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Abstract

Knowledge-grounded dialogue generation001
plays a crucial role in the intelligent con-002
versational agents. However, previous work003
suffers from inadequate control information004
in both knowledge selection and dialogue005
generation. Firstly, priori-based knowledge006
selection lacks a posteriori distribution, while007
posterior-based methods suffer from biases at008
the inference and training stages. Secondly,009
the conventional autoregressive generation010
lacks precise control over the injection of011
knowledge, leading to unintended shifts in012
focus of response. To address these limitations,013
we propose a Controllable Dual Diffusion014
Learning model, which serves as an enhanced015
framework for knowledge-grounded dialogue016
generation through the controllable modules.017
Our approach formulates response generation018
and knowledge generation as dual tasks to019
fully leverage prior and posterior knowledge,020
and to avoid training and inference biases. We021
optimize knowledge selection by employing022
knowledge labels generated by the dual module023
and iteratively update the generated dialogue024
with global-related knowledge information.025
Experimental results on two public datasets026
demonstrate that our approach achieves027
significant improvements in both automatic028
and manual evaluations1.029

1 Introduction030

Open-domain dialogue systems have garnered sig-031

nificant attention in the literature, driven by ad-032

vances in deep neural networks (Serban et al., 2015;033

Shum et al., 2018; Freitas et al., 2020). These sys-034

tems are capable of generating fluent and grammat-035

ically correct responses based on dialogue history.036

However, despite their prowess, they still lag be-037

hind human-to-human dialogue in various aspects.038

In recent years, the researchers have witnessed a039

surge in interest surrounding knowledge-grounded040

1Our code is available at https://released-when-published

Oh wow that's a classic.  What about jailhouse rock?

Pretty good. Richard Thorpe make Jailhouse rock into a movie.

2. Jailhouse Rock is a 1957 American musical drama film directed
by Richard Thorpe and starring Elvis Presley ...

1. After his release from jail, while looking for a job as a club
singer, the young man meets a musical promoter who ...

3. Regarded as one of the most significant cultural icons of the
20th century, he is often referred to as the King of ...

4. Jailhouse Rock is a song written by Jerry Leiber and Mike
Stoller that first became a hit for Elvis Presley.
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Candidate Knowledge:

Figure 1: Knowledge selection depends on both the
dialogue history and the following response. × marks
those contextually irrelevant candidates. ∆ marks the
knowledge which is similar to context in semantic but is
undesired. ✓ denotes the selected knowledge when con-
sidering both dialogue history and potential responses.
It perfectly meets the knowledge need of this dialogue.

dialogue generation (KGDG) (Dinan et al., 2018; 041

Zhou et al., 2018b; Zhao et al., 2020; Yang et al., 042

2022; Zhan et al., 2021; Xu et al., 2022). These 043

works aim to bridge the gap by enhancing the un- 044

derstanding and application of pertinent knowledge 045

when generating responses, especially in conver- 046

sations involving specific topics. Furthermore, the 047

KGDG is currently effective in mitigating the hal- 048

lucination problem under a large language model 049

with a new paradigm (Zhang et al., 2023). 050

The KGDG is designed to integrate external 051

knowledge into the dialogue generation process, 052

which involves two key modules: Knowledge Se- 053

lection and Response Generation. However, two 054

unique characteristics of KGDG pose challenges to 055

the existing works: (I) Knowledge selection can be 056

influenced by both the dialogue history and the fu- 057

ture response. Relying only on the context can eas- 058

ily lead to arbitrary knowledge due to the ambigu- 059

ous reference and open topics, so combining the 060

historical context (priori) and the future response 061
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(posteriori) can greatly improve the selection ac-062

curacy (Kim et al., 2019). As shown in Figure063

1, if the model relies only on context selection, it064

may face a topic dilemma when choosing between065

knowledge (2) and (4). However, when both con-066

text and response are considered, knowledge (2)067

emerges as the correct choice. This important fea-068

ture is largely ignored, which are based solely on069

prior information (i.e., dialogue history) and thus070

struggle to select the correct knowledge due to the071

lack of necessary posterior information (i.e., future072

response). For existing works (Kim et al., 2020a;073

Zheng et al., 2020; Chen et al., 2020) basically use074

a posterior distribution to approximate a prior dis-075

tribution. These methods inevitably suffer from076

the fact that they cannot fully exploit the global077

information based on a posterior selection for train-078

ing, but only have a prior selection for inference.079

During the inference, the responses are not avail-080

able, which introduces a bias into the training. (II)081

KGDG needs to precisely inject knowledge into082

responses (Lian et al., 2019a). Existing research083

directly combines knowledge and context represen-084

tations, which ignores the granularity of knowledge085

and leads to limited control over the use of desired086

knowledge (Meng et al., 2020). Furthermore, to087

the best of our knowledge, existing KGDG sys-088

tems are implemented with autoregressive models089

that generate tokens sequentially. Even a single090

token that deviates from the desired knowledge can091

cause error accumulation, and these unintentional092

shifts cannot be revised, resulting in even incor-093

rect knowledge injection. A high quality dialogue094

model should allow for flexible knowledge injec-095

tion, from coarse-grained to fine-grained, through096

content planning for controllable generation.097

To alleviate the above challenges, we propose a098

Controllable Dual Diffusion Learning (ConDDL)099

model. Specifically, our approach aims to mitigate100

the lack of control information in knowledge selec-101

tion and dialogue generation. To address challenge102

(I), we take advantage of dual learning (He et al.,103

2016) from context and response for knowledge104

selection by using response generation and knowl-105

edge generation as dual tasks. In response gener-106

ation, we utilize the context and selected knowl-107

edge to generate a response, while in knowledge108

generation, we generate globally relevant knowl-109

edge based on the context and response, which110

in turn updates the knowledge selection process111

and mitigates bias during training and inference.112

When ConDDL performs two tasks in a dual cycle,113

the model would learn to select knowledge that re- 114

lated to both history and response. For challenge 115

(II), we replace the commonly used autoregressive 116

model with the diffusion model, which performs 117

generation in a first-plan-then-refine fashion, as 118

verified in many works on image and text gener- 119

ation (Rombach et al., 2021; Feng et al., 2022). 120

We argue that such a coarse-to-fine generation 121

paradigm may reflect human cognitive behaviour, 122

where people tend to continuously refine their state- 123

ments from knowledge-based sketches, thereby im- 124

proving precise knowledge incorporation. Through 125

the response diffusion decoder and the knowledge 126

diffusion decoder, we alleviate the precise knowl- 127

edge injection challenge. The response diffusion 128

decoder incorporates the selected knowledge into 129

the dialogue generation process, resulting in more 130

coherent and contextually appropriate responses. 131

Simultaneously, the knowledge diffusion decoder 132

predicts globally relevant knowledge based on the 133

context and response, dynamically updating the pre- 134

vious knowledge selection. This iterative process 135

ensures continuous refinement of the generated re- 136

sponse with knowledge. In addition, we optimise 137

the selection module using contrastive learning, 138

enabling ConDDL to focus more accurately on spe- 139

cific knowledge while modeling the global content. 140

We conduct extensive experiments on two bench- 141

mark datasets to verify the effectiveness. Both au- 142

tomatic and manual evaluations demonstrate that 143

our method significantly outperforms baselines. 144

Our proposed model exhibits superior flexibility 145

in knowledge selection, resulting in more accurate 146

and informative responses. In summary, our contri- 147

butions can be summarized as follows: 148

• We propose the Controllable Dual Diffusion 149

Learning framework, which takes into account 150

potential responses, thereby improving the selec- 151

tion of globally relevant knowledge. 152

• We take the advantage of diffusion models 153

through iterative refinement manner to enhance 154

the desired knowledge injection. 155

• Experiments conducted on two benchmark 156

datasets show that our proposed method outper- 157

forms all baselines with limited training data. 158

2 Related Work 159

Knowledge-Grounded Dialogue Generation. Re- 160

searchers have made significant progress in incor- 161

porating external knowledge sources to improve 162
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dialogue quality. Various knowledge sources have163

been utilised in this area of research, including164

knowledge graphs (Zhou et al., 2018a; Wu et al.,165

2019), document information (Dinan et al., 2018;166

Zhou et al., 2018b), and visual background (Das167

et al., 2016). These external knowledge sources168

play a crucial role in enhancing the dialogue gen-169

eration process. Typically, knowledge-grounded170

dialogue generation tasks involve three main com-171

ponents: knowledge retrieval, knowledge selection,172

and dialogue generation based on knowledge (Kim173

et al., 2020a; Zheng et al., 2021). The first two174

tasks aim at ranking and selecting relevant knowl-175

edge based on context while avoiding noisy inter-176

ferences. The last task focuses on improving the177

integration of knowledge during dialogue genera-178

tion. Zhou et al. (2021) generates implicit knowl-179

edge sentences for further response generation. Liu180

et al. (2022) uses prompts for knowledge based on a181

large pre-trained language model. In this work, we182

focus on optimising the use of external knowledge183

in dialogue generation. We adopt a controlled dif-184

fusion strategy to gradually incorporate knowledge185

updates into the dialogue generation process.186

Dual Learning. Dual learning is initially pro-187

posed in the context of neural machine transla-188

tion (He et al., 2016) and has proven to be effective189

in various tasks, including neural machine trans-190

lation and stylized dialogue generation (Li et al.,191

2021). Dual learning involves two models, namely192

the forward and backward models, which interact193

with each other and receive immediate rewards.194

(He et al., 2016) use one agent to represent the195

model for the primal task and the other agent to196

represent the model for the dual task, then ask them197

to teach each other through a reinforcement learn-198

ing process. (Li et al., 2021) employ dual learning199

to work on a three-domain text related problem,200

then the contents of non-conversational text can be201

effectively utilized to enrich the dialogue genera-202

tion. In this work, we apply the dual learning mod-203

ule to model the interdependence between external204

knowledge and the global conversational informa-205

tion from context and response.206

Diffusion Learning. Diffusion learning has gar-207

nered significant attention in the field of machine208

learning and computer vision due to its effective-209

ness in modeling complex data distributions. Sev-210

eral noteworthy works have explored various as-211

pects of diffusion models. Denoising diffusion212

probabilistic models (DDPM) have demonstrated213

promising capabilities in text-to-image generation214

using diffusion learning (Ho et al., 2020), open- 215

ing up new possibilities for text generation. Li 216

et al. (2022) propose the Diffusion-LM, which 217

adopts the plug-and-play approaches to compose 218

fine-grained constraints on the generated sentences, 219

but it fails to condition on the whole source sen- 220

tence in sequence-to-sequence tasks. Therefore, 221

Gong et al. (2022) explore a diffusion-based ap- 222

proach for sequence-to-sequence tasks, showing 223

strong potential for achieving a better trade-off be- 224

tween generation quality and diversity. Its grad- 225

ual noise reduction characteristics are very consis- 226

tent with human knowledge-based reply behavior. 227

These studies have collectively propelled diffusion 228

learning to the forefront of machine learning re- 229

search, offering promising avenues for future devel- 230

opments in generative modeling and data analysis. 231

3 Methods 232

3.1 Preliminary 233

We introduce the structure of Controllable Dual 234

Diffusion Learning (ConDDL) model, as shown 235

in Figure 2, consisting of two main components: 236

the Diffusion Learning module and the Dual 237

Learning module. Suppose that we have a di- 238

alogue dataset D = {(Ui, Ri,Ki)}nD
i=1, where 239

Ui = (ui,1, ..., ui,ni) is the dialogue context and 240

ui,j denotes the j-th utterance. Ri is the re- 241

sponse regarding to Ui with the golden knowl- 242

edge Ki ∈ Ki, which consists of a set of can- 243

didate knowledge pieces (e.g., sentences from 244

Wikipedia). Our goal is to train a response gen- 245

eration model fFW to generate a knowledgeable 246

response R′
i = fFW (Ui, K̂i) utilizing an input Ui 247

and the selected knowledge K̂i from Ki, mean- 248

while addressing above mentioned two challenges. 249

3.2 Diffusion Learning Module 250

To control the injection of precise knowledge into 251

conversation responses, we extend the diffusion 252

learning module through sequence-to-sequence dif- 253

fusion model (Yuan et al., 2022). The major benefit 254

of this generation paradigm is that its generation 255

involves denosining noise iteratively and this inher- 256

ently involves the content planing, which promotes 257

the precise knowledge incorporation. Training a 258

diffusion model consists of a forward process and 259

a reverse process. The forward process gradually 260

adds quantitative noise to the original data z0 to- 261

wards data-irrelevant noise zT in T time steps. By 262

contrast, in the reverse process, the model learns 263
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The Forward module:

The Backward Module:

Figure 2: Overview of Controllable Dual Diffusion Learning Model. The method includes response generation
(Forward) and knowledge generation (Backward) models, which is based on sequence-to-sequence diffusion module.

to conditionally denoise a corrupted data towards264

desired content by T steps.265

Forward process. During the forward process,266

we employ an embedding function gϕ (Li et al.,267

2022) to map the discrete word tokens to contin-268

uous word embeddings. We define z0 as a se-269

quence of token representations corresponding to270

the response R, parameterized by Markov variants271

qϕ(z0|R) = N (z0; gϕ(R), β0I). We add Gaussian272

noise to the initial distribution sample z0 step by273

step as follows:274

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)275

where t ∈ [1, 2, ..., T ] and βt ∈ (0, 1) is a pre-276

defined noise schedule that controls the noise scale277

added in each step.278

Reverse process. The reverse process aims to279

gradually reconstruct the original data z0 from the280

noised data zT obtained in the forward process281

through a learned denoising distribution pθ. In282

our response diffusion decoder, we use the context283

and the selected knowledge to gradually inject hid-284

den states to generate the response. For each time285

step t, the denoising distribution is conditioned on286

the input context U and knowledge K, denoted as287

pθ(zt−1|zt, U,K). The distribution for the variants288

at each time step is defined as follows:289

pθ(zt−1|zt, UK) = N (zt−1;µθ(zt, UKt), σθ(Zt, UKt)),
(2)290

where µθ(·) and σθ(·) are predicted mean and stan-291

dard deviation, respectively. The context-aware292

and knowledge-aware representations are gradually293

injected into the reverse process as conditions to294

generate desired responses. The context represen- 295

tation hu is fed into the response diffusion decoder 296

fε(·) through an attention layer to achieve cross- 297

modal interaction (Nichol et al., 2021): 298

Q = fε(zt)W
(i)
Q ,

K = [fε(zt)W
(i)
Kz

;huW
(i)
KH

],

V = [fε(zt)W
(i)
Vz

;huW
(i)
VH

],

(3) 299

where i is the index for Transformer layers, [; ] 300

denotes the concatenation operator, W (i)
Q , W (i)

Kz
, 301

W
(i)
Vz

∈ Rd∗d and W
(i)
KH

, W (i)
VH

are learnable pro- 302

jection layers. Similarly, the knowledge repre- 303

sentation hk is incorporated into the reverse pro- 304

cess. When t = 0, we use the rounding func- 305

tion pϕ(R|z′0) to convert the generated z′0 into the 306

embedding space for decoding the response. We 307

optimize the parameters of denoising decoder by 308

minimizing the variational bound of the data log- 309

likelihood (Yuan et al., 2022): 310

LV B = Eqϕ [log
q(zT |z0)
p(zT )

+

T∑
t=2

log
q(zt−1|z0, zt)

pθ(zt−1|zt, U,K)
−

log pθ(z0|z1, U,K) + log qϕ(z0|R)− log pϕ(R|z0)].
(4) 311

The proposed ConDDL model includes both re- 312

sponse diffusion and knowledge diffusion, which 313

share similar computation processes. The control 314

conditions for knowledge diffusion are the response 315

and the context. The diffusion modules improve 316

performance by effectively handling different de- 317

noising stages using denoising networks. 318
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3.3 Dual Learning Module319

For addressing the challenge of knowledge selec-320

tion, we consider response generation and knowl-321

edge generation as dual tasks from the dual learn-322

ing viewpoint to fully leverage external knowledge323

and use global information to enhance knowledge324

selection and alignment. In the primal task (re-325

sponse generation), the context encoder and the326

knowledge encoder provide context representa-327

tions hu ∈ Rni×d and knowledge representations328

{hk1 , ...hkl}, respectively. The selected knowledge329

hk guides the response generation of the response330

diffusion decoder based on hu. In the dual task331

(knowledge generation), the knowledge genera-332

tion component generates globally relevant knowl-333

edge to enhance the selection of the golden knowl-334

edge. In our framework, both response diffusion335

and knowledge diffusion share similar computation336

processes as mentioned above. Specifically, the re-337

sponse generation model is defined as the forward338

model fFW . Given the context U and the selected339

knowledge K, the forward model generates the340

response R′ = fFW (U,K). The knowledge gen-341

eration model serves as the backward model fBW .342

It aims to generate the golden knowledge K based343

on the response R and the original context U , pro-344

ducing K ′ = fBW (U,R). The forward model is345

trained by LV B and maximizing the log-likelihood346

with a cross-entropy loss between the hypothetical347

response R′ and the golden response R:348

LFW = −
Tr∑
i=1

logP (Ri|R′
<i, U,K), (5)349

Similarly, the loss LBW of backward model is de-350

fined as follows:351

LBW = −
Tk∑
i=1

logP (Ki|K′
<i, R, U), (6)352

where Tr, Tk is the length of R and K, respec-353

tively. Theoretically, without additional constraints,354

parameter optimization problems can arise due to355

gradient chain breaks, resulting in poor alignment356

of the knowledge vector representation. To im-357

prove alignment, we introduce contrastive learning.358

The knowledge representation hk is obtained by359

encoding the selected knowledge using the knowl-360

edge encoder. Similarly, the backward model gen-361

erates the representation h′k through the knowledge362

diffusion decoder. Intuitively, these two hidden363

representations should indicate the same input data364

in the knowledge domain, making them positive in-365

stances of each other (where hk acts as the anchor),366

but dissimilar to all other instances in a training 367

batch. Formally, the contrastive loss with a mini- 368

batch of N pairs is defined as follows: 369

LCL = −log
exp(sim(hk

(i), hk
′(i))/τ)∑N

j=1 exp(sim(hk
(i), hk

′(j))/τ)
, (7) 370

where sim(·) and τ are the cosine similarity func- 371

tion and temperature parameter, respectively. By 372

optimizing the forward and backward models with 373

the cross-entropy losses and incorporating the con- 374

trastive loss for knowledge alignment, the dual 375

learning module helps to improve the quality and 376

alignment of the generated responses and knowl- 377

edge representations. 378

3.4 Iterative Jointly Generation Strategy 379

In order to enhance the performance of model by ef- 380

fectively utilizing global information from the con- 381

text and responses, we propose an iterative jointly 382

generation strategy to improve knowledge selection. 383

During each iteration of this strategy, we begin by 384

feeding a sampled example from the training set 385

to the ConDDL model. Initially, the knowledge is 386

obtained through similarity retrieval. Subsequently, 387

the backward model predicts the knowledge, and 388

this prediction is updated to improve the accuracy 389

of knowledge retrieval. Formally, given the cur- 390

rent context representation hu and the candidate 391

knowledge representations [hk1 , ..., hkl ], we com- 392

pute the cosine similarity between the context and 393

each knowledge, denoted as sim(hu, hki). When 394

the knowledge diffusion decoder predicts a more 395

accurate knowledge distribution zk0 , the knowledge 396

selector updates the cosine similarity as follows: 397

hK = tanh(Wuhu +Wkz
k
0 ), (8) 398

399
Scorei = sim(hK , hki), (9) 400

where Wu and Wk are trainable parameters. We 401

rank the similarity scores and retain only the best 402

knowledge for this step. In each training step, we 403

first update the forward model and backward model 404

by optimizing their respective losses using a batch 405

of training samples (U,K,R). Furthermore, we 406

sample a batch of generated responses R′ from 407

the forward model. Together with the context U , 408

they are fed to the backward model to generate 409

the knowledge K ′. These pseudo pairs ([U,R′],K) 410

are utilized to train the forward model with the loss 411

LFW. Additionally, to balance the bias between 412

training and inference, we employ teacher forc- 413

ing (Bengio et al., 2015). During the early stages 414
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Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 PPL↓ DIST-1 DIST-2
ITDD 15.8 7.1 4.0 2.5 16.2 17.8 - -
BARTcat 23.1 11.4 6.7 4.3 19.3 19.7 7.1 29.9
BARTskt 23.2 11.9 7.6 4.4 19.4 20.3 6.8 30.3
DRD 21.8 11.5 7.5 5.5 18.0 23.0 - -
TAKE 20.8 - - 3.6 27.1 - - -
ZRKGC 22.2 7.3 2.8 1.8 18.6 40.4 5.4 22.5
KAT 25.5 13.9 9.0 6.6 21.6 14.5 9.3 37.0
KAT-TSLF 25.5 13.9 9.1 6.7 21.7 14.4 9.5 38.3
ConDDL 25.9 14.1 9.5 6.9 26.5 14.5 10.9 43.7

Table 1: The automatic evaluation results on Wizard of Wikipedia (WoW) test seen dataset.

of training, the backward model receives golden415

responses as inputs, while in the later stages of416

training, the inputs are pseudo responses generated417

by the forward model. During inference, when a418

knowledge is given to the forward model, ConDDL419

can predict a knowledge-grounded response with420

controllable generation, thereby providing a mean-421

ingful and contextually relevant output. The over-422

all optimization objective of the model is the loss-423

weighted sum described above, with weights calcu-424

lated based on the performance of ConDDL on the425

validation set.426

4 Experiments427

4.1 Experimental Setup428

Datasets. We conducted experiments on two429

knowledge-grounded dialogue generation datasets:430

Wizard of Wikipedia (WoW) (Dinan et al., 2018)431

and CMU Document Grounded Conversations432

(CMU_DoG) (Zhou et al., 2018b). These datasets433

are collected via Amazon Mechanical Turk. WoW434

covers a wide range of topics and involves a wizard435

who possesses knowledge about a specific topic,436

and an apprentice who seeks to learn from the wiz-437

ard. CMU_DoG focuses specifically on the movie438

domain and involves two workers who are knowl-439

edgeable about a document and engage in in-depth440

discussions about its content.441

Baseline. To evaluate the effectiveness of our442

proposed method, we compare it against several443

baselines followed (Liu et al., 2021): ITDD is an444

Transformer-based architecture which incremen-445

tally represents multi-turn dialogues and knowl-446

edge (Li et al., 2019). BARTcat is a BART-based447

model that take the concatenation of dialogue con-448

text and all knowledge as the input of BART for re-449

sponse generation (Lewis et al., 2020a). BARTskt450

is variational model that introduced BART on451

the basis of (Lian et al., 2019b) and considered452

the knowledge selection history in multi-turn di-453

alogue (Kim et al., 2020b). DRD (Zhao et al., 454

2020) intends to combat low-resource settings with 455

pre-trained techniques. ZRKGC (Li et al., 2020) 456

explores the response generation problem without 457

leveraging the matching annotations between the 458

context and knowledge during training. KAT (Liu 459

et al., 2021) has a knowledge-aware decoder which 460

could obtains information from the dialogue con- 461

text and background documents through cross- 462

attention and integrates them through a controller. 463

KAT-TSLF propose a three-stage learning frame- 464

work based on weakly supervised learning which 465

benefits from large scale ungrounded dialogues and 466

unstructured knowledge base. 467

Implementation Details. We implemente 468

the experiments using PyTorch on an NVIDIA 469

A100 GPU. Our code is based on the Hugging- 470

face2. The batch size is set to 8, and input ut- 471

terances are padded or truncated to contain 512 472

tokens. The maximum decoding length is set to 473

40. BART (Lewis et al., 2020b) is initialized by 474

BARTLarge and choose the Adam optimizer with 475

the warm-up steps. The learning rate for the gener- 476

ators is set to 2× 10−4. We use the grid search to 477

tune the hyper-parameters. The search ranges for 478

learning rate and batch size are {1×10−4, 2×10−4, 479

4 × 10−4, 6 × 10−4} and {4, 8, 16, 32}, respec- 480

tively. We choose the parameter combination with 481

the lowest perplexity in the validation set. 482

4.2 Results and Analysis 483

Automatic Evaluation. For automatic evalua- 484

tion, we employed commonly used metrics, which 485

include BLEU (Papineni et al., 2002) (BLEU-1, 486

BLEU-2, BLEU-3 and BLEU-4), ROUGE (Lin, 487

2004) (ROUGE-1), perplexity (PPL), and DIS- 488

TINCT (Li et al., 2015) in the knowledge-grounded 489

dialogue generation following (Liu et al., 2021). 490

The computation of ROUGE scores is based on 491

2https://huggingface.co
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Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 PPL↓ DIST-1 DIST-2
ITDD 13.4 4.7 2.1 1.1 11.4 44.8 - -
BARTcat 23.2 11.0 6.3 4.1 18.9 24.5 5.3 22.2
BARTskt 23.4 10.9 6.8 4.6 19.0 22.3 5.2 24.5
DRD 20.7 10.1 6.2 4.3 16.5 25.6 - -
TAKE 20.1 - - 3.3 26.2 - - -
ZRKGC 21.8 7.1 2.7 1.1 18.5 41.5 3.4 15.6
KAT 24.4 12.5 7.8 6.6 20.5 15.8 10.1 39.1
KAT-TSLF 24.1 12.9 8.3 6.0 20.7 15.8 6.7 26.0
ConDDL 24.6 13.1 8.5 6.3 25.9 16.1 10.5 42.3

Table 2: The automatic evaluation results on Wizard of Wikipedia (WoW) test unseen dataset.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 PPL↓ DIST-1 DIST-2
ITDD 9.5 3.6 1.7 0.9 10.4 26.0 - -
BARTcat 17.0 8.6 5.3 3.4 13.6 36.4 1.5 7.3
BARTskt 16.2 8.3 5.1 3.1 12.7 40.1 1.2 7.3
DRD 15.0 5.7 2.5 1.2 10.7 54.4 - -
ZRKGC 15.1 4.2 1.2 0.4 12.5 53.5 1.2 8.1
KAT 19.4 10.5 6.9 4.7 14.4 22.2 1.8 8.9
KAT-TSLF 20.4 10.6 6.7 4.4 15.1 21.7 2.0 11.1
ConDDL 21.0 10.8 6.8 4.5 17.8 16.9 2.3 12.6

Table 3: The automatic evaluation results on CMU_DoG dataset.

n-grams and is performed using pyrouge package3.492

The overall results under full-dataset scenarios493

of both WoW and CMU_DoG datasets are shown494

in Table 1, Table 2 and Table 3, respectively. Our495

proposed ConDDL model consistently outperforms496

other dialogue models, including the state-of-the-497

art models TAKE and KAT. On the WoW dataset,498

ConDDL achieves improvements of 1.57%, 3.70%,499

and 14.74% than KAT-TSLF in terms of BLEU-500

1, ROUGE-1 and DIST-1, respectively. Notably,501

ConDDL also demonstrates consistently better per-502

formance in terms of DIST compared to the base-503

lines. These results highlight the effectiveness of504

our approach in enhancing semantic and diversity505

modeling. Our model achieves a lower ROUGE-1506

score than TAKE and comparable PPL to KAT on507

the WOW dataset, which is attributed to the differ-508

ence in the non-autoregressive generation method509

and the pre-trained language model. Furthermore,510

on the CMU_DoG dataset, ConDDL achieves sig-511

nificant performance improvement in terms of the512

all automatic metrics. The improvement can be513

attributed to the better utilization of historical infor-514

mation and the diffusion learning mechanism em-515

ployed in our method. ConDDL shows substantial516

improvements across all generation metrics, indi-517

cating its ability to generate more informative and518

engaging responses. Statistical significance tests519

using t-tests confirm that ConDDL outperforms the520

baselines with a p−value of less than 0.05.521

3https://pypi.org/project/pyrouge

Manual Evaluation. To complement the au- 522

tomatic metrics, we conducted a manual evalua- 523

tion focusing on fluency, coherence, and informa- 524

tiveness of the generated responses. The results 525

presented in Table 4 demonstrate that ConDDL 526

outperforms the baseline models in both manual 527

metrics. The kappa statistics4 measuring the agree- 528

ment between annotators are 0.71, 0.63, and 0.66 529

for fluency, coherence, and informativeness, re- 530

spectively, indicating substantial agreement. Im- 531

portantly, ConDDL exhibited a significant improve- 532

ment in informativeness, indicating that the integra- 533

tion of external data enhanced the ability of model 534

to comprehend. ConDDL is capable of generat- 535

ing responses that incorporate flexible knowledge 536

and leverage global information to produce more 537

relevant and informative responses. 538

Ablation Study. To evaluate the effectiveness 539

of each module in ConDDL, we perform an ab- 540

lation study where we remove key modules from 541

our framework one by one. The results are pre- 542

sented in Table 5 and the ablation models are eval- 543

uated using all metrics. The removed modules 544

include the dual learning module (DualLearning), 545

diffusion learning (DiffLearning), and contrastive 546

learning (ContLearning). The results indicate that 547

all ablation models performe worse than ConDDL 548

across all metrics, highlighting the superiority of 549

4Landis and Koch (1977) characterize kappa values < 0
as no agreement, 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60
as moderate, 0.61-0.80 as substantial, and 0.81-1 as almost
perfect agreement.
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Methods WoW Test Seen WoW Test Unseen
Information Coherence Fluency Information Coherence Fluency

BARTskt 0.52 0.61 0.52 0.49 0.61 0.49
ZRKGC 0.53 0.59 0.56 0.52 0.57 0.51
KAT-TSLF 0.55 0.66 0.63 0.54 0.61 0.69
ConDDL 0.61 0.70 0.66 0.60 0.71 0.65

Table 4: Manual Evaluation results on the WoW dataset.

Methods WoW Test Seen WoW Test Unseen
BL-1 BL-4 RG-1 DIST-1 BL-1 BL-4 RG-1 DIST-1

ConDDL 25.9 6.9 26.5 10.9 24.6 6.3 25.9 10.5
w/o DualLearning 24.3 6.1 26.1 10.1 24.1 5.9 25.6 10.0
w/o DiffLearning 23.9 5.9 25.6 9.7 23.5 5.4 25.1 9.9
w/o ContLearning 24.7 6.4 25.9 10.3 24.5 6.1 25.3 10.2

Table 5: The Ablation study on the WoW dataset.

Full 1/2 1/4 1/8
The Number of Training Data

22

23

24

25

26

B
LE

U
-1

ConDDL
KAT-TSLF
ConDDL(-DualL)
ConDDL(-DiffL)

Figure 3: Performance of the proposed model with dif-
ferent number of training data on the WoW.

ConDDL. In particular, the diffusion learning is550

found to contribute the most to the overall per-551

formance, demonstrating the need to incorporate552

multi-stage diffusion learning with external knowl-553

edge. This phenomenon is mainly due to the fact554

that knowledge-based dialogue generation requires555

more precise information injection, as opposed to556

non-knowledge dialogue. This finding is consistent557

with our hypothesis that introducing a large amount558

of external knowledge without effective constraints559

can reduce the impact of the primary goal.560

Low-Resource Settings. To investigate the fac-561

tors influencing the performance of ConDDL in562

low-resource scenarios, we randomly select differ-563

ent numbers of training samples for all datasets and564

evaluate the performance of our model using the565

ablation study. Figure 3 illustrates the results of the566

baseline KAT-TSLF and the ablation study in terms567

of ConDDL. The experimental results show that568

the data requirements of ConDDL are significantly569

lower than the baseline model. These findings em-570

phasize the significance of the proposed model for571

low-resource knowledge-grounded dialogue gen- 572

eration. Removing any component from ConDDL 573

resulted in a performance drop when the training 574

data was limited. Furthermore, the dual learning 575

module was found to be the most sensitive com- 576

ponent, and its removal has a greater impact on 577

the overall performance. This also shows that the 578

iterative dual structure helps the model to make full 579

use of the available data in low-resource scenar- 580

ios. Due to the presence of the dual module, our 581

method can automatically expand the training data 582

and improve its performance when data is limited. 583

While the diffusion learning module played a larger 584

role when the training data exceeded a quarter of 585

the available dataset, it can inject knowledge into 586

the response more accurately. 587

5 Conclusions 588

In this paper, we propose a knowledge-grounded 589

dialogue generation framework called Controllable 590

Dual Diffusion Learning (ConDDL) to mitigate 591

the problem of knowledge selection and dialogue 592

generation. ConDDL leverages dual learning and 593

diffusion learning to effectively exploit knowledge 594

beyond the generation process. We incorporate 595

knowledge information into the diffusion process, 596

which guides the model to allocate pay more atten- 597

tion to the precise knowledge in the training pro- 598

cess. We formulate response generation and knowl- 599

edge generation as dual tasks to fully leverage the 600

prior and posterior knowledge. Experimental re- 601

sults on two public datasets, Wizard of Wikipedia 602

and CMU_DoG, demonstrate the significant perfor- 603

mance of the proposed ConDDL model, validating 604

its effectiveness. Furthermore, we aim to explore 605

methods for utilizing limited data, which is crucial 606

for the exploitation of unlabelled knowledge data. 607
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Limitations608

The limitations focus on text length, the number609

of dialogue characters, and GPU resources in this610

work. We know that text length limits the mod-611

eling ability of the model in the natural language612

process, and the same is valid for dialogue gener-613

ation. If the dialogue involves more than 20 or 30614

rounds, it will significantly reduce the ability of the615

model to capture important information. In addi-616

tion, the number of interlocutors involved in the617

conversation is significant. We do not discuss the618

loss of modeling effectiveness with more than three619

interlocutors due to space, but we will explore this620

issue in more detail in the future. Finally, due to621

the limitation of GPU resources, we could not set622

a larger batch size, resulting in the model lacking623

more super-reference search space. These issues624

will be investigated in more depth in the future.625

Besides, if there is malicious information in the626

dataset, it might generate harmful responses like627

most generative models. This phenomenon is a628

potential risk in data-driven models and requires us629

to explore additional control techniques.630

Ethics Statement631

This paper proposes a knowledge-grounded dia-632

logue generation framework called Controllable633

Dual Diffusion Learning. The research will not634

pose ethical issues. We have considered the ethical635

implications of our research across different frame-636

works. We have ensured fair compensation for637

human evaluators, used publicly available datasets,638

and minimized the introduction of biases. By ad-639

dressing these ethical considerations, we aim to640

contribute to responsible and impactful advance-641

ments in dialogue generation, knowledge distilla-642

tion, and open-domain question answering.643
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A Appendix 844

A.1 Case Study 845

Table 6 presents a comparison between the refer- 846

ence response and the outputs of various models 847

on the WoW dataset. It can be observed that the 848

knowledge sentences contained differences in judg- 849

ments of hair length based on gender (indicated in 850

red and blue text). The baselines fail to capture 851

this vital information during the dialogue genera- 852

tion, leading to less incorporation of knowledge 853

in their responses. In contrast, ConDDL produced 854

a response that is fluent and consistent with the 855

knowledge. ConDDL does not rely on complex 856

structure or fact analysis modules but rather relies 857

on end-to-end training to understand the original 858

text well. When enhanced knowledge is introduced 859

externally, the major challenge lies in the incon- 860

sistency of data distribution. Manual evaluation 861

and case analysis revealed that ConDDL demon- 862

strated a better understanding of dialogue history 863

and generated responses containing more factual 864

information. This is because the ConDDL model 865

can automatically capture the central representation 866

and global-related knowledge through dual diffu- 867

sion learning module, thereby strengthening the 868

main modeling content. 869

Topic Brown hair
Knowledge For example, a woman with chin-length hair

in some cultures may be said to have short
hair, while a man with the same length of
hair in some of the same cultures would be
said to have long hair.

Dialogues

A: Hi. I have brown hair.
B: That’s nice. Is it long or short hair?
A: That depends on where you’re from.
Long hair is a concept that varies culturally.
B: That’s true. I guess I would rephrase it as
do you have shoulder-length hair or longer?

Reference It’s about to my shoulders. I think most
Americans would say medium. On a guy it
would be "long".

BARTskt I think it is a long hair.
KAT-TSLF I’m not sure but the hair is brown.
ConDDL It’s shoulder-length hair. I guess some cul-

tures would say it’s short hair. But for men
it’s long.

Table 6: Examples of the generated response by
ConDDL and other models on the WoW dataset.

A.2 Manual Evaluation 870

We evaluate the models with the followed three met- 871

rics: (i) Fluency, which indicates the smoothness 872

of the sentence. (ii) Coherence, which measures 873

the consistency of the response with the context. 874
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Datasets WoW CMU_DoG
Train Valid Test Seen Test Unseen Train Valid Test

# of Utterances 166,787 17,715 8,715 8,782 74,717 4,993 13,646
# of Dialogues 18,430 1,948 965 968 3,373 229 619
# of Topics 1,247 599 533 58 30 30 30
Avg. # Turn 9.0 9.1 9.0 9.1 22.2 21.8 22.0
Avg. # words/turn 16.4 16.4 16.4 16.1 18.6 20.1 18.1
Avg. # knowledge entries 61.2 61.5 60.8 61.0 31.3 30.4 31.8
Avg. # words/knowledge 37.2 37.6 36.9 37.0 27.2 28.2 27.0

Table 7: The statistics for WoW and CMU_DoG datasets. “#” means the number of pairs.

(iii) Informativeness, which evaluates how well the875

response aligns with the target informativeness. We876

randomly selected 100 responses from the WoW877

test seen set and 100 responses from the test un-878

seen set. Three well-educated annotators indepen-879

dently judged the responses generated by ConDDL880

and the baseline models. The annotators rated the881

responses based on fluency and informativeness,882

using scores ranging from 0 to 1 (with 1 being the883

best). To give a fair salary, we first evaluate 50 sam-884

ples by ourselves, calculate the time and effort, and885

set this amount (samples evaluated by ourselves886

are just for evaluating the salary, which is not given887

to evaluators and not reported in the final results).888

The dialogues are presented to the annotators in a889

random order. All generated responses were fairly890

capitalized and detokenized.891

A.3 Dataset Statistics892

Table 7 provides statistics for both datasets.893
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