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ABSTRACT

Fatigue modeling is essential for material-related applications, including design,
engineering, manufacturing, and maintenance. Central to fatigue modeling is the
computation and analysis of stress intensity factors (SIFs), which model the crack-
driving force and are influenced by factors such as geometry, load, crack shape,
and crack size. Traditional methods are based on finite element analysis, which
is computationally expensive. A common engineering practice is manually con-
structing handbook (surrogate) solutions, though these are limited when dealing
with complex scenarios, such as intricate geometries. In this work, we reformulate
SIF computation as an operator learning problem, leveraging recent advancements
in data-driven operator networks to enable efficient and accurate predictions. Our
results show that, when trained on a relatively small finite element dataset, opera-
tor networks — such as Deep Operator Networks (DeepONet) and Fourier Neural
Operators (FNO) — achieve less than 5% relative error, significantly outperform-
ing popular handbook solutions. We further demonstrate how these predictions
can be integrated into crack growth simulations and used to calculate the proba-
bility of failure in small aircraft applications.

1 INTRODUCTION

In the mid-19th century, engineers noticed failures in bridges and railway components due to re-
peated loading. It quickly became clear that these failures were linked to the cyclic nature of the
stress, often occurring without any prior warning. This phenomenon was identified as metal fatigue.
A significant advancement in understanding metal fatigue is recognizing that structures often contain
crack-like defects introduced during manufacturing. The central question in fatigue crack growth
research is determining how long it takes for a crack to expand from an initial size to the maximum
allowable size just before failure.

Understanding the period where the crack size grows requires the knowledge of a fatigue crack
growth curve, as shown in Figure 1. The vertical axis is the crack growth rate, and the horizontal
axis is the difference between the maximum and minimum stress intensity factor (SIF) during cyclic
loading (Głuchowski & Sas, 2020), where SIF is denoted as K. SIF is a fundamental concept
in fracture mechanics that describes the stress state near the tip of a crack and is the function of
geometry and loading. It is used to predict the stress state near a crack tip and provide a failure
criterion for materials (Tudose & Popa, 2007). In our work, stage 2 is of interest where crack
growth rate da/dN is of some power function of ∆K, leading to a linear relation between the log
of two quantities. Several attempts have been made to describe the crack growth rate curve using
semi or wholly empirical formulae fitted to a data set. The most widely known is the Paris equation
(Pugno et al., 2006):

da

dN
= C(∆K)m. (1)

To obtain the constants C and m, we need the SIF values K. Finite element (FE) analysis can effec-
tively compute displacement fields from which SIFs can be calculated using M-integral (Banks-Sills
et al., 2007). When converged, FE analysis can provide accurate solutions, but it requires substan-
tial computational resources, especially within design iterations. As a result, researchers frequently
turn to handbook solutions (Toribio et al., 2022), which act as efficient surrogate models and offer
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Figure 1: Fatigue crack propagation stages. Figure is adapted from Tudose & Popa (2007)

a convenient way to estimate SIFs with reasonable accuracy. One most widely-used example is the
manually-created Raju-Newman equations (Newman Jr & Raju, 1981) (Andersson) (Raju & New-
man, 1979), which consists of high-order polynomial fits. These equations were developed from 3D
FE analyses of cracks in finite elastic plates subjected to tension or bending loads. Raju-Newman
equations can provide accurate SIF solutions for a wide range of crack geometries, including semi-
elliptical surface cracks, quarter-elliptical corner cracks, and cracks near holes. However, these
equations have limited application when it comes to complex geometry and crack shapes.

Machine learning (ML) offers a means to create surrogate models in a more flexible and accuracy
way (Zhang et al., 2023). Such models can therefore be generalized to more complex geometries
and boundary conditions due to their ability to express complex data. Merrell et al. (2024) used
genetic programming based symbolic regression to learn equations that can predict SIF and improve
the accuracy by 15-50% compared to Raju-Newman equations. Xia et al. (2022) introduce a SIF
model for mode-I cracks in coal rock by training a convolutional neural network (CNN), that pa-
rameterizes the coal images and accurately predicts SIFs. Xu et al. (2022) focus on probabilistic
failure risk assessment for an aero-engine disk. They conduct studies with Gaussian process (GP)
regression, tree-structure models, and artificial neural networks (ANN). They show that the accuracy
of SIFs can be improved by 5%–35%. Zhang et al. (2023) use ANN to predict mixed-mode SIFs of
composites. The algorithm is trained on a dataset generated by combining the interaction integral
and the extended FE method.

In this work, we introduce neural operators (Azizzadenesheli et al., 2024), a powerful new machine
learning tool, for SIFs prediction with very high accuracy and generalizable to a wide range of
geometries and crack shapes. SIFs are the function of geometry, crack shape, and the loading.
The FE model defines the material geometry, crack shape, stresses, and displacement fields for
loading. The displacement field from FE is then used by the M-integral method to evaluate SIFs
along the crack front. This whole procedure can be seen as an operator learning problem where the
combination of the FE model and M-integral act as an operator. In our dataset, material properties
and loading conditions are fixed. The input to the operator is the function describing different
geometries/crack shapes, and the output is the SIF along the crack front.

Our contributions are as follows:

1. Introducing FE SIF datasets for two different crack scenarios — a surface crack in a plate
and a single corner crack at a shank hole in a plate — that provide different levels of
problem complexity.

2. Applying three popular neural operators, including Deep Operator Network (DeepONet)
(Lu et al., 2019), Fourier Neural Operator (FNO) (Li et al., 2020), and Proper Orthogonal
Decomposition DeepONet (POD-DeepONet), (Lu et al., 2022) on the datasets, such that
they act as surrogate models for predicting SIFs. We provide a comprehensive analysis of
the model accuracy using the FE results as the benchmark.
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(a) Crack dimensions (b) Model geometry

Figure 2: (a) Crack parameters with a being the crack depth, 2c being the surface crack length, and
ϕ is defined by the angle to the inscribed circle projected to the ellipse. (b) Model geometry with
plate height: h, plate width: 2b, and plate thickness: t. Tension loading is applied as a uniform
displacement. The dark-shaded region represents the crack.

3. The results from operator networks are then used to simulate crack growth for a given
geometry and initial crack shape. We show that the results from the operator networks can
be used to investigate the probability of failure for a small aircraft against the number of
flight hours.

2 DATASETS

2.1 SURFACE CRACK IN A PLATE

To generate the SIF dataset related to a surface crack in a plate, we employ high-fidelity FE models,
representing semi-elliptical surface cracks under Mode I tension (Merrell et al., 2024). This dataset
comprises several simulated results of K, each characterized by distinct plate and crack geometries
shown in Figure 2. The FE models generate 2,956 different plate geometries and crack shapes
represented using features a/c, a/t, c/b, and SIF values along the crack front represented using the
parametric angle ϕ. The resolution in a/c, a/t, c/b, and ϕ is 0.05, 0.05, 0.1, and 0.023 radians. The
corresponding range of values in the features a/c, a/t, c/b, and ϕ is 0.2 to 2, 0.2 to 0.85, 0.01 to 0.3,
and 0.057 to 3.088 radians, respectively. Out of 2956 different geometries and crack shapes, 2518
are used for training, and 438 test the accuracy of operator networks.

2.2 CORNER CRACK IN A PLATE

Quarter elliptic corner crack is another type of crack, and we discuss the SIF dataset for a corner
crack at a shank hole in a plate. This scenario is generally considered more complex than a surface
crack in a plain plate as it involves the intersection of multiple surfaces (the plate face, edge, and
hole surface), creating a more complex crack front geometry. The shank hole introduces stress con-
centrations and alters the stress field around the crack, making the stress distribution more intricate,
which affects the SIF distribution. FE results for this scenario were obtained from the Center for
Aircraft Structural Life Extension (CASTLE) at the US Air Force Academy. The geometry used
is shown in Figure 3. The FE models generate 24,519 different plate and crack geometries repre-
sented using features W/r, a/c, a/t, r/t, and SIF values along the crack front represented using the
parametric angle ϕ (with a resolution of 0.023 radians). The corresponding range of values in the
features W/r, a/c, a/t, r/t, and ϕ is 1.6 to 200, 0.1 to 10, 0.1 to 0.95, 0.5 to 1.5, and 0.052 to 1.52
radians, respectively. Out of the 24,519 different geometries and crack shapes, 18,389 are used for
training, and 6,130 test the accuracy of operator networks.
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(a) Crack dimensions (b) Uniform tension
loading

Figure 3: (a) Single crack scenario in a plate with dimensions (2W, 5W, t) where the single crack
of size (a, c) satisfies a < t, c+ R ≤ W . The dark-shaded region represents the crack. (b) A basic
load of unit 1 acts on the plate.

3 RESULTS

In this section, we present the results from the operator networks — DeepONet, POD-DeepONet
and FNO, where they represent the mapping from geometry and crack shape to SIFs along the crack
front. The details related to DeepONet, POD-DeepONet and FNO are explained in Appendix A.1,
A.2 and A.3, respectively. We are using three metrics (described below) to compare the results
against popular surrogate models — Raju-Newman equations for surface crack in a plate (New-
man Jr & Raju, 1981) and Raju-Newman equations using Fawaz-Andersson solutions for corner
crack at the hole (Raju & Newman, 1979) (Andersson).

1. Normalized Absolute Error (NAE) is defined for each SIF prediction, where yi is the SIF
prediction and ŷi is the FE SIF at the ϕ location for some geometry and crack shape,

Ei =

∣∣∣∣yi − ŷi
yi

∣∣∣∣. (2)

2. Normalized Error (NE) is also defined for each SIF prediction, where yi is the SIF predic-
tion and ŷi is the FE SIF at the ϕ location for some geometry and crack shape,

Ei =
yi − ŷi

yi
. (3)

3. Mean Normalized L2 Error (L2 error) is the average of all the normalized errors calculated
at all the ϕ locations corresponding to different geometries and crack shapes, where vector
yi is the SIF prediction and vector ŷi is the FE SIF at all ϕ locations for some geometry
and crack shape,

E =

N∑
i=1

1

N

(
||yi − ŷi||2

||yi||2

)
. (4)

NE and NAE are commonly used metrics in solid mechanics (Daridon et al., 2020). We use NAE in
the probabilistic estimates of different levels of errors and NE is used to estimate whether the model
predictions are under or over the ground truth values. L2 error is the most commonly used metric in
ML studies (Li et al., 2020) because it allows the comparison of errors across different datasets or
models and the standardization makes it easier to assess relative performance.

3.1 SURFACE CRACK IN A PLATE

Raju-Newman equations for surface crack (Newman Jr & Raju, 1981) are empirical equations de-
veloped using the 3D FE dataset. They are mechanics-driven equations and have been validated
against experimental data. There have been several updates to these equations, but the application is
still limited regarding complex geometries (Bocher et al., 2018). Figure 8 shows the complementary
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Figure 4: Comparison of the surface crack SIF predictions.

cumulative density function (1-CDF) of the testing NAEs for Raju-Newman equations, DeepONet,
POD-DeepONet, and FNO trained on the surface crack in a plate dataset. From the results, we can
see that all three operator networks provide a significant improvement over the Raju-Newman equa-
tions. All the errors for operator networks are under 3.5%, and the probability of NAE being greater
than 1% is 1/1000. However, for Raju-Newman equations, the error can be as high as 17%, and the
probability of NAE being greater than 1% is around 1/4.

Figure 4 compares the predictions from all models for different geometries and crack shapes. We
can see that predictions from Raju-Newman equations are inconsistent. Operator networks, however,
predict with good accuracy for all the examples. Figure 5a compares the predictions along the crack
front (ϕ) from all three operator networks when a/c < 1 (i.e., the crack is wider than its depth). We
can see that POD-DeepONet has the largest errors, which are present away from the free surface
where ϕ ≈ 0 or ϕ ≈ π. Figure 5b shows the results when a/c > 1 (i.e., the crack is deeper than
its width). In this case, we notice low errors for all ϕ values. This shows that the errors depend
largely on the geometry and the crack shape. This is expected because the complexity in SIF values
is influenced by geometry and crack shape.

3.2 CORNER CRACK IN A PLATE

Raju-Newman equations using Fawaz-Andersson solutions for corner crack at the hole (Raju &
Newman, 1979) (Andersson) are also empirical equations discovered from the FE dataset with lim-
ited application in terms of geometry and crack shape. More specifically, they are limited to —
0.2 ≤ a/c ≤ 2, a/t ≤ 0.8, 0.5 ≤ r/t ≤ 2, and ((r + c)/b) < 0.5. Developing these equations is
also costly as it requires engineers with domain-specific knowledge and takes a significant amount
of time (months/years to develop and validate the equations). Figure 9 shows 1-CDF of the testing
NAEs for Raju-Newman equations, DeepONet, POD-DeepONet, and FNO trained on the corner
crack in a plate dataset. From the results, we can see that all three operator networks provide a sig-
nificant improvement over the Raju-Newman equations. The errors for operator networks are under
5.5%, and the probability of NAE being greater than 1% for DeepONet, POD-DeepONet, and FNO
is around 9/10000, 2/10000, and 1/1000, respectively. However, for Raju-Newman equations, the
error can be as high as 17.5%, and the probability of NAE being greater than 1% is around 1/2.

Figure 6 compares the predictions from all models for different geometries and crack shapes. We
can see that Raju-Newman equations are again inconsistent (especially when the SIF distribution
is complex). Operator networks, however, predict with good accuracy. Figures 7a compare the
predictions along the crack front (ϕ) from the operator networks when a/c < 1 (i.e., the crack is
wider than its depth). We can see that FNO has the largest errors, which are present close to the
surface where ϕ ≈ 0. Figure 7b shows the results when a/c > 1 (i.e., the crack is deeper than its
width). In this case, we also notice relatively large errors for ϕ ≈ 0 values. This shows an interesting
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(a) Comparison of the surface crack SIF predictions when a/c < 1.

(b) Comparison of the surface crack SIF predictions when a/c > 1.

Figure 5: Comparison of the surface crack SIF predictions.

Figure 6: Comparison of the corner crack SIF predictions.

trend where the errors depend on the geometry, crack shape, and position along the crack front. This
is expected because the complexity in SIF values is influenced by these factors.

Table 1 shows the L2 error for all the dataset scenarios and the models. Operator networks have
very similar accuracy for both datasets and compared to Raju-Newman equations, they are several
orders of magnitude better.

Table 1: Mean normalized L2 error on the test dataset for all the models.

DeepONet POD DeepONet FNO Raju-Newman
Surface Crack in Plate 0.000776 0.000817 0.000695 0.023611
Corner Crack in Plate 0.000755 0.000530 0.000627 0.036049
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(a) Comparison of the corner crack SIF predictions when a/c < 1.

(b) Comparison of the corner crack SIF predictions when a/c > 1.

Figure 7: Comparison of the corner crack SIF predictions.

Figure 8: 1-CDF of the errors on the surface
crack test dataset.

Figure 9: 1-CDF of the errors on the corner
crack test dataset.

Figure 10: Probability of failure calculated using SIF values from DeepONet.
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4 APPLICATIONS TO FATIGUE MODELING

SIF is a fundamental concept in fracture mechanics that characterizes the stress state near the tip of
a crack. It plays a crucial role in analyzing crack behavior and predicting material failure. In this
section, we show how the operator networks can be used to simulate the crack growth and perform
damage tolerance modeling (Millwater et al., 2019). Crack growth simulation using SIFs involves a
few steps. SIF is calculated for the crack geometry and loading conditions, which characterize the
stress state near the crack tip. This is where the operator networks are used. Empirical crack growth
laws like Paris’ law (shown in Equation 1) relate the crack growth rate to the SIF range. The crack
is grown incrementally based on the calculated growth rate, and the crack geometry is updated after
each increment. As the crack grows, the SIFs need to be recalculated for the new crack geometry.

For fatigue crack growth, the process is repeated several times throughout the load cycles. Growth
is simulated until a critical crack size is reached, indicating failure. The whole process starts with
the SIF values, and if the predictions are not accurate, the resulting crack growth simulation will
accumulate large errors. Fast inference from operator networks is another key factor that speeds
up the simulation. Throughout the crack growth simulation, SIF values are required hundreds of
times. This makes using FE methods prohibitive as they can take significantly longer to calculate
SIF values.

A corner crack in a plate is the more complicated case, and we are using this to demonstrate the
crack growth simulation. For example, consider an initial crack with lengths 0.0125 and 0.0125.
This crack is present in the plate with full width (2W ) 3.75, thickness (t) 0.125, and hole diameter
(2r) 0.25. Figure 12 shows the geometry for this example alongside the SIF predictions from the
operator networks against the FE model for this initial crack. We can see that the predictions from all
three models are close to the FE results. Operator networks can then be used in hypergrow (Ocampo
et al., 2020) to simulate the crack growth. As the predictions from the three operator networks are
very similar, the resulting crack growth results will also be very similar. Figure 13 shows the crack
progression for DeepONet and POD-DeepONet with the number of load cycles. We can see that the
results from both these models are very similar. As loading cycles accumulate, crack lengths grow
in both directions and around 70000 cycles, the crack reaches the thickness of the plate. This is
where it changes from a corner crack to a through crack (Taylor et al., 2005). Simulating the results
further, we can see the crack growing and it will eventually lead to failure. As FE takes a really long
time to calculate SIFs, it is impractical to get results for every cycle. The only thing feasible in this
case is to get FE runs for a few discrete cases and compare the SIF predictions from the operator
networks against the FE SIFs. Figures 11 shows different crack geometries and the SIF predictions
from operator networks alongside FE results. We can see that for all the cases, the predictions are
very close to the FE results with an absolute error of less than 1%.

SIFs from the operator networks can also be used in SMART-DT (Small Aircraft Risk Technology -
Damage Tolerance), which is a probabilistic damage tolerance analysis (PDTA) software developed
with application to small aircraft risk assessment (Millwater et al., 2019). Damage tolerance analysis
involves generating a deterministic crack growth analysis and finding the time at which the crack
can be found by inspection with 95% confidence given a non-destructive inspection technique and
the time at which the crack grows to critical size. The time to first inspection and inspection interval
is set as the time when the crack is detectable and half of the time between when the crack becomes
detectable and the time to failure. PDTA calculates the single flight probability of failure — the
probability that a component with existing damage fractures on a flight has survived all prior flights.
PDTA allows for uncertainties in usage, material properties, crack growth rate, and initial damage
size to be incorporated into the risk analysis, but the computational expense increases considerably
when uncertainty in crack growth rate is included, as this requires performing many crack growth
analyses. The probability of failure (PoF) in Figure 10 is evaluated from 3900 crack growth analyses
using DeepONet SIF model in 31.962 seconds. The PoF calculated using PDTA provides a forecast
of when fatigue cracks will begin to grow large enough to fracture. Planning maintenance actions
to inspect and repair such that PoF remains below an acceptably low risk threshold, 10−7 as noted
by Lincoln (1985), ensures that failures due to fatigue cracking will be extremely rare events. In
addition to being used as a tool for scheduling maintenance proactively, PDTA can also be used to
estimate the economic life of aircraft and model the effects of changing the aircraft usage.
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(a) Crack geometry (b) Model predictions

(c) Crack geometry (d) Model predictions

(e) Crack geometry (f) Model predictions

(g) Crack geometry (h) Model predictions

(i) Crack geometry (j) Model predictions

Figure 11: Left column shows single crack in a plate where the dark-shaded region represents the crack with
right column showing the corresponding predictions from operator networks alongside FE results.
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(a) Crack geometry

(b) Model predictions

Figure 12: (a) Single crack scenario in a plate
where the dark-shaded region represents the
crack. (b) Predictions from operator networks
plotted alongside FE results.

(a) Crack growth simulation using DeepONet
where loading cycles increase from left to right

(b) Crack growth simulation using
POD-DeepONet where loading cycles increase

from left to right

Figure 13: Crack progression in a plate using
SIF values where the dark-shaded region repre-
sents the crack.

5 CONCLUSIONS

For complex crack growth scenarios, the operator networks can predict SIF values accurately with
errors less than 5%. This is several orders of magnitude better than the widely used handbook
solutions like Raju-Newman equations, and at par with the industry standard FE models. Operator
networks can be trained effectively on a relatively small dataset size and once trained, the predictions
can be made very quickly. For fatigue crack growth simulation, SIF values are required several
times. FE methods are not suitable as they take a significant amount of time to calculate SIFs given
geometry and crack shape. Operator networks, can be used to make predictions quickly, and in this
work, we were able to simulate crack growth over 100000 load cycles within 0.5 seconds with an
accuracy of around 99%. Probability of failure can also be computed using multiple crack growth
analysis and using operator networks this can be done in a few seconds.
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Figure 14: Architecture of DeepONet and POD DeepONet. Figure is taken from Lu et al. (2022).

A APPENDIX

A.1 DEEPONET

DeepONet is based on the universal approximation theorem for operators, which states that for any
continuous nonlinear operator G and any ϵ > 0, there exists a DeepONet that can approximate G
with an error less than ϵ. DeepONet, shown in Figure 14 is a neural network architecture designed to
learn nonlinear operators, based on the universal approximation theorem for operators. It consists of
two sub-networks — a branch network B(u) that encodes the input function u at m fixed locations
xi

m−1
i=0 , and a trunk network T (y) that encodes the output locations y. The DeepONet output is

given by:

G(u)(y) =

p−1∑
i=0

bi(u) · ti(y) (5)

where bi(u) and ti(y) are the outputs of the branch and trunk networks, respectively, and p is the
width of the last layer in both networks. This architecture allows DeepONet to efficiently learn
complex operator mappings G : U → V between function spaces, with applications in solving
differential equations and modeling dynamical systems. DeepONet is a high-level framework that
does not restrict branch and trunk networks to any specific architecture. y is usually low dimensional
which makes standard fully connected neural nets a good choice for trunk net, but the choice of
branch net depends on the type of input functions u.

A.2 POD-DEEPONET

POD-DeepONet, shown in Figure 14 is an enhanced version of the original DeepONet architecture
that incorporates Proper Orthogonal Decomposition (POD) to improve efficiency and accuracy in
learning nonlinear operators. In vanilla DeepONet basis of the output function are learned using the
trunk net. In the POD-DeepONet, these basis are obtained by performing POD on the training data
(after first removing the mean). Then, these POD basis are used alongside the branch net (that learns
the coefficients of the POD basis) to get the output. This can be formally written as:

G(u)(y) =

p−1∑
i=0

bi(u) · ϕi(y) + ϕ0(y) (6)

where ϕ0(y) is the mean function computed from the training data, where bi(u) and phii(y) are the
outputs of the branch and the POD basis, respectively, and p is the number of basis for the problem.
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Figure 15: Architecture of FNO. Figure is taken from Li et al. (2020).

A.3 FNO

Fourier Neural Operators (FNOs), shown in Figure 15 are designed to learn mappings between
infinite-dimensional function spaces, typically of the form G : A → ⊓ where A and U are Banach
spaces. The key innovation of FNOs is the Fourier layer, which performs convolutions in the spectral
domain. Given an input function a(x), with aim to predict u(x), the FNO architecture has the
following key features:

1. Lifting Layer: A standard neural net P lifts the input to a high dimensional space:
v0(x) = P (x, a(x)).

2. Fourier Layers: A series of Fourier and inverse Fourier transforms are then applied (Li
et al., 2020): vl(x) = σ(Wvl−1(x) + (F−1(RlF(vl−1)))(x)).

3. Projection Layer: Finally, another neural net Q projects the output from fourier layers
back to the low dimensional space: u(x) = Q(x, vL(x)).

This formulation allows FNOs to handle a wide range of problems in scientific computing, offering
a powerful alternative to traditional numerical methods, especially for complex, high-dimensional
systems.

13


	Introduction
	Datasets
	Surface crack in a plate
	Corner crack in a plate

	Results
	Surface Crack in a Plate
	Corner Crack in a Plate

	Applications to Fatigue Modeling
	Conclusions
	Appendix
	DeepONet
	POD-DeepONet
	FNO


