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Abstract

We present an empirical study of the relationship between
map connectivity and the empirical hardness of the multi-
agent pathfinding (MAPF) problem. By analyzing the second
smallest eigenvalue (commonly known as λ2) of the normal-
ized Laplacian matrix of different maps, our initial study indi-5

cates that maps with smaller λ2 tend to create more challeng-
ing instances when agents are generated uniformly randomly.
Additionally, we introduce a map generator based on Qual-
ity Diversity (QD) that is capable of producing maps with
specified λ2 ranges, offering a possible way for generating10

challenging MAPF instances. Despite the absence of a strict
monotonic correlation with λ2 and the empirical hardness of
MAPF, this study serves as a valuable initial investigation for
gaining a deeper understanding of what makes a MAPF in-
stance hard to solve.15

Introduction
Multi-agent pathfinding (MAPF) is the problem of finding
collision-free paths for a team of agents on a map from a
set of start positions to a set of goal positions (Stern et al.
2019a). Given an undirected map, an optimal MAPF algo-20

rithm computes the minimum path cost for all the agents
such that no two agents occupy the same location or traverse
the same edge at an identical time step. Although solving
MAPF optimally is proven to be NP-Hard (Yu and LaValle
2013), many real-world MAPF instances can be solved op-25

timally within a reasonable time. While optimal MAPF al-
gorithms can solve some instances with hundreds of agents,
they can also struggle on instances with only a small number
of agents (Ren et al. 2021; Ewing et al. 2022).

We are interested in understanding what features of30

MAPF instances make them hard to be solved optimally. We
are also interested in finding an effective way to compare
the hardness of different maps when randomly generating
MAPF instances on them. For example, when using uniform
random sampling to generate agents and goals on two given35

maps, we seek to predict which map will have harder in-
stances on average. This area of research is known as empir-
ical hardness, which focuses on identifying features that de-
termine how hard individual instances will be for particular
algorithms to solve (Leyton-Brown, Nudelman, and Shoham40

2009). Here, we present an empirical study that aims to elu-
cidate the correlation between map connectivity and the em-

Figure 1: Example maps and their λ2

pirical hardness of the multi-agent pathfinding problem.
There are two major components of a MAPF instance: the

map topology and distribution of the agents. In this study, 45

we focus on 2D grid-based MAPF problems, where a map
can be viewed as a 4-connected graph G(V,E). In spec-
tral graph theory, the second smallest eigenvalue of the nor-
malized Laplacian matrix (henceforth referred to as λ2) of
G(V,E) serves as an algebraic measurement of graph con- 50

nectivity. Figure 1 shows the value of λ2 for several maps
with different connectivity. The difference in λ2 between a
well-connected map, random-32-32-10 on the far left
and a less connected maze-32-32-5 on the far right is
significant. 55

In this paper, we present empirical results that show the
λ2 of G(V,E) is correlated with the empirical hardness of
MAPF instances generated using uniform random sampling
for agents and goals. While a smaller λ2 value does not con-
sistently yield challenging instances, instances characterized 60

as difficult tend to occur more frequently when λ2 is small.
The most straightforward small λ2 example is a map with
many narrow corridors. Previous research has shown that
various optimal MAPF algorithms have difficulty with such
maps even with a small number of agents (Li et al. 2020; Ren 65

et al. 2021), which could be caused by the over-congestion
and conflicts that narrow corridors bring.

We also propose a map generator based on Quality Di-
versity (QD) (Mouret and Clune 2015) which provides the
flexibility to generate maps within a desired range of λ2. 70

This provides an effective way to find maps that might be
challenging for MAPF algorithms or generating benchmark
dataset that covers a greater spectrum of connectivity.

Although λ2 does not exhibit a strict monotonic correla-
tion with empirical hardness, this study serves as a valuable 75

initial study for understanding MAPF empirical hardness.



Preliminary
Normalized Laplacian and Cheeger’s Inequality
In spectral graph theory, the normalized Laplacian matrix L̄
of a graph is defined by:80

L = D −A

L̄ = D−1/2LD−1/2 = I −D−1/2AD−1/2
(1)

where the D is the diagonal degree matrix and A is the ad-
jacency matrix. The second smallest eigenvalue of the nor-
malized Laplacian L̄ defines the algebraic connectivity of
the graph, describing how well the graph is connected.

To get a better understanding of why λ2 is related to the85

connectivity of graphs, we first introduce the boundary for a
set of vertices S ⊂ V of undirected graph G(V,E):

∂S = {{i, j} ∈ E : i ∈ S, j /∈ S}. (2)

The conductance of S is defined as:

ϕ(S) =
|∂S|

min(d(S), d(V \S))
(3)

where |∂S| is the number of edges on the boundary and d(S)
denotes the number of edges with both endpoints (nodes)90

within S. The ϕ(S) represents the ratio of the number of
edges on the boundary of set S to the minimum of its internal
and external edges.

The conductance of a graph G(V,E) is subsequently de-
fined as the smallest conductance over all cuts, where cuts95

refer to partitions of vertices:

ϕ(G) = min
∅⊊S⊊V

ϕ(S) (4)

The conductance represents how well-connected a graph is.
Theorem 1. (Cheeger’s Inequality). Let λ2 be the second

smallest eigenvalue of the normalized Laplacian L̄ of undi-
rected graph G(V,E), then:100

λ2

2
≤ ϕ(G) ≤

√
2λ2. (5)

Cheeger’s inequality brings the graph connectivity and λ2

together. This implies that λ2 can be used as a quantitative
method for characterizing the impacts of a map’s features,
such as narrow corridors, on the overall map connectivity.
Generally, a relatively small λ2 indicates the graph is poorly105

connected, whereas a large λ2 implies strong connectivity
(for more detail please refer to (Vidick 2018)).

Conductance and MAPF Conflicts
Here we present an intuitive proof of how the maps with
smaller conductance are more likely to generate more con-110

flicts for MAPF instances. Consider a simple dumbbell
graph Gd shown in Figure 2(a), where two partitions are
only connected with a single edge. The size of the circle in-
dicates different number of edges within the partition. Let’s
also assume this partition S∗ has the smallest conductance115

of Gd, thus we have ϕ(Gd) = ϕ(S∗). Next, consider an-
other partition S of Gd shown in Fig. 2(b), where the two
partitions are connected by more edges; thus, |∂(S)| > 1

Figure 2: A dumbbell graph with two different partitions.

and ϕ(S∗) < ϕ(S). Another observation is that S∗ is a more
balanced partition than S in terms of the number of edges 120

within the partition, and we further have:

d(S∗)d(V \S∗) > d(S)d(V \S). (6)

When uniformly and randomly sampling the start and
goal locations on Gd, the shortest path will traverse a bound-
ary edge only if the start and goal locations are on different
sides of the boundary. The probability of the shortest path 125

visiting a boundary edge of partition S is:

P (∂S) =
1

|∂S|
2d(S)d(V \S)

d(V )2
(7)

Given Eq. 6, we have:

2d(S∗)d(V \S∗)

d(V )2
>

2d(S)d(V \S)
d(V )2

>
1

|∂S|
2d(S)d(V \S)

d(V )2
.

The left-hand side is P (∂S∗) since |∂S∗| = 1 and the right-
hand side is P (∂S). This indicates P (∂S∗) > P (∂S). This
inequality implies a higher likelihood of agents visiting the 130

boundary edges of poorly connected cuts within the same
graph, leading to increased potential conflicts, particularly
in scenarios with more agents. Intuitively, one can think of
these boundary edges as choke points that need to be tra-
versed to get from one partition to the other. Relating this 135

to the definition of ϕ(G) and Cheeger’s inequality, we can
loosely demonstrate that P (∂S∗) ∝ 1

ϕ(G) . This suggests that
maps with smaller ϕ(G) or λ2 may tend to exhibit more con-
flicts; thus MAPF instances on those maps are more likely
to be challenging. 140

Quality Diversity Instance Generator
To investigate the relationship between λ2 and the empiri-
cal hardness of maps, we developed a map generator that
can produce maps with a given λ2 value. The maps gener-
ated should provide as much diversity as possible in mea- 145

sures other than λ2 to try and isolate the relationship be-
tween λ2 and hardness. We used a Quality Diversity (QD)
method based on the algorithm MAP-Elites (Mouret and
Clune 2015). MAP-Elites is a search space illumination al-
gorithm that seeks to find high quality solutions that are di- 150

verse along certain prescribed features. It maintains a con-
tainer, which contains a set of potential solutions. New po-
tential solutions are inserted into the container if they are the
best solution found so far in a specific bin of feature space
with respect to some objective function. MAP-Elites typi- 155

cally utilizes evolutionary algorithms to alter existing solu-
tions in the container and produce new potential solutions.

For our purposes, we sought to produce maps with spe-
cific λ2 values that had diverse obstacle properties. We set



Figure 3: Simulation results for the logarithm of average runtime and λ2 for various maps, with distinct color coding denoting
different ranges of λ2.

the objective function to be distance from a desired λ2 value.160

We used features on the percentage of obstacles and the den-
sity of those obstacles (how many obstacles were adjacent
to other obstacles). For each iteration, we took an existing
map from the container and with equal probability we either
“mutated” the map or “crossed” the map with another ran-165

dom map from the container. A mutation consisted of adding
or removing up to five obstacles on the map uniformly at
random. Crossing two maps involved randomly selecting re-
gions of one map to add to the other map. We then checked
for connectedness and added back the minimum number170

of vertices to reconnect any disconnected components. The
new maps, either with randomly added or removed obstacles
or the cross between existing maps, were then evaluated on
closeness to the desired λ2 value. If they were closer than
any other map with similar features, they were kept and the175

other map in the container with those feature values was re-
moved.

Previous work has explored generating MAPF maps with
Quality Diversity algorithms to generate maps suitable for
high-throughput online MAPF (Zhang et al. 2023). Zhang180

et al. trained a surrogate model DSAGE (Bhatt et al. 2022)
that could help repair instances to meet constraints (e.g.,
number of shelves and connectivity) and predict the through-
put of an instance. Our problem requires less sophisticated
repair, since we have no hard constraint on the number of185

obstacles in an instance. Additionally, our objective function
is relatively easy to compute, requiring only λ2 for a gener-
ated map, and does not require any additional MAPF sim-
ulations. Our map generator is designed to create instances
with a wide range of connectivity to use in the evaluation190

and benchmarking of MAPF algorithms.

Experiments
To thoroughly investigate the relationship between map con-
nectivity and empirical hardness of MAPF, we have se-
lected four different optimal MAPF algorithms which are195

proven to be quite powerful according to various bench-
mark analysis (Ewing et al. 2022; Shen et al. 2023a): Lazy-
CBS (Gange, Harabor, and Stuckey 2019), BCP (Lam et al.
2022), CBSH2-RTC (Li et al. 2021) and CBSH2-RTC-
CHBP (Shen et al. 2023b). 200

Simulation Setup. To ensure the diversity of our test
dataset, we included maps from multiple data sources.
Firstly, we have included all 32 × 32 maps (5 in total) from
the MAPF benchmark dataset (Stern et al. 2019b). Addi-
tionally, apart from our QD map generator, we have also 205

included a fractal map generator based on diffusion-limited
aggregation method (Ewing et al. 2022). We slightly mod-
ified the generation rule of the fractal method such that
it could generate maps of different styles (e.g., cave-like
frac-32-32-4 and maze-like maze-32-32-5 in Fig- 210

ure 1). We generated 31 fully-connected maps of size 32×32
using QD and fractal generator. Please refer to the Supple-
mentary Material for more detailed map information.

When generating MAPF instances, we ensured that all
the maps have the same agent-to-freespace ratio, where r = 215
#agents

#free cells . This value is chosen based on our test such that
the instances are neither excessively challenging nor overly
easy so that we can still effectively compare the performance
across different maps. For each map, we generated 100 in-
stances using uniform random sampling to determine the 220

start and goal locations of agents. The feasibility of the gen-
erated instances was validated by using a sub-optimal MAPF
algorithm ECBS with a relaxed bound (w = 1.6) (Barer
et al. 2014). Simulations were conducted on a PC with
Ryzen 3950x CPU and 64GB RAM, with the runtime limit 225

set to 300 seconds.

Experiment 1: Average Runtime and λ2. As an initial
proof of concept to show that the λ2 value of a map has
some correlation with the empirical hardness, or runtime,
of MAPF instances on that map, we randomly generated 230

MAPF instances on 36 maps with varying λ2 values and



Figure 4: (a). The logarithm of average number of CT expansions and λ2 and for different maps. (b). Boxplot for λ2 and the
logarithm of average runtime for the maps created by QD generator. (c). Sorted logarithm of runtime for maze and its expanded
version maze-e by increasing the width of the narrow corridors in red boxes from 1-cell to 2-cell.

compared runtimes. The simulation results in Fig. 3 illus-
trate the relationship between the logarithm of average run-
time and λ2 of different maps. We have made several inter-
esting observations on the results.235

First, hard instances often appear on maps with smaller
λ2 (top left corner), whereas maps with larger λ2 can be con-
siderably easy (bottom right corner). This pattern remains
consistent across different algorithms and r settings. Addi-
tionally, it is noteworthy that CBSH2-based algorithms gen-240

erally exhibit faster runtime than LazyCBS and BCP (no-
tice the different scales on y-axis). Despite differences in
absolute runtime, our results indicate within each algorithm,
challenging instances happen more frequently on maps with
smaller λ2.245

Second, maps with smaller λ2 could still have relatively
easy instances. Given that λ2 is not the only factor influ-
encing empirical hardness, we are not surprised to see that
the average runtime and λ2 do not exhibit a strict mono-
tonic correlation. One possible reason might be the effect of250

narrow corridors on a 2D grid-map, for instance increasing
the width of a narrow corridor from 1-cell to 2-cell width
will only change λ2 slightly, but the wider corridors are less
likely to create enough contested regions, thus the empirical
hardness could drastically shift from hard to easy. We further255

explore this in Experiment 4.

Experiment 2: Average Number of Constraint Tree (CT)
Expansions and λ2. Next, we illustrate the relationship
of the average number of CT expansions and λ2 for all
instances on a map. For the CBSH2-based algorithms, the260

number of CT expansions is related to how many conflicts
have been resolved during the searching process and reflects
the hardness of instances. From Figure 4(a), the trend for
number of CT expansions is similar to the runtime trend.
This correlation is believed to be caused by the poorly con-265

nected regions where conflicts are more likely to happen.

Experiment 3: More Tests Using QD Map Generator.
Here we present additional tests on the runtime using
CBSH2-RTC for maps generated by our QD map generator.
We have generated 851 maps with a step size of 10−4 for λ2270

and the number of maps for each pivot is shown in Fig. 4(b).
Different from fractal map generator, which lacks control
over map connectivity, the QD map generator is able to gen-

erate maps with a well-distributed range of λ2. This nice
feature makes it a great choice to create benchmark dataset 275

that requires a wider spectrum of map connectivity. Despite
there are still many outliers in Figure 4(b), the relationship
between λ2 and empirical hardness still holds. Indicates that
hard instances tend to happen around small λ2, while large
λ2 generally result in easier instances. 280

Experiment 4: Expand the Width of Narrow Corridors.
In Experiment 1, we mentioned that there are still many
easy instances on maps with low λ2. To investigate this phe-
nomenon, we manually changed the connectivity of maps
without affecting the number of obstacles. More specifically, 285

we expand some of the narrow corridors (red boxes in Fig-
ure 4(c)) in a maze map from 1-cell to 2-cell width and
observed that λ2 changed from 10.1× 10−5 to 15.4× 10−5.
Although the change in λ2 is small, there is a significant
change in empirical hardness, where instances on expanded 290

version maze-e (shown with dashed lines) are much easier.
This demonstrates that even maps with small λ2 can have
easy instances. It also suggests that a 1-cell-width corridor
is more likely to create contested regions and cause con-
flicts between agents, thus slowing down the algorithms (es- 295

pecially for conflict-based algorithms). These contested re-
gions are significantly mitigated when increasing the corri-
dor width, making the instances easier; in the meantime λ2

exhibits minor change. We intend to develop a hybrid rea-
soning on both λ2 and corridor width in future research. 300

Conclusion
In summary, even though λ2 does not exhibit a strict mono-
tonic correlation with empirical hardness, it still shows no-
table effectiveness, especially for very challenging instances
associated with small λ2. Considering the simplicity and 305

ease of comparing λ2 across different maps, we believe it
is a reasonably effective metric and great starting point for
future research on MAPF empirical hardness. Another con-
tribution of this work is the QD map generator which can
generate maps with the desired range of λ2. Possible future 310

works are developing more powerful MAPF instance gener-
ators with tunable empirical hardness and providing a more
precise theoretical bound on the correlation of λ2 and em-
pirical hardness of MAPF problem.
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