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Abstract

Extracting meaningful latent representations from
high-dimensional sequential data is a crucial chal-
lenge in machine learning, with applications span-
ning natural science and engineering. We introduce
InfoDPCCA, a dynamic probabilistic Canonical
Correlation Analysis (CCA) framework designed
to model two interdependent sequences of observa-
tions. InfoDPCCA leverages a novel information-
theoretic objective to extract a shared latent rep-
resentation that captures the mutual structure be-
tween the data streams and balances representa-
tion compression and predictive sufficiency while
also learning separate latent components that en-
code information specific to each sequence. Un-
like prior dynamic CCA models, such as DPCCA,
our approach explicitly enforces the shared la-
tent space to encode only the mutual information
between the sequences, improving interpretabil-
ity and robustness. We further introduce a two-
step training scheme to bridge the gap between
information-theoretic representation learning and
generative modeling, along with a residual con-
nection mechanism to enhance training stability.
Through experiments on synthetic and medical
fMRI data, we demonstrate that InfoDPCCA ex-
cels as a tool for representation learning. Code of
InfoDPCCA is available at https://github.
com/marcusstang/InfoDPCCA.

1 INTRODUCTION

Extracting meaningful latent representations from complex,
high-dimensional sequential data is a fundamental challenge
in machine learning, with broad applications across natural
science and engineering. For instance, state-space models
have been employed to uncover dynamic patterns in brain

activity, aiding in the diagnosis of psychiatric disorders [Suk
et al., 2016], and to track functional connectivity changes
in resting-state fMRI for cognitive impairment assessment
[Kusano et al., 2019].

In this paper, we introduce InfoDPCCA, a dynamic proba-
bilistic Canonical Correlation Analysis (CCA) framework
designed to model two interdependent sequences of obser-
vations. Our approach extracts a shared latent representation
that captures the mutual information between the two data
streams while simultaneously learning distinct components
unique to each sequence. By leveraging a novel information-
theoretic objective and a two-step training scheme, InfoD-
PCCA encourages the shared latent states to encode only the
mutual information between the observations and strike a
balance between representation compression and predictive
sufficiency. InfoDPCCA can be viewed both as a generative
model and a stochastic representation learning method.

The paper is organized as follows: In Section 2, we review
the recent development of CCA and the usage of Informa-
tion Bottleneck in sequential modeling. Section 3 describes
simpler probabilistic models that form the backbones of our
approach. In Section 4.1, we introduce Deep Dynamic Prob-
abilistic CCA (D2PCCA) [Tang et al., 2025b] as a baseline
for comparison. Section 4.2 compares the graphical models
of D2PCCA and InfoDPCCA and provides justifications for
the change in design choice. Section 4.3 identifies a key lim-
itation of D2PCCA and introduces an information-theoretic
objective to mitigate this issue. Section 4.4 outlines a two-
step training scheme for InfoDPCCA. Section 4.5 proposes
methods to improve the stability and efficiency of the train-
ing process. Finally, in Section 5, we provide numerical
simulations and real-world medical fMRI data to validate
that InfoDPCCA fulfills its claims and excels as a tool for
representation learning.

The major contributions of the paper include:

1. The proposal of a novel dynamic CCA model that
improves upon its predecessor D2PCCA.
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2. A novel information-theoretic objective to extract
shared latent states as well as its tractable variational
bound.

3. A two-step training approach that bridge the gap be-
tween information-theoretic representation learning
and generative modeling.

4. A novel residual connection proposed in Section 4.5 to
enhance the training stability.

2 RELATED WORKS

The method of using Information Bottleneck (IB) [Tishby
et al., 2000] to guide the training of sequential models is
well-established. Chechik et al. [2005] proposes Gaussian
IB (GIB) that extends the IB principle to multivariate Gaus-
sian variables, showing that GIB’s optimal projections align
with CCA’s eigenstructure. Creutzig et al. [2009] and Amir
et al. [2015] apply IB to linear dynamical systems, focus-
ing on model reduction and system realization. Kolchinsky
et al. [2019] extends IB to nonlinear encoding and decoding
maps and proposes a non-parametric upper bound on the
mutual information (MI) term. Fischer [2020] discusses the
possibility of extending its static IB framework to sequence
learning. Meng et al. [2022] maximizes predictive informa-
tion in the representation space and adapts InfoNCE’s [Oord
et al., 2018] MI lower bound to achieve a low-variance
approximation. Kalajdzievski et al. [2022] leverages IB to
learn compressed latent representations while preserving
relevant transfer entropy information, which quantifies the
causal influence of a source process on the future states of
a target process. Murphy et al. [2024] further decomposes
transfer entropy into its contributions from the source’s past
and the target’s future using IB. Federici et al. [2023] applies
IB to learn latent representations that retain essential system
dynamics while discarding superfluous information, such
as high-frequency noise, irrelevant features, and short-term
dependencies. Another notable extension is the Multi-view
Information Bottleneck [Federici et al., 2020], which adapts
IB to learn the representations of each view of the data that
capture the shared information across multiple views.

CCA is a statistical method that explores the shared struc-
ture of paired datasets by finding linear projections that
maximize their correlation. Painsky et al. [2025] extends
CCA to nonlinear settings, making the latent representations
more flexible and expressive. Motivated by the intuition be-
hind CCA, Bach and Jordan [2005] and Klami and Kaski
[2008] propose probabilistic versions of CCA by model-
ing an underlying shared latent state that generates both
observations. Wang et al. [2016] further extends probabilis-
tic CCA to nonlinear observation models using amortized
variational inference [Kingma and Welling, 2013]. Dynamic
Probabilistic CCA (DPCCA) [Nicolaou et al., 2014] is a
dynamic extension of CCA that models the evolution of
two variables simultaneously over time. Tang et al. [2025b]

builds upon DPCCA by introducing nonlinear state tran-
sitions and emission models, making it more expressive
for complex time-series data. We refer to both linear and
nonlinear versions of the model as DPCCA.

3 BACKGROUND

In this section, we briefly introduce the static Variational
Information Bottleneck (VIB) [Alemi et al., 2016] and Con-
ditional Entropy Bottleneck (CEB) [Fischer, 2020] models
and propose a dynamic extension of VIB, which we name
Dynamic VIB (DVIB). These models serve as the founda-
tion for extending our approach to the more complex case
of two observations.

Information Bottleneck (IB) [Tishby et al., 2000] is a frame-
work that seeks to optimize the trade-off between compress-
ing the input x into a compact representation z while pre-
serving relevant information about the target y, with the
goal of minimizing the mutual information between x and z,
I(x; z), while maximizing the mutual information between
z and y, I(z;y), i.e.

min βI(z;x)− I(z;y), (1)

where β is a hyperparameter controlling the contribution of
the two terms.

VIB models the Markov chain y ↔ x ↔ z, where z is a
stochastic latent representation of x. VIB considers an addi-
tional observed variable y such that the three variables fol-
low the joint distribution p(x,y, z) = p(x)p(y|x)qϕ(z|x),
where ϕ parameterizes the stochastic encoder. VIB opti-
mizes the IB (1) by replacing the mutual information terms
with tractable variational bounds.

On the other hand, Fischer [2020] optimizes the CEB objec-
tive,

min I(z;x|y)− λI(z;y), (2)

where the conditional mutual information (CMI) is given by

I(z,x|y) = I(x; z)− I(z;y). (3)

The CEB objective can be rewritten in the same form as
(1) since (2) can be expressed as I(z;x)− (1 + λ)I(z;y).
However, unlike IB, the two terms in the CEB objective are
disjoint, allowing CEB to achieve a tighter approximation
through a better choice of the inference network. Further-
more, by representing the IB as CEB, we can track the
evolution of the conditional mutual information term, which
can be driven to zero in an optimal case.

To obtain a lower bound on I(z;y), both VIB and CEB
require training a classifier network pθ(y|z). Once train-
ing is complete, classification is performed as p(y|x) =
Eqϕ(z|x)[pθ(y|z)]. This contrasts with the Conditional



(a) DVIB (b) InfoNCE

Figure 1: Graphical models for DVIB and InfoNCE. The
shaded nodes denote observations, while the unshaded nodes
denote latent states. The solid arrows denote stochastic con-
nections, while the dotted arrows denote deterministic maps.

Variational Autoencoder (CVAE) [Kim et al., 2021]
approach, where classification is given by p(y|x) =
Eqϕ(z|x)[pθ(y|z,x)]. Unlike CVAE, which explicitly condi-
tions on x in the decoder, VIB learns a stochastic encoder
qϕ(z|x) that ensures the latent representation z is a suffi-
cient statistic for predicting y. By enforcing this constraint,
the classification model becomes more robust to noise in x.
Furthermore, unlike CVAE, VIB does not require a separate
inference network q(z|x,y) in training.

We propose DVIB as a straightforward dynamic extension
to VIB and a realization of the sequence learning approach
depicted in the Equation (A4) of [Fischer, 2020]. As illus-
trated in Figure 1, DVIB can be regarded as a stochastic
counterpart of InfoNCE in the case of one-step-ahead pre-
diction; specifically, the latent state of DVIB, zt, is compa-
rable to ct of InfoNCE, which is computed by the hidden
state ht. InfoNCE maximizes a lower bound on the mu-
tual information between ct and the future states known as
the noise contrastive loss. By contrast, DVIB aims to learn
a stochastic representation zt that contains most informa-
tion content of x1:t in predicting xt+1. To achieve this, we
use RNN hidden states to encode historical input x1:t, i.e.
ht = RNN(ht−1,xt). The encoder qϕ(zt|x1:t) and decoder
pθ(xt+1|zt) networks are trained by optimizing the IB in a
sequential setting,

min

T∑
t=1

{
βI(zt;x1:t)− I(zt;xt+1)

}
, (4)

with a tractable variational bound:

min

T∑
t=1

{
⟨β log qϕ(zt|ht)− log r(zt)⟩

− ⟨log pθ(xt+1|zt)⟩
}
,

(5)

where r(zt) = logN (zt|0, I) can be chosen as the regu-
larization term, and ⟨·⟩ represents expectations taken with
respect to p(x1:t+1)qϕ(zt|ht). As will become evident later
in the paper, DVIB’s simplicity and the structure of its objec-
tive provide critical insights into InfoDPCCA’s more general
approach to modeling two sequences.

(a) DPCCA (b) InfoDPCCA

Figure 2: Graphical models for DPCCA and a simplified
version of InfoDPCCA.

4 PROPOSED MODEL: INFODPCCA

In this section, we first review DPCCA [Tang et al., 2025b]
and show that the proposed InfoDPCCA model is well-
motivated to ameliorate a key limitation of DPCCA in cap-
turing mutual information.

Before introducing the proposed method, we first define
the notation used throughout this paper. We denote the two
observations at time t as x1

t and x2
t . The entire sequence

of historical observations for variable xi is represented as
xi1:t. We use z0t to denote the latent states shared by both
observations and use zit to denote latent states private to
observation xi. Similar to the previous section, we use ht
to denote RNN hidden states, with appropriate superscripts
added to distinguish between different RNNs. We use pD to
denote the empirical distribution of the dataset.

Following the notations of [Koller, 2009], we say that x
is conditionally independent from z given y, denoted as
x ⊥⊥ z|y, if either one of the following conditions hold:

p(x, z|y) = p(x|y)p(z|y), (6)
p(z|x,y) = p(z|y). (7)

4.1 DPCCA: A BASELINE FOR COMPARISON

DPCCA is a latent state-space model where a shared latent
variable z0t captures mutual dependencies between the two
sequences, while unique latent variables z1z and z2z account
for individual variations. As is shown by the probabilis-
tic graphical model in Figure 2 (a), DPCCA satisfies the
following set of (conditional) independence properties:

zit+1 ⊥⊥ zjt+1|z0:2t , x1
t ⊥⊥ x2

t |z0:2t , zit ⊥̸⊥ zjt |x1:2
t , (8)

for i, j ∈ {0, 1, 2}. Each recurrent segment of DPCCA has
the state transition and emission models

pθ(z
0:2
t |z0:2t−1) =

2∏
i=0

pθ(z
i
t|zit−1), (9)

pθ(x
1:2
t |z0:2t ) = pθ(x

1
t |z1t , z0t )pθ(x2

t |z2t , z0t ), (10)



where θ denotes the parameters of the generative process.
DPCCA is trained by maximizing the variational lower
bound (ELBO),

max
θ,ϕ

Eqϕ(z0:2
1:T |x1:2

1:T )

[
log

pθ(x
1:2
1:T , z

0:2
1:T )

qϕ(z0:21:T |x1:2
1:T )

]
, (11)

where the inference network qϕ has the form

qϕ(z
0:2
1:T |x1:2

1:T ) =

T∏
t=1

q(z0:2t |z0:2t−1,x
1:2
t:T ). (12)

4.2 COMPARISON OF GRAPHICAL MODELS

For ease of comparison, we illustrate the graphical model of
a simplified version of InfoDPCCA in Figure 2 (b), which
assumes that the current hidden state is conditionally inde-
pendent of previous observations given the current obser-
vations. However, in practice, we consider a more general
case where each hidden state depends on all previous ob-
servations. The graphical model for this general case of
InfoDPCCA is shown in Figure 3 (b).

It can be verified that, similar to DPCCA (8), InfoDPCCA
satisfies the following conditional independence properties:

zit+1 ⊥⊥ zjt+1|x1:2
t+1, x1

t ⊥⊥ x2
t |z0:2t−1, zit ⊥̸⊥ zjt |x1:2

t+1.
(13)

A major difference between the two models is that InfoD-
PCCA assumes a conditional independence property for the
distribution of its latent states, which we refer to as serial
independence, defined as

zit ⊥⊥ zjt−n|x1:2
1:T , ∀ i, j ∈ {0, 1, 2}. (14)

This assumption implies that given all the observations, the
private latent states of different observations at different
time steps are conditionally independent. The serial inde-
pendence of InfoDPCCA can be established by

p(zit, z
j
t−n|x1:2

1:T ) = p(zit|x1:2
1:t+1)p(z

j
t−n|x1:2

1:t−n+1), (15)

according to the criteria (6). These properties hold for both
the simplified and general versions of InfoDPCCA. On the
other hand, in the case of DPCCA, we can prove z1t−1 ⊥̸⊥
z2t |x1:2

1:T using (6),

p(z1t−1, z
2
t |x1:2

1:T ) =
∑

z0t−1,z
2
t−1

p(z1t−1, z
0
t−1, z

2
t−1, z

2
t |x1:2

1:T )

= p(z1t−1|x1:2
1:T )

∑
z0t−1,z

2
t−1

p(z0t−1, z
2
t−1, z

2
t |x1:2

1:T , z1t−1)

̸= p(z1t−1|x1:2
1:T )p(z2t |x1:2

1:T ).

Admittedly, the graphical model of DPCCA may seem more
intuitive; however, we believe that the mesh structure of

(a) Step I (b) Step II

Figure 3: Graphical models in the two-step training of In-
foDPCCA. The diamond nodes denote RNN hidden states.
We use solid red arrows to denote the connections learned
in step I, and solid purple arrows to denote the connections
trained in step II, and dashed purple arrows to denote the
residual connections from step I.

InfoDPCCA is necessary to facilitate information-theoretic
representation learning. Generative models like VAEs or
DPCCA assume that the observations are generated by the
latent variables (zt → xt), while representation learning
methods that apply information-theoretic principles like
VIB and Multi-view IB treat the latent variables as dis-
entangled representations of the observations (xt → zt).
InfoDPCCA falls into the latter category, and its objective
function is analyzed in detail in Section 4.3.

Furthermore, the serial independence assumption aligns
with other established methods when applied to, for exam-
ple, industrial processes or single-cell biomedical sequences.
LaVAR-CCA [Qin, 2022] combines contemporaneous or-
thogonality, where latent variables are uncorrelated at each
time step, with a vector autoregressive model that captures
temporal dependencies. A conceptually similar approach to
InfoDPCCA appears in Tilted-CCA [Lin and Zhang, 2023],
which, while applied to non-sequential single-cell data, uses
orthogonality constraints to separate shared and distinct
information across modalities.

4.3 INFORMATION-THEORETIC OBJECTIVE

The shared latent states z0t of DPCCA have an uncertain
meaning. Beyond the structural design of the generative
model, there is no guarantee that the extracted shared latent
states exclusively capture the mutual information between
the two observations—nor is the model explicitly trained
to enforce this property. For instance, if the dimensionality
of z0t is relatively small, the private latent states z1t and
z2t may independently encode the dynamics of x1

t and x2
t ,

respectively, leading to a low reconstruction loss; in such
case z0t may primarily encode residual dynamics that lack
meaningful shared structure.

To remedy this, InfoDPCCA uses an information-theoretic
objective to encourage the shared latent states z0t to ex-
clusively capture the mutual information between the two



observations. We extract latent states z0t as the stochastic
embeddings of x1:2

1:t by optimizing the following objective,

min

T∑
t=1

{
αI(z0t ;x

1:2
1:t )− I(z0t ;x

1:2
t+1)︸ ︷︷ ︸

IB term

+ β
(
I(z0t ;x

1
1:t|x2

1:t) + I(z0t ;x
2
1:t|x1

1:t)
)︸ ︷︷ ︸

regularization term

}
,

(16)

where the IB term is similar to (1) and (4) and the reg-
ularization term discourage z0t to learn sequence-specific
information as illustrated in Figure 4.

As depicted in Figure 3 (a), our framework assumes that z0t
is generated by x1:2

1:t via a stochastic map,

p(z0t |x1:2
1:t ) = q1:20 (z0t |x1:2

1:t ) = q1:20 (z0t |h1
t , h

2
t ), (17)

where hit = RNN(hit,x
i
t) for i = 1, 2. We also assume that

the emission model can be factored as

p(x1:2
t+1|z0t ) = p01(x

1
t+1|z0t )p02(x2

t+1|z0t ). (18)

Following the idea of VIB, we have the following bounds

I(z0t ;x
1:2
1:t ) ≤ ⟨log q1:20 (z0t |x1:2

1:t )− log r(z0t )⟩, (19)

I(z0t ;x
1:2
t+1) ≥ ⟨log p01(x1

t+1|z0t )p02(x2
t+1|z0t )⟩+ const.,

(20)

where ⟨·⟩ represent expectations taken with respect to
pD(x

1:2
1:t+1)q

1:2
0 (z0t |x1:2

1:t ).

To further simplify the regularization term in (16), we tem-
porarily simplify the notations by removing the superscripts
of each variable and using their original superscripts as their
subscripts, e.g. x1:2

1:t → x1:2. Firstly, we have the equality

I(z0;x1|x2) + I(z0;x2|x1)

=
(
H(z0;x2)−H(z0;x1:2)

)
+

(
H(z0;x1)−H(z0;x1:2)

)
=
(
I(z0;x1:2)− I(z0;x2)

)
+

(
I(z0;x1:2)− I(z0;x1)

)
.

(21)

Furthermore, we can establish a variational bound

I(z0;x1:2)− I(z0;x1)

=

∫∫
p(z0,x1:2) log

p(z0|x1:2)

���p(z0)
dz0dx1:2

−
∫∫

p(z0,x1) log
p(z0|x1)

�
��p(z0)

dz0dx1

(a)

≤ Ep(z0,x1:2)[log q
1:2
0 (z0|x1:2)]− Ep(z0,x1)[log q

1
0(z0|x1)]

≈⟨log q1:20 (z0|x1:2)⟩ − ⟨log q10(z0|x1)⟩,
(22)

where the inequality in (a) holds due to the modeling as-
sumption that p(z0|x1:2) = q1:20 (z0|x1:2) and the Gibbs’
inequality

0 ≤Ep(x1)[DKL(p(z0|x1)∥q10(z0|x1))]

=Ep(z0,x1)[log p(z0|x1)]− Ep(z0,x1)[log q
1
0(z0|x1)],

(23)

and the expectations are defined as

⟨log q1:20 (z0|x1:2)⟩ = EpD(x1:2
1:t )q

1:2
0 (z0t |x

1:2
1:t )

[log q1:20 (z0t |x1:2
1:t )],

⟨log q10(z0|x1)⟩ = EpD(x1:2
1:t )q

1:2
0 (z0t |x

1:2
1:t )

[log q10(z
0
t |x1

1:t)].

(24)
Similarly, we obtain the variational bound,

I(z0;x1:2)− I(z0;x2)

≤⟨log q1:20 (z0t |x1:2
1:t )⟩ − ⟨log q20(z0t |x2

1:t)⟩.
(25)

In summary, we solve for encoder q1:20 , q10 , q20 , and decoder
p01, p02 networks by optimizing the following objective,

min (α+ 2β)⟨log q1:20 (z0t |x1:2
1:t )⟩ − α⟨r(z0t )⟩

− ⟨log p01(x1
t+1|z0t )⟩ − ⟨log p02(x2

t+1|z0t )⟩
− β⟨log q10(z0t |x1

1:t)⟩ − β⟨log q20(z0t |x2
1:t)⟩,

(26)
where we use the bounds developed in Equations (19) and
(20). The extracted shared latent states z0t , as formulated
above, achieve a balance between minimizing overall in-
formation content, ensuring they capture only the shared
components between the two observations, and retaining
sufficient information to predict the next observation.

Unfortunately, there’s no closed-form solution to pick α and
β. One may use cross-validation to set the hyperparameters.
By default, we can set α = 1 and β = 0.1.

Remark 1. While the Gibbs’ inequality (23) holds for any
choice of distribution over z0, the tightness of the variational
bound (22) depends on how well q10(z0|x1) approximates
the true posterior p(z0|x1). In fact, the training objective
(26) is designed to encourage this match by including the
term −β⟨log q10(z0|x1)⟩ (as defined in (24)). Minimizing
this term drives q10(z0|x1) to align with q1:20 (z0|x1:2), which
serves as an approximation to p(z0|x1). To see why, note
that

p(z0|x1) =

∫
p(z0,x2|x1)dx2 =

∫
p(x2|x1)q

1:2
0 (z0|x1:2)dx2

≈
∫

pD(x2|x1)q
1:2
0 (z0|x1:2)dx2 = q1:20 (z0|x1:2).

(27)

4.4 TWO-STEP TRAINING SCHEME

Instead of training the model in a single step, we propose a
novel two-step approach for InfoDPCCA. In the first step,
we extract the shared latent states that capture the mutual
information between the two observations as mentioned in
Section 4.3. In the second step, we train the entire generative
model, including the private latent states, while keeping the
parameters learned in the first step fixed.

We use variational inference to train the remaining compo-
nents of the generative model, specifically the private latent
states and their associated stochastic mappings. The goal is
for z0t to capture the shared global dynamics of the system,



Figure 4: Venn diagram illustrating the relationship between
the shared latent state z0t and the observations x1:2

1:t . The
shaded regions represent the regularization term in (16),
which InfoDPCCA aims to minimize.

while z1t and z2t encode local variations and residual fluctu-
ations. As shown in Figure 3 (b), solid red arrows indicate
the connections trained in Step I, while solid purple arrows
represent the connections trained in Step II.

With the parameters of the encoder network q1:20 fixed, we
then solve for θ and ϕ in

max Eqϕ(z0:2
1:T |x1:2

1:T )

[
log

pθ(z
0:2
1:T ,x

1:2
1:T )

qϕ(z0:21:T |x1:2
1:T )

]
, (28)

where

pθ(z
0:2
1:T ,x

1:2
1:T ) =

T∏
t=1

q1:20 (z0t |x1:2
1:t )pθ(z

1
t |x1

1:t)pθ(z
2
t |x2

1:t)

pθ(x
1
t+1|z

0,1
t )pθ(x

2
t+1|z

0,2
t ),

qϕ(z
0:2
1:T |x1:2

1:T ) =

T∏
t=1

qϕ(z
0:2
t |x1:2

1:t+1).

(29)
Note that we design the approximate posterior in a way
that its factorization aligns in form with the true posterior
factorization,

p(z0:21:T |x1:2
1:T ) =

T∏
t=1

p(z0:2t |x1:2
1:t+1). (30)

In summary, the generative process is given by
pθ(z1:T ,x

1:2
1:T ), which can be used for sequence gener-

ation and prediction. Meanwhile, the inference model
qϕ(z1:T |x1:2

1:T ) is used to extract the latent states z0:2t for
down-stream tasks.

4.5 IMPROVING STABILITY & EFFICIENCY

If the goal is for z0t to encode the primary or slow dynamics
of the system while z1t and z2t capture the residual struc-
tures, is it optimal to reuse only the stochastic mapping
q1:20 (z0t |x1:2

1:t ), as indicated by the purple dashed arrows in
Figure 5 (b), while ignoring other inference networks trained
in Step I? In this section, we explore several approaches to
leveraging the learned structures from Step I. In practice,

(a) New Emitter (b) Residual Connection

Figure 5: Two neural network structures for InfoDPCCA’s
emission model. (a) shows a new emitter network trained
from scratch, with trainable parameters indicated by fire
icons. (b) reuses the emitter network from Step I via a resid-
ual connection, with fixed parameters indicated by ice icons.

these methods enhance both stability and efficiency (reduc-
tion in the total amount of parameters) in training.

Similar to the other deep state space models [Girin et al.,
2020, Tang et al., 2025a, Krishnan et al., 2017], we de-
fine the decoder network p(x|z) as a Gaussian distribution,
where the mean and variance are parameterized by a neural
network referred to as the emitter:

pθ(x|z) = N (µθ(z), σθ(z)
2), (31)

where (µθ(z), σθ(z)) = Emitterθ(z). In practice, we im-
plement the emitter using a multi-layer perceptron (MLP).
For example, we denote a three-layer MLP with ReLU acti-
vations in the hidden layers and a Sigmoid activation in the
output layer as:

Emitter(z) = MLP(z,ReLU,ReLU,Sigmoid). (32)

Residual connections. To optimize the information bot-
tleneck objective (16) in step I, we obtain a byproduct
p1(x

1
t+1|z0t ) associated with Emitter1. This raises the ques-

tion of whether or not Emitter1 can be reused in Step II.
Inspired by ResNet [He et al., 2016], we propose two de-
signs for the decoder network pθ(x

1
t+1|z0t , z1t ), referred to

as Emitter2. Figure 5 (a) illustrates a baseline approach
where a separate emitter is trained from scratch:

Emitter2(z
0:1
t ) = MLP([z0:1t ],ReLU,ReLU,Sigmoid).

(33)

In contrast, Figure 5 (b) presents an alternative approach
where a residual connection from Emitter1(z

0
t ) is incor-

porated into Emitter2(z
0
t , z

1
t ). To adaptively control the

information flow from Emitter1, we introduce gating units
[Cho et al., 2014, Krishnan et al., 2017], leading to the
following parameterization:

[µ1, σ1] = Emitter2(z
0
t ),

[µ̃2, σ2] = MLP([z0t , z
1
t ],ReLU,ReLU,Sigmoid),

gt = MLP([z0t , z
1
t ],ReLU,Sigmoid), (gating units)

µ2 = (1− gt)⊙ µ1 + gt ⊙ µ̃2,
(34)



Algorithm 1: Two-Step Training for InfoDPCCA

Input: Observed paired sequences {x1
1:T ,x

2
1:T };

Hyperparameters α, β from (16).
1 // Step I: Optimizing info-theoretic objective;
2 Initialize parameters for inference networks q1:20 , q10 , q20 ,

p01, p02, and RNNs d1 and d2;
3 repeat
4 h1

1:T ← d1(x1
1:T ), h2

1:T ← d2(x2
1:T );

5 Sample z0t ∼ q1:20 (z0t |h1
t , h

2
t );

6 Compute the objective (26);
7 Update q1:20 , q10 , q

2
0 , p

0
1, p

0
2, d

1, d2 via stochastic
gradient descent algorithm;

8 until convergence;
9 // Step II: Full generative model training;

10 if residual_connection then
11 Construct Emitter2 in (34) using p01 and p02;
12 else
13 Construct Emitter2 in (33);
14 end
15 repeat
16 if reuse_RNN then
17 h1

1:T ← d1(x1
1:T ), h2

1:T ← d2(x2
1:T );

18 Sample z0:2t following procedures (35);
19 else
20 Sample z0:2t ∼ qϕ(z

0:2
t |x1:2

1:t+1) in (29);
21 end
22 Compute the objective (28);
23 Update θ, ϕ via stochastic gradient descent;
24 until convergence;
25 h1

1:T ← d1(x1
1:T ), h2

1:T ← d2(x2
1:T );

26 µt ←Wµ[h
1
t+1, h

2
t+1] + bµ;

Output: Extracted latent states z0:21:T ← µ1:T

where ⊙ denotes element-wise product. As shown in (34),
only µ1 is directly used to compute µ2, but we retain the flex-
ibility to reuse both µ1 and σ1. The parameters of Emitter1
remain fixed in Step II. The use of residual connections can
be particularly beneficial when z0t has a strong influence on
the output, allowing the contribution of z1t to be adjusted
adaptively via the residual connection alone.

Inference network design. The optimization of the ELBO
(28) in Step II requires a separate inference network
qϕ(z

0:2
1:T |x1:2

1:T ), which introduces redundancy in the model
parameters. Inspired by Variational RNN (VRNN) [Chung
et al., 2015], we can mitigate this redundancy by reusing the
RNN hidden states from Step I.

Specifically, we adopt the following parameterization, which
results in qϕ(z

0:2
t |x1:2

1:t+1) = N (z0:2t |µt,diag(σ2
t )) as in

(29):
h1
1:T = d1(x1

1:T ), h2
1:T = d2(x2

1:T ),

µt = Wµ[h
1
t+1, h

2
t+1] + bµ,

σt = Softplus(Wσ[h
1
t+1, h

2
t+1] + bµ),

(35)

where h1
t+1 and h2

t+1 are RNN hidden states, as represented
by the diamond-shaped nodes in Figure 3, which together
encode information from x1:2

1:t+1.

By applying residual connections and reusing the generative
RNN in Step II, empirical evidence shows that this approach
leads to improved training stability and a reduction in pa-
rameter size. A high-level algorithmic summary is provided
in Algorithm 1.

5 EXPERIMENTS

In this section, we present a series of experiments to evaluate
the performance of InfoDPCCA. First, we conduct numeri-
cal simulations using synthetic data generated by the Hénon
map to assess the model’s ability to recover latent struc-
tures. Then, we apply InfoDPCCA to real-world medical
fMRI data, where we aim to demonstrate its effectiveness
in extracting shared latent dynamics across different neural
states and patient groups. These experiments highlight the
advantages of InfoDPCCA in both synthetic and real-world
applications.

5.1 NUMERICAL SIMULATION

Since there is no known creteria for validating whether
a model extracts the shared latent variables z0t only en-
codes the mutual information between the observations
I(x1

1:t;x
2
1:t), we designed a synthetic dataset with known la-

tent states and developed a metric that measures how similar
the extracted shared latent states are to the ground truth.

The dataset is generated using the Hénon map, a two-
dimensional chaotic system defined by xt+1 = 1− 1.4x2

t +
yt and yt+1 = 0.3xt. Each sequence starts from a ran-
dom initial condition (x0, y0) and evolves for T time steps.
The latent states are linearly mapped to observed variables
xt ∈ Rdx and yt ∈ Rdy using randomly initialized matri-
ces, with added Gaussian noise. The dataset consists of N
sequences and is split into 80% training and 20% testing.

We can calculate the Pearson correlation coefficient between
the true latent states z and the extracted ones ẑ. Let zt, ẑt ∈
RD. We define global-mean correlation metric as

ρjk :=

∑N
n=1

∑T
t=1(zntj − zj)(ẑntk − ẑk)√∑N

n=1

∑T
t=1(zntj − zj)2

√∑N
n=1

∑T
t=1(ẑntk − ẑk)2

,

where

zj =
1

NT

N∑
n=1

T∑
t=1

zntj , ẑk =
1

NT

N∑
n=1

T∑
t=1

ẑntk.

Finally, we report the sum of maximum correlations

ρ̂ =
1

D

D∑
j=1

max
k∈[D]

|ρjk|. (36)



Figure 6: Reconstruction on an Hénon map using InfoD-
PCCA.

Note that metrics like RMSE would not work here because,
for instance, a model that extracts the latent states exactly
like the ground truth but with an opposite sign would fail
the RMSE test.

A visual inspection on the reconstruction can be seen in
Figure 6. As can be seen, the reconstructed mean closely
monitors the actual data, and every data point is confined
within the predicted confidence interval.

The step I of InfoDPCCA is an info-theoretic representa-
tion learning method, while step II is a standard generative
model that creates a separate inference network and max-
imizes an ELBO objective. The global-mean correlation
metric for InfoDPCCA with only step II is 65% and the
full two-step InfoDPCCA achieves a score of 72%, which
demonstrates the effectiveness of step I in capturing the
underlying dynamics.

5.2 MEDICAL DATA

We evaluate our approach using three publicly available
datasets, which consist of resting - state functional magnetic
resonance imaging (rs-fMRI) data corresponding to differ-
ent neural states or mental disorders. Our hypothesis is that
the rs-fMRI data and its corresponding blood oxygen level -
dependent (BOLD) signals can be modelled as a nonlinear
dynamic system. Moreover, we assume that the common dy-
namics or the main driving forces corresponding to different
neural states are distinguishable, and these could be further
exploited as potential biomarkers for future neuroscience
research.

The first dataset is the eyes closed and eyes open (ECEO)
dataset [Stefan, 2020]. It contains rs-fMRI data of 48 college
students (22 females) aged between 19 and 31 years. These
students were scanned in both the eyes open and eyes closed
states, yielding a total of 96 samples. The task is to differen-
tiate between the two states using the rs-fMRI data. The sec-
ond dataset is from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database [Initiative, 2025]. Here, the ob-
jective is to distinguish the Alzheimer’s Disease (AD) group,
consisting of 37 patients, from the normal control (NC) sub-
jects, with a total of 37 individuals. The third dataset is from
the Autism Brain Imaging Data Exchange I (ABIDE - I)
[Di Martino et al., 2014]. This dataset contains rs-fMRI data
of 184 patients with Autism Spectrum Disorder (ASD) and
571 typically developed (TD) individuals, collected from
17 sites. In this paper, we utilize data collected from NYU
and choose 40 ASD and 40 TD samples. For each dataset,
the Automated Anatomical Labeling (AAL) template was
employed to extract the region-of-interest (ROI)-averaged
time series from 116 ROIs. In other words, the rs-fMRI data
was transformed into a 116-dimensional time series.

We utilize our proposed InfoDPCCA to extract shared latent
states from pairs of rs-fMRI data within the same group (for
example, both are from the eye-closed state or both are from
schizophrenia patients). Since there is not yet a criterion to
verify the claim that the extracted z01:T indeed captures only
the mutual information, we rely on the clustering task as a
proxy.

After the common dynamics are extracted, we utilize Time
Series Cluster Kernel (TCK) [Mikalsen et al., 2018] to
project the multivariate times series onto a lower dimen-
sional space where clustering tasks can be administered.
Specifically, TCK clusters multivariate time series (MTS)
by leveraging an ensemble of Gaussian Mixture Models
(GMMs) to generate a positive semi-definite kernel matrix,
capturing temporal dependencies and enabling kernel-based
clustering methods. If a model is effective enough in ex-
tracting the common dynamics, we anticipate a distinct
classification boundary.

Apart from DPCCA and InfoDPCCA, we add two more
models for comparison:

1. PCA: Since directly classifying the raw data is not
an option due to the large dimensions of time series
data, we first perform dimension reductions using PCA
before calculating the kernel matrix with TCK.

2. Step I of InfoDPCCA: The shared latent states sampled
from step I can be viewed as their prior distribution
p(z0t |x1:2

1:t ), while z0t sampled after step II can be re-
garded as posterior distribution p(z0t |x1:2

1:T ).

We visualize the extracted latent representations using ker-
nel principal component analysis (KPCA) [Schölkopf et al.,
1997] and compare the clustering results of PCA, DPCCA,
Step I and II of InfoDPCCA across different datasets. Figure
7 presents the 3D scatter plots of the learned representations,
where each point corresponds to a subject’s extracted latent
dynamics, and colors represent different neural states or
patient groups. As shown in the figure, InfoDPCCA mod-
els yield a more structured and separable representation
space compared to PCA and DPCCA. This indicates that



(a) ADNI PCA (b) ADNI DPCCA (c) ADNI Step I (d) ADNI Step II (e) NYU PCA (f) NYU DPCCA

(g) NYU Step I (h) NYU Step II (i) ECEO PCA (j) ECEO DPCCA (k) ECEO Step I (l) ECEO Step II

Figure 7: Visual inspection of clustering tasks on three datasets (ADNI, NYU, ECEO) using four models (PCA, DPCCA,
Step I, and Step II of InfoDPCCA). Subfigures (a)–(d) show results for ADNI, (e)–(h) for NYU, and (i)–(l) for ECEO.

ADNI NYU ECEO

PCA 0.592/0.639 0.588/0.662 0.103/0.514
DPCCA 0.301/0.587 0.417/0.600 0.197/0.240
Step I 1.000/0.907 0.865/0.726 0.572/0.662
Step II 1.000/0.908 0.642/0.620 0.228/0.586

Table 1: Numeric evaluation of the clustering task on three
datasets (ADNI, NYU, ECEO) using four models (PCA,
DPCCA, Step I, and Step II of InfoDPCCA). The bolded
number indicates the best performer in its respective col-
umn. Each cell contains two metrics, NMI/Silhouette score
(higher values indicate better performance).

InfoDPCCA better captures the underlying shared dynamics
within each group, leading to improved class separability.
Furthermore, the scatterplots generated by Step I and II of
InfoDPCCA are similar, which aligns with the claim that
they correspond to the prior and posterior distributions of
the latent states.

To perform a quantitative assessment, we apply TCK to
the extracted latent states and evaluate the clustering per-
formance using Normalized Mutual Information (NMI) as
external metric and Silhouette score as internal metric. NMI
measures the agreement between predicted clusters and true
labels, while the Silhouette score evaluates cluster cohesion
and separation. Specifically, we train a classifier on 30%
labeled data and compute clustering metrics on its predic-
tions for the remaining 70% data. Table 1 summarizes the
results, demonstrating that InfoDPCCA models consistently
outperform PCA and DPCCA in all three datasets.

6 SUMMARY

We introduced InfoDPCCA, an information-theoretic exten-

sion of DPCCA that extracts shared and private latent repre-
sentations from sequential data. By enforcing an informa-
tion bottleneck objective and a two-step training scheme,
InfoDPCCA improves interpretability and robustness. Ex-
perimental results on synthetic and fMRI data demonstrate
its effectiveness in capturing meaningful latent structures.

We list a few future directions:

1. Hyperparameter tuning: Selecting optimal values for
α and β.

2. Evaluation criteria: Developing better metrics beyond
correlation coefficients to validate claims.

3. Multiset extension: Extending InfoDPCCA to multiple
data streams, similar to DPCCA.

4. Right now, InfoDPCCA can be regarded as an unsu-
pervised approach, which means they are unaware of
the labels to each sample in the training process. As
opposed to the approach described in [Kusano et al.,
2019], which trains a conditional generative model, In-
foDPCCA is not motivated to separate different groups
in training. We leave the supervised extension of In-
foDPCCA as well as its applications to identifying
biomarkers in neuroscience as future work.

These directions will enhance the model’s flexibility and
applicability.
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A RELATED METHOD

In this section, we discuss a method related to InfoDPCCA named Multi-View Information Bottleneck (MVIB) [Federici
et al., 2020]. Multi-view IB is an extension of the classical Information Bottleneck framework tailored to settings with
multiple perspectives of the same underlying entity. Let v1 and v2 denote two distinct views of a common object. The
primary goal is to derive stochastic mappings qθ(z1|v1) and qψ(z2|v2), such that the resulting latent representations z1
and z2 encapsulate solely the mutual information I(v1,v2) shared between the two views. Multi-View IB operates as an
unsupervised representation learning technique, with the learned representations being applicable to downstream tasks such
as classification.

Figure 8: Venn diagram illustrating the relationship between the feature of the view z1 and the two views v1 and v2.

Similar to the settings of VIB, Multi-view IB assumes a factorized joint distribution:

p(v1,v2, z1, z2) = p(v1,v2)qθ(z1|v1)qψ(z2|v2).

For each view, the optimization objective is defined as:

min I(z1;v1|v2)− λI(z1;v2),

where I(·; ·|·) represents conditional mutual information, and λ is a trade-off parameter balancing the two terms; an
illustration of this objective is shown in Fig. 8. In contrast to the supervised nature of VIB, which emphasizes label
prediction, Multi-View IB seeks to maximize I(z1;v2). This term captures the shared structure between views, potentially
including information not directly relevant to a specific supervised task.

We summarize the similarities and differences between the MVIB and InfoDPCCA, with respective graphical models shown
in Fig. 4 and Fig. 8:

• The features learned from MVIB, z1 and z2, are representations of observations v1 and v2 respectively; while in
InfoDPCCA, the common latent factor z0 is a representation of both observations x1:2.
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• The two methods have the same goal of learning representations that capture the mutual information between the
observations while discarding the redundant information.

• InfoDPCCA uses mainly variational approximations, while MVIB relies on auxiliary mutual information estimators.

B EXPERIMENTAL SETUP ON NUMERICAL SIMULATION

The synthetic dataset is generated using the Hénon map, a chaotic dynamical system, to model a 2-dimensional ground truth
latent zt ∈ R2. For each of 1000 sequences, the latent state evolves over T = 300 time steps via the Hénon map:

zt+1 = [1− 1.4z2t,0 + zt,1, 0.3zt,0]
⊤,

with initial condition z0,0 ∈ Unif(−1, 1) and z0,1 ∈ Unif(−0.1, 0.1). High-dimensional observations xt,yt ∈ R120 are
then created by projecting zt through random linear transformation Wx,Wy ∈ R120×2 (drawn from N (0, 1)), followed by
additive Gaussian noise:

xt = Wxzt + ϵx, yt = Wyzt + ϵy,

where ϵx, ϵy ∈ N (0, 0.052I120). The dataset, comprising 1000 sequences of paired (xt,yt) with corresponding zt, is split
into 80% training and 20% testing subsets. The global-mean correlation metric in Equation (36) measures a model’s ability
to capture shared latent dynamics by averaging correlation coefficient ρjk between true latent states zntj (j-th dimension of
zn at t-th time step) and estimated states ẑntk across all sequences n ∈ [N ] and time steps t ∈ [T ].

C ADDITIONAL EXPERIMENTS ON FMRI DATASET

As mentioned in the paper, the ECEO dataset contains fMRI data of 48 subjects recorded with their eyes open and closed.
We extract the shared latent states between EC and EO of the same subject, and we hypothesize that if the extracted shared
latent states are identity-specific, they should be able to detect the change in identity. To make our setting more clear, we
use math notations. Suppose we have dataset D = {ECi,EOi : i ∈ [48]}. We denote x1

i = Concat(ECi,EC2i+1) and
x2
i = Concat(EOi,EO2i+1). We then transform the dataset to D′ = {x1

i , x
2
i : i ∈ [24]} and use it to train InfoDPCCA.

We found that the shared latent states of InfoDPCCA are able to detect the change of identity by:

• Altering the magnitudes: Figure 9 (a) and (b).

• Shifting the means: Figure 9 (c) and (d).

(a) (b)

(c) (d)

Figure 9: Extracted shared latent states for the supplementary experiment on the ECEO dataset.
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