

(A1A0 +A2A1)(ρ×n) (A1A
⊤
1 +A2A2)(ρ×ρ)

]
.

Then, the l1 norm of A2
n:(n+ρ),v can be represented as:

[||A2
n:(n+ρ),1||1, ||A

2
n:(n+ρ),2||1, · · · , ||A

2
n:(n+ρ),n||1]

⊤ = (A1A0 +A2A1)1ρ. (19)

Also, same as above, together with Fig.6, ||Aṽ:||1 is described as:

[||An:||1, ||A(n+2):||1, · · · , ||A(n+ρ):||1]⊤ = A11n +A21ρ. (20)

Finally, combine (19) and (20), problem (18) can be formulated as:

max
A1,A2,m

M = t⊤m,

s.t. p̃1A
⊤
1 1ρ + p̃2(A1A0 +A2A1)

⊤1ρ ≤ C ◦m,

A11n +A21ρ ≤ τ, A⊤
2 = A2,

A1 ∈ {0, 1}ρ×n, A2 ∈ {0, 1}ρ×ρ, m ∈ {0, 1}n,

where t is a constant zero-one vector that encodes the position of the target node set T, m is a vector that indicates whether
the nodes are successfully attacked, C ∈ Rn is a vector with negative constant elements log(1− cv

2 ), for v = 1, 2, · · · , n.

14
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B.3. Formulating problem (9) as Linear Programming Problem (10).

Here, we discuss the details of the process of relaxing the BQCLP problem (9) to the LP problem (10). In problem (9), there
are ρ2n quadratic terms among A2A1. To tackle the challenge, we introduce the following transformation to transform it
into an LP problem. Specifically, we first substitute the quadratic terms with linear terms and relax all the binary variables to
continuous variables in [0, 1].

If x ∈ B, y ∈ B are two integer binary variables, then the quadratic term xy can be substitute by a single variable z := xy
with the combination of linear constraints (Wei, 2020): z ≤ x, z ≤ y, x + y − z ≤ 1, z ∈ B. We use a(ij) and b(ij)
to denotes the element in ith row and jth column of matrix A1 and A2 respectively. For each quadratic term b(ij)a(jv)
(∀i ∈ {1, · · · , ρ},∀j ∈ {1, · · · , ρ},∀v ∈ {1, · · · , n}) in A2A1, we create a substitution variable Qv(ij) := b(ij)a(jv) with
corresponding constraints: Qv(ij) ∈ B, Qv(ij) ≤ b(ij), Qv(ij) ≤ a(jv), and b(ij) + a(jv) −Qv(ij) ≤ 1. The existing linear
terms remain unchanged. Now, the BQCLP problem has transformed into binary linear programming (BLP).

Next, we formulate the problem using matrix representation. We firstly use O to substitute (A2A1)
⊤1ρ, and we have the

first constraint as:

p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2O ≤ C ◦m.

We list the elements of the A1 and A2 as follows:

A1 =


a11 a12 a13 · · · a1n
a21

a31
. . .

...
...

aρ1 · · · aρn

 , A2 =


b11 b12 b13 · · · b1ρ
b21

b31
. . .

...
...

bρ1 · · · bρρ

 . (21)

Then, the matrix multiplication of A2 and A1 is

A2A1 =


b11a11 + b12a21 + · · ·+ b1ρaρ1 b11a12 + b12a22 + · · ·+ b1ρaρ2 · · · b11a1n + b12a2n + · · ·+ b1ρaρn
b21a11 + b22a21 + · · ·+ b2ρaρ1 b21a12 + b22a22 + · · ·+ b2ρaρ2 · · · b21a1n + b22a2n + · · ·+ b2ρaρn

...
...

. . .
...

bρ1a11 + bρ2a21 + · · ·+ bρρaρ1 bρ1a12 + bρ2a22 + · · ·+ bρρaρ2 · · · bρ1a1n + bρ2a2n + · · ·+ bρρaρn

 .

By the definition of matrix Qv , for v ∈ {1, 2, · · · , n}, we have the following equivalent representation:

Qv =


Qv(11) Qv(12) · · · Qv(1ρ)

Qv(21) Qv(22) Qv(2ρ)

...
...

. . .
...

Qv(ρ1) Qv(ρ2) · · · Qv(ρρ)

 :=


b11a1v b21a1v · · · bρ1a1v
b12a2v b22a2v bρ2a2v

...
...

. . .
...

b1ρaρv b2ρaρv · · · bρρaρv

 .

We notice that (A2A1)
⊤1ρ is to sum the A2A1 by its column, and each Qv contains all the terms for each vector summation.

Then we have O = (A2A1)
⊤ = [1⊤

ρ Q11ρ,1
⊤
ρ Q21ρ, · · · ,1⊤

ρ Qn1ρ]
⊤.

Further, by decomposing the meaning of Qv , we have

Qv :=


b11 b21 · · · bρ1
b12 b22 · · · bρ2

...
...

. . .
...

b1ρ b2ρ · · · bρρ

 ◦


a1v a1v · · · a1v
a2v a2v · · · a2v

...
...

. . .
...

aρv aρv · · · aρv

 = A2 ◦ 1ρ


a1v
a2v

...
aρv


⊤

= A2 ◦ 1ρ[A1(:,v)]
⊤
.

To make the Qv equivalent to the quadratic terms, for every Qv , we need to add its constraints:

Qv ≤ A2, Qv ≤ 1ρ[A1(:,v)]
⊤
, 1ρ[A1(:,v)]

⊤
+A2 −Qv ≤ 1.
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Finally, we relaxed A1, A2, Qv to relax all the binary variables to continuous variables in [0, 1]:

Qv ∈ [0, 1]ρ×ρ, A1 ∈ [0, 1]ρ×n, A2 ∈ [0, 1]ρ×ρ, m ∈ [0, 1]n.

Then we have the linear programming problem (10) as follows:

max
A1,A2,m,

Q1,Q2,··· ,Qn

M = t⊤m,

s.t. p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2O ≤ C ◦m

A11n +A21ρ ≤ τ,

Qv = (Qv(ij))ρ×ρ, v ∈ {1, 2, · · · , n},
O = [1⊤

ρ Q11ρ,1
⊤
ρ Q21ρ, · · · ,1⊤

ρ Qn1ρ]
⊤,

Qv ≤ 1ρ[A1(:,v)]
⊤
,

Qv ≤ A2,

1ρ[A1(:,v)]
⊤
+A2 −Qv ≤ 1,

Qv ∈ [0, 1]ρ×ρ,

A1 ∈ [0, 1]ρ×n,

A2 ∈ [0, 1]ρ×ρ,

A⊤
2 = A2,

m ∈ [0, 1]n.

B.4. Formulating problem (9) as Linear Programming Problem (12).

We start from (9), and we have the first constraint:

p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2A

⊤
1 A

⊤
2 1ρ ≤ C ◦m.

Then, we substitute A⊤
2 1ρ with z,

z := A⊤
2 1ρ =


b11 b12 b13 · · · b1ρ
b21

b31
. . .

...
...

bρ1 · · · bρρ


(ρ,ρ)


1
1
1
...
1


(ρ,1)

=


b11 + b12 + b13 + · · ·+ b1ρ
b21 + b22 + b23 + · · ·+ b2ρ

...
bρ1 + bρ2 + bρ3 + · · ·+ bρρ


(ρ,1)

. (22)

Then, from (22), the constraint is transformed into

p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2A

⊤
1 z ≤ C ◦m, (23)

zi ∈ {0, 1, 2, · · · ,min(τ, ρ)} ∀i ∈ {0, 1, 2, · · · , ρ}.

In (9), since there exists the constraint: A11n +A21ρ ≤ τ , so we have zi satisfies zi ∈ {0, 1, 2, · · · ,min(τ, ρ)}. Next, we
deal with the quadratic term A⊤

1 z.

If x ∈ B is a binary variable, and z ∈ [0, u] is a continuous variable, then the quadratic term xy can be substitute by a single
variable z := xy with the combination of linear constraints (Wei, 2020): w ≤ ux,w ≤ z, ux+ z−w ≤ u, 0 ≤ w. To apply
it, we first relax the z to [0,min(τ, ρ)].
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We know that A⊤
1 z satisfies that

A⊤
1 z =


a11 a21 a31 · · · aρ1
a12 a22 a32 · · · aρ2

a13 a23 a33 · · ·
...

...
...

...
. . .

...
a1n a2n a3n · · · aρn




z1
z2
z3
...
zρ

 =


a11z1 + a21z2 + · · ·+ aρ1zρ
a12z1 + a22z2 + · · ·+ aρ2zρ

...
a1nz1 + a2nz2 + · · ·+ aρnzρ


(n,1)

.

Then, we create a new variable matrix Q to substitute A⊤
1 z, with each of its element: qij := ajizi, (∀i ∈ {1, 2, · · · , n}, j ∈

{1, 2, · · · , ρ}). That is:

Q =


q11 q12 · · · q1ρ
q21 q22 · · · q2ρ

...
...

. . .
...

qn1 qn2 · · · qnρ

 =


a11z1 a21z2 · · · aρ1zρ
a12z1 a22z2 · · · aρ2zρ

...
...

. . .
...

a1nz1 a2nz2 · · · aρnzρ

 .

We now have A⊤
1 z = Q1ρ. Assuming that τ ≤ ρ, for each quadratic term A⊤

1(ij)zj (∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , ρ})
in A⊤

1 z, we create a substitution variable Q(ij) = A⊤
1(ij)zj with corresponding constraints: 0 ≤ Q(ij), Q(ij) ≤ τA⊤

1(ij),
Q(ij) ≤ zj , and τA⊤

1(ij) + zj −Q(ij) ≤ τ . Further, with matrix notation, we have

0 ≤ Q ≤ τA⊤
1 ,

0 ≤ 1nz
⊤ −Q ≤ τ(1−A⊤

1 ), (24)
A1 ∈ {0, 1}, z ∈ [0, τ ], Q ∈ [0, τ ].

Finally, we relax all the binary variables to be continuous variables, We have problem (12) as follows:

max
A1,m,z

Q∈Rn×ρ

M = t⊤m, (25)

s.t. p̃1A
⊤
1 1ρ + p̃2A

⊤
0 A

⊤
1 1ρ + p̃2Q1ρ ≤ C ◦m,

A11n + z ≤ τ,

Q ≤ τA⊤
1 ,

Q ≤ 1nz
⊤,

τA⊤
1 + 1nz

⊤ −Q ≤ τ,

Q ∈ [0, τ ]n×ρ,

A1 ∈ [0, 1]ρ×n,

z ∈ [0, τ ]ρ×1,

m ∈ [0, 1]n.

C. Algorithm of our proposed methods
Train a base classifier f . Following the work of (Lai et al., 2023), our first step is to train a graph model to serve as
the base classifier. To enhance the model’s generalization ability on the smoothing samples, we incorporate random noise
augmentation during the training process. The training procedure is summarized in Algorithm 1, providing an overview of
the steps involved. Given a clean graph G, a smoothing distribution ϕ(G) with smoothing parameters pe and pn, and the
number of training epochs E, the algorithm iteratively trains the model on randomly generated graphs. In each epoch, a
random graph Ge is drawn from the smoothing distribution ϕ(G). The model is then trained on the training nodes using this
randomly generated graph. This process is repeated for the specified number of training epochs.
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Algorithm 1 Graph model training (Lai et al., 2023).

Require: Clean graph G, smoothing distribution ϕ(G) with smoothing parameters pe and pn, training epoch E.
1: for e = 1, · · · , E do
2: Draw a random graph Ge ∼ ϕ(G).
3: f = train model(f(Ge)) on training nodes.
4: end for
5: return A base classifier f(·).

Obtaining prediction probability of smoothed classifier g. Next, we need to obtain the prediction results of a smoothed
classifier. As depicted in Algorithm 2, we sample N graphs G1, G2, . . . , GN from the smoothed distribution ϕ(G) =
(ϕe(G), ϕn(G)) based on the base classifier f . To estimate the probabilistic prediction, we employ a Monte Carlo process.
For each sampled graph Gi, we calculate the prediction probability pv,y(G), which represents the frequency of the predicted
class y for the vertex v. This can be approximated as pv,y(G) ≈

∑N
i=1 I(fv(Gi) = y)/N , where I is the indicator function.

Let denote the top class probability pA := pv,y∗(G) and runner-up class probability pB := maxy ̸=y∗pv,y(G), we want to
bound the impact of randomness. Specifically, we compute the lower bound of pA (denoted as pA) and upper bound of
pB (denoted as pB). Applying the Clopper-Pearson Bernoulli confidence interval, we obtain the pA and the pB under a
confidence level of α/C, where C represents the number of classes in the model.

Algorithm 2 Monte Carlo sampling (Lai et al., 2023).

Require: Clean graph G, smoothing distribution ϕ(G) with smoothing parameters pe and pn, trained base classifier f(·),
sample number N , confidence level α.

1: Draw N random graphs {Gi| ∼ Gi ∼ ϕ(G)}Ni=1.
2: counts = |{i : f(Gi) = y}|, for y = 1, · · · , C.
3: yA, yB = top two indices in counts.
4: nA, nB = counts[yA], counts[yB ].
5: pA, pB = CP Bernolli(nA, nB , N, α).
6: return pA, pB .

Collective certification via solving an optimization problem. We obtain the collective certified robustness by solving
the optimization problem problem (10) or (12). The process is described in Algorithm 3.

In this algorithm, we first set up the constant p̃1 and p̃2 based on the given smoothing parameters pe and pn. Next, for each
node v in the target node set T, we obtain the lower bound pA and the upper bound pB using Algorithm 2. These bounds
are based on the prediction probabilities of the smoothed classifier for the current node v. We then compute the value
cv = pA − pB and prepare the constant vector C with elements log(1− cv

2 ) for each node v. The objective function of the
optimization problem is based on either (10) or (12), depending on the chosen formulation. The constraints are also set up
accordingly. Finally, we solve the linear programming using an LP solver, such as MOSEK, to obtain the optimal value M∗.
The certified ratio, which represents the percentage of nodes in the target set T that have been successfully certified, is then
computed as (|T| −M∗)/|T|.

D. Other Experimental Results
D.1. Trade off between Clean accuracy and the certified ratio on GCN model.

In this section, we present the remaining experiments as outlined in Section. 6.1. A superior certifying method should not
only achieve a higher certified ratio but also maintain or improve the clear accuracy, which represents the original model’s
performance. We compare the results of these two metrics for our method under different parameter settings as shown in
Figure 7. In the figures, the data points situated closer to the upper right side represent higher certified ratios and clean
accuracy. It is evident that both of our proposed methods consistently outperform the sample-wise method, demonstrating
their superior performance under various attacker power ρ.
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Algorithm 3 Certified robustness via solving optimization problem (10) or (12).

Require: Smoothing parameters pe and pn, graph adjacent matrix A0, perturbation budget ρ and τ , target node set T.
1: Set constant p̃1 = log(1− (p̄ep̄n)).
2: Set constant p̃2 = log(1− (p̄ep̄n)

2).
3: for v in T do
4: Obtain pA, pB from Algorithm. 2 for current node v.
5: Compute cv = pA − pB .
6: Prepare constant vector C with each element: log(1− cv

2 ).
7: end for
8: Setup objective function in (10) or (12).
9: Setup constraints in (10) or (12).

10: Solve the optimization problem using LP solver such as MOSEK to get M∗.
11: Return Certified ratio (|T| −M∗)/|T|.
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Figure 7: Clean accuracy and the certified ratio of our collective model under various smoothing parameters on GCN model.

D.2. GCN certified ratio of our methods under different smoothing parameters.

In addition, we conducted experiments to compare the performance of our methods with the sample-wise method under
different combinations of parameters pe and pn on the Cora and Citeseer datasets. The results are shown in Figure 8.

From the figures, we can observe that our proposed methods always exhibit a larger certifiable radius. For example, when ρ
exceeds 60, the sample-wise method fails to defend against any attacks, while our methods are still able to provide certifiable
guarantees.

D.3. Evaluation on PubMed dataset.

In this subsection, we conduct more experiments on a larger dataset. PubMed (Sen et al., 2008) contains 19,717 nodes and
44,324 edges. We evaluate the sample-wise, Collective-LP1 and Collective-LP2 on the GAT model. The results presented in
Figure 9 show that our proposed collective certificates outperform the baseline significantly.

D.4. Time complexity comparison of two relaxations.

Furthermore, we provide more detailed results on the runtime of the two proposed methods with different parameters in
Figure 10. From the figures, we can observe that as the attack budget ρ increases, the proposed Collective-LP2 method
demonstrates superior efficiency compared to Collective-LP1 in both datasets. This efficiency advantage is particularly
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Figure 8: Certified ratio of our collective model under various smoothing parameters on GCN model.
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Figure 9: Certified performance on PubMed dataset with GAT model.

evident when ρ exceeds 120. Notably, when ρ = 160, the Collective-LP1 takes approximately 1, 000 seconds to complete
the computation. On the other hand, the time consumption of Collective-LP2 remains consistently below 90 seconds.

These results highlight the computational advantage of Collective-LP2 over Collective-LP1, especially for larger attack
budgets. The reduced runtime of Collective-LP2 ensures the practicality and efficiency of our proposed method, making it
suitable for real-world scenarios with larger attack budgets.
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Figure 10: Runtime of our collective model under various smoothing parameters.
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D.5. Against Global Attack: Verifying all testing nodes in a time.

Alternatively, instead of verifying a subset of target nodes T, we can extend our approach to verify all the testing nodes
in the graph, as illustrated in Figure 11. In this scenario, we measure the certified accuracy, which represents the ratio of
nodes that are both correctly classified and certified to be consistent, as well as the runtime of our customized approach
(Collective-LP2).

We have observed that the certified accuracy of our collective certificate only experiences a slight decrease as the attack
budget increases, while the sample-wise approach can only certify the case of ρ less than 50. This indicates that our approach
maintains a high level of certified robustness even when facing more severe adversarial attacks.

Furthermore, it is worth noting that our Collective-LP2 formulation exhibits excellent computational efficiency. Despite
the presence of more than 1500 testing nodes, the problem can be solved in less than 3 minutes, even when the number of
injected nodes ρ is set to 140 (approximately 5%× n). This demonstrates the scalability and practicality of our customized
relaxation approach (Collective-LP2) in real-world scenarios.
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Figure 11: Certified accuracy and runtime in the case of setting all the testing nodes as T.

D.6. Sensitivity Analysis.

In this section, we evaluate the impact of attack budget per node (τ ) on the certified performance. In Figure 12, we observe
that the certified ratio declines as the attack budget τ increases. This corresponds with our expectations. Furthermore, we
observe that Collective-LP2 is consistently better than Collective-LP1, which demonstrates the effectiveness of our tailored
optimization strategy.
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Figure 12: Impact of τ (GCN model, and smoothing parameters pe = 0.9, pn = 0.8).
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