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ABSTRACT

Recent work (e.g. LAMA (Petroni et al., 2019)) has found that the quality of the
factual information extracted from Large Language Models (LLMs) depends on
the prompts used to query them. This inconsistency is problematic because differ-
ent users will query LLMs for the same information using different wording, but
should receive the same, accurate responses regardless. In this work we aim to ad-
dress this shortcoming by introducing P-Adapters: lightweight models that sit be-
tween the embedding layer and first attention layer of LLMs. They take LLM em-
beddings as input and output continuous prompts that are used to query the LLM.
Additionally, we investigate Mixture of Experts (MoE) models that learn a set of
continuous prompts (“experts”) and select one to query the LLM. They require
a separate classifier trained on human-annotated data to map natural language
prompts to the continuous ones. P-Adapters perform comparably to the more
complex MoE models in extracting factual information from BERT and RoBERTa
while eliminating the need for additional annotations. P-Adapters show between
12-26% absolute improvement in precision and 36-50% absolute improvement in
consistency over a baseline of only using natural language queries. Finally, we
investigate what makes P-Adapters successful and conclude that a significant fac-
tor is access to the LLM’s embeddings of the original natural language prompt,
particularly the subject of the entity pair being queried.

1 INTRODUCTION

Recently, there has been an interest in meeting users’ factual information needs using large language
models (LLMs) as knowledge bases in place of traditional, index-based IR methods (Petroni et al.,
2019; Metzler et al., 2021). In this conception of LLM knowledge bases, LLMs accumulate factual
knowledge during pretraining, have their parameters frozen to maintain this knowledge, and then
are queried by users using handcrafted, natural language prompts. For example, if one user wants to
know what the capital of Canada is, they might query a frozen model with the prompt, “The capital
of Canada is [MASK].”, while another might use different wording: “Canada, which has the capital
city [MASK].” In order for LLMs to be effective knowledge bases, they have to be robust to different
queries users could provide. Unfortunately, prior work has shown that LLMs are not robust: queries
that are semantically equivalent may lead to inconsistent predictions (Jiang et al., 2020; Elazar et al.,
2021). For example, taking the prompts above, the first prompt does extract the correct answer
“Ottawa” from BERT Base, but the second extracts the incorrect “Winnipeg”. This observation has
led many works to try to find the optimal prompt or set of prompts for a given relation: the one(s)
that will allow models to extract factual information the best (e.g., for the relation capital of).
These works have proposed ensembling sets of prompts (Jiang et al., 2020), optimizing which tokens
are included in the prompt (Haviv et al., 2021; Shin et al., 2020), or forgoing the difficult discrete
optimization problem entirely and instead optimizing the continuous embeddings that are input to
the LLM (Li & Liang, 2021; Qin & Eisner, 2021; Zhong et al., 2021).

In our work, rather than focus on finding a single optimal prompt, we aim to help LLMs overcome
this variability by adapting natural language prompts into continuous representations that allow
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LLMs to accurately predict factual information. Because we are motivated by a user-focused setting,
we want our adaptation method to require only a natural language prompt (e.g. “The capital of
Canada is [MASK]”) at inference time. No additional annotation for the relation (capital of)
between the subject (“Canada”) and object (“Ottawa”) of the entity pair in the prompt should be
required. Nor should we need the identity of the subject separate from the prompt. At training
time, our ideal method would only rely on (prompt, object) pairs (e.g. (“The capital of Canada is
[MASK]”, “Ottawa”)), so collecting new data would not require additional annotation. Our research
question is then as follows: in a setting where we are trying to prompt a frozen LLM using natural
language alone, how can we encourage models to produce more consistent and accurate responses
to potentially varied prompts.

Figure 1: The P-Adapter Framework: P-Adapters
sit between the embedding layer and the first at-
tention layer of the LLM. They take as input the
LLM embeddings and output continuous prompts
that are fed into the LLM. The LLM is frozen
(embeddings included), while the parameters of
the P-Adapter are trained. The adapter helps miti-
gate variability among different phrasings and ty-
pographic errors in the prompts (as shown in the
example inputs).

We introduce a class of models called P-
Adapters (short for “prompt adapters”) to per-
form this adaptation, which satisfy our infer-
ence and training desiderata. P-Adapters sit
between the embedding layer and the first at-
tention layer of the frozen LLM, and modify
the LLM’s embeddings so factual information
can be more effectively predicted (Figure 1).
They are optimized end-to-end, only requiring
(prompt, object) pairs at training time, and im-
plicitly encourage consistency by learning to
map variable training prompts to the same ob-
ject.

We also investigate other models that could
increase the consistency of natural language
prompts: Mixture of Experts (MoE) models.
Rather than adapt a natural language prompt,
a MoE model maps it to an “expert” continu-
ous prompt based on the relation between the
prompt’s subject and object. The MoE model
then queries the frozen LLM with that expert.
This method reduces variability by mapping all
natural language prompts concerned with the same relation to a single prompt optimized for that
relation. These methods require additional annotations during training and inference (namely the
relation between the entities and the identity of the entity subject), and therefore do not conform to
our desiderata. However, we include them in our discussion because they are useful for comparing
to previous work and for understanding why P-Adapters are successful. We find that P-Adapter
and MoE methods both strongly outperform a baseline of using the natural language prompts alone
by between 12-28% on precision and 36-86% on consistency. While MoE models usually perform
better, the small increase comes at the cost of requiring relation annotations at training time and spec-
ifying the subject of the entity at inference time. To simulate the variable kinds of natural language
prompts we expect our methods to handle, we evaluate them in three out-of-distribution (OOD) set-
tings: on a different set of natural language prompts, on a different distribution of entities (uniform
rather than the distribution of Wikidata), and on natural language prompts with typographic errors.
These OOD evaluations are especially important in light of recent work has found that models that
appear to have knowledge of factual information often rely on surface-level feature associations. For
example, models ignore negation, utilize stereotypical associations when making predictions (Kass-
ner & Schütze, 2020; Poerner et al., 2020), and pick up on the distribution of objects from their
training corpus rather than learn how to access arbitrary facts (Zhong et al., 2021; Cao et al., 2021).
We find that the OOD distribution of entities is the most challenging setting, and while typographic
errors reduce model performance, they do so by less than might be expected.

Finally, we investigate what makes P-Adapters effective, finding that it is important to keep some of
the original natural language prompt embeddings available to the LLM. In particular, the availability
of the subject of the prompt is the most important factor, in contrast with some other work suggesting
the subject matters less (Cao et al., 2021).
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Overall, we conclude that P-Adapters are helpful in reducing the impact of variable prompts, and
are able to do so without requiring additional annotations. To encourage the use of P-Adapters to
effectively extract factual information, we release the code used to train them. 1

2 RELATED WORK

Prompting Language Models for Factual Knowledge. Prompting offers a low-parameter alter-
native to finetuning LLMs. In prompting, the LLMs are usually frozen and their pretraining task is
used to fill in the desired information, which is usually a single token (Trinh & Le, 2018; Davison
et al., 2019; Petroni et al., 2019). Cao et al. (2021) outlines three main approaches for prompting
LLMs for factual information. The one we focus on here involves querying them zero-shot with a
prompt that contains the single entity of interest (like in Figure 1) (Petroni et al., 2019).

Much previous work tries to lower-bound how much factual information LLMs store. Petroni et al.
(2019) use one natural language prompt for each relation, while subsequent work argues that this
approach underestimates LLM’s abilities given how sensitive they are to input prompts. To support
his argument, Jiang et al. (2020) and Elazar et al. (2021) generate paraphrases of prompts in the
LAMA dataset and ensemble them to get a score for each relation. Others argue for optimizing
discrete (Shin et al., 2020; Haviv et al., 2021) or continuous (Qin & Eisner, 2021; Zhong et al.,
2021; Liu et al., 2021b) prompt for each relation instead of working with language ones. Elazar
et al. (2021) thoroughly investigate prompt sensitivity in this setting, finding models often predict
different entities for semantically equivalent prompts. Further, they propose continuing to train
LLMs with a consistency loss function to improve their robustness. In this work, however, we focus
on a user-inspired and lightweight approach that does not require updating LLM parameters.

Robustness and Extracting Facts. Training robust models—ones that are invariant to semantics-
preserving input perturbations—is a challenge in many settings (Szegedy et al., 2013; Belinkov
& Bisk, 2018) and has to led to theoretical and empirical innovations such as adversarial training
(Sinha et al., 2017), provably robust models (Dvijotham et al., 2018), or more robust encoding
schemes (Jones et al., 2020). Our works falls into this last category. In NLP, prior work investigates
invariances to typos, word substitutions, irrelevant sentences, and syntactic perturbations (Jones
et al., 2020; Alzantot et al., 2018; Jia & Liang, 2017; Iyyer et al., 2018).

For robustly extracting factual information, Poerner et al. (2020) and Kassner & Schütze (2020)
argue that LLMs exploit surface form regularities when making predictions. Zhong et al. (2021)
and Dufter et al. (2021) make a related observation, concluding that simpler models like randomly
initialized LLMs, static embeddings, and even a Naive Bayes model can achieve a precision better
than a majority baseline. Cao et al. (2021) argue that prompts that were found to do well in previous
work overfit the distribution of objects in the training data rather than enabling knowledge extraction.
They show that prompting with different sets of entities leads to very similar predictions. Therefore,
we adopt an OOD evaluation setting to address these concerns. Low parameter finetuning methods
(Houlsby et al., 2019; Ben Zaken et al., 2021; Liu et al., 2021a) have also been shown to have better
OOD performance for generation and classification tasks (Li & Liang, 2021; Lester et al., 2021),
which we hope to leverage for factual extraction here.

3 TERMINOLOGY

Taking inspiration from Liu et al. (2021a), we use the following terminology throughout this work.
Each fact we want to extract consists of two parts: an entity pair—a subject (x) and an object (y)—
and the relation (r) between them. We use the 41 relations in the LAMA dataset (Petroni et al.,
2019). Each relation is expressed through a number of templates (e.g., one is “The capital of [X] is
[Y].”). To query a language model for factual information, we substitute the subject in for the “[X]”
in the template, and a [MASK] token into the object’s place (the “[Y]”) to form a prompt (p). We
refer to this as a natural language prompt to emphasize that it consists of natural language tokens.
Our prediction problem then consists of mapping p to y.

1https://github.com/salesforce/factlm
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LLMs perform this mapping by using their embedding layer, e, to embed p into a sequence of
continuous vectors, and then inputting this sequence to their first attention layer. We refer to this
sequence of continuous vectors that are input to the LLM as a continuous prompt (pcont). We make
this distinction because P-Adapters sit between the embedding layer and the first attention layer of
the LLM, so they take as input e(p) and output a continuous prompt pcont that differs from e(p).
After passing pcont through the attention layers of the LLM, we take the LLM’s prediction (ŷ) to be
the token assigned the highest probability in the location of the [MASK] token in p, and compare
it to y to assess the model knowledge of the fact. Formally, a model is consistent if for any two
prompts p1, p2 for the same (x, y, r) triple, its top-1 predictions ŷ1 and ŷ2 are equal.

4 METHODS

To test extracting factual knowledge (rather than overfitting to training templates or entity pair dis-
tributions), we evaluate our P-Adapters in four settings:

1. ID templates and objects for testing in-domain generalization.

2. OOD Prompts for testing generalization to novel natural language prompts.

3. OOD Objects for testing whether our P-Adapter models learn to match the distribution of
objects in the training set rather than predict arbitrary object entities.

4. OOD Keyboard Errors for testing robustness to typos in the natural language prompts.

4.1 DATA

Entity Pairs. We use the entity pairs and relations from the T-Rex split of the LAMA work (El-
sahar et al., 2018; Petroni et al., 2019) in our experiments. This data includes 41 relations and ap-
proximately 1000 entity pairs for each relation sampled from Wikidata, including citations to where
the relation manifests in Wikipedia. This data is used for evaluation. For training and validation,
we use separate sets of entity pairs for each relation collected by Shin et al. (2020), which they use
to optimize their discrete prompts. The entities pairs in the training, validation, and evaluation sets
are all disjoint, though the distribution of object entities is similar. For the OOD Objects setting,
we use the entity pairs in the uniform-wikidata dataset from Cao et al. (2021). This dataset was
constructed so that each object appears the same number of times for each relation, in contrast to the
ID evaluation set which contains a less uniform distribution of objects from Wikidata.

Templates. The templates we use are pooled from prior work: LAMA, LPAQA, and ParaRel
datasets (Jiang et al., 2020; Elazar et al., 2021). LPAQA includes templates created automatically
with a paraphrase model, mined from Wikipedia, and written by annotators, and ParaRel contains
high-quality human-written templates. Additionally, we augment the ParaRel templates using the
BERT lexical substitution system from Lee et al. (2021) by generating five paraphrases for each
template, and then manually filtering out generations that do not preservens semantics. This gives
us on average 81.4 prompt templates per relation (For more statistics, see Figure 6). We split the
templates into two equal-sized groups: one for training and one for OOD Prompt evaluation. For
the OOD Keyboard Errors setting, we use the training templates, except we introduce at least one
typographic error in each template using the nlpaug package (Ma, 2019).

4.2 MODELS

First we introduce our P-Adapter models, and then we introduce our MoE models, and we finish with
our oracle and baseline models. Recall that P-Adapters intercede between the LLM’s embedding
layer, e, and the first attention layer (Figure 1). We extract information from BERT Base Cased,
BERT Large Cased, and RoBERTa Large (Devlin et al., 2018; Liu et al., 2019). Because these
models’ pretraining corpera contain Wikipedia, they should have access to the facts we test.

P-Adapter. P-Adapter models take as input the embeddings of the natural language prompt, e(p),
and output a new sequence of continuous embeddings, pcont, that are used as input to the LLM in
place of e(p). Formally, a P-Adapter is a function fP-Adapter : e(p) → pcont trained to maximize

4



(a) P-Adapter Proposals

(b) Mixture of Experts and Oracle

Figure 2: P-Adapters lie in between the LLM Embeddings and the rest of the model (1). We propose
end-to-end P-Adapters (2a) as well as a Mixture of Experts model (2b). Figures 2b and 2a are sub-
stituted into the “P-Adapter” block in 1. The subject embedding is in blue; the [MASK] embedding
is red; embeddings generated by the P-Adapter are yellow; and other unmodified embeddings are
gray. Dotted arrows represent inputs and outputs to model components and solid arrows represent
copying from the input of the P-Adapter to its output.

PLM(y | pcont). The LLM’s prediction is then:

argmax
v∈V

PLM (v | fP-Adapter(e(p))) ,

where V is the LLM vocabulary. There are many different possible parameterizations of fP-Adapter,
and we describe three here. Two (Rewrite P-Adapter and Prefix P-Adapter) require no additional
annotations, fitting the training and inference data criteria put forth in the introduction. The third
(P-Tuning P-Adapter) does not fit our criteria, but we include it because it provides insight into what
makes a P-Adapter effective (See Figure 2a for an illustration of each.)

The simplest P-Adapter we investigate is the Rewrite P-Adapter. The Rewrite P-Adapter is pa-
rameterized by a d/2-dimensional bidirectional LSTM followed by a single MLP applied to each
hidden state independently (where d is the LLM’s hidden dimension). The output of the MLP, pcont,
is input to the LLM. We use LSTMs to better compare our results with those of Liu et al. (2021b)
who also use them, and because we want to use only a small number of parameters. Additionally,
the prompts tend to be short and we do not do any pre-training, so LSTMs are effective.

Next we look at the Prefix P-Adapter. The Prefix P-Adapter is parameterized similarly to the
Rewrite P-Adapter; however, its output is a prefix of embeddings that are prepended to e(p). Like
other works that learn prompt prefixes, the prefix has a fixed length (we use nine to compare with
later models) (Li & Liang, 2021; Lester et al., 2021). Formally, using the Prefix P-Adapter, the input
to the LLM is [g(e(p)); e(p)], where g is the application of a Bi-LSTM, a max pool, and an MLP to
project the max pool’s output into the size of the prefix. Unlike the Rewrite P-Adapter, the Prefix
P-Adapter keeps all of the embeddings e(p) accessible to the LLM’s first attention layer.

Finally, we investigate the P-Tuning P-Adapter. This P-Adapter is based on work by Liu et al.
(2021b) which presents a method called P-Tuning that learns a continuous prompt for each relation
in the LAMA dataset. The method learns a function g : r → Rd×9. The pcont consists of the output
of g, the LLM’s unmodified embedding of the subject, and the LLM’s unmodified embedding of the
mask token. It has the following form:[

g(r)[0:3]; e(x); g(r)[3:6]; e([MASK]); g(r)[6:9]
]
,

where bracket notation represents python-style list indexing.

The P-Tuning P-Adapter is implemented in a similar fashion, except g takes as input e(p) rather than
r, and is parameterized similarly to the Prefix P-Adapter. Like the Prefix P-Adapter, the method out-
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puts a fixed number of embeddings; however, unlike the Prefix P-Adapter, only the embeddings for
the subject and [MASK] token are kept unchanged, rather than all of e(p). Note that this P-Adapter
additionally requires annotations for the identity of the subject during training and inference. This
means that it does not fit the desiderata laid out in the introduction, but is included because it allows
us to investigate what makes a P-Adapter successful.

Mixture of Experts and Oracle. Enforcing consistency does not require modifying a natural lan-
guage prompt like the P-Adapters do. One can also map each natural language prompt to a canonical
continuous prompt, and use this prompt to query the frozen LLM. We explore this option next with
our MoE and Oracle methods. In these, the canonical prompt is a continuous prompt optimized
for the relation between the entities in the natural language prompt Liu et al. (2021b). These con-
tinuous prompts are learned using P-Tuning, and have the same format as described previously in
the P-Tuning P-Adapters section; they ignore e(p), depending only on the x, MASK, and r (Liu
et al., 2021b). We train these continuous prompts with P-Tuning using the same method and hyper-
paramters reported in Liu et al. (2021b), with one prompt for each of the 41 relations. In contrast
to the P-Adapter methods, these require additional annotations with the relation of the prompt (See
Figure 2b).

The Mixture of Experts (MoE) model consists of two components. The first is a classifier that
predicts the relation between the entities of a natural language prompt. This classifier is a BERT
Base Cased model finetuned on a 41-way classification task. The second component is a look-up
table to map the predicted relations to the canonical continuous prompts.

Note that this is similar to a traditional mixture of experts model approach except that we do not use
a weighted combination of prompts from different relations and instead just use the single prompt
from the predicted relation.

The Oracle method is similar to the MoE approach, except rather than using a classifier to predict
the relation, the gold relation is used at inference time. This method is an oracle because it achieves
perfect consistency—it makes the same prediction for all prompts with the same entity pair. The
oracle also serves as a direct comparison to the prior work of P-Tuning because P-Tuning assumes
access to the gold relation.

Baseline. Finally, the baseline is a model that takes as input the natural language prompt without
any prefixes or optimization. Any effective and useful P-Adapter network would have to perform
better than just using the natural language prompt itself.

4.3 METRICS

We report two metrics: precision@1 (P@1) and consistency. P@1 is a stringent measure of whether
a prompt can extract a fact. It is the fraction of prompts where the correct object is the LLM’s top
prediction. Consistency measures whether a model’s predictions for a given entity pair match across
the different prompts p’s that contain the entities. We calculated consistency using the method
from Elazar et al. (2021): the consistency of knowledge of a fact is the proportion of pairs of
prompts for the fact where the model makes the same prediction. Formally, given a set of un-
ordered pairs of prompts with the same entity pair, P , where there are n unique prompts, and letting
Top-1(p) = argmaxv∈V PLM (v | fprompt(e(p))) return the model’s top prediction given a natural
language prompt x′, the consistency is defined as:

consistency(Top-1, P ) =

∑
(pi,pj)∈P 1[Top-1(pi) = Top-1(pj)]

1
2n(n− 1)

.

Note: a model can be consistent and inaccurate by always predicting the same incorrect object.

5 RESULTS

We present our main results for BERT Base in Table 1. The results for BERT Large and RoBERTa
Large show similar trends and are available in the Appendix (Tables 2, 3, Figures 4 and 5; Qualitative
Results are in Appendix D). Across all evaluation settings, we find optimized prompts lead to higher
precision than natural language ones, as the low performance of the baseline indicates.
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Metric P-Adapter ID OOD Prompts OOD Objects OOD KE

P@1

Baseline 0.157 0.157 0.069 0.092
Rewrite 0.258± 0.00 0.247± 0.00 0.078± 0.00 0.167± 0.00
Prefix 0.425± 0.01 0.415± 0.01 0.193± 0.00 0.326± 0.01

P-Tuning 0.442± 0.00 0.422± 0.00 0.203± 0.00 0.325± 0.00
MoE 0.488± 0.01 0.418± 0.00 0.237± 0.02 0.331± 0.00
Oracle 0.496± 0.01 0.496± 0.01 0.238± 0.02 0.496± 0.01

Consistency

Baseline 0.126 0.133 0.097 0.068
Rewrite 0.476± 0.01 0.448± 0.02 0.456± 0.01 0.223± 0.01
Prefix 0.656± 0.02 0.613± 0.02 0.588± 0.03 0.452± 0.03

P-Tuning 0.730± 0.00 0.646± 0.01 0.656± 0.01 0.476± 0.01
MoE 0.947± 0.03 0.658± 0.03 0.916± 0.05 0.439± 0.01
Oracle 1.000± 0.00 1.000± 0.00 1.000± 0.00 1.000± 0.00

Table 1: P@1 and Consistency for BERT Base across all our settings. P-Adapters are separated
based on whether they require additional training/inference data. Note that the consistency of the
Oracle is 1.0 and that the Baseline does not have any standard deviation because there is no op-
timization across runs. Results are microaveraged over all relations. (OOD KE: OOD Keyboard
Errors).

Precision. Comparing the different evaluation settings, we observe the following. First, the OOD
Objects was the most challenging setting, on average 20.41% lower precision than the ID setting,
even for the oracle. However, the models performed similarly on the OOD Prompts as they did on
the ID ones. At first this might seem to conflict with previous work that finds that the prompt has a
large impact on performance (Jiang et al., 2020), but these results make claims about average rather
than individual prompt performance. That said, precision is still higher ID than OOD, particularly
for the MoE model. Looking at the MoE’s relation classifier predictions, we can see it achieves an
F1 of 99% for the ID and OOD Objects settings, but only 81% for OOD Prompts (See Appendix
F). While this suggests some overfitting, our methods still outperform the baseline, so what they
learn is still useful for the OOD natural language prompts. Finally, when evaluated on the OOD
Keyboard Errors, we find that models still outperform the baseline. However, precision on the
corrupted prompts is lower than the uncorrupted ones, and drops by a larger absolute percentage
than the baseline does.

Consistency. Additionally, across all variation types we can see that optimized prompts lead to
more consistency among the models’ predictions. The consistencies dramatically increase from
less than 0.2 for the baseline to over 0.4 (Table 1). Models were the least consistent on the OOD
Keyboard Errors, and interestingly, were similarly consistent between the OOD Prompts and OOD
Objects evaluations despite having a much higher precision for the OOD Prompts. The oracle has
a perfect consistency of 1.0, because it uses the same continuous prompt for all facts with the same
relation, so the predictions for that fact are all the same. The MoE model has a high consistency for a
similar reason: as long as the classifier predicts two prompts for the same entity pair come from the
same relation, the predictions will be the same, and therefore consistent. The P-Tuning P-Adapter
often has a a high consistency as well, sometimes even higher than the MoE. This suggests that in
P-Tuning P-Adapter, the main factor driving the model’s prediction is the subject of the entity pair,
because the unmodified embedding of the subject is shared among all of the prompts for the same
object.

In the P-Adapters, this consistency is implicitly encouraged by the current training procedure by
training P-Adapters to map from various natural language prompts to the same object. We investigate
adding an additional loss term to explicitly encourage consistency and find that doing so increases
consistency by 5% on average. This suggests that implicitly encouraging consistency can be helpful
but is not necessary. The procedure and results are detailed in Appendix E.

Unmodified Embeddings. We observe that giving the LLM access to its unmodified embeddings
of the natural language prompt was helpful. The Prefix P-Adapter and the P-Tuning P-Adapter,
which have access to some or all of these embeddings, achieve higher precisions than the Rewrite
P-Adapter, which alters all of them. Because of this, we perform additional experiments to see what
part of natural language prompt was important to keep.
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Figure 3: The above results show which of the LLM’s embeddings are important to keep unmodified.
On the left, the x-axis has the embeddings that are not modified by the P-Adapter (e.g. “None” is
the Rewrite P-Adapter, where all embeddings are modified). These results are computed with BERT
Base and the ID data. In the plot on the right, we compare different α’s to the P-Tuning P-Adapter
and the version of the “Rewrite” P-Adapter with the unmodified subject and [MASK] embeddings,
finding the α = 0.5 performs as well as the other adapters that require additional annotation.

One hypothesis is that the [MASK] token embedding should remain unmodified, and the Rewrite P-
Adapter performs poorly because it corrupts this embedding. We investigate this in two ways. First,
we train a version of the Rewrite P-Adapter that replaces the P-Adapter’s output in the [MASK] to-
ken position with the LLM’s [MASK] token embedding. Second, we train a version of the P-Tuning
P-Adapter whose output only has the LLM’s [MASK] embedding, not the subject embedding. How-
ever, we find these do not increase performance much compared to the Rewrite P-Adapter.

Another hypothesis is that the subject embeddings must remain unmodified, and that the Rewrite
P-Adapter corrupts the subject, leading to lower precision. To address this, we train a version of the
Rewrite P-Adapter model that replaces the embeddings for the subject in the P-Adapter output with
the LLM’s embeddings for the subject. We find this is much more effective, increasing precision
by 13%. For comparison with the P-Tuning P-Adapter, which keeps the subject and [MASK] em-
beddings the same, we also train a version of the Rewrite P-Adapter that replaces the embeddings
at both the subject and [MASK] token positions with the LLM’s embeddings and find that this per-
forms only 4% worse than the P-Tuning P-Adapter. The results are visible in Figure 3. From these
experiments, we conclude that the most important aspect of the prompt is the subject token. This
also helps explain why the Prefix P-Adapter does well: it has access to the LLM’s embeddings for
the entire natural language prompt, which includes the subject.

Unfortunately, while these changes to the Rewrite P-Adapter models show promising results, they
require knowing the index of the subject tokens at training and inference time, which contradicts
our requirement to not use extra annotations. Fortunately, there is another way to incorporate the
unmodified LLM’s embeddings of the natural language prompt into the output of the P-Adapter: we
can interpolate between the P-Adapter output and the unmodified embeddings. To do this, we train
a third type of Rewrite P-Adapter. If frewrite-adapter is the original Rewrite P-Adapter, the equation for
the new Rewrite P-Adapter is:

fP-Adapter(p) = αe(p) + (1− α)frewrite-adapter(e(p)).

where α is a hyperparameter. When α = 0, this P-Adapter is equivalent to the original Rewrite P-
Adapter, and when α = 1 it is the baseline. We test α ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, and find α = 0.5
to perform the best. It outperforms the Rewrite P-Adapter when the subject and [MASK] tokens are
substituted in, though barely underperforms compared to the P-Tuning P-Adapter (See Figure 3).
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6 DISCUSSION

Our goal was to create models to adapt arbitrary user queries so predictions from frozen LLMs
were accurate and consistent. One desiderata was to train with only (prompt, object) pairs, so that
a user’s experience would match current IR system experiences. Despite this requirement, some
of the methods we introduce do use additional information—for comparison to other methods and
understanding our own. For example, the P-Tuning P-Adapter and the MoE models both need the
identity of the subject of the user’s prompt, and requiring a user to provide this feels cumbersome
and redundant. One could obviate this need using an off-the shelf NER system as well, and we leave
exploring this to future work.

Additionally, the MoE models train their classifiers using annotations for the relation between the
entities in the prompts. We use these annotations to compare to previous work: previous work as-
sumes that relation is the most useful intermediate variable for factual extraction, but this does not
have to be the case. For example, good prompts across different relations like “Ottawa is the capital
of [MASK]” and “The second largest country by land area is [MASK]” might share components
even though they do not share a relation. Our P-Adapters allow for greater flexibility by condition-
ing on the natural language prompt itself rather than the relation. Importantly, while using extra
information leads to better results in some cases, the Prefix P-Adapter usually achieves compara-
ble precision. And while the Rewrite P-Adapter flounders, ensembling its outputs with the LLM
embeddings leads to greater success.

We speculate that there are two likely reasons for the P-Adapters’ success. First, not updating
the LLM parameters likely maintains factual knowledge learned during pretraining—Elazar et al.
(2021) show that continuing to finetune the models on extracting factual information can lead to
lower accuracy. Second, the natural language prompts are likely close to being effective prompts, so
small changes from P-Adapters are sufficient to elicit the correct objects.

It is also worth noting that while the Prefix P-Adapter approaches the performance of the techniques
with more information, this performance is still quite modest. The oracle was able to achieve only
a precision of 50% in the cases with ID objects, missing half of the facts. For the OOD Objects
evaluation set, it performed much worse, only correctly predicting about 25% of the facts. While
the P@1 metric is quite strict, these numbers do not bode well for this approach. Cao et al. (2021)
blame this poor performance on the optimized prompts overfitting to the training object distribution,
and they observe that when the subjects are changed, the LLM’s distributions do not change all that
much. They even observe that the LLM’s distributions when prompts have subjects are similar to
those when the subjects are completely omitted. Our findings point to a more nuanced result. While
it might be true that the LLM’s distributions in these cases are correlated, the subject does matter
when considering the top prediction. We find that without the LLM’s embeddings of the subject
accessible, the P-Adapters performs even more poorly.

7 CONCLUSION

LLMs implicitly learn factual information during pretraining, but accurately and consistently ex-
tracting this information is challenging. Our work complements previous work on extracting factual
information from LLMs by introducing a more user-oriented setting: we want our models to only
take in varied natural language prompts, and return the objects that meet information needs. To do
this, we propose P-Adapter models, which sit between the embedding layer and the first attention
layer of LLMs. These are effective compared to other methods that require additional annotations
(e.g., the relation between the entities in the prompt), and we perform ablations determining that
their success is due to keeping the LLM’s embeddings of the subject available to the LLM. While
we focus on the task of extracting factual information from LLMs, P-Adapters potentially provide
a general framework for adapting to variable inputs, for example in reading comprehension or di-
alogue. While there is still room for the further improvement in using LLMs as knowledge bases,
and we see P-Adapters as an important part of the future of this endeavor.
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8 ETHICS STATEMENT

While our work is inspired by how users interact with current IR systems, we do not perform any
experiments with human subjects. Additionally, our method improves the ability to extract factual
information from pretraining corpora, so this means it may be possible to exploit our method to
elicit the biased or harmful predictions from these corpora as well, though we do not study this.
Finally, improving the ability to accurately and consistently extract information from text sources
has privacy concerns if LLMs are pretrained on private or otherwise sensitive data. For the LLMs
we study, this is not a concern as they were trained on Wikipedia and Books Corpus data rather than
web data.

9 REPRODUCIBILITY STATEMENT

The descriptions of our models and training procedure in Section 4 and the code available at the link
below is sufficient for reproducing our results. The data we use is available in the Github repositories
of the work we cite that creates these resources. For running experiments, see the README.md file
here: https://github.com/salesforce/FactLM.
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Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1250.
URL https://aclanthology.org/D19-1250.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze. E-BERT: Efficient-yet-effective entity em-
beddings for BERT. In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 803–818, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.71. URL https://aclanthology.org/2020.
findings-emnlp.71.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 5203–5212, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.410. URL
https://aclanthology.org/2021.naacl-main.410.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4222–4235, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.346. URL https://aclanthology.org/2020.
emnlp-main.346.

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
robustness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Trieu H Trinh and Quoc V Le. A simple method for commonsense reasoning. arXiv preprint
arXiv:1806.02847, 2018.

12

https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/D19-1250
https://aclanthology.org/2020.findings-emnlp.71
https://aclanthology.org/2020.findings-emnlp.71
https://aclanthology.org/2021.naacl-main.410
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A ALL RESULTS

See Figures 4 and 5 as well as Tables 2 and 3.

LLM P-Adapter ID OOD Prompts OOD Objects OOD KE

BERT
Base

Baseline 0.157 0.157 0.069 0.092
Rewrite 0.258± 0.00 0.247± 0.00 0.078± 0.00 0.167± 0.00
Prefix 0.425± 0.01 0.415± 0.01 0.193± 0.00 0.326± 0.01

P-Tuning 0.442± 0.00 0.422± 0.00 0.203± 0.00 0.325± 0.00
MoE 0.488± 0.01 0.418± 0.00 0.237± 0.02 0.331± 0.00
Oracle 0.496± 0.01 0.496± 0.01 0.238± 0.02 0.496± 0.01

BERT
Large

Baseline 0.163 0.160 0.077 0.099
Rewrite 0.117± 0.06 0.115± 0.06 0.042± 0.02 0.072± 0.03
Prefix 0.431± 0.03 0.424± 0.02 0.207± 0.01 0.337± 0.02

P-Tuning 0.470± 0.00 0.443± 0.00 0.222± 0.00 0.346± 0.01
MoE 0.498± 0.01 0.431± 0.01 0.250± 0.02 0.339± 0.01
Oracle 0.510± 0.02 0.509± 0.02 0.258± 0.03 0.510± 0.02

RoBERTa
Large

Baseline 0.122 0.121 0.054 0.071
Rewrite 0.222± 0.04 0.214± 0.04 0.068± 0.01 0.148± 0.03
Prefix 0.385± 0.03 0.385± 0.03 0.179± 0.02 0.311± 0.02

P-Tuning 0.360± 0.07 0.359± 0.06 0.167± 0.03 0.306± 0.03
MoE 0.335± 0.11 0.290± 0.09 0.156± 0.05 0.231± 0.06
Oracle 0.340± 0.11 0.340± 0.11 0.157± 0.06 0.340± 0.11

Table 2: Tabular format showing precision from Figure 4. The Baseline does not have any standard
deviation because there is no randomness across runs. Results are microaveraged over all relations.
(OOD KE: OOD Keyboard Errors)

B TEMPLATES

See Figure 6 and Table 4.
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LLM P-Adapter ID OOD Prompts OOD Objects OOD KE

BERT
Base

Baseline 0.126 0.133 0.097 0.068
Rewrite 0.476± 0.01 0.448± 0.02 0.456± 0.01 0.223± 0.01
Prefix 0.656± 0.02 0.613± 0.02 0.588± 0.03 0.452± 0.03

P-Tuning 0.730± 0.00 0.646± 0.01 0.656± 0.01 0.476± 0.01
MoE 0.947± 0.03 0.658± 0.03 0.916± 0.05 0.439± 0.01
Oracle 1.000± 0.00 1.000± 0.00 1.000± 0.00 1.000± 0.00

BERT
Large

Baseline 0.122 0.123 0.094 0.069
Rewrite 0.550± 0.22 0.538± 0.23 0.571± 0.22 0.399± 0.29
Prefix 0.619± 0.07 0.583± 0.04 0.566± 0.06 0.446± 0.02

P-Tuning 0.759± 0.01 0.656± 0.01 0.694± 0.02 0.484± 0.02
MoE 0.955± 0.03 0.680± 0.04 0.933± 0.04 0.456± 0.03
Oracle 1.000± 0.00 1.000± 0.00 1.000± 0.00 1.000± 0.00

RoBERTa
Large

Baseline 0.093 0.096 0.076 0.050
Rewrite 0.438± 0.03 0.403± 0.02 0.421± 0.02 0.217± 0.01
Prefix 0.540± 0.07 0.531± 0.06 0.491± 0.08 0.425± 0.04

P-Tuning 0.731± 0.13 0.707± 0.15 0.702± 0.18 0.600± 0.21
MoE 0.974± 0.01 0.661± 0.03 0.970± 0.02 0.436± 0.03
Oracle 1.000± 0.00 1.000± 0.00 1.000± 0.00 1.000± 0.00

Table 3: Tabular format for the consistency from Figure 5. The Baseline does not have any standard
deviation because there is no randomness across runs. Note that the Oracle models achieves a
consistency of 1. Results are microaveraged over all relations. (OOD KE: OOD Keyboard Errors)
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Precision across all Datasets

Figure 4: Results across our ID and OOD datasets across three LLMs. Each row is a different model,
the x-axis is the dataset and error bars show standard deviation across either 3 runs. We can see that
the oracle method outperformed all others, while the baseline and rewriter did the worst. The trends
are similar across all models—the only difference come from some RoBERTa MoE models having
higher variance than others which is explained by some runs not finding the best P-Tuning templates.
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Figure 5: Consistency across all LLMs and evaluation sets.

40 60 80 100 120

Number of Templates per Relation

Figure 6: Distribution of number of templates across the 41 relations we tested. Minimum is 32,
maximum is 123 and mean is 81.44.

subject Canada
object Ottawa

relation IS CAPITAL
template The capital of [X] is [Y].

natural language prompt The capital of Canada is [MASK].
prediction Toronto

Table 4: Here the terminology is applied to the example from the introduction. Note that the model
is incorrect in this example.
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C TRAINING DETAILS

All of our P-Adapters were trained using the hyperparameters from Liu et al. (2021b): Adam opti-
mizer with a learning rate of 1e− 5, weight decay of 5e− 4, a batch size of 128, and an exponential
learning rate decay schedule with a decay rate of 0.98 (Kingma & Ba, 2015). Each result is the mean
over five random seeds.

Our MoE classifiers were trained using an AdamW optimizer with a learning rate of 0.001 and
linear learning rate decay (Loshchilov & Hutter, 2018). We use HuggingFace Transformers to train
the model for 3 epochs on the same training data used to train the P-Adapter models (Wolf et al.,
2020). Each result is the mean over three random seeds rather than five because finetuning the
classifier was more costly than training the the P-Adapters.

D QUALITATIVE ANALYSIS

We also performed qualitative analysis to determine how P-Adapters’ predictions compare to the
Baselines’ and MoE models’. We performed this analysis using the BERT base models, and focused
on the Prefix P-Adapter.

In general, we find that the Baseline tends to include more nonsensical or untopical vocabulary
items. For example, for P36, the capital of relation, the baseline predicts the capital of “Iraq”
to be ‘|’, ‘She’, and ‘It’ for some prompts. There are also situations where despite this variability,
the baseline fails to predict the correct object for any of the prompts. For example, for the relation
official language of, there are 60 natural language prompts. The correct object of the sub-
ject “Raahe” is “Finnish”, and it does not appear in the baseline’s 28 distinct predictions. However,
half of the P-Adapter’s predictions are the correct “Finnish”.

While the P-Adapter’s predictions are more consistent than the baseline’s, they are less consis-
tent than the MoE’s. While this is undesirable from the perspective of consistency, it can lead to
greater accuracy in some cases. For example, for the relation language spoken, the MoE model
predicted the object “French” for the subject “Guy Maddin” for 100% of the prompts, while the
variability in P-Adapters allowed them to predict the only correct answer, “English” in 89.3% of the
prompts (and “French” in 9.3% of them).

There are downsides to this flexibility, however. We also observe examples where P-Adapters are
tricked by the surface form of the prompt. For example, for the relation place of death, “Aki-
hiko Saito” is predicted be Tokyo by 95% of phrases, even though the correct answer is “Iraq”. There
are also examples where P-Adapters’ (particularly, the Prefix P-Adapters’) predictions appear to be
copied from the input where the MoE models’ are not. For example, for prompts like “Windows
Server 2003 was manufactured by [MASK].” P-Adapters correctly predict “Microsoft” for 87% of
paraphrases, but they also predict “Windows” 13% of the time, which we do not observe the MoE
models doing.

E EXPLICITLY OPTIMIZING FOR CONSISTENCY

Currently, P-Adapters encourage consistency in LLMs’ predictions implicitly, as the loss encour-
ages LLMs to predict the same, correct object for variable natural language inputs. However, one
could imagine that explicitly encouraging consistency could be helpful. One way to explicitly train
for consistency is by encouraging not just the top-1 prediction to be the same, but the distribution
over objects to the be the same for different natural language prompts for the same fact (Elazar et al.,
2021). To do this, we train with pairs of natural language prompts for the same fact, and encourage
the distributions over the predicted objects to be similar using the symmetric KL-Divergence. For-
mally, given two prompts for the same entity pair and relation p1, p2, and an LM PLM we define our
loss as:

`consistency = DKL(PLM (p1) || PLM (p2)) +DKL(PLM (p2) || PLM (p1))
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We then add this to the loss, ` that we were previously calculating—the cross-entropy loss between
the distribution over the object and the correct object, giving a total loss of:

`total = `+ λ `consistency

where we use λ = 0.5.

This approach is inspired by the approach taken by Elazar et al. (2021), with the differences being
that they finetune all of the parameters of the LLM, calculate this loss over all prompts with the
same fact, and also find that in their setting they need to additionally continue with masked-language
modeling training.

We train new Prefix-P-Adapters on the BERT Base with this new loss, and find that the consistency
increases slightly, and the P@1 stays the same or slightly decreases. This boost in consistency is
beneficial, but the small increase (compared to the baseline) does not suggest that explicitly encour-
aging consistency is necessary (See Table 5).

ID OOD Prompts OOD Objects OOD KE

P@1
Baseline 0.157 0.157 0.069 0.092
Prefix P-Adapter 0.425± 0.011 0.415± 0.009 0.193± 0.004 0.326± 0.012

+ consistency 0.415± 0.002 0.408± 0.001 0.190± 0.002 0.326± 0.001
MoE 0.488± 0.007 0.418± 0.002 0.237± 0.020 0.331± 0.003

Consistency
Baseline 0.126 0.133 0.097 0.068
Prefix P-Adapter 0.656± 0.023 0.613± 0.020 0.588± 0.026 0.452± 0.031

+ consistency 0.680± 0.008 0.645± 0.007 0.628± 0.005 0.507± 0.010
MoE 0.947± 0.034 0.658± 0.032 0.916± 0.046 0.439± 0.013

Table 5: P@1 and Consistency of Prefix P-Adapters on BERT Base. +consistency indicates training
with the consistency loss (averaged over three runs). Consistency increases a small amount, while
accuracy stays the same. The Baseline and MoE results are included for reference.

F RELATION CLASSIFIER

We finetune BERT-base-cased to predict the relation from the natural language prompt for the MoE
models. The F1 scores are microaveraged across three random seeds are visible in Table 6.

ID OOD Prompts OOD Objects OOD KE

0.989± 0.004 0.812± 0.011 0.990± 0.003 0.607± 0.015

Table 6: Microaveraged F1 score for the relation classifier component of the MOE models in each
of the evaluation settings we investigate.
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