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Abstract

Flow-based generative models achieve state-of-the-art sample quality, but require
the expensive solution of a differential equation at inference time. Flow map mod-
els, commonly known as consistency models, encompass many recent efforts to
improve inference-time efficiency by learning the solution operator of this differ-
ential equation. Yet despite their promise, these models lack a unified description
that clearly explains how to learn them efficiently in practice. Here, building on
the methodology proposed in Boffi et al. (2024), we present a systematic algo-
rithmic framework for directly learning the flow map associated with a flow or
diffusion model. By exploiting a relationship between the velocity field underlying
a continuous-time flow and the instantaneous rate of change of the flow map, we
show how to convert any distillation scheme into a direct training algorithm via
self-distillation, eliminating the need for pre-trained teachers. We introduce three
algorithmic families based on different mathematical characterizations of the flow
map: Eulerian, Lagrangian, and Progressive methods, which we show encompass
and extend all known distillation and direct training schemes for consistency mod-
els. We find that the novel class of Lagrangian methods, which avoid both spatial
derivatives and bootstrapping from small steps by design, achieve significantly
more stable training and higher performance than more standard Eulerian and Pro-
gressive schemes. Our methodology unifies existing training schemes under a single
common framework and reveals new design principles for accelerated generative
modeling. Associated code is available at https://github.com/nmboffi/flow-maps.

1 Introduction

Generative models based on dynamical systems, such as flows and diffusions, have achieved remark-
able successes in vision (Song et al., 2020; Rombach et al., 2022; Ma et al., 2024; Polyak et al., 2025),
language (Lou et al., 2024), protein structure prediction (Abramson et al., 2024), weather forecast-
ing (Price et al., 2024), and materials design (Zeni et al., 2025). While highly expressive, dynamical
models leverage the solution of a differential equation for sample generation, which typically requires
repeated evaluation of the learned model. This computational bottleneck has limited the application
of flows and diffusions in domains where rapid inference is crucial, such as real-time control (Black
et al., 2024; Chi et al., 2024) and image editing, and as a result has led to intense interest in accelerated
inference. One particularly promising approach, which underlies consistency models (Song et al.,
2023; Kim et al., 2024), is to estimate the flow map associated with the deterministic probability flow
equation instead of the velocity field governing its instantaneous dynamics. The flow map is defined
by the integrated flow and can be used to generate samples in as few as one model evaluation, leading
to inference that can be 10− 100× faster than traditional dynamical models. This dramatic speedup
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Figure 1: Overview. (A) Schematic of the two-time flow map Xs,t and the tangent condition (Lemma 2.1),
which provides a relation between the map and the drift of the probability flow. The flow map is composable,
invertible, and has the property that as t → s, its time derivative recovers the drift bs from (2). (B) Illustration of
our proposed parameterization. The function vs,t estimates the slope of the line drawn between two points on a
trajectory of the probability flow, and can be directly trained efficiently via the tangent condition.

potential motivates the central question: is there a principled methodology for training flow maps,
and how can we do so efficiently in practice? In this work,

We introduce a direct training framework for flow maps, eliminating the need for pre-trained teacher
models while maintaining the training stability of distillation.

Recently, there have been broad efforts to learn the flow map either directly or through distillation of
a pre-trained model (Boffi et al., 2024; Frans et al., 2024; Zhou et al., 2025; Salimans et al., 2024).
Distillation-based approaches perform well empirically, but require a two-phase learning setup in
which the performance of the student is limited by the performance of the teacher. In these methods,
the practitioner first learns a score (Song and Ermon, 2020; Ho et al., 2020) or flow (Lipman et al.,
2022; Albergo and Vanden-Eijnden, 2022; Albergo et al., 2023; Liu et al., 2022) model, and then
converts it into a flow map via a secondary training algorithm that considers the pre-trained model
as a “teacher” for the “student” flow map. To avoid this complication, we aim to design learning
schemes in which the flow map can be trained similarly to standard flow matching. In this endeavor,
the fundamental challenge is a lack of a unified mathematical characterization that reveals how to
learn the flow map efficiently, which has led to complex pipelines that require extensive engineering
to overcome unstable optimization dynamics outside of the distillation setting (Lu and Song, 2025).

To address this challenge, we introduce a mathematical framework that exposes a landscape of novel
training schemes. Our key insight is a simple relation, the tangent condition (Figure 1), that explicitly
relates the velocity of the probability flow equation to the derivative of the flow map. Using this
insight, we develop a self-distillation framework where the flow map is learned by simultaneously
training and distilling its implicit velocity. The result is a simple pipeline that leverages off-the-shelf
training procedures for flows to learn a model with accelerated inference. Our framework reveals
the fundamental design principles for learning flow maps, enabling practitioners to build few-step
generative models as systematically as standard flows. Our main contributions are:

1. Algorithmic framework. We provide three equivalent mathematical characterizations of the flow
map, showing how consistency models and other recent few-step methods – including consistency
trajectory models (Kim et al., 2024), shortcut models (Frans et al., 2024), mean flow (Geng et al.,
2025), and align your flow (Sabour et al., 2025) – emerge as special cases of our methodology.

2. Self-distillation algorithms. Leveraging our description of the flow map, we introduce three new
algorithmic families – Eulerian (ESD), Lagrangian (LSD), and Progressive Self-Distillation (PSD)
– and discuss their connections to existing direct training schemes. We prove that each has the
correct unique minimizer, and provide guarantees that the loss values bound the 2-Wasserstein
error of the learned one-step model for ESD and LSD.

3. Empirical analysis. We study the performance of each method as a function of the number
of spatial and time derivatives that appear in the objective function. We find that LSD, which
avoids both spatial derivatives and self-consistent bootstrapping from smaller steps, attains the best
performance across standard benchmarks including the synthetic checkerboard dataset, CIFAR-10,
CelebA-64, and AFHQ-64.
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2 Theoretical framework

In this work, we study the flow map of the probability flow equation, which is a function that jumps
between points along a trajectory (Figure 1). Given access to the flow map, samples can be generated
in a single step by jumping directly to the endpoint, or can be generated with an adaptive amount
of computation at inference time by taking multiple steps. Below, we give a detailed mathematical
description of the flow map, which we leverage to design a suite of novel training schemes. We begin
with a review of stochastic interpolants, which we use to build efficient flow-based generative models.

2.1 Stochastic interpolants and probability flows

Let D = {xi1}ni=1 with each xi1 ∈ Rd, xi1 ∼ ρ1 denote a dataset drawn from a target density ρ1. Given
D, our goal is to draw a fresh sample x̂1 ∼ ρ̂1 from a distribution ρ̂1 ≈ ρ1 learned to approximate
the target. Recent methods for accomplishing this task leverage flows, which dynamically evolve
samples from a simple base distribution ρ0 such as a Gaussian until they resemble samples from ρ1.

Interpolants. To build a flow-based generative model, we leverage the stochastic interpolant
framework (Albergo et al., 2023), which we now briefly recall. We define a stochastic interpolant as
a stochastic process I : [0, 1]× Rd × Rd → Rd that combines samples from the target and the base,

It(x0, x1) = αtx0 + βtx1, (1)

where α, β : [0, 1] → [0, 1] are continuously differentiable functions satisfying the boundary condi-
tions α0 = 1, α1 = 0, β0 = 0, and β1 = 1. In (1), the pair (x0, x1) ∼ ρ(x0, x1) is drawn from a cou-
pling satisfying the marginal constraints

∫
Rd ρ(x0, x1)dx0 = ρ1(x1) and

∫
Rd ρ(x0, x1)dx1 = ρ0(x0).

By construction, the probability density ρt = Law(It) defines a path in the space of measures between
the base and the target. This path specifies a probability flow that pushes samples from ρ0 onto ρ1,

ẋt = bt(xt), x0 ∼ ρ0, (2)

which has the same distribution as the interpolant, xt ∼ ρt for all t ∈ [0, 1]. The drift b in (2) is given
by the conditional expectation of the time derivative of the interpolant, bt(x) = E[İt|It = x], which
averages the “velocity” of all interpolant paths that cross the point x at time t. A standard choice
of coefficients is αt = 1− t and βt = t (Albergo and Vanden-Eijnden, 2022; Albergo et al., 2023),
which recovers flow matching (Lipman et al., 2022) and rectified flow (Liu et al., 2022). Many other
options have been considered in the literature, and in addition to flow matching, variance-preserving
and variance-exploding diffusions can be obtained as particular cases.

Learning. By standard results in probability theory and statistics, the conditional expectation bt
can be learned efficiently in practice by solving a square loss regression problem,

b = argmin
b̂

Lb(b̂), Lb(b̂) =

∫ 1

0

Ex0,x1

[
|b̂t(It)− İt|2

]
dt. (3)

Above, Ex0,x1
denotes an expectation over the random draws of (x0, x1) in the interpolant (1).

Sampling. Given an estimate b̂ obtained by minimizing (3) over a class of neural networks, we
can generate an approximate sample x̂1 by numerically integrating the learned probability flow
˙̂xt = b̂t(x̂t) until time t = 1 from an initial condition x̂0 ∼ ρ0. This approach yields high-quality
samples from complex data distributions in practice, but is computationally expensive due to the need
to repeatedly evaluate the learned model during integration; here, we aim to avoid this solve.

2.2 Characterizing the flow map

The flow map X : [0, 1]2 × Rd → Rd is the unique map satisfying the jump condition

Xs,t(xs) = xt for all (s, t) ∈ [0, 1]2, (4)

where (xt)t∈[0,1] is any solution of (2). The condition (4) means that the flow map takes “steps” of
arbitrary size t−s along trajectories of the probability flow. In particular, a single applicationX0,1(x0)
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with x0 ∼ ρ0 yields a sample from ρ1, avoiding numerical integration entirely. Moreover, we may
also increase the number of steps by composing Xti,ti+1 over a grid 0 = t0 < t1 < ... < tk = 1 in
the presence of model errors, which enables us to trade inference-time compute for sample quality.

In what follows, we give three characterizations of the flow map that each lead to an objective for its
estimation. As we now show, these characterizations are based on a simple but key result that shows
we can deduce the corresponding velocity field bt from a given flow map Xs,t.
Lemma 2.1 (Tangent condition). Let Xs,t denote the flow map. Then,

lim
s→t

∂tXs,t(x) = bt(x) ∀t ∈ [0, 1], ∀x ∈ Rd, (5)

i.e. the tangent vectors to the curve (Xs,t(x))t∈[s,1] give the velocity field bt(x) for every x.

As illustrated in Figure 1A, Lemma 2.1 highlights that there is a velocity model “implicit” in a flow
map. To leverage this algorithmically, we propose to adopt an Euler step-like parameterization that
takes into account the boundary condition Xs,s(x) = x,

Xs,t(x) = x+ (t− s)vs,t(x). (6)

In (6), v : [0, 1]2 × Rd → Rd is the function we will estimate parametrically. Despite its similarity
to a first-order Taylor expansion, the representation (6) corresponds to a shift and rescaling of Xs,t,
and hence is without loss of expressivity. In addition to enforcing that Xs,t recovers the identity on
the diagonal s = t, (6) implies that lims→t ∂tXs,t(x) = vt,t(x), which gives an elegant connection
between vs,t and the drift field bt,

vt,t(x) = bt(x), ∀t ∈ [0, 1], ∀x ∈ Rd. (7)

Geometrically, vs,t describes the “slope” of the line drawn between xs and xt on a single ODE
trajectory (Figure 1B). The condition (7) states that the slope between two infinitesimally-spaced
points is precisely the velocity bt. A key insight is that this relation indicates vt,t can be estimated
using the objective (3). To learn the map Xs,t, it then remains to estimate vs,t away from the diagonal
s = t. To this end, we leverage the following result, which relates vs,t to vt,t for s ̸= t.
Proposition 2.2 (Flow map). Assume that Xs,t is given by (6) with vs,t satisfying (7), and assume
that vs,t is continuous in both time arguments. Then, Xs,t is the flow map defined in (4) if and only if
any of the following conditions also holds:

(i) (Lagrangian condition): Xs,t solves the Lagrangian equation

∂tXs,t(x) = vt,t(Xs,t(x)), (8)

for all (s, t) ∈ [0, 1]2 and for all x ∈ Rd.

(ii) (Eulerian condition): Xs,t solves the Eulerian equation

∂sXs,t(x) +∇Xs,t(x)vs,s(x) = 0, (9)

for all (s, t) ∈ [0, 1]2 and for all x ∈ Rd.

(iii) (Semigroup condition): For all (s, t, u) ∈ [0, 1]3 and for all x ∈ Rd ,

Xu,t(Xs,u(x)) = Xs,t(x). (10)

The Lagrangian and Eulerian conditions in Proposition 2.2 categorize the flow map Xs,t as the
solution of an infinite system of ODEs or as the solution of a PDE, each of which describes transport
along trajectories of the flow (2). The semigroup condition states that any two jumps can be replaced
by a single jump. Sections B to D provide a review of the flow map matching framework (Boffi et al.,
2024), and describe how these three characterizations are the basis for consistency (Song et al., 2023;
Kim et al., 2024; Geng et al., 2024) and progressive distillation (Salimans and Ho, 2022a) schemes
that have appeared in the literature. In the following, we show how each – and in fact how any
distillation method that produces a flow map from a velocity field b̂ – can be immediately converted
into a direct training objective for a single network model Xs,t via the concept of self-distillation.
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2.3 A framework for self-distillation

Our framework augments training vt,t on the diagonal s = t via the objective (3) and the identity (7)
with a penalization term for one or more of the conditions in Proposition 2.2 along the off-diagonal
s ̸= t. This leads to a set of objectives that can each be used to learn the flow map.
Proposition 2.3 (Self-distillation). The flow map Xs,t defined in (4) is given for all 0 ⩽ s ⩽ t ⩽ 1
by Xs,t(x) = x+ (t− s)vs,t(x) where vs,t(x) the unique minimizer over v̂ of

LSD(v̂) = Lb(v̂) + LD(v̂), (11)
where Lb(v̂) is given by

Lb(v̂) =

∫ 1

0

Ex0,x1

[
|v̂t,t(It)− İt|2

]
dt, (12)

and where LD(v̂) is any of the following three objectives.

(i) The Lagrangian self-distillation (LSD) objective, which leverages (8),

LLSD(v̂) =

∫ 1

0

∫ t

0

Ex0,x1

[∣∣∂tX̂s,t(Is)− v̂t,t(X̂s,t(Is))
∣∣2]dsdt; (13)

(ii) The Eulerian self-distillation (ESD) objective, which leverages (9),

LESD(v̂) =

∫ 1

0

∫ t

0

Ex0,x1

[∣∣∂sX̂s,t(Is) +∇X̂s,t(Is)v̂s,s(Is)
∣∣2]dsdt; (14)

(iii) The progressive self-distillation (PSD) objective, which leverages (10),

LPSD(v̂) =

∫ 1

0

∫ t

0

∫ t

s

Ex0,x1

[∣∣X̂s,t(Is)− X̂u,t

(
X̂s,u

(
Is
))∣∣2]dudsdt. (15)

Above, X̂s,t(x) = x+ (t− s)v̂s,t(x) and Ex0,x1 denotes an expectation over the random draws of
(x0, x1) in the interpolant defined in (1).

s

t
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Figure 2: Self-distillation. Our plug-and-play
approach pairs any distillation objective LD on the
off-diagonal s ̸= t of the square [0, 1]2 with a flow
matching objective Lb on the diagonal s = t to
obtain a direct training algorithm for the flow map.

The proof follows directly from Proposition 2.2 and is
given in Section E; the resulting algorithmic approach
is summarized graphically in Figure 2. In Proposi-
tion 2.3, we focus on s ⩽ t, which is all that is re-
quired to generate data. Training over the entire unit
square (s, t) ∈ [0, 1]2 enables jumping backwards
from data to noise along trajectories of (2) in addi-
tion to standard generation from noise to data. The
derivatives with respect to space and time required
to implement the LSD and ESD losses can be com-
puted efficiently via standard jvp implementations.
As we will see in our experiments, an advantage of
the schemes (13) and (15) is they naturally avoid
derivatives with respect to space, which leads to sig-
nificantly improved training stability.

We now provide theoretical guarantees that the ob-
jective value bounds the accuracy of the model for LSD and ESD. We were unable to obtain a
similar guarantee for PSD due to issues of compounding errors and distribution shift associated
with bootstrapping small steps to large steps, which we believe to be a fundamental difficulty to the
algorithm’s construction. This difficulty is consistent with the observed reduced performance of PSD
in comparison to LSD in our experiments (Section 5).

Proposition 2.4 (Wasserstein bounds). Let X̂s,t(x) = x+ (t− s)v̂s,t(x) denote a candidate flow
map, let ρ̂1 = X̂0,1♯ρ0 denote the corresponding one-step generated distribution, and let L̂ denote
the spatial Lipschitz constant of v̂t,t(·) uniformly in t. First assume Lb(v̂) + LLSD(v̂) ⩽ ε. Then,

W2
2 (ρ̂1, ρ1) ⩽ 4e1+2L̂ε. (16)

Now assume that Lb(v̂) + LESD(v̂) ⩽ ε. Then,

W2
2 (ρ̂1, ρ1) ⩽ 2e · (1 + e2L̂)ε. (17)
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Algorithm 1: Learning flow maps via self-distillation
input: Dataset D; interpolant coefficients αt, βt; batch size M ; diagonal fraction η; distillation

method LD ∈ {LLSD,LESD,LPSD}.
repeat

Sample Md = ⌊ηM⌋ pairs (xi0, x
i
1) ∼ ρ(x0, x1) and times ti ∼ U([0, 1]);

Compute interpolants Iti = αtix
i
0 + βtix

i
1 and velocities İti = α̇tix

i
0 + β̇tix

i
1;

Compute diagonal loss: Lb =
1

Md

∑Md

i=1 e
−wti,ti |v̂ti,ti(Iti)− İti |2 + wti,ti ;

Sample Mo =M −Md pairs (xj0, x
j
1) ∼ ρ(x0, x1) and times (sj , tj) ∼ Uod;

Compute interpolants Isj = αsjx
j
0 + βsjx

j
1;

Compute distillation loss: LD = 1
Mo

∑Mo

j=1 e
−wsj,tjLsj ,tj

D (v̂) + wsj ,tj ;
Compute LSD = Lb + LD;
Update v̂ and w using ∇LSD;

until converged;
output: Trained flow map X̂s,t(x) = x+ (t− s)v̂s,t(x)

The above result highlights that the model’s accuracy improves systematically as the loss is min-
imized for both ESD and LSD. The proof follows by combining guarantees for distillation-based
algorithms (Boffi et al., 2024) with guarantees for flow-based algorithms (Albergo et al., 2023), which
can be stitched together by our assumption on the value of the loss.

3 Algorithmic aspects

We now provide practical numerical recommendations for an implementation of self-distillation. Our
aim is not to provide a single best method, but to devise a general-purpose framework that can be
used to build high-performing flow maps across data modalities. We provide a general algorithmic
prescription in Algorithm 1, with specific instantiations for LSD, ESD, and PSD in Section F.6.

Choice of teacher. The self-distillation objectives in Proposition 2.3 are obtained by squaring the
residuals of the properties in Proposition 2.2. While the minimizers are correct, the associated training
dynamics may not be optimal because the losses are nonconvex in v̂. The flow of information should
be from the diagonal v̂t,t, where there is an external learning signal via İt, to the off-diagonal v̂s,t,
which bootstraps the signal in v̂t,t. To enforce that v̂s,t learns to match v̂t,t, rather than vice-versa, we
use the stopgrad operator to match the distillation setting, where the off-diagonal would adapt entirely
to an external teacher. Detailed descriptions of the recommended placement are given in Section F.4.

Relation to existing methods. The generic framework described by Proposition 2.3 and Algorithm 1
recovers most existing schemes for training consistency models and their extensions. In particular,
by proper choice of the distillation objective and the teacher, we can obtain standard training for
consistency models (Song et al., 2023), consistency trajectory models (Kim et al., 2024), and shortcut
models (Frans et al., 2024). These connections are given in detail in Sections C and D.

Loss weighting. The loss (11) can be written explicitly as an integral over the upper triangle s < t,

LSD(v̂) =

∫ 1

0

∫ t

0

(
Lt
b(v̂)δ(s− t) + Ls,t

D (v̂)
)
dsdt, (18)

where Lt
b(v̂) = Ex0,x1 [|v̂t,t(It) − İt|2] denotes (12) restricted to t, and where Ls,t

D (v̂) denotes the
distillation term restricted (s, t). We find that loss values at different pairs (s, t) can have gradient
norms that differ significantly, introducing undesirable variance. To rectify this, we incorporate a
learned weight ws,t, generalizing the EDM2 weight (Karras et al., 2024) to the two-time setting,

LSD(v̂) =

∫ 1

0

∫ t

0

(
e−ws,t

(
Lt
b(v̂)δ(s− t) + Ls,t

D (v̂)
)
+ ws,t

)
dsdt. (19)

In (19), ws,t can be interpreted as an estimate of the log-variance of the loss values; at the global
minimizer, it ensures that all values of (s, t) contribute on a similar scale. We find that using ws,t

significantly stabilizes the training dynamics and enables the use of larger learning rates.
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Temporal sampling. In addition to the weight, we introduce a sampling distribution ps,t,

LSD(v̂) = Eps,t

[
e−ws,t

(
Lt
b(v̂)δ(s− t) + Ls,t

D (v̂)
)
+ ws,t

]
. (20)

While the weight ws,t normalizes the variance across times, ps,t chooses how we select times
randomly for each batch. Let Ud denote the uniform distribution on the diagonal s = t, and let Uod

denote the uniform distribution on the upper triangle s < t. In our experiments, we leverage the
mixture distribution ps,t = ηUd + (1− η)Uod, which places a fraction η of the batch uniformly at
random on the diagonal and a fraction (1− η) uniformly at random in the upper triangle. Because
our distillation losses reduce to the flow matching loss in the limit as s→ t (Section F.2), we only
use Lb on the diagonal s = t. We found η = 0.75 to work well in early experiments, which puts
the majority of the computational effort towards learning the flow and proportionally less towards
distilling it. The distillation objectives in Proposition 2.3 are more expensive than the interpolant
objective Lb because they require multiple evaluations of the network and Jacobian-vector products.
As a result, η can also be used to tune the cost of each training step (Section F.3).

PSD sampling. For PSD, we introduce a proposal distribution pu over the intermediate step,

Ls,t
PSD(v̂) = EpuEx0,x1

[∣∣X̂s,t(Is)− X̂u,t(X̂s,u(Is))
∣∣2]. (21)

We parameterize u = γs+ (1− γ)t as a convex combination for γ ∈ [0, 1] and define the proposal
distribution by sampling over γ. In our experiments, we compare uniform sampling (PSD-U) with
γ ∼ U([0, 1]) to midpoint sampling where γ ∼ δ1/2 so that γ = 1/2 deterministically (PSD-M).

PSD scaling. We show in Section F that (21) may be rewritten entirely in terms of v̂ as

Ls,t
PSD(v̂) = (t− s)2Epγ

Ex0,x1

[∣∣v̂s,t(Is)− (1− γ)v̂s,u(Is)− γv̂u,t(X̂s,u(Is))
∣∣2]. (22)

The form (22) eliminates factors u− s, t− s, and t− u that appear due to the parameterization (6).
We found these terms introduced higher gradient variance because they cause the loss to scale like
(t− s)2, which changes the effective learning rate depending on the timestep (t− s); we drop this
factor of (t − s)2 in practice. (22) preconditions the loss and removes this additional source of
variability, leading to improved training stability.

Conditioning and guidance. Flow maps can be made conditional by incorporating a conditioning
argument c as Xs,t(x; c) = x+ (t− s)vs,t(x; c). We can use this observation to define classifier-free
guided (CFG) flow maps, as we now show (Ho and Salimans, 2022). To do so, let c = ∅ correspond to
unconditional generation, and let qt(x;α, c) = bt(x;∅)+α (bt(x; c)− bt(x;∅)) be the CFG velocity
field at guidance strength α. This velocity has a flow map Xs,t(x;α, c) = x + (t − s)vs,t(x;α, c)
satisfying vt,t(x;α, c) = qt(x;α, c), which may be learned via self-distillation by incorporating
additional random sampling over the guidance scale (Section F.5). In this work, we focus solely on
unconditional, unguided generation and leave the usage of guidance for future study.

Multiple models and general representations. In Proposition 2.3, we leverage a single model X̂s,t

defined in terms of v̂s,t. While this leads to greater efficiency through (7), it requires one model to
learn both the velocity b and its flow mapX , which may require more network capacity than traditional
flow-based generative models. Instead, it is also possible to use two models – one parameterizing b
and one parameterizing X – which can be trained simultaneously. Higher-order parameterizations
can be designed that leverage both, such as X̂s,t(x) = x+ (t− s)b̂s(x) +

1
2 (t− s)2ψ̂s,t(x), which

can use a frozen pre-trained model b̂s or can train b̂ from scratch in tandem with ψ̂. More generally,
any parameterization X̂s,t satisfying X̂s,s(x) = x may be used in practice, where in this setting
we use lims→t ∂tX̂s,t(x) in place of v̂t,t(x) in Algorithm 1. This may be computed via automatic
differentiation as a jvp in t at s = t. In this work, we focus on the representation (6), which requires
only a single model and gives a computationally efficient way to evaluate Lb; we leave these more
general and higher-order parameterizations to future work.

4 Related work

Flow matching and diffusion models. Our approach builds directly on methods from flow match-
ing and stochastic interpolants (Lipman et al., 2022; Albergo and Vanden-Eijnden, 2022; Albergo
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Dataset Method Step Count

1 2 4 8 16

Checker
(KL ↓)

LSD 0.086 0.077 0.071 0.070 0.071
ESD 0.098 0.092 0.083 0.082 0.075
PSD-M 0.146 0.089 0.081 0.072 0.069
PSD-U 0.111 0.107 0.075 0.073 0.068

CIFAR-10
(FID ↓)

LSD 8.100 4.370 3.340 3.330 3.570
PSD-M 12.810 8.430 5.960 5.070 4.640
PSD-U 13.610 7.950 6.030 5.320 5.160

CelebA-64
(FID ↓)

LSD 12.220 5.740 3.180 2.180 1.960
PSD-M 19.640 11.750 7.890 6.060 5.090
PSD-U 18.810 11.020 7.470 6.000 5.630

AFHQ-64
(FID ↓)

LSD 11.190 7.780 7.000 5.890 5.610
PSD-M 18.860 14.750 14.400 13.260 11.070
PSD-U 14.500 10.730 10.990 12.020 11.470

Table 1: Benchmark results. Performance across sampling step counts for the low-dimensional checker dataset
(KL divergence) and natural image datasets (FID). Best method per dataset and step count shown in bold.

et al., 2023; Liu et al., 2022) as well as the probability flow equation associated with diffusion
models (Song et al., 2020; Ho et al., 2020; Maoutsa et al., 2020; Boffi and Vanden-Eijnden, 2023).
These methods define an ordinary differential equation whose solution evaluates the flow map at a
single time. Due to the computational expense associated with solving these equations, a line of recent
work asks how to resolve the flow more efficiently with higher-order numerical solvers (Dockhorn
et al., 2022; Lu et al., 2022; Karras et al., 2022; Li et al., 2024) and parallel sampling schemes (Chen
et al., 2024; Bortoli et al., 2025). Our approach instead estimates the flow map to enable accelerated
sampling by avoiding the differential equation solve altogether.

Consistency models. Appearing under several names, the flow map has become a central object of
study in recent efforts to obtain accelerated inference. Consistency models (Song et al., 2023; Song
and Dhariwal, 2023) estimate the single-time flow map to jump from any time s to data, given by
Xs,1 in our notation. Consistency trajectory models (Kim et al., 2024; Li and He, 2025; Luo et al.,
2023) estimate the two-time flow map, enabling multistep sampling. Both approaches implicitly
leverage the Eulerian characterization (9), which we find leads to gradient instability, explaining
recent engineering efforts for stable training (Lu and Song, 2024). Progressive distillation (Salimans
and Ho, 2022a) uses the semigroup condition (10) to train a model that can recursively replicate
two steps of a pre-trained teacher. Progressive flow map matching (Boffi et al., 2024) enforces this
iteratively over a flow map after pre-training, while shortcut models apply a discretized semigroup
condition (Frans et al., 2024). In concurrent work, Geng et al. (2025); Sabour et al. (2025) introduce
distillation and direct training schemes that reduce to a particular case of our Eulerian formulation.
Details on these methods and their connection to our framework may be found in Sections B to D.

5 Numerical experiments

We test LSD, ESD, PSD-U, and PSD-M on the low-dimensional checkerboard dataset, as well as
in the high-dimensional setting of unconditional image generation on CIFAR-10, CelebA-64, and
AFHQ-64. In each case, we study performance at fixed training time to obtain a fair comparison. We
emphasize that our aim is not to obtain state of the art performance, but to understand the trade-offs of
each approach and compare them on an equal footing; with further engineering, quantitative metrics
could be lowered significantly for all methods. For image datasets, we find ESD to be unstable due to
the spatial gradient, leading to poor performance without gradient stabilization schemes. We find
that LSD obtains uniformly the best performance on all problems tried. This is consistent with our
theoretical results in Proposition 2.4, where we were able to obtain stronger theoretical guarantees
for LSD than for PSD. Full network and training details are provided in Section G and Table 2.
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Figure 3: Checker dataset. Qualitative results for the two-dimensional checker dataset. LSD performs the best
across all step counts except N = 16 (Table 1). All methods improve as the number of steps increase. ESD and
both PSD variants fail to capture the sharp boundaries at small N , introducing artifacts and driving KL higher.

Checkerboard. While synthetic, the checkerboard dataset exhibits multimodality, sharp boundaries,
and low-dimensionality that make it a useful testbed for exact visualization of how few-step samplers
capture complex features in the target. Qualitative results are shown in Figure 3, while quantitative
results obtained by estimating the KL divergence (for details, again see Section G) between generated
samples and the target are shown in Table 1. LSD performs best across all sampling steps tried except
for N = 16, where all methods perform well. The performance of LSD also saturates around N = 4
sampling steps. By contrast, ESD, PSD-U, and PSD-M all see increased performance up to N = 16
steps with reduced performance for fewer steps. The qualitative results in Figures 3 and 6 highlight
that the higher KL values result from a failure to capture the sharp features present in the dataset,
with ESD blurring the boundaries and the PSD methods introducing artifacts that connect the modes.

CIFAR-10. In Figure 4, we study the parameter gradient norm as a function of the training iteration
on CIFAR-10. LSD and PSD, which avoid computing spatial derivatives of the network during
training, maintain significantly more stable gradients than ESD even when using sg (·). We found
the high gradient norm of ESD to induce training instability, ultimately leading to divergence. This
is consistent with earlier work on consistency models, where careful annealing schedules, clipping,
and network design has been necessary to stabilize continuous-time training (Lu and Song, 2025).

Figure 4: CIFAR-10: Parameter gradi-
ent norms. Spatial and temporal representa-
tions in the flow map impact parameter gra-
dient norms of self-distillation methods that
require network time and space derivatives.

We track the quantitative performance of each method as
measured by FID in Table 1; we do not report FID values
for ESD due to training instability. We find that LSD ob-
tains the best performance across all step counts followed
by PSD. PSD-U and PSD-M trade places depending on
step count. A qualitative visualization of sample quality
is shown in Figure 5 (Top) as a function of the number
of sampling steps. We see that each method obtains im-
proved quality as the number of steps increases, and that
all methods produce similar images for fixed seed.

CelebA-64. As shown in Table 1, LSD also obtains the
best performance across all step counts on CelebA-64 (Liu
et al., 2015), with FID scores ranging from 12.22 at N =
1 to 1.96 at N = 16. The gap between LSD and the
PSD variants is more pronounced on CelebA-64 than on
CIFAR-10, particularly for low step counts. PSD-U mostly
outperforms PSD-M, with PSD-M only obtaining a higher-

9



LSD
N=1

N=2

N=4

N=8

N=16

PSD-M PSD-U

N=1

N=2

N=4

N=8

N=16

N=1

N=2

N=4

N=8

N=16

Figure 5: Progressive refinement. Sample quality as a function of sampling steps using the same eight
fixed noise samples across all methods for fair comparison. (Top) CIFAR-10, (Middle) CelebA-64, (Bottom)
AFHQ-64. LSD consistently produces coherent samples across all datasets and step counts.

performing 16-step map. A qualitative visualization is shown in Figure 5 (Middle). All methods show
systematic improvement as the step count increases, with faces becoming sharper and more detailed.

AFHQ-64. Finally, we evaluate on AFHQ-64, a more challenging dataset with greater visual
diversity than CelebA-64 that includes variation across animal categories (Choi et al., 2020). As
shown in Table 1, LSD again achieves the best FID scores across all step counts, ranging from 11.19
at N = 1 to 5.61 at N = 16. PSD shows notably higher FID scores on this dataset, particularly
PSD-M, which struggles at low step counts. PSD-U again mostly outperforms PSD-M, with PSD-M
obtaining a slightly higher-performing 16-step map but worse performance otherwise. Qualitative
results are shown in Figure 5 (Bottom), where we again see that higher step counts lead to generated
images with increasing levels of detail.

6 Conclusion

In this work, we expose and investigate the design space of a class of flow-based generative models
with accelerated inference known as flow maps. These models generalize and extend consistency
models to include multiple training paradigms and principled multistep inference. Rather than
learning the velocity field typical of flows and diffusions, flow maps learn the solution operator of the
probability flow equation, obviating the need to solve a differential equation for inference. We show
that learning can be performed directly by pairing flow training with any of three characterizations of
the flow map, an approach we refer to as self-distillation. Self-distillation can be incorporated with
minimal additional overhead, making flow maps an appealing new paradigm. While we systematically
categorize the design space of flow map models, the main limitation of our contribution is that we were
unable to systematically test each component empirically due to the large associated computational
expense. Critical aspects deserving further experimentation include ablations over the flow map
parameterization and architecture; stabilization, annealing, and stopgradient schemes for training;
and hybrid approaches that combine multiple of our self-distillation objectives.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we introduce a novel class of self-distillation algorithms for learning flow
maps, and we study their performance numerically.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discuss how the main limitation of our work is a lack of state of
the art results due to limited computational capabilities, and that our conclusions can be
architecture and dataset dependent. We plan to improve upon the quantitative values in the
revision.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We include several theoretical results in the paper, each of which clearly states
the assumptions and includes a correct proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include full experimental details in the main text and appendix, and we
plan to release our code, checkpoints, and configuration files.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we plan to release a well-documented open source release with the
camera-ready version. Included in this will be an open-source jax implementation of the
EDM2 neural network.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are provided in the main text with further details in
the appendix, and will be included in the released configuration files.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not report error bars for our quantitative metrics, but we used a very
large batch for calculating the estimated KL divergence, so did not observe any variability
empirically. We reviewed the literature and found that it is common to not report error bars
for FID values, but we are happy to include them in the revision.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the number and type of GPUs used to run the experiments in the
main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work is primarily about the theoretical and empirical study of training
moderate-scale generative models, and does not come with significant ethical implications
outside of the usual caveats surrounding generative AI broadly speaking.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: As stated in the previous answer, outside of the usual caveats surrounding
generative AI, we do not believe there to be significant ethical or broader impacts related to
our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe that this paper poses such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use any existing assets outside of the EDM2 network, which is cited
clearly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have released an open-source implementation of our method that repro-
duces all experimental results, which comes with documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with humans subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not involved LLMs as a core component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background on stochastic interpolants

For the reader’s convenience, we now recall how to construct probability flow equations using
stochastic interpolants. We remark that score-based diffusion models can also be cast in the form of a
stochastic interpolant (1), though they do not usually satisfy the exact boundary conditions at t = 0
and t = 1, and the direction of time is opposite by convention. For example, the variance exploding
and EDM processes (Karras et al., 2022) naturally fit within this form as Xt = X0 + σtz, while the
variance preserving process can be cast in this form after solving the Ornstein-Uhlenbeck process
dXt = −Xtdt+

√
2dWt in distribution as Xt

d
= exp(−t)X0 +

√
1− exp(−2t)z with z ∼ N(0, I).

In both cases, we may define It = XT−t to flip the direction of time over the horizon T .

The key property of the interpolant construction is that solutions to the probability flow (2) push
forward their initial conditions onto samples from the target by matching the time-dependent density
of (1), as we now show.
Lemma A.1 (Transport equation). Let ρt = Law(It) be the density of the stochastic interpolant (1).
Then ρt satisfies the transport equation

∂tρt(x) +∇ · (bt(x)ρt(x)) = 0, ρt=0(x) = ρ0(x) (23)
where ∇ denotes a gradient with respect to x, and where bt(x) = E[İt | It = x].

Proof. The proof proceeds via the weak form of (23). Let ϕ ∈ C1
b (Rd) denote an arbitrary continu-

ously differentiable and compactly supported test function. By definition,

∀t ∈ [0, 1] :

∫
Rd

ϕ(x)ρt(x)dx = E[ϕ(It)] (24)

where It is given by (1). Taking the time derivative of this equality, we deduce that∫
Rd

ϕ(x)∂tρt(x)dx = E[İt · ∇ϕ(It)]

= E[bt(It) · ∇ϕ(It)]

=

∫
Rd

bt(x) · ∇ϕ(x)ρt(x)dx.

(25)

The first line follows by the chain rule, the second by the tower property of the conditional expectation
and the definition of the drift bt, and the third by definition of ρt. The last line is the weak form of
the transport equation (23).

A nearly-identical derivation (simply dropping the tower property step) shows that the probability flow
equation (2) satisfies Law(xt) = ρt = Law(It). Together, these results imply that we can sample from
any density ρt solving a transport equation of the form (23) by solving the corresponding ordinary
differential equation (2). In practice, we may implement this algorithmically by approximating bt
with a neural network via minimization of (3) to obtain a model b̂t, and then solving the associated
differential equation ˙̂xt = b̂t(x̂t) from t = 0 to t = 1 with an initial condition x̂0 ∼ ρ0 to obtain
approximate samples from ρ1.

B Background on flow map matching.

As discussed in Boffi et al. (2024), given a pre-trained velocity field b̂, we may leverage the three
properties in Proposition 2.2 to design efficient distillation schemes by minimizing the corresponding
square residual. In the following, we use the notation L(X̂; b̂) or L(X̂; X̌) to denote a loss function
for the flow map X̂ given the teacher (which remains frozen during training).

Stopgradients. Because b̂ is a pre-trained teacher, its parameters are frozen during training. The
self-distillation schemes we introduce in this work replace the teacher network b̂s by a self-consistent
implicit teacher v̂s,s, eliminating the need for the pre-trained model entirely. Inspired by the distilla-
tion setting, in Section F.4, we will use a stopgradient operator sg (·) in the context of self-distillation
schemes to create a similar effect to a frozen teacher and to control the flow of information within the
model. Nevertheless, for training stability, it has been observed that it can be useful to use additional
sg (·) operators even for distillation, which we discuss after introducing each loss.
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B.1 Lagrangian distillation.

The first approach is the Lagrangian map distillation (LMD) algorithm, which is based on (8) and is
the basis for the LSD algorithm,

LLMD(X̂; b̂) =

∫ 1

0

∫ t

0

Eρs

[
|∂tX̂s,t(Is)− b̂t(X̂s,t(Is))|2

]
dsdt. (26)

The Lagrangian scheme (26) was introduced in Boffi et al. (2024), and to our knowledge has not
appeared in other works. While b̂ is frozen, the loss (26) is nonconvex in X̂ due to the nonlinearity of
b̂. Moreover, computing the gradient of (26) with respect to X̂ (or its parameters) requires computing
the spatial Jacobian of b̂, which has been observed to be problematic for large generative models such
as image synthesis systems (Poole et al., 2022). For these reasons, it is common to use the modified
loss function

LLMD(X̂; b̂) =

∫ 1

0

∫ t

0

Eρs

[
|∂tX̂s,t(Is)− b̂t

(
sg

(
X̂s,t(Is)

))
|2
]
dsdt. (27)

The effectiveness of (27) over (26) depends on the data modality and the neural network architecture,
as the spatial Jacobian is only problematic in some contexts depending on the pre-trained teacher.
We refer to the gradient of a loss function such as (27) – which includes the sg (·) operator – as a
semigradient.

B.2 Eulerian distillation.

A second scheme is the Eulerian map distillation (EMD) method based on (9),

LEMD(X̂; b̂) =

∫ 1

0

∫ t

0

Eρs

[
|∂sX̂s,t(Is) +∇X̂s,t(Is)b̂s(Is)|2

]
dsdt. (28)

Unlike the Lagrangian approach, (28) is convex in X̂ . Nevertheless, taking the gradient with respect
to the parameters of X̂ requires backpropagating through its spatial Jacobian, which can be similarly
problematic as the setting described for (26). One fix is to use a semigradient based on

LEMD(X̂; b̂) =

∫ 1

0

∫ t

0

Eρs

[
|∂sX̂s,t(Is) + sg

(
∇X̂s,t(Is)b̂s(Is)

)
|2
]
dsdt, (29)

which avoids backpropagating through the spatial Jacobian entirely. While this helps training stability,
it has been observed by Boffi et al. (2024) that the Lagrangian schemes (26) and (27) are more stable
than the Eulerian schemes (28) and (29), which is consistent with our experiments in Section 5.

B.3 Progressive flow map matching.

We now describe the progressive flow map matching (PFMM) algorithm, which is inspired by
progressive distillation (Salimans and Ho, 2022b) for diffusion models, but adapted to the stochastic
interpolant and two-time flow map setting. Let X̌s,t denote a pre-trained teacher flow map, assumed
to be valid over the range 0 ⩽ s ⩽ t ⩽ τ . To obtain such a map at initialization, we may take τ = ∆t

and set X̌s,t(x) = x+ (t− s)b̂s(x) with a pre-trained flow map b̂, corresponding to a single Euler
step of size (t− s) ⩽ τ = ∆t. Our aim is to “extend” X̌ over a larger range, say 0 ⩽ s ⩽ t ⩽ 2τ , by
training a second flow map X̂s,t to match two steps of X̌s,t. To do so, we consider the objective

LPFMM(X̂; X̌) =

∫ 2τ

0

∫ t

0

∫ t

s

Eρs

[
|X̂s,t(Is)− X̌u,t

(
X̌s,u(Is)

)
|2
]
dudsdt, (30)

which is based on the semigroup property (10). In words, (30) teaches X̂ to replicate two jumps of X̌
in one larger jump. We may also apply (30) self-consistently, where X̂ itself serves as the teacher,

LPFMM(X̂) =

∫ 2τ

0

∫ t

0

∫ t

s

Eρs

[
|X̂s,t(Is)− sg

(
X̂u,t

(
X̂s,u(Is)

))
|2
]
dudsdt, (31)

after the first round where b̂ is used, and extend τ over the course of optimization according to a
pre-defined annealing scheme. Our general self-distillation framework described in Section 2.3 may
be obtained by using one of the above distillation schemes in tandem with direct training of v̂, and
where we use v̂ as the teacher velocity field for the student flow map model X̂ .
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C Connection to consistency models.

The approaches (28) and (29) are directly related to consistency distillation in the continuous-time
limit (Song and Dhariwal, 2023; Lu and Song, 2024). Consistency models estimate the single-
time flow map from noise to data, which in our notation is given by Xs,1. Consistency trajectory
models (Kim et al., 2024) use the same approach to learn the two-time map Xs,t; for agreement with
the main text, we focus on this setting here.

C.1 Consistency distillation and Align Your Flow.

We first take a continuous-time limit of the discrete-time consistency distillation objective. Discrete-
time consistency distillation considers the loss

LCD(X̂; b̂) =

∫ 1

0

∫ t

0

E
[
|X̂s,t(Is)− sg

(
X̂s+∆s,t(x̂s+∆s)

)
|2
]
,

Is = αsx0 + βsx1,

x̂s+∆s = Is +∆sb̂s(Is).

(32)

In words, LCD aims to make X̂s,t “consistent” on trajectories of the teacher’s probability flow x̂t by
using a shorter step of size (t− s−∆s) as a teacher for a slightly larger step of size (t− s). Taking
the gradient with respect to X̂s,t, we find

δLCD

δX̂s,t

(X̂; b̂) = X̂s,t(Is)− X̂s+∆s,t(x̂s+∆s). (33)

To obtain the gradient with respect to the parameters θ of X̂ , we have by the chain rule that
∇θLCD = ∇θX̂s,t

δLCD

δX̂s,t
, so we focus on the functional derivative for notational simplicity. Taylor

expanding, we find that

X̂s+∆s,t(x̂s+∆s) = X̂s+∆s,t(Is +∆sb̂s(Is)),

= X̂s+∆s,t(Is) + ∆s∇X̂s+∆s,t(Is)b̂s(Is) + o(∆s),

= X̂s,t(Is) + ∆s∂sX̂s,t(Is) + ∆s∇X̂s+∆s,t(Is)b̂s(Is) + o(∆s)

= X̂s,t(Is) + ∆s
(
∂sX̂s,t(Is) +∇X̂s,t(Is)b̂s(Is)

)
+ o(∆s)

(34)

In the last line, we used that ∆s∇X̂s+∆s,t(Is) = ∆s∇X̂s,t(Is) + o(∆s). With this, we find

lim
∆s→0

1

∆s

δLCD

δX̂s,t

(X̂; b̂) = −
(
∂sX̂s,t(Is) +∇X̂s,t(Is)b̂s(Is)

)
, (35)

which is simply the negative Eulerian residual.

We now ask if the semigradient (35) can be obtained from the Eulerian distillation objective (28)
with a certain choice of sg (·). To do so, we consider the specific parameterization (6) given by
X̂s,t(x) = x+ (t− s)v̂s,t(x). In this case, the Eulerian equation becomes

∂sX̂s,t(x) +∇X̂s,t(x)b̂s(x)

= −v̂s,t(x) + (t− s)∂sv̂s,t(x) + b̂s(x) + (t− s)∇v̂s,t(x)b̂s(x).
(36)

As a result, the Eulerian map distillation loss (28) becomes

LEMD(v̂; b̂)

=

∫ 1

0

∫ t

0

Eρs

[
| − v̂s,t(Is) + (t− s)∂sv̂s,t(Is) + b̂s(Is) + (t− s)∇v̂s,t(Is)b̂s(Is)|2

]
dsdt.

(37)

We consider a variant that avoids backpropagating through any spatial or temporal gradient

LEMD(v̂; b̂) (38)

=

∫ 1

0

∫ t

0

Eρs

[
| − v̂s,t(Is) + sg

(
(t− s)∂sv̂s,t(Is) + b̂s(Is) + (t− s)∇v̂s,t(Is)b̂s(Is)

)
|2
]
dsdt.
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This yields the semigradient,

δLEMD

δv̂s,t
(v̂; b̂)

= v̂s,t(Is)− (t− s)∂sv̂s,t(Is)− b̂s(Is)− (t− s)∇v̂s,t(Is)b̂s(Is),
= −

(
∂sX̂s,t(Is) +∇X̂s,t(Is)b̂s(Is)

)
.

(39)

In the last line, we applied (36), which agrees with (35). Hence, the objective (38) is equivalent to the
consistency distillation objective in the continuous-time limit after a suitable rescaling of gradients.
We note that (39) is identical to the “Align Your Flow” update considered by Sabour et al. (2025).

C.2 Consistency training and mean flow.

Consistency training aims to train a model directly, avoiding access to a pre-trained teacher (Song and
Dhariwal, 2023; Lu and Song, 2024). The associated loss follows from an identical derivation, except
it uses two points on the same interpolant trajectory (rather than x̂s+∆s, which requires access to b̂s),

Is = αsx0 + βsx1,

Is+∆s = αs+∆sx0 + βs+∆sx1 = Is +∆sİs + o(∆s).
(40)

In (40), x0 and x1 are shared between Is and Is+∆s, which yields the second equality for Is+∆s.
Following the same steps as for consistency distillation, the final result is to replace the semi-
gradient (39) by a Monte-Carlo approximation that leverages İs in place of the true vector field
bs(x) = E

[
İs | Is = x

]
,

∇CT = −
(
∂sX̂s,t(Is) +∇X̂s,t(Is)İs

)
. (41)

For the parameterization (6), (41) becomes

∇CT = v̂s,t(Is)− (t− s)∂sv̂s,t(Is)− İs − (t− s)∇v̂s,t(Is)İs. (42)

The semigradients (41) and (42) are higher-variance than (35) as Monte-Carlo approximations, but
on average give access to the ideal flow b rather than the pre-trained, approximate flow b̂. The
gradient (42) is identical to the “mean flow” update recently considered by Geng et al. (2025).

D Connection to shortcut models.

Shortcut models (Frans et al., 2024) correspond to a subset of our proposed PSD scheme (15), which
itself is based on PFMM. To touch base with the formulation of PFMM in (31), as well as the
discussion of PSD in the main text, we place shortcut models in our notation here.

Shortcut models consider a fixed grid of times 0 = t0 < t1 < . . . < tN = 1 spaced dyadically, so
that ti+2 − ti+1 = 2(ti+1 − ti). Observing a similar relation to the tangent identity (7), they train
v̂t,t like a flow matching model and leverage (31) as a bootstrapping mechanism,

LS(X̂) =

∫ 1

0

E
[
|v̂t,t − İt|2

]
+ E

[
|X̂ti,ti+2

(Iti)− sg
(
X̂ti+1,ti+2

(
X̂ti,ti+1

(Iti)
))

|2
]
,

X̂s,t(x) = x+ (t− s)v̂s,t(x).

(43)

Clearly, the second term in (43) reduces to (31) with s, t, u restricted to a fixed grid. Similarly, (43)
corresponds to (15) with discretization in time and the specific proposal distribution piu = δti . The
second term in (43) can also be written entirely in terms of v̂ using the preconditioning discussed
later in Section F.1, which leads to the exact form of the objective discussed in Frans et al. (2024).

E Proofs

In this work, we assume that all studied differential equations satisfy the following assumption.
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Assumption E.1. The drift satisfies the one-sided Lipschitz condition

∃ C > 0 : (bt(x)− bt(y)) · (x− y) ⩽ C|x− y|2 for all (t, x, y) ∈ [0, 1]× Rd × Rd. (44)

Under Assumption E.1, the classical Cauchy-Lipschitz theory guarantees that solutions exist and are
unique for all x0 ∈ Rd and for all t ∈ [0, 1].

We first provide a self-contained proof of the following proposition, which first appeared in Boffi
et al. (2024). We will then apply this result to prove the primary claims of the main text.
Proposition E.2. Let Xs,t denote the flow map (4) for the probability flow equation ẋt = bt(xt).
Then Xs,t satisfies the Lagrangian equation,

∂tXs,t(x) = bt(Xs,t(x)), ∀ (x, s, t) ∈ Rd × [0, 1]2 (45)

the Eulerian equation,

∂sXs,t(x) +∇Xs,t(x)bs(x) = 0, ∀ (x, s, t) ∈ Rd × [0, 1]2, (46)

and the semigroup property

Xs,t(x) = Xu,t(Xs,u(x)) ∀ (x, u, s, t) ∈ Rd × [0, 1]3. (47)

Proof. Repeating (4) for ease of reading, the flow map satisfies the jump condition

Xs,t(xs) = xt, ∀ (s, t) ∈ [0, 1]2, (48)

where xt denotes a trajectory of the probability flow (2). The proof of each condition relies on careful
manipulation of this equation.

We first prove the semigroup condition. Observe that

Xu,t(Xs,u(xs)) = Xu,t(xu) = xt = Xs,t(xs) (49)

Because xs was arbitrary, the result follows.

We now prove the Lagrangian condition. Taking a derivative of (48), with respect to t and applying
the probability flow (2), we find

∂tXs,t(xs) = ẋt,

= bt(xt),

= bt(Xs,t(xs)).

(50)

Because xs was arbitrary, we obtain the Lagrangian condition (45)

Last, we prove the Eulerian condition. Taking a total derivative of (48) with respect to s, we find that

d

ds
Xs,t(xs) = ∂sXs,t(xs) +∇Xs,t(xs)ẋs,

= ∂sXs,t(xs) +∇Xs,t(xs)bs(xs)
(51)

Again, because xs was arbitrary, the result follows.

We now provide a simple proof of the tangent condition we leverage in the main text.
Lemma 2.1 (Tangent condition). Let Xs,t denote the flow map. Then,

lim
s→t

∂tXs,t(x) = bt(x) ∀t ∈ [0, 1], ∀x ∈ Rd, (5)

i.e. the tangent vectors to the curve (Xs,t(x))t∈[s,1] give the velocity field bt(x) for every x.

Proof. By Proposition E.2, we have that the flow map satisfies the Lagrangian equation (45). Taking
the limit as s→ t, and assuming continuity of the flow map, we find

lim
s→t

∂tXs,t(x) = lim
s→t

bt(Xs,t(x)) = bt(Xt,t(x)) = bt(x). (52)

Above, we used that Xt,t(x) = x for all x ∈ Rd and for all t ∈ [0, 1].
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We now prove Proposition 2.2, which extends Proposition E.2 to the representation (6).
Proposition 2.2 (Flow map). Assume that Xs,t is given by (6) with vs,t satisfying (7), and assume
that vs,t is continuous in both time arguments. Then, Xs,t is the flow map defined in (4) if and only if
any of the following conditions also holds:

(i) (Lagrangian condition): Xs,t solves the Lagrangian equation
∂tXs,t(x) = vt,t(Xs,t(x)), (8)

for all (s, t) ∈ [0, 1]2 and for all x ∈ Rd.

(ii) (Eulerian condition): Xs,t solves the Eulerian equation
∂sXs,t(x) +∇Xs,t(x)vs,s(x) = 0, (9)

for all (s, t) ∈ [0, 1]2 and for all x ∈ Rd.

(iii) (Semigroup condition): For all (s, t, u) ∈ [0, 1]3 and for all x ∈ Rd ,
Xu,t(Xs,u(x)) = Xs,t(x). (10)

Proof. We start with the Lagrangian condition (8). By assumption of (7), vt,t(x) = bt(x), so that (8)
is equivalent to (45). It follows that the flow map must satisfy (8) by Proposition E.2, which proves
the forward implication. To prove the reverse implication, observe that by Assumption E.1, solutions
to (8) are unique, so that any solution must be the flow map.

The proof of the Eulerian condition is similar. For the forward implication, we observe that (9) is
equivalent to (46), so that the flow map solves (9). Now, let X solve (9) (along with (6) and (7)). We
would like to prove that X is the flow map. Let us observe that by assumption,

d

ds
Xs,t(xs) = 0, (53)

where xs is any solution of the probability flow. Integrating both sides with respect to s from s to t,
we find that

Xs,t(xs)−Xt,t(xt) = 0 =⇒ xt = Xs,t(xs). (54)
This is precisely the definition of the flow map.

Last, we prove the final property. By Proposition E.2, we have that the flow map satisfies (10), which
proves the forward implication. To prove the reverse implication, let X be any map satisfying (6),
(7) and (10). Define the notation ∂tXt,t(y) = lims→t ∂tXs,t(y) = vt,t(y) = bt(y). Then, consider a
Taylor expansion of the infinitesimal semigroup condition for (x, s, t) ∈ Rd × [0, 1]2 arbitrary,

Xs,t+h(x) = Xt,t+h(Xs,t(x)),

= Xt,t(Xs,t(x)) + h∂tXt,t(Xs,t(x)) + o(h),

= Xs,t(x) + h∂tXt,t(Xs,t(x)) + o(h),

= Xs,t(x) + hvt,t(Xs,t(x)) + o(h),

= Xs,t(x) + hbt(Xs,t(x)) + o(h).

(55)

Note that the above Taylor expansion implicitly uses that vs,t is continuous in (s, t) to write vt,t+h =
vt,t +O(h). This rules out the discontinuous solution

vs,t(x) =

{
bt(x) s = t,

0 s ̸= t,
(56)

which corresponds toXs,t(x) = x for all (x, s, t) ∈ Rd×[0, 1]2 and satisfies the semigroup condition
trivially.

Re-arranging the last line of (55), we find that
Xs,t+h(x)−Xs,t(x)

h
= bt(Xs,t(x)) + o(1), (57)

so that

lim
h→0

Xs,t+h(x)−Xs,t(x)

h
= ∂tXs,t(x) = bt(Xs,t(x)). (58)

Equation (58) is precisely the Lagrangian equation, whose unique solution is the ideal flow map. This
completes the proof.
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Given the above developments, we now recall our main proposition.
Proposition 2.3 (Self-distillation). The flow map Xs,t defined in (4) is given for all 0 ⩽ s ⩽ t ⩽ 1
by Xs,t(x) = x+ (t− s)vs,t(x) where vs,t(x) the unique minimizer over v̂ of

LSD(v̂) = Lb(v̂) + LD(v̂), (11)

where Lb(v̂) is given by

Lb(v̂) =

∫ 1

0

Ex0,x1

[
|v̂t,t(It)− İt|2

]
dt, (12)

and where LD(v̂) is any of the following three objectives.

(i) The Lagrangian self-distillation (LSD) objective, which leverages (8),

LLSD(v̂) =

∫ 1

0

∫ t

0

Ex0,x1

[∣∣∂tX̂s,t(Is)− v̂t,t(X̂s,t(Is))
∣∣2]dsdt; (13)

(ii) The Eulerian self-distillation (ESD) objective, which leverages (9),

LESD(v̂) =

∫ 1

0

∫ t

0

Ex0,x1

[∣∣∂sX̂s,t(Is) +∇X̂s,t(Is)v̂s,s(Is)
∣∣2]dsdt; (14)

(iii) The progressive self-distillation (PSD) objective, which leverages (10),

LPSD(v̂) =

∫ 1

0

∫ t

0

∫ t

s

Ex0,x1

[∣∣X̂s,t(Is)− X̂u,t

(
X̂s,u

(
Is
))∣∣2]dudsdt. (15)

Above, X̂s,t(x) = x+ (t− s)v̂s,t(x) and Ex0,x1
denotes an expectation over the random draws of

(x0, x1) in the interpolant defined in (1).

Proof. We first prove the statement for the LSD algorithm. Observe that for any b̂t and any X̂s,t(x) =
x+ (t− s)v̂s,t(x),

Lb(b̂) ⩾ Lb(b),

LLSD(v̂) ⩾ 0.
(59)

where bt(x) = E[İt|It = x] is the ideal flow. This follows because Lb is convex in b̂ with unique
global minimizer given by b, while LLSD is a square residual term on the Lagrangian relation (8).
From this, we conclude

LSD(v̂) = Lb(v̂) + LLSD(v̂) ⩾ Lb(b). (60)
By Lemma 2.1 and Proposition 2.2, the ideal flow map Xs,t satisfies

vt,t(x) = bt(x) ∀ (x, t) ∈ Rd × [0, 1],

∂tXs,t(x) = vt,t(Xs,t(x)) ∀ (x, s, t) ∈ Rd × [0, 1]2.
(61)

From (61), we see that

LSD(X) = Lb(v) + LLSD = Lb(v) = Lb(b), (62)

so that Xs,t achieves the lower bound (60) and is therefore optimal. Moreover, any global minimizer
must satisfy (61), and by Proposition 2.2 therefore must be the flow map.

We now prove the statement for the ESD algorithm, which is similar. We first observe that for any v̂,

Lb(v̂) ⩾ Lb(b),

LESD(v̂) ⩾ 0.
(63)

From above, we conclude

LSD(v̂) = Lb(v̂) + LESD(v̂) ⩾ Lb(b). (64)

Moreover, by Lemma 2.1 and Proposition 2.2,

vt,t(x) = bt(x) ∀ (x, t) ∈ Rd × [0, 1],

∂sXs,t(x) = −∇Xs,t(x)vs,s ∀ (x, s, t) ∈ Rd × [0, 1]2.
(65)
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From (65), it follows that the ideal flow map satisfies

LSD(v) = Lb(v) + LESD(v) = Lb(v) = Lb(b). (66)

Equation (66) shows that Xs,t achieves the lower bound (64) and hence is optimal. Moreover, any
global minimizer must satisfy (65) and therefore by Proposition 2.2 is the ideal flow map.

Finally, we prove the result for the PSD approach. The proposition is stated for a uniform proposal
distribution over u, but holds for any distribution with full support over [s, t]. First, we observe that

LSD(v̂) = Lb(v̂) + LPSD(v̂) ⩾ Lb(b). (67)

By the semigroup property (10), we have that the true flow map satisfies

LSD(v) = Lb(v) + LPSD(v) = Lb(v) = Lb(b), (68)

so that X is optimal. Now, let X∗ be any map satisfying

LSD(X
∗) = Lb(b), (69)

i.e., any global minimizer of the PSD objective. It then necessarily follows that

Lb(v
∗) = Lb(v),

LPSD(v
∗) = 0.

(70)

By Proposition 2.2, under the assumption that v∗ is continuous, (70) implies that X∗ is the ideal flow
map X .

We now recall our theoretical error bounds for the LSD and ESD algorithms.

Proposition 2.4 (Wasserstein bounds). Let X̂s,t(x) = x+ (t− s)v̂s,t(x) denote a candidate flow
map, let ρ̂1 = X̂0,1♯ρ0 denote the corresponding one-step generated distribution, and let L̂ denote
the spatial Lipschitz constant of v̂t,t(·) uniformly in t. First assume Lb(v̂) + LLSD(v̂) ⩽ ε. Then,

W2
2 (ρ̂1, ρ1) ⩽ 4e1+2L̂ε. (16)

Now assume that Lb(v̂) + LESD(v̂) ⩽ ε. Then,

W2
2 (ρ̂1, ρ1) ⩽ 2e · (1 + e2L̂)ε. (17)

For ease of reading, we split the proof of Proposition 2.4 into two results, one for each algorithm. We
begin with LSD.
Proposition E.3 (Lagrangian self-distillation). Consider the Lagrangian self-distillation method,

LSD(X̂) = Lb(v̂) + LLSD(v̂). (71)

Let X̂ denote a candidate flow map satisfying LSD(X̂) ⩽ ε, and let ρ̂1 denote the corresponding
pushforward ρ̂1 = X̂0,1♯ρ0. Let L̂ denote the spatial Lipschitz constant of v̂t,t(·) uniformly in time,
i.e.

|v̂t,t(x)− v̂t,t(y)| ⩽ L̂|x− y| ∀ (x, y, t) ∈ Rd × Rd × [0, 1]. (72)
Then,

W2
2 (ρ̂1, ρ1) ⩽ 4e1+2L̂ε. (73)

Proof. Observe that LSD(X̂) ⩽ ε implies that both Lb(v̂) ⩽ ε and LLSD(v̂) ⩽ ε. We first note that

Lb(v̂) =

∫ 1

0

Eρt

[
|v̂t,t(It)− İt|2

]
dt,

=

∫ 1

0

Eρt

[
|v̂t,t(It)− bt(It)|2

]
dt+

∫ 1

0

Eρt

[
|İt|2 − |bt(It)|2

]
dt.

(74)

In (74), we used that bt(x) = E[İt|It = x] along with the tower property of the conditional
expectation. It then follows that the L2 error from the target flow b is bounded by∫ 1

0

Eρt

[
|v̂t,t(It)− bt(It)|2

]
dt ⩽ ε−

∫ 1

0

Eρt

[
|İt|2 − |bt(It)|2

]
dt. (75)
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We now observe that, again by the tower property of the conditional expectation,∫ 1

0

Eρt

[
|İt|2 − |bt(It)|2

]
dt =

∫ 1

0

Eρt

[
E
[
|İt|2 − |bt(It)|2 | It

]]
dt,

=

∫ 1

0

Eρt

[
E
[
|İt − bt(It)|2 | It

]]
dt,

⩾ 0.

(76)

Equation (76) shows that the term subtracted in (75) is a conditional variance, and therefore is
nonnegative. Combining the two, we find that∫ 1

0

Eρt

[
|v̂t,t(It)− bt(It)|2

]
⩽ ε. (77)

We now consider the learned probability flow

˙̂xv̂t = v̂t,t
(
x̂v̂t

)
, x̂0 ∼ ρ0. (78)

By Proposition 3 of Albergo and Vanden-Eijnden (2022), (77) implies that

W2
2 (ρ1, ρ̂

v
1) ⩽ e1+2L̂ε. (79)

where ρ̂v̂1 = Law(x̂v̂t ). Now, by Proposition 3.7 of Boffi et al. (2024), LLSD(v̂) ⩽ ε implies

W2
2

(
ρ̂v̂1, ρ̂1

)
⩽ e1+2L̂ε. (80)

By the triangle inequality and Young’s inequality, we then have

W2
2 (ρ1, ρ̂1) ⩽ 2

(
W2

2

(
ρ1, ρ̂

v̂
1

)
+W2

2

(
ρ̂v̂1, ρ̂1

))
,

⩽ 4e1+2L̂ε.
(81)

This completes the proof.

We now prove a similar guarantee for the ESD method.

Proposition E.4 (Eulerian self-distillation). Consider the Eulerian self-distillation method,

LSD(v̂) = Lb(v̂) + LESD(v̂). (82)

Let X̂ denote a candidate flow map with the same properties as in Proposition E.3. Then,

W2
2 (ρ̂1, ρ1) ⩽ 2e(1 + e2L̂)ε. (83)

Proof. As in Proposition E.3, our assumption LSD(v̂) ⩽ ε implies that both Lb(v̂) ⩽ ε and
LESD(v̂) ⩽ ε. Defining the flow ˙̂xv̂t as in (78), we have a bound identical to (79) on W2

2

(
ρ1, ρ̂

v̂
1

)
.

Now, leveraging Proposition 3.8 in Boffi et al. (2024), we have that

W2
2

(
ρ̂v̂1, ρ̂1

)
⩽ eε. (84)

Again applying the triangle inequality and Young’s inequality yields the relation

W2
2 (ρ1, ρ̂1) ⩽ 2

(
W2

2

(
ρ̂v̂1, ρ̂1

)
+W2

2

(
ρ1, ρ̂

v̂
1

))
,

⩽ 2e(1 + e2L̂)ε.
(85)

This completes the proof.

F Further details on self-distillation

In this section, we collect some additional results and detail on some of the topics discussed in the
main text.
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F.1 Semigroup parameterization for PSD.

By definition, we have that
Xs,t(x) = x+ (t− s)vs,t(x). (86)

We then also have that
Xs,u(x) = x+ (u− s)vs,u(x),

Xu,t(Xs,u(x)) = Xs,u(x) + (t− u)vu,t(Xs,u(x)),

= x+ (u− s)vs,u(x) + (t− u)vu,t(Xs,u(x)).

(87)

By the semigroup property (10), it follows that
Xs,t(x) = Xu,t(Xs,u(x)) (88)

from which we see that
x+ (t− s)vs,t(x) = x+ (u− s)vs,u(x) + (t− u)vu,t(Xs,u(x)). (89)

Re-arranging and eliminating, we find that

vs,t(x) =

(
u− s

t− s

)
vs,u(x) +

(
t− u

t− s

)
vu,t(Xs,u(x)), (90)

which provides a direct signal for vs,t. Choosing u = γs+ (1− γ)t for γ ∈ [0, 1] leads to the simple
relations

u− s

t− s
= 1− γ,

t− u

t− s
= γ, (91)

which can be used to precondition the relation (90) as
vs,t(x) = (1− γ)vs,u(x) + γvu,t(Xs,u(x)). (92)

In the numerical experiments, we use (92) to define a training signal for v̂ for the PSD algorithm.

F.2 Limiting relations and annealing schemes.

Limiting relations. As shown in the proof of Proposition 2.2, application of the semigroup property
with (s, u, t) = (s, t, t+ h) for a fixed (s, t) recovers the Lagrangian equation at order h. As shown
in the proof of the tangent condition Lemma 2.1, the Lagrangian condition recovers the velocity field
in the limit as s→ t. Similarly, if we consider the Eulerian equation in the limit as s→ t,

lim
t→s

∂sXs,t(x) +∇Xs,t(x)bs(x) = ∂sXs,s(x) + bs(x) = 0, (93)

so that ∂sXs,s(x) = −vs,s(x) = −bs(x). In this way, all three characterizations reduce to the flow
matching objective for vt,t as the diagonal is approached.

Annealing and pre-training. As a result of (93), we can view training the flow v̂t,t only on the
diagonal s = t as a pre-training scheme for the map X̂ . This also means that we can initialize v̂t,t
from a pre-trained model in a principled way via appropriate duplication of the time embeddings.

The relations (7) and (93) imply that the off-diagonal self-distillation terms represent a natural
extension of the diagonal flow matching term. This suggests a simple two-phase curriculum in which
the flow matching term is trained alone for Nfm steps as a pre-training phase, followed by a smooth
conversion from diagonal training into self-distillation by expanding the sampled range of |t − s|
from 0 to 1 over the course of Nanneal steps. This can be accomplished, for example, by drawing (s, t)
uniformly on the off-diagonal and then clamping t = min(t, s+ δ(k)) where k denotes the iteration
and δ(k) is the maximum value of |t− s|, for example δ(k) = k/Nanneal. For simplicity, we trained
directly without any annealing in our experiments, but expect this to simplify and speed up training
for large datasets where overfitting is not a concern.

F.3 Further details on loss sampling and computation

In this section, we provide further detail on how the choice of η ∈ [0, 1], which distributes the batch
between the diagonal flow matching term and the off-diagonal self-distillation term, affects training
time. The factor η can be chosen based on the available computational budget to systematically trade
off the relative amount of direct training and distillation per gradient step. We focus here on the
computational cost of a forward pass of the objective function; the complexity of a backward pass
will depend on the specific choice of sg (·) operator used.
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Flow matching. Evaluating the interpolant loss Lb on a single sample requires a single neural
network evaluation v̂t,t(It), leading to B network evaluations on a batch.

LSD. The LSD objective requires a single partial derivative evaluation ∂tX̂s,t(Is) and two network
evaluations – one for v̂t,t and one for X̂s,t(Is) – per sample. The time derivative is a constant
factor C ≈ 1.5 more than a forward pass, and with standard computational tools such as jvp, can
be computed at the same time as X̂s,t(Is). The LSD objective thus requires (1 + C)B network
evaluations. Adding the diagonal and off-diagonal parts, we find a complexity of ((1−η)(1+C)+η)B
for the full self-distillation objective.

PSD. The PSD objective requires three neural network evaluations, so that its expense is 3B.
Combining this with the diagonal component, we have (3(1− η) + η)B network evaluations.

ESD. The ESD objective requires a partial derivative evaluation ∂sXs,t(Is), a neural network
evaluation vs,s(Is), and a Jacobian-vector product ∇Xs,t(Is)vs,s(Is). Observing that (∂s,∇) can
be used as one augmented (d + 1)-dimensional gradient, and then observing that ∂sX̂s,t(Is) +

∇X̂s,t(Is)v̂s,s(Is) = ∇s,xX̂s,t(Is)

(
1

v̂s,s(Is)

)
, this can be computed as a single Jacobian-vector

product. This gives a complexity of (1 + C)B, identical to LSD. Adding the diagonal component,
we find ((1 + C)(1− η) + η)B.

F.4 Stopgradient recommendations

The choice of sg (·) operator in the loss is delicate and empirical, as it is very difficult to ascertain
the convergence properties of an algorithm operating on an objective leveraging sg (·) a-priori.
Nevertheless, in practice, we find it critical for high-dimensional tasks such as images to use sg (·) to
control the flow of information from the teacher network on the diagonal s = t to the off-diagonal.
For large-scale neural networks, we find empirically that backpropagating through Jacobian-vector
products – in particular spatial Jacobian-vector products – leads to significant instability, which can
be avoided with sg (·). For low-dimensional tasks with simple neural networks, we found instability
to be less of a concern.

Following these observations, we found it useful to take insight from the distillation setting described
in Section B, leading to the configurations

LLSD(v̂) =

∫ 1

0

∫ t

0

E
[
|∂tX̂s,t(Is)− sg

(
v̂t,t(X̂s,t(Is))

)
|2
]
,

LESD(v̂) =

∫ 1

0

∫ t

0

E
[
|∂sX̂s,t(Is) + sg

(
∇X̂s,t(Is)v̂s,s(Is)

)
|2
]
,

LPSD(v̂) =

∫ 1

0

∫ t

0

Epγ
EIs

[
|v̂s,t(Is)− sg

(
(1− γ)v̂s,u(Is) + γv̂u,t(X̂s,u(Is))

)
|2
]
.

(94)

It is also possible to avoid backpropagating through the partial derivative with respect to s and with
respect to t in ESD and LSD by expanding the definition of X̂s,t(x) = x+(t−s)v̂s,t(x) as described
in Section C. This reduces the memory overhead even further by avoiding backpropagating through a
backward pass of the network.

EMA teacher. In addition to the use of sg (·), an important consideration is the choice of parameters
for the teacher, which provides an alternative perspective on and method to implement the sg (·).
Making explicit the student parameters θ and teacher parameters ϕ, we can write for LLSD (with
analogous expressions for the other choices),

LLSD(v̂) =

∫ 1

0

∫ t

0

E
[
|∂tX̂θ

s,t(Is)− v̂ϕt,t(X̂
ϕ
s,t(Is))|2

]
. (95)

The recommendation in (94) corresponds to taking the gradient of (95) with respect to θ and then
evaluating the result at ϕ = θ. A second option would be to evaluate ϕ at an exponential moving
average of θ,

ϕk = δϕk−1 + (1− δ)θk, δ ∈ [0, 1], (96)
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where k denotes the optimization step and where δ denotes a forgetting factor such as δ = 0.9999.
While in practice we found improved samples by evaluating the learned flow map over EMA
parameters (see Section G for exact values), we found that the use of EMA for the teacher parameters
offered no gain and sometimes led to instability in early experiments. For this reason, we use the
instantaneous parameters ϕ = θ, corresponding to (94) or δ = 0 in (96).

F.5 Classifier-free guidance

In this section, we describe how to train a flow map with classifier-free guidance. For the derivation,
we focus on the LSD algorithm to avoid replicating the loss functions in each case, but the other
choices are identical. To this end, let bt(x; c) denote a conditional velocity field. We first observe that
we may train a conditional flow map via the objective function

Lc(v̂) =

∫ 1

0

E
[
|v̂t,t(x; c)− İct |2

]
+

∫ 1

0

∫ t

0

E
[
|∂tX̂s,t(I

c
s ; c)− sg

(
v̂t,t(X̂s,t(I

c
s ; c); c)

)
|2
]

(97)

In (97), Ict denotes the conditional interpolant (i.e., with Ict = α(t)x0 + β(t)xc1 with xc1 ∼ ρ1(· | c)
drawn conditionally on c), and E now includes an expectation over the value of c. To train a model
that is both conditional and unconditional, we may include c = ∅ in the expectation.

As in the main text, let us now define the CFG velocity field at guidance strength α ∈ R as

qt(x;α, c) = bt(x;∅) + α (bt(x; c)− bt(x;∅)) ,

= vt,t(x;∅) + α (vt,t(x; c)− vt,t(x;∅)) .
(98)

Given the second line of (98), we define the current estimate of the guided velocity,

q̂t(x;α, c) = v̂t,t(x;∅) + α (v̂t,t(x; c)− v̂t,t(x;∅)) . (99)

We now observe that because (99) is constructed entirely in terms of the known v̂t,t, we only need to
modify the self-distillation term rather than the flow matching term to train a CFG flow map. To this
end, we self-distill the guided velocity q̂t over a range of α. This leads to the objective function

LCFG
LSD(v̂) =

∫ 1

0

E
[
|v̂t,t(x; c)− İct |2

]
+

∫ ᾱ

0

∫ 1

0

∫ t

0

E
[
|∂tX̂s,t(I

c
s ;α, c)− sg

(
q̂t,t

(
X̂s,t (I

c
s ;α, c)

))
|2
]
,

(100)

where ᾱ denotes a maximum guidance scale of interest. Following the same derivation, we may
obtain the CFG ESD objective

LCFG
ESD(v̂) =

∫ 1

0

E
[
|v̂t,t(x; c)− İct |2

]
+

∫ ᾱ

0

∫ 1

0

∫ t

0

E
[
|∂sX̂s,t(I

c
s ;α, c) + sg

(
∇X̂s,t(I

c
s ;α, c)q̂s,s (I

c
s ;α, c)

)
|2
]
,

(101)

as well as the CFG PSD objective,

LCFG
PSD(v̂) =

∫ 1

0

E
[
|v̂t,t(x; c)− İct |2

]
(102)

+

∫ ᾱ

0

∫ 1

0

∫ t

0

E
[
|v̂s,t(Ics ;α, c)− sg

(
(1− γ)v̂s,u(I

c
s ;α, c) + γv̂u,t(X̂s,u(I

c
s ;α, c);α, c)

)
|2
]
.

F.6 Detailed algorithms for each self-distillation method

Here, we provide detailed algorithmic implementations for each self-distillation method using the
recommendations provided in (94). Each algorithm computes the flow matching loss Lb(v̂) over a
batch of size ηM and the distillation loss LD(v̂) over a batch of size (1− η)M , comprising a total
batch size of M .
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Algorithm 2: Lagrangian Self-Distillation (LSD)
input: Distribution ρ(x0, x1); model v̂s,t; coefficients αt, βt; batch size M ; diagonal fraction η;

weight ws,t.
repeat

Sample Md = ⌊ηM⌋ pairs (xi0, x
i
1) ∼ ρ(x0, x1);

Sample Md times ti ∼ U([0, 1]);
Compute interpolants Iti = αtix

i
0 + βtix

i
1 and velocities, İti = α̇tix

i
0 + β̇tix

i
1;

Compute diagonal loss Lb =
1

Md

∑Md

i=1 e
−wti,ti |v̂ti,ti(Iti)− İti |2 + wti,ti ;

Sample Mo =M −Md pairs (xj0, x
j
1) ∼ ρ(x0, x1);

Sample Mo pairs (sj , tj) ∼ Uod;
Compute interpolants: Isj = αsjx

j
0 + βsjx

j
1;

Compute simultaneously via jvp: X̂sj ,tj (Isj ), ∂tX̂sj ,tj (Isj );
Evaluate teacher at transported point: b̂tj = v̂tj ,tj (X̂sj ,tj (Isj ));

Compute residual: rj = ∂tX̂sj ,tj (Isj )− sg
(
b̂tj

)
;

Compute LSD loss LLSD = 1
Mo

∑Mo

j=1

(
e−wsj,tj |rj |2 + wsj ,tj

)
;

Compute self-distillation loss LSD = Lb + LLSD;
Update v̂ and w using ∇LSD;

until converged;
output: Trained flow map X̂s,t(x) = x+ (t− s)v̂s,t(x)

Algorithm 3: Eulerian Self-Distillation (ESD)
input: Distribution ρ(x0, x1); model v̂s,t; coefficients αt, βt; batch size M ; diagonal fraction η;

weight ws,t.
repeat

Sample Md = ⌊ηM⌋ pairs (xi0, x
i
1) ∼ ρ(x0, x1);

Sample Md times ti ∼ U([0, 1]);
Compute interpolants Iti = αtix

i
0 + βtix

i
1 and velocities İti = α̇tix

i
0 + β̇tix

i
1;

Compute diagonal loss: Lb =
1

Md

∑Md

i=1

(
e−wti,ti |v̂ti,ti(Iti)− İti |2 + wti,ti

)
;

Sample Mo =M −Md pairs (xj0, x
j
1) ∼ ρ(x0, x1);

Sample Mo pairs (sj , tj) ∼ Uod;
Compute interpolants: Isj = αsjx

j
0 + βsjx

j
1;

Evaluate teacher velocities: b̂sj = v̂sj ,sj (Isj );
Compute simultaneously via single augmented jvp: ∂sX̂sj ,tj (Isj ),∇X̂sj ,tj (Isj );

Compute Eulerian residual: rj = ∂sX̂sj ,tj (Isj ) + sg
(
∇X̂sj ,tj (Isj )b̂sj

)
;

Compute ESD loss: LESD = 1
Mo

∑Mo

j=1

(
e−wsj,tj |rj |2 + wsj ,tj

)
;

Compute self-distillation loss LSD = Lb + LESD;
Update v̂ and w using ∇LSD;

until converged;
output: Trained flow map X̂s,t(x) = x+ (t− s)v̂s,t(x)
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Algorithm 4: Progressive Self-Distillation (PSD)
input: Distribution ρ(x0, x1); model v̂s,t; coefficients αt, βt; batch size M ; diagonal fraction η;

weight ws,t; sampling method pγ .
repeat

Sample Md = ⌊ηM⌋ pairs (xi0, x
i
1) ∼ ρ(x0, x1);

Sample Md times ti ∼ U([0, 1]);
Compute interpolants Iti = αtix

i
0 + βtix

i
1 and velocities İti = α̇tix

i
0 + β̇tix

i
1;

Compute diagonal loss: Lb =
1

Md

∑Md

i=1

(
e−wti,ti |v̂ti,ti(Iti)− İti |2 + wti,ti

)
;

Sample Mo =M −Md pairs (xj0, x
j
1) ∼ ρ(x0, x1);

Sample Mo pairs (sj , tj) ∼ Uod;
Sample intermediate fractions: γj ∼ pγ (e.g., U([0, 1]) or δ1/2);
Compute intermediate times: uj = γjsj + (1− γj)tj ;
Compute interpolants: Isj = αsjx

j
0 + βsjx

j
1;

Evaluate model at student points: v̂sj ,tj (Isj );
Evaluate model at first segment: v̂sj ,uj (Isj );
Compute intermediate flow maps: X̂sj ,uj

(Isj ) = Isj + (uj − sj)v̂sj ,uj
(Isj );

Evaluate model at second segment: v̂uj ,tj (X̂sj ,uj
(Isj ));

Compute preconditioned teacher signals:
v̂teacher
sj ,tj = (1− γj)v̂sj ,uj

(Isj ) + γj v̂uj ,tj (X̂sj ,uj
(Isj ));

Compute residuals: rj = v̂sj ,tj (Isj )− sg
(
v̂teacher
sj ,tj

)
;

Compute PSD loss: LPSD = 1
Mo

∑Mo

j=1

(
e−wsj,tj |rj |2 + wsj ,tj

)
;

Compute self-distillation loss: LSD = Lb + LPSD;
Update v̂ and w using ∇LSD;

until converged;
output: Trained flow map X̂s,t(x) = x+ (t− s)v̂s,t(x)

G Further details on numerical experiments

Here, we provide a complete description of the numerical experiments performed in the main text. A
concise summary of each experiment is given in Table 2.

G.1 Checkerboard Details

Experimental setup. We compare the LSD, ESD, and PSD algorithms on the two-dimensional
checkerboard dataset. For PSD, we evaluate both uniform sampling (γ ∼ U([0, 1]), denoted PSD-U)
and midpoint sampling (γ = 1/2, denoted PSD-M). We generate a dataset with 107 samples and
train for 150, 000 steps with a batch size of 100, 000 and a learning rate of 10−3 with square root
decay after 35, 000 steps. We use a diagonal fraction of η = 0.75, allocating 75% of each batch to
the flow matching loss Lb and 25% to the self-distillation loss. The network architecture consists
of a 4-layer MLP with 512 neurons per hidden layer and GELU activation functions. We use the
linear interpolant with αt = 1− t and βt = t with a Gaussian base distribution x0 ∼ N(0, I) with
adaptive scaling to normalize by the variance of the target distribution. Times are sampled uniformly
over the upper triangle without annealing, and we apply gradient clipping at 10.0. All methods use
the stopgradient configurations described in (94). We visualize model samples produced from an
exponential moving average of the learned parameters with decay factor 0.999. Each experiment was
run on a single 40GB A100 GPU. A full qualitative visualization of the tabular results discussed in
the main text is shown in Figure 6.

KL Computation. To compute the KL divergence, we leverage that (a) the checkerboard density
is known analytically as a uniform density over the selected squares, (b) the low-dimensionality
of the dataset means that histogramming the model samples gives a good approximation of the
model density, and (c) the low-dimensionality implies that quadrature can be used to compute a
high-accuracy, deterministic approximation of KL. To this end, we first compute 64, 000 samples
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Checker CIFAR-10 CelebA-64 AFHQ-64

Dataset Properties
Dimensionality 2 3× 32× 32 3× 64× 64 3× 64× 64
Samples 107 50k 203k 16k

Network
Architecture 4-layer MLP EDM2 EDM2 EDM2
Hidden/base channels 512 128 128 128
Channel multipliers – [2, 2, 2] [1, 2, 3, 4] [1, 2, 3, 4]
Residual blocks – 4 per resolution 3 per resolution 3 per resolution
Attention resolutions – 16× 16 16× 16, 8× 8 16× 16, 8× 8
Dropout – 0.13 0.0 0.0

Hyperparameters
Batch size 100,000 512 256 256
Training steps 150,000 400,000 800,000 800,000
Total samples 25× 109 204.8× 106 204.8× 106 204.8× 106

Optimizer RAdam RAdam RAdam RAdam
Learning rate 10−3 10−2 10−2 10−2

LR schedule Sqrt decay at 35k Sqrt decay at 35k Sqrt decay at 35k Sqrt decay at 35k
Gradient clipping 10.0 1.0 1.0 1.0
Diagonal fraction η 0.75 0.75 0.75 0.75
EMA decay 0.999 0.9999 0.9999 0.9999

Evaluation
Metric KL divergence FID FID FID
Sample count 64,000 50,000 50,000 10,000

Methods
Algorithms LSD, ESD, LSD, LSD, LSD,

PSD-U, PSD-M PSD-U, PSD-M PSD-U, PSD-M PSD-U, PSD-M

Table 2: Experimental setup. Summary of experimental configurations across all datasets. All experiments use
uniform sampling of (s, t) pairs over the upper triangle and leverage the sg (·) choices described in (94).

from each model for each number of steps N . We then histogram these samples using an M ×M
grid with M = 50 over the range [−1, 1]2. To approximate the KL, we use the quadrature formula

KL(ρ1 ∥ ρ̂1) =
∫

log

(
ρ1(x)

ρ̂1(x)

)
ρ1(x)dx ≈

M∑
i=1

M∑
j=1

log

(
ρ1(xij)

ρ̂hist
1 (xij)

)
ρ1(xij)∆x∆y, (103)

where in (103) xij denotes the center of bin (i, j) used to compute the histogram. We note that
because of the uniformity of ρ1 and ρ̂hist

1 , this quadrature rule is exact, i.e.

M∑
i=1

M∑
j=1

log

(
ρ1(xij)

ρ̂hist
1 (xij)

)
ρ1(xij)∆x∆y = KL(ρ1 ∥ ρ̂hist

1 ). (104)

G.2 CIFAR-10 Details.

We evaluate the LSD, ESD, and PSD algorithms on the CIFAR-10 dataset. Again for PSD, we
compare uniform sampling (γ ∼ U([0, 1]), denoted PSD-U) and midpoint sampling (γ = 1/2,
denoted PSD-M). All methods use uniform sampling over the upper triangle (s, t) ∼ Uod without
annealing. We train for 400, 000 steps with a batch size of 512 and an initial learning rate of 10−2

with square root decay after 35, 000 steps. We use a diagonal fraction of η = 0.75, allocating 75% of
each batch to the flow matching loss and 25% to the self-distillation loss. The network architecture is
based on EDM2 in Configuration G (Karras et al., 2024) and NCSN++ (Song et al., 2020), using 128
base channels, channel multipliers [2, 2, 2], and 4 residual blocks per resolution. We use positional
embeddings for time, as we found that Fourier embeddings led to greater training instability (Lu and
Song, 2025). We embed s and (t− s) rather than s and t, which we found to perform better in early
experiments, add these embeddings together, and otherwise use standard FiLM conditioning in the
EDM2 network. We apply attention at the 16×16 resolution and use dropout of 0.13 following EDM
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Figure 6: Checker: full qualitative results Full visualization of sample quality as a function of number of
steps on the two-dimensional checker dataset.

recommendations for CIFAR-10 (Karras et al., 2022). We employ a learned weight function ws,t

with 128 channels to normalize gradient variance. The interpolant uses αt = 1− t and βt = t with a
Gaussian base distribution, setting the variance of the Gaussian adaptively to match the variance of
the training data. We apply gradient clipping at 1.0 and use the stopgradient configurations described
in (94) for LSD and PSD; ESD was unstable in every sg (·) configuration tried. We evaluate sample
quality using FID computed on-the-fly every 10, 000 steps with 10, 000 generated samples, using
NFE ∈ {1, 2, 4, 8, 16} for the flow map. Models were trained from random initialization without
pre-training, and we track EMA parameters with decay factors 0.999 and 0.9999. We re-compute FID
over 50, 000 generated samples for post-processing and take the best checkpoints for each number
of sampling steps over the entire training range with an EMA factor 0.9999. We use the RAdam
optimizer with default settings. Minimal hyperparameter tuning was applied to the algorithms due to
well-established training practices for CIFAR-10 available in the literature.

G.3 CelebA-64 Details

We compare LSD and both PSD variants (uniform and midpoint) on the CelebA-64 dataset. As for
CIFAR-10, we found ESD to be uniformly unstable and so do not report results. We train for 800, 000
steps (corresponding to 204.8M samples) with a batch size of 256 and an initial learning rate of 10−2

with square root decay after 35, 000 steps. We use a diagonal fraction of η = 0.75, allocating 75% of
each batch to the flow matching loss and 25% to the self-distillation loss. The network architecture is
based on EDM2 in Configuration G with 128 base channels, channel multipliers [1, 2, 3, 4], and 3
residual blocks per resolution, corresponding to the “ImageNet-S” variant reduced from 192 channels
to 128. We apply attention at resolutions 16 × 16 and 8 × 8, and do not use dropout. As with
CIFAR-10, we use positional embeddings for time and embed s and (t − s) with standard FiLM
conditioning. We use the linear interpolant with αt = 1 − t and βt = t with a Gaussian base
distribution and adaptive scaling to normalize to the variance of the target density. Times points (s, t)
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are sampled uniformly over the upper triangle and no annealing or pretraining is used. We apply
gradient clipping at 1.0 and leverage the stopgradient configuration (94) for all methods. We use the
RAdam optimizer with default settings. We evaluate online sample quality using FID-10K computed
every 10, 000 steps, and then compute FID-50k post-hoc to find the best model, following the same
steps as for CIFAR-10. Models were trained from random initialization without pre-training, and we
track EMA parameters with decay factor 0.9999. FID-50K scores were computed with this EMA
factor.

G.4 AFHQ-64 Details

We compare LSD and both PSD variants (uniform and midpoint) on the AFHQ-64 dataset. As with
CelebA-64, we found ESD to be unstable and do not report results. We train for 800, 000 steps
(corresponding to 204.8M samples) with a batch size of 256 and an initial learning rate of 10−2 with
square root decay after 35, 000 steps. We use a diagonal fraction of η = 0.75, allocating 75% of each
batch to the flow matching loss and 25% to the self-distillation loss. The network architecture is based
on EDM2 in Configuration G with 128 base channels, channel multipliers [1, 2, 3, 4], and 3 residual
blocks per resolution, matching the architecture used for CelebA-64. We apply attention at resolutions
16× 16 and 8× 8, and do not use dropout. As with CIFAR-10, we use positional embeddings for
time and embed s and (t− s) with standard FiLM conditioning. We use the linear interpolant with
αt = 1 − t and βt = t with a Gaussian base distribution and adaptive scaling to normalize to the
variance of the target density. Time points (s, t) are sampled uniformly over the upper triangle and
no annealing or pretraining is used. We apply gradient clipping at 1.0 and leverage the stopgradient
configuration (94) for all methods. We use the RAdam optimizer with default settings. We evaluate
online sample quality using FID-10K computed every 10, 000 steps, and then compute FID-50k
post-hoc to find the best model, following the same steps as for CIFAR-10 and CelebA-64. Models
were trained from random initialization without pre-training, and we track EMA parameters with
decay factor 0.9999. FID-50K scores were computed with this EMA factor.
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