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Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a
prevalent post-transcriptional modification with roles in transcript stability, splicing,
and protein recoding. Accurate prediction of editing sites remains difficult due to
the intricate interplay between local sequence context and RNA secondary structure.
Existing approaches either rely on brittle, handcrafted features or adapt generic
foundation models trained on broad RNA datasets, which fail to capture the specific
biochemical requirement for double-stranded RNA and often lack interpretability.
We introduce ADAREDIT, a domain-specialized graph foundation model for A-
to-I editing site prediction. RNA segments are represented as graphs with nu-
cleotides as nodes and both sequential and base-pairing edges, enabling the model
to learn biologically aligned features such as stem–loop motifs. A Graph At-
tention Network architecture yields mechanistic interpretability by highlighting
influential structural and sequence neighbors. Across 25 cross-tissue evaluations,
ADAREDIT consistently outperforms prior methods (F1 > 0.85) and general-
izes to evolutionarily distant species, demonstrating that biology-aware founda-
tion models can deliver superior accuracy, scalability, and insight for complex
RNA modification tasks. The sources of this work are available at our repository:
https://github.com/Scientific-Computing-Lab/AdarEdit.

1 Introduction
Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism that
modifies pre-mRNA molecules encoded in the genome. Such editing events can alter amino acid
sequences, affect alternative splicing, regulate gene silencing, and influence RNA stability and
localization [1, 2]. In animals, A-to-I editing is catalyzed by the adenosine deaminase acting on RNA
(ADAR) family of enzymes [3, 4, 5, 6, 7], which bind double-stranded RNA (dsRNA) structures
and deaminate specific adenosines (A) to inosines (I), interpreted during translation as guanosines
(G). Dysregulated A-to-I editing has been implicated in cancer [8, 9, 10, 11, 12], neurological
disorders [13, 14, 15], and autoimmune conditions. ADAR proteins contain two key domains: a
double-stranded RNA-binding domain (dsRBD), responsible for recognizing dsRNA, and a deaminase
domain, which catalyzes the hydrolytic deamination reaction [3, 16].

Mammals encode three ADAR isoforms: ADAR1 (ubiquitous; long-dsRNA substrates), ADAR2
(many site-specific recoding events, e.g., in GRIA2 and FLNA), and ADAR3 (catalytically inactive,
potentially inhibitory) [3, 16]. Distinct expression patterns across tissues produce characteristic
editing landscapes. In humans, the majority of A-to-I editing occurs within Alu repetitive elements,
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which make up roughly 10% of the genome. When Alu elements are present in inverted orientations
within the same transcript, they can form stable dsRNA structures through intramolecular base pairing,
creating ideal ADAR substrates [6, 5]. Editing specificity and efficiency are shaped by local sequence
motifs, nearest-neighbor preferences, and structural features such as bulges or mismatches that disrupt
perfect base-pairing [8, 17]. Yet, the precise determinants guiding ADAR enzymes to target specific
adenosines remain incompletely understood [4, 18].

Programmable RNA editing leverages endogenous ADAR via antisense guide RNAs that hybridize
to target transcripts, creating dsRNA and enabling site-specific A-to-I conversion. Because edits
occur at the RNA rather than the DNA level, they are reversible and avoid permanent genomic change,
potentially reducing safety risks and off-target effects. Success hinges on accurately predicting
ADAR-compatible substrates, requiring computational models that integrate sequence and structural
determinants to guide gRNA design.

Recent advances in foundation models have shown remarkable success across diverse RNA tasks
(§Appendix A). Meanwhile, editing-site prediction has mainly followed two routes — engineered-
feature classifiers and large pre-trained sequence/RNA language models usage or fine-tuning. The
former are brittle across biological contexts; the latter treat RNA as a linear string and only indirectly
encode structure, limiting ADAR-specific accuracy and interpretability (§Appendix B).

Graph neural networks (GNNs) [19, 20, 21, 22] provide a natural architecture for this task by
representing RNA secondary structures as graphs, with nucleotides as nodes and both sequential
and base-pairing interactions as edges. This encoding reflects the biochemical reality of ADAR
recognition, enabling models to capture relationships between editing sites, base-pairing partners,
loop regions, and surrounding sequence context.

Here, we present ADAREDIT, a Graph Attention Network (GAT)-based model [23] for A-to-I
editing site prediction. Unlike generic foundation models, ADAREDIT is pretrained across a broad
spectrum of editing-specific datasets covering multiple human tissues with distinct ADAR isoform
profiles, as well as diverse non-human species. This broad, biologically grounded pretraining yields a
single model that generalizes without retraining to unseen tissues, conditions, and species, satisfying
the defining criterion of a foundation model in computational biology. Its graph attention mechanism
enables scalable learning of editing determinants while providing interpretable insights into both
established and novel structural motifs. Once trained, ADAREDIT can be directly adapted to new
RNA editing prediction tasks, guide RNA design, or other double-stranded RNA-related analyses
without task-specific re-engineering, offering a reusable foundation for the RNA editing domain.
By uniting sequence and structure in a biologically faithful representation, ADAREDIT advances
predictive performance, interpretability, and transferability — hallmarks of a true domain-specific
foundation model.

2 Model Structure

Graph-Based RNA Representation. ADAREDIT employs a novel graph-based approach to rep-
resent RNA editing contexts by encoding RNA segments as structured networks that capture both
sequential and structural relationships. Each RNA segment is represented as a graph where individual
nucleotides serve as nodes, connected by two distinct types of edges: sequential edges linking
adjacent nucleotides in the 5’ to 3’ direction (creating bidirectional connections between consecutive
bases), and structural edges connecting base-paired nucleotides as predicted by computational RNA
folding algorithms using dot-bracket notation parsing. This dual-edge architecture enables the model
to simultaneously consider local sequence context and long-range structural interactions that are
critical for ADAR enzyme recognition and binding. The GAT architecture consists of three stacked
GAT layers, each employing multi-head attention mechanisms (4 attention heads per layer) to learn
hierarchical and context-aware feature representations. Each node (nucleotide) is initially encoded
with an 8-dimensional feature vector comprising: one-hot encoding for the four RNA bases plus un-
known nucleotides (N) totaling 5 dimensions, binary pairing status indicating whether the nucleotide
participates in base-pairing (1), relative positional distance from the candidate editing site (1), and a
binary target site flag identifying the candidate adenosine (1).

Through the three GAT layers, each node iteratively aggregates information from its graph neigh-
bors via learned attention weights, with each layer applying ReLU activation, batch normalization,
and dropout (rate=0.2) for regularization. This multi-layer architecture enables the model to learn
hierarchical feature representations, where each successive layer can potentially integrate information
from an expanding neighborhood within the graph structure. The attention mechanism dynamically
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weights the importance of different sequence and structural contexts, enabling the model to learn
which nucleotide relationships are most predictive for A-to-I editing events.

The final graph-level representation is obtained through global mean pooling across all node
embeddings, which aggregates the learned features from the entire RNA segment into a fixed-size
vector. This pooled representation is then passed through a fully connected layer that maps the
high-dimensional graph features to a single output dimension, followed by a sigmoid activation
function to produce the binary classification probability for editing prediction. The model also
extracts attention weights from the first GAT layer during inference, providing interpretable insights
into which nucleotide relationships contribute most strongly to each editing prediction (Illustrative
diagram is provided in §Appendix C-Figure 1.)

3 Datasets, Evaluations and Results
Datasets. We used two distinct dataset types:
1. Human tissue-specific Alu datasets. We curated a high-confidence catalogue of double-stranded
Alu substrates, following the protocol in previous work [24], focusing on Alu pairs whose predictable
secondary structures reliably identify optimal ADAR substrates with well-defined base-pairing. The
full human dataset construction process is provided in §Appendix D, and summary counts and ADAR
isoform profiles are provided in Table 1.
2. Cross-species non-Alu datasets. To test generalizability beyond the human Alu-based context,
we constructed datasets for three evolutionarily distant species lacking Alu elements. These taxa
represent widely separated phylogenetic lineages (echinoderms, hemichordates, mollusks) and have
been extensively documented to harbor numerous A-to-I editing sites [25], providing a stringent
test of cross-species generalization. In these species, editing often occurs within non-Alu repetitive
sequences or other double-stranded RNA structures. The complete cross-species dataset construction
pipeline is described in §Appendix E and summary statistics are provided in Table 2.

Evaluations and Results.
1. Cross-tissue evaluation (human data). To evaluate the capacity of ADAREDIT to learn and
generalize editing patterns across diverse biological contexts, we constructed five separate tissue-
specific subsets: Brain Cerebellum, Artery Tibial, Liver, Muscle Skeletal, and a Combined dataset
integrating editing data from all 47 GTEx tissues. We trained ADAREDIT independently on each
of the five tissue-specific datasets and conducted cross-validation evaluations, testing each tissue-
specific model against each of the four other tissues and the Combined dataset — resulting in 25
train–validation experiments. This design enabled systematic assessment of the model’s generalization
capability across tissues with distinct ADAR compositions, as well as evaluation of its behavior when
trained on editing profiles from diverse contexts. For all experiments, model selection was performed
per epoch on the validation set using a composite Performance Score (see §Appendix F).

The experimental results are presented in §Appendix G-Figure 2-A. Generally, the highest
performance was observed when ADAREDIT was trained and evaluated on data derived from the
same tissue. This result is expected, as ADAR expression profiles and editing patterns vary among
tissues, reflecting biological features specifically tailored to each tissue’s context. The highest overall
performance (ACC=0.86, REC=0.85, F1=0.85, and PRE=0.86) was achieved when the model was
both trained and evaluated on the combined dataset, integrating data from all tissues.

Furthermore, the consistently lowest predictive performance (F1 = 0.76–0.80) was observed for
the Muscle Skeletal dataset. This reduced performance is most likely due to the smaller dataset size
available for this tissue compared to the larger datasets used for the other tissues. As is common in
foundation models, ADAREDIT exhibits a strong dependence on training data volume — performance
scales with both the quantity and diversity of data — suggesting that substantially more comprehensive
coverage for this tissue would lead to marked improvements.

Another notable trend was the reduction in model accuracy when training and validation were
performed between tissues with distinct ADAR isoform expression profiles. For example, a model
trained on Liver tissue showed reduced performance when evaluated on Artery Tibial, and vice versa.
This cross-tissue drop in performance (accuracy 0.80 versus 0.83 in within-tissue settings) highlights
the model’s sensitivity to isoform-specific editing patterns, indicating that it captures biologically
relevant features linked to the tissue-specific activity of ADAR isoforms.
2. Cross-species evaluation (non-human data). Within-species training and validation yielded
high predictive performance: S. purpuratus (F1 = 0.85), P. flava (F1 = 0.84), and O. bimaculoides
(F1 = 0.87) (§Appendix G-Figure 2-B), comparable to the highest scores obtained in human tissue-
specific models. Model selection was also applied here as well, as detailed in §Appendix F. These
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results demonstrate that ADAREDIT’s graph-based representation and attention mechanisms capture
biologically meaningful RNA editing patterns even in the absence of Alu elements.

We next trained ADAREDIT exclusively on the human Combined Alu dataset and evaluated it on
each non-human species. As expected, cross-species performance declined relative to within-species
results, with F1 scores dropping by ∼0.11–0.17 to values between 0.68 and 0.76 (§Appendix G-
Figure 2-B). Nonetheless, the human-trained model retained moderate predictive power, indicating
partial conservation of fundamental sequence–structure signals recognized by ADAR enzymes across
deep evolutionary distances. Overall, these cross-species experiments reveal that while RNA editing
patterns are partly conserved, they also exhibit strong species-specific components. This duality
highlights the importance of incorporating diverse species data to build models with both broad
generalization capability and fine-grained adaptation to organism-specific editing contexts.

4 Interpretability of ADAREDIT via Attention Analysis
A central motivation for employing an attention-based architecture in ADAREDIT was to couple
high predictive accuracy with the ability to extract biologically interpretable signals. Unlike black-
box models, attention mechanisms can directly highlight the sequence–structure relationships most
relevant to the model’s decisions [26, 27], offering a window into the molecular features that govern
ADAR specificity. In ADAREDIT, each edge between nucleotides is assigned an attention coefficient
αij , quantifying the influence of neighbor node j on the updated representation of target node i.

Given the ongoing debate on whether attention weights directly constitute explanations [28, 29], it
is not trivial to assume that learned attention coefficients automatically reflect biologically meaningful
determinants. To explicitly assess this in ADAREDIT ( §Appendix H Figure 3-A), we first extracted
attention coefficients from the initial Graph Attention layer. For each nucleotide position within
a 1,200-nt window centered on the candidate editing site (from –600 to +600), we computed the
maximal attention weight across all edges originating from that position. This produced a positional
attention profile indicating the relative importance of each location in predicting editing status.

We next trained an independent XGBoost classifier [30] directly using these positional attention
features. Although performance slightly declined relative to the full ADAREDIT model, the classifier
trained solely on attention-derived features still achieved robust predictive accuracy. For instance,
using the combined Alu dataset, the attention-based XGBoost model yielded an F1-score of 0.81,
accuracy of 0.8, precision of 0.76, and recall of 0.87 ( §Appendix H Figure 3-B).

To gain deeper interpretability, we then applied SHapley Additive exPlanations (SHAP) analy-
sis [31] – a method that quantifies the contribution of each feature to the model’s predictions – to
identify the most influential attention features ( §Appendix H Figure 3-C). SHAP analysis revealed
that positions immediately surrounding the edited adenosine (positions 0, +1, and 1) consistently
ranked among the top features, aligning with previous experimental findings identifying these nu-
cleotides as critical determinants of editing efficiency. Intriguingly, additional distal positions also
emerged as influential, highlighting previously underappreciated structural motifs that may warrant
further biological investigation.

Finally, we retrained the XGBoost classifier using only the top 20 SHAP-identified attention
features. Despite the substantial reduction in input features, model performance remained high with
only a modest decline (F1-score 0.82, accuracy 0.81, precision 0.79, and recall 0.85. The ability
of such a small subset of attention-derived features to approximate full model accuracy strongly
suggests that ADAREDIT inherently identifies and focuses upon a biologically meaningful subset of
sequence-structure relationships. In addition to this analysis, we analyzed the positional distribution
of attention weights around each editing site as described in §Appendix I.
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A Appendix: Previous Work — Foundation Models for RNA Tasks
RNA can be conceptualized as a structured biological language, where primary sequences encode
functional and regulatory information and higher-order structures mediate biological activity. This
duality makes RNA a natural target for foundation models (FMs) that learn general-purpose representa-
tions from large unlabeled corpora, and for generative models that can design novel, function-bearing
sequences under biochemical constraints. Inspired by advances in natural language processing, recent
work has explored both encoder-based and generative architectures tailored to RNA data.

Encoder-only RNA foundation models leverage masked language modeling or contrastive objec-
tives to capture sequence–structure dependencies. RNABERT [32] learns embeddings enriched with
structural information, improving family classification and structure-aware tasks. RNAErnie [33] in-
tegrates motif-aware pretraining, enabling transfer to multiple RNA-related problems. RNA-FM [34],
trained on over 23 million sequences, has been integrated into downstream structure predictors such
as RhoFold+ [34] to improve RNA 3D modeling. Other specialized large-scale models include
RiNALMo [35], a 650M-parameter model that generalizes across secondary-structure and binding
tasks.

Generative and instruction-tuned RNA models focus on design, optimization, and interactive
analysis. GenerRNA [36] is a Transformer-based generator for de novo RNA design with controllable
structural features. RNA-GPT [37] aligns RNA encoders with general-purpose large language models
to support multimodal RNA question-answering and guided sequence editing. RiboDiffusion [38]
conditions diffusion models on RNA 3D backbones for inverse folding.

These models have been applied in diverse RNA contexts. In structure prediction, RhoFold+ [34]
integrates RNA-FM embeddings into a transformer–invariant point attention pipeline, achieving state-
of-the-art performance on RNA-Puzzles and CASP targets. For RNA–protein interaction modeling,
BERT-RBP [39] predicts RBP binding sites from sequence while revealing attention patterns linked
to structural motifs. Generative fine-tuning has been applied to propose mutations in rRNA with
RNA language models [40], while mRNA optimization frameworks such as GEMORNA [41] and
RiboCode [42] improve translation efficiency and vaccine design.

Most general RNA FMs treat RNA as a linear string and incorporate structure only indirectly;
design-oriented generators often optimize objectives not fully aligned with the biochemical determi-
nants of ADAR-mediated editing (§Appendix B GPT usage for the problem, for example). These
gaps motivate the development of domain-specific architectures – such as graph-based FMs trained
on editing-labeled data – that retain the scalability and transferability of foundation models while
encoding mechanistic, biology-aware inductive biases.

B Appendix: Previous Work — A-to-I RNA Editing Site Prediction
Computational prediction of A-to-I editing sites has evolved through several distinct methodological
phases. Early approaches relied on classical machine learning algorithms such as support vector
machines, random forests, and XGBoost, utilizing handcrafted features including sequence motifs,
nucleotide composition around editing sites, thermodynamic properties of RNA secondary structures,
and evolutionary conservation scores [43, 44, 45, 46]. While these feature-based methods achieved
moderate predictive performance, their dependence on predefined biological features limited their
ability to discover novel editing determinants and required extensive manual re-engineering when
applied across different biological contexts or species.

The advent of deep learning introduced convolutional and recurrent neural networks that attempted
to automatically learn sequence patterns without explicit feature engineering [47, 44]. However,
these early deep learning approaches still fundamentally treated RNA as a linear sequence, failing to
adequately incorporate the three-dimensional structural context critical for ADAR enzyme recognition
and substrate binding.

More recent efforts have adapted large pre-trained language models specifically for A-to-I editing
site prediction. GPT-based models have been applied to this task by framing editing prediction as
a sequence classification problem [24, 48]. In our evaluation using the same dataset employed in
this study, GPT-4o mini achieved an accuracy of 69.9%, precision of 65.4%, recall of 81.6%, and
an F1-score of 72.7%, demonstrating substantial pattern recognition capabilities while revealing
significant room for improvement.

Despite their promise, current foundation model approaches face critical limitations when applied
to RNA editing prediction. Most models are trained on generic RNA sequences with objectives
unrelated to A-to-I editing biochemistry, and even when secondary structure information is provided
as additional input, they fundamentally represent RNA as a linear sequence rather than capturing
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the spatial relationships crucial for ADAR recognition. Furthermore, fine-tuned foundation models
offer limited interpretability regarding the biological mechanisms driving their predictions, making
it difficult to validate learned representations against established ADAR biology. These limitations
highlight the need for computational frameworks that natively integrate RNA sequence and structure
information while being trained specifically on editing-relevant data to capture the unique biochemical
constraints of ADAR-mediated A-to-I editing.

C Appendix: Model Architecture and Graph Construction

Figure 1: ADAREDIT Model Architecture and RNA Graph Construction. The figure illustrates
the complete ADAREDIT workflow for RNA editing prediction. Input (top left): dsRNA structure with
candidate editing site (red ’A’) and corresponding dot-bracket secondary structure notation. Graph
Representation (bottom left): Conversion of RNA sequence into graph format where nucleotides are
nodes connected by edges representing sequential (solid lines) and structural base-pairing (dashed
lines) relationships. Each node contains an 8-dimensional feature vector including base encoding,
pairing status, relative position, and target flag. Graph Attention Network (center): Three-layer
GAT architecture with multi-head attention (4 heads per layer) processing the input graph through
successive layers (Layer 1, 2, 3), followed by global mean pooling (Σ Global Mean) and fully
connected layer (FC) with sigmoid activation. Edge-Level Attention (circular detail): Visualization
of learned attention weights between connected nucleotides, with color intensity indicating attention
strength (scale 0-1). Post-processing (right): Model evaluation metrics (confusion matrix: TP, TN, FP,
FN) and biological interpretation showing attention distribution across nucleotide positions relative
to the editing site (-50 to +50), enabling identification of sequence motifs important for A-to-I editing
prediction.

D Appendix: Human Dataset Construction (Alu)
To construct the dataset, we systematically scanned all human UTR regions to identify the closest pair
of oppositely oriented Alu elements within each UTR, maximizing the likelihood of stable dsRNA
formation. This stringent selection process yielded a total of 905 Alu pairs. For each selected pair, we
predicted the secondary structure using RNAfold [49], obtaining a clearly defined duplex structure
that served as the structural input for ADAREDIT graph representation.

Following structure prediction, we extracted editing levels for each adenosine within these
duplexes from the GTEx RNA-seq dataset (8,603 RNA-seq samples across 47 tissues from 548
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donors) [50], both for each tissue separately and for a combined set integrating all tissues. The editing
level for each adenosine was calculated as the ratio of reads identifying the adenosine as guanosine
(G) relative to the total number of reads covering that position (A+G). Subsequently, we retained
for analysis only those sites supported by at least 100 sequencing reads. The final curated dataset
comprised 127,015 adenosines. Adenosines with editing levels ≥ 10% were defined as edited, while
those with editing levels < 1% were defined as unedited following thresholds established in previous
studies [24].

Table 1: Human tissue datasets for training and evaluation of ADAREDIT; train/validation split is 8/2.
Tissue ADAR isoform profile Total sites Edited:Unedited Train:Val
Brain Cerebellum ADAR1+ADAR3 high 24,000 12,000:12,000 19,200:4,800
Artery Tibial ADAR2-dominant 24,000 12,000:12,000 19,200:4,800
Liver ADAR1 high 24,000 12,000:12,000 19,200:4,800
Muscle Skeletal ADAR1 low 7,250 3,625:3,625 5,800:1,450
Combined Mixed 24,000 12,000:12,000 19,200:4,800

E Appendix: Cross-species Dataset Construction
For each organism, we constructed an annotated dataset using previously reported editing sites and
their measured editing levels from Zhang et al. [25]. First, we merged proximal editing sites within
1,000 bp intervals to form discrete editing clusters. For each cluster, we extracted an extended
sequence including an additional 1,000 bases on each side and predicted the minimum free-energy
secondary structure using RNAfold. We then selected the segment containing the highest density of
editing sites within each folded structure and extracted all adenosines that met our stringent editing
criteria (editing level ≥ 10% and sequencing coverage ≥ 100% reads). Non-edited adenosines
located within 20 bases of an edited site were labeled as negative examples. The resulting datasets
were structurally and format-wise analogous to the human Alu dataset, enabling direct comparison.

Table 2: Cross-species datasets for evaluating generalization; train/validation split is 8/2.
Species Total sites Edited:Unedited Train:Val
Strongylocentrotus purpuratus 15086 7543:7543 12068:3018
Ptychodera flava 9112 4556:4556 7289:1823
Octopus bimaculoides 39472 19736:19736 31577:7895

F Appendix: Model Selection
At the end of each training epoch we evaluated the current model on the validation set and recorded
Accuracy, F1, Sensitivity (Recall), Specificity, and Precision, using a 0.5 threshold to binarize
predictions. For model selection, checkpoints were saved at fixed intervals of 10 epochs, and for each
saved checkpoint we computed a composite Performance Score defined as the unweighted sum of the
five validation metrics, PerformanceScoree = Accuracye + F1e + Sensitivitye + Specificitye +
Precisione. The checkpoint with the highest score among these 10-epoch snapshots was selected for
reporting (in case of a tie, the earliest checkpoint was preferred). The selected checkpoint was then
used consistently for all evaluations and analyses, including the results shown in Figure 2 and the
attention-based interpretability in Figure 3.
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G Appendix : Cross-Tissue and Cross-Species Performance

Figure 2: Cross-tissue and cross-species evaluation of ADAREDIT. (A), Cross-tissue performance
of ADAREDIT when trained and validated on each pair of tissue-specific datasets. Four heatmaps
present accuracy, F1-score, recall, and precision for all train-validation tissue combinations: Muscle
Skeletal, Liver, Combined (all GTEx tissues), Brain Cerebellum, and Artery Tibial. Highest values
are generally observed for within-tissue evaluations, with the Combined dataset achieving the top
overall scores. (B), Cross-species evaluation of ADAREDIT. Three left bar groups: within-species
performance for Strongylocentrotus purpuratus, Ptychodera flava, and Octopus bimaculoides when
trained and validated on the same species dataset. Three right bar groups: cross-species performance
when trained on the human Combined Alu dataset and validated on each non-human species. Bars
represent accuracy, F1-score, recall, and precision.
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H Appendix: Attention-Based Model Interpretability

Figure 3: Interpretability analysis of ADAREDIT attentions. (A) Workflow for extracting edge-
level attention coefficients from the GAT, aggregating them into positional attention features, training
an XGBoost classifier, performing SHAP analysis to identify top features, and retraining the classifier
using only these features. (B) Comparison of predictive performance (accuracy, precision, recall,
F1-score) for ADAREDIT, the original attention-based XGBoost model, and the retrained model using
top SHAP features, showing that ADAREDIT achieves the highest scores while the retrained XGBoost
maintains near-identical performance to the full-feature model, indicating that a small subset of
attention-derived features retains predictive power. (C) SHAP summary plots for the top 10 attention-
derived features in the original XGBoost model (left) and in the retrained model (right), showing
feature importance and direction of influence. Results shown are for the Combined→Combined
dataset in human Alu sequences.

I Appendix : Positional Attention Analysis
Having established that attention mechanisms embedded within the ADAREDIT model can provide
meaningful explanations for editing site prediction, we conducted a deeper analysis of attention
profiles to identify known and potentially novel biological determinants influencing ADAR-mediated
editing. Using the attention scores extracted previously for positions spanning 50 nucleotides
upstream and downstream of each editing site (position 0), we performed several targeted analyses
on the attention data derived from the Combined Alu model, which showed the highest predictive
performance (Figure 4).

First, we examined mean positional attention across all sites (Figure 4-a). As anticipated,
position 0 – the edited adenosine itself – exhibited significantly higher average attention compared
to surrounding nucleotides. This result aligns with existing biological knowledge indicating that
structural properties of the editing site (particularly its presence in a loop or an unpaired region)
strongly influence editing efficiency. Interestingly, we also observed slightly elevated attention scores
immediately downstream of the editing site, suggesting additional positional influences that merit
future exploration.

Next, we analyzed attention scores according to nucleotide identity (Figure 4-b). We found
consistently higher average attention at positions containing G or C bases compared to those con-

9



taining A or T, possibly reflecting the greater stability conferred by GC pairing in dsRNA structures.
Particularly noteworthy is the elevated attention observed at position -1 when occupied by guanosine
(G), consistent with previous experimental findings demonstrating that a G immediately upstream of
the editing site can dramatically reduce or abolish editing.

Further investigation into structural context (paired vs. loop/unpaired positions) showed clear
differences in attention distribution (Figure 4-c). Loop or unpaired positions consistently received
higher mean attention scores throughout the examined window compared to positions engaged in
base pairing. This observation reinforces the biological significance of local RNA structure as a major
determinant of editing efficiency.

Additionally, when comparing mean attention profiles between edited and unedited sites (Figure 4-
d), we detected no substantial differences.

Lastly, we evaluated attention scores specifically within loop regions, categorized by loop size
(Figure 4-e). Positions within loops larger than one nucleotide showed progressively increased mean
attention scores, with loops containing two or more nucleotides receiving notably higher attention.
This result suggests that ADAREDIT recognizes larger loop structures as particularly informative
regions, emphasizing their biological relevance in guiding ADAR activity.

Together, these analyses confirm that attention weights derived from ADAREDIT provide biologi-
cally meaningful insights, highlighting previously known determinants of RNA editing efficiency and
identifying novel structural and sequence motifs worthy of future experimental exploration.

Figure 4: Positional attention analysis around RNA editing sites. All graphs depict mean attention
scores derived from the ADAREDIT model, spanning 50 nucleotides upstream and downstream of
the editing site (position 0): (A) Overall mean attention at each position relative to the editing site.
(B) Mean attention scores stratified by nucleotide identity (A, T, C, G). (C) Mean attention scores
comparing loop/unpaired versus base-paired positions. (D) Mean attention comparison between
edited and unedited sites. (E) Mean attention scores for positions located within loops/unpaired
regions, categorized by loop size (1, 2, 3, and 4–6 nucleotides).
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