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ABSTRACT

Neural network (NN) compression via techniques such as pruning, quantization
requires setting compression hyperparameters (e.g., number of channels to be
pruned, bitwidths for quantization) for each layer either manually or via neural
architecture search (NAS) which can be computationally expensive. We address
this problem by providing an end-to-end technique that optimizes for model’s
Floating Point Operations (FLOPs) via a novel ℓ1

ℓ2
latency surrogate. Our algorithm

is versatile and can be used with many popular compression methods including
pruning, low-rank factorization, and quantization. Crucially, it is fast and runs
in almost the same amount of time as a single model training run; which is a
significant training speed-up over standard NAS methods. For BERT compression
on GLUE fine-tuning tasks, we achieve 50% reduction in FLOPs with only 1% drop
in performance. For compressing MobileNetV3 on ImageNet-1K, we achieve 15%
reduction in FLOPs without drop in accuracy, while still requiring 3× less training
compute than SOTA NAS techniques. Finally, for transfer learning on smaller
datasets, our technique identifies 1.2×-1.4× cheaper architectures than standard
MobileNetV3, EfficientNet suite of architectures at almost the same training cost
and accuracy.

1 INTRODUCTION

Large-scale neural networks consistently provide state-of-the-art performance on complex learning
tasks (He et al., 2016; Tan & Le, 2019; Kaplan et al., 2020). But they place heavy burden on compute
resources such as battery, memory or processor making them hard to deploy on edge devices such
as phones, cameras and wearables. Several recent works have designed techniques to compress ML
models and make them efficient for inference. However, as detailed below, many of these techniques
are hard to use in practice, and often achieve sub-optimal accuracy vs inference time trade-offs.

Hyperparameter search for compression. Existing works typically rely on one of the following
building blocks to design efficient models: unstructured weights sparsity (Han et al., 2015; Kusupati
et al., 2020; Tiwari et al., 2021), pruning entire neurons or low-rank factorization (Wang et al., 2019;
Hsu et al., 2021), quantization (Nagel et al., 2021), distillation (Bucila et al., 2006; Hinton et al., 2015).
Figuring out an optimal way to combine these building blocks (or to figure out hyper-parameters such
as amount of sparsity associated with each block) while satisfying a global FLOPs/latency/resource
constraint is difficult and involves a combinatorial search. This problem is further exacerbated when
multiple building blocks are used for model compression (e.g., simultaneous low rank factorization,
sparsity/pruning of weights).

Over the past few years, there has been a large body of work that addresses the problem of finding
hyperparameters for model compression. Existing literature in this space can be broadly classified
into two categories depending on the style of optimization techniques employed: blackbox, and
whitebox techniques.

Blackbox Compression Techniques. Several works in this category formulate model compression as
a black-box Neural Architecture Search (NAS) problem and rely on state-of-the-art NAS techniques
to search for efficient models (Zoph & Le, 2016; Kandasamy et al., 2018; Yang et al., 2018). These
techniques directly take the FLOPs/latency into account and have the potential to identify the optimal
per-layer budget allocation for a wide variety of efficient blocks/compression mechanisms. However,
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Figure 1: Left plot compares various techniques for BERT compression on GLUE tasks (averaged across
tasks). x-axis is the relative number of FLOPs as compared to BERTBASE. y-axis is the relative drop in accuracy
from the baseline. Pruning SOTA numbers are taken from Kwon et al. (2022), while distillation baselines are
from Sanh et al. (2020); Sun et al. (2019). Right plot compares various techniques for MobileNetV3 compression
on ImageNet-1K dataset. MobileNetV3 corresponds to MobileNetV3 models with different width multiplier.
TuNAS, MorphNet are SOTA techniques for scalable compression. TuNAS takes a blackbox approach to model
compression, whereas MorphNet takes a more direct approach by optimizing FLOPs regularized objective.

these approaches are often computationally expensive as they take a blackbox view of the problem
and perform combinatorial search over the space of architectures. Recent works have tried to open this
blackbox to speed up the search process. One prominent line of work here is based on weight sharing
which involves training a large surrogate network with many redundant operations to quickly evaluate
the quality of an architecture in the search space (Liu et al., 2018; Shin et al., 2018; Cai et al., 2018;
Tan et al., 2019). However, these techniques do not scale well to large search spaces, as they require
storing a gigantic network. Despite recent advances such as TuNAS (Bender et al., 2020) for reducing
the size of the network, these techniques can be an order of magnitude slower and less accurate than
our proposed method (see Fig 1). See Section 2 for a thorough discussion on other related works.

Whitebox Compression Techniques. Among the category (b) techniques mentioned above, a
prominent line of work has focused on unstructured pruning of weights with non-uniform budget
allocation across layers (Han et al., 2015; Lin et al., 2020b; Renda et al., 2020; Kusupati et al., 2020).
However, any gain in FLOPs using unstructured pruning is hard to translate to real latency gain
as modern hardware – like GPUs, TPUs – are more geared towards dense matrix operations. So
it is more fruitful to focus on structured building blocks such as neuron pruning, which removes
entire neurons/channels, and low-rank factorization of weights, which is closely related to neuron
pruning. Recent techniques in this line of work add a latency/FLOPs regularizer to the standard cross
entropy loss (Gordon et al., 2018; Cai et al., 2018; Chaudhuri et al., 2020) to bias the model towards
lower number of neurons. Unfortunately the resulting objective is discrete and difficult to optimize.
To alleviate this, existing works have designed continuous surrogates that are more amenable to
SGD style optimization. These methods either work in the space of probability distributions over
pruned models and optimize the “expected objective” (Chaudhuri et al., 2020; Louizos et al., 2017;
Wang et al., 2019) or replace the discontinuous FLOPs regularizer with a continuous surrogate such
as ℓ1 norms of the weights of the network (Gordon et al., 2018). However, the former class of
techniques are often unstable, hard to implement in practice, and empirical studies indicate that their
performance is similar to that of simple magnitude based pruning (Gale et al., 2019) (also see left plot
of Fig. 1). Furthermore, as we show in this work, the latter class of techniques fail to enforce sparsity
in the presence of batch, layer normalization (see Section 3). Even in the absence of batch, layer
normalization, these techniques require adhoc post-processing steps to output exact sparse solutions.

Our Approach: In this work, we propose a whitebox compression technique that addresses the above
described optimization issues. Specifically, we propose a novel FLOPs/latency surrogate based on ℓ1

ℓ2
norm that works even in the presence of batchnorm, layernorm. Our approach applies to a large class
of efficient building blocks – like unstructured sparsity, neuron pruning, quantization – for which
we can express the FLOPs of the model with a ℓ1

ℓ2
surrogate (see Table 1). While our surrogates are

continuous, they are non-differentiable. In such cases standard optimizers such as SGD, Adam can be
quite slow to converge (Parikh et al., 2014). To overcome this, we propose a projection operation on
the mask variables, after each SGD step. Our proposed method speeds up the convergence and also
outputs exact sparse solutions thus eradicating need for post-hoc thresholding. Finally, our approach
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is much faster than SOTA blackbox optimization techniques and runs in almost the same amount of
time as single model training run.

We implement our algorithm with multiple building blocks including pruning, low-rank factorization,
quantization, and apply it on multiple problems in the domain of image classification and NLP.
In particular, we demonstrate the effectiveness of our technique for MobileNetV3 compression on
ImageNet (see Fig. 1), where our method can learn an architecture with up to 15% (11%) lower FLOPs
(latency) on Pixel 6 mobile phones, without any drop in accuracy. Here our approach is more accurate
than MorphNet, a SOTA technique which focuses exclusively on neuron-pruning, as well as, TuNAS, a
SOTA NAS technique. Furthermore, in terms of training time, our method is 3× cheaper than TuNAS.
We would like to highlight that MobileNetv3 is a highly optimized architecture found using efficient
NAS techniques (Howard et al., 2019), and our technique is able to compress this architecture further.

One exciting application of our work is that we can apply it to optimize certain “foundational”
baseline models for individual fine-tuning tasks. For example, for compression of BERT on GLUE
benchmarks, our method achieved 40 − 50% reduction in FLOPs with only 1% drop in accuracy
(see Fig 1). Moreover, our technique dominates standard model compression baselines. Similarly
for smaller vision classification tasks, our technique compresses MobileNetV3, EfficientNet suite
of architectures and identifies 1.2×-1.4× cheaper architectures without significant loss in accuracy
(see Figure 4). Our technique also outperforms SOTA model compression techniques for ResNet by
upto 1.5% on ImageNet (see Figure 3) We would like to note that all these results are obtained at
almost the same cost as that of training a single model for the task. Finally, we also demonstrate the
versatility of our method by using it to quantize a CNN on CIFAR-10, and learning optimal bit-widths
for each of its layers. Our technique found a model that is 55% smaller than the baseline float-16
model, while achieving the same accuracy (see Figure 5). Here is a summary of our contributions:
(1). We provide an end-to-end neural network compression technique that directly optimizes the
FLOPs regularized objective leading to compression during training. Our algorithm can be used with
many popular efficient building blocks including pruning, low-rank factorization, quantization, and
can optimize for on-device inference latency.

(2). We design a novel ℓ1
ℓ2

regularized surrogate for latency that works even in the presence of
batchnorm, layernorm. Our algorithm is fast and runs in the same amount of time as single model
training, and doesn’t require any post-processing steps.
(3). We demonstrate the performance of our technique on both language and vision tasks. Moreover,
for transfer learning settings where the goal is to take a baseline architecture and optimize it for
individual tasks, our techniques outperform SOTA techniques in the broad-domain of automated
neural compression.

2 RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH

Early works on NAS treated the problem as a purely blackbox optimization (BO) problem. These
works relied on BO techniques such as random search (Li & Talwalkar, 2020), Gaussian process
optimization (Kandasamy et al., 2018), and zeroth-order gradient descent (Tan et al., 2019; Zoph &
Le, 2016), evolutionary algorithms to optimize the NAS objective and identify a good architecture.
Several works have improved upon these algorithms using heuristics such as early stopping (Li &
Talwalkar, 2020). Nonetheless, these techniques are computationally expensive, as evaluating the
optimization objective at any point requires training a neural network from scratch. Moreover, due to
computational complexity, these techniques perform a very coarse grained search and are not suited
for fine-grained search over sparsity or low-rank structures.
One-Shot NAS - Recent works have tried to open the blackbox a bit. These techniques, termed as
One-Shot NAS, aim to return the searched architecture as well as its optimal weights in a single pass.
In these techniques, the search space is first transformed to the space of probability distributions over
architectures. Next, a surrogate model is trained to quickly evaluate the optimization objective at any
input (Bender et al., 2020; Liu et al., 2018; Pham et al., 2018; Mei et al., 2019; Chaudhuri et al., 2020).
While these techniques are fast, they involve joint training of the surrogate model during the search
process. This joint training often makes the optimization process unstable (Elsken et al., 2019). Since
our method uses a gradient descent like paradigm, it sidesteps such issues. Further, prior work has
shown evidence that such auxiliary models do not often correlate with the actual model performance
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(Pourchot et al., 2020; Yu et al., 2019; Zela et al., 2020; Zhang et al., 2020b) in various settings.
Zero-Cost Proxies - There have also been techniques which look at data-independent zero-cost
proxies for estimating the performance and latency of a network. These rely on proxy tasks(Wang
et al., 2023; Li et al., 2021) to come up with an estimate of the actual performance. However, recent
work has shown that simple baselines such as “number of parameters” and “FLOPs” are surprisingly
competitive with all leading techniques (White et al., 2023). The main downsides of using zero-
cost proxies are that they may be unreliable, especially on larger search spaces (White et al.; 2023).
They also may have biases, such as preferring larger models (Ning et al., 2021) or wide channels
(Chen et al., 2022). It has been shown that zero-cost proxies for CNNs do not transfer well to
transformers(Zhou et al., 2022). In contrast, our method provides a simple regularizer and training
recipe which can be applied to a wide range of base architectures and tasks, as we demonstrate in our
experiments. We further refer the reader to a recent survey(White et al., 2023) for a more thorough
view on the landscape of NAS.
Hardware-aware NAS for Efficient ML Several recent works at the intersection of efficient ML
and NAS have realized the importance of explicitly accounting for the hardware in the search
process (Tan et al., 2019; Chu et al., 2021; Lin et al., 2020a; Dong et al., 2021; Zhang et al., 2020a;
Benmeziane et al., 2021; Cai et al., 2018). These works incorporate the actual inference time in their
search objectives, instead of surrogates such as FLOPs. The inference time maybe estimated using
another neural network (Łukasz Dudziak et al., 2021), or through latency tables for basic arithmetic
operations on the target platform (Yang et al., 2018). Many of these works rely on greedy, random
search heuristics to solve the resulting objective (Lin et al., 2020a; Dong et al., 2021). However,
these heuristics either take a lot of time to find the optimal architecture or are not guaranteed to
converge to an optimal solution. There are some works that rely on the NAS algorithms described
above (Tan et al., 2019; Chu et al., 2021; Bender et al., 2020). However, these techniques face the
same scalability and optimization issues as previously mentioned.

2.2 MODEL COMPRESSION

The field of model compression is vast. Here, we focus on techniques that perform training-time
compression (as opposed to post-training compression) using the following building blocks: unstruc-
tured sparsity, pruning and low-rank factorization. Early works in unstructured sparsity and pruning
relied on magnitude, gradient based pruning (Han et al., 2015; Frankle & Carbin, 2018; Gale et al.,
2019). Several works have explored more sophisticated scoring metrics for pruning (Karnin, 1990;
Molchanov et al., 2016; 2019; Guo et al., 2016; Dong et al., 2017). Other techniques include adding
sparsity inducing norms such as ℓ0, ℓ1to the training objective (Louizos et al., 2017; Kusupati et al.,
2020; Tiwari et al., 2021). A number of works have also explored low-rank factorization for model
compression (Jaderberg et al., 2014; Lu et al., 2016; Xu et al., 2019; Hsu et al., 2021). Some of
these techniques again rely on sparsity inducing regularizers to induce the low-rank structure (Wang
et al., 2019; Hsu et al., 2021). Others rely on SVD based pruning. Some recent works try and opti-
mize FLOPs regularized objective to perform pruning, low-rank factorization (Gordon et al., 2018;
Chaudhuri et al., 2020). However, as we discussed in the introduction, the resulting optimization
techniques are often unstable and difficult to use in practice, in particular due to the large number of
hyper-paramters needed by them. There have also been specialized methods developed for particular
architecture types and modalities. Yu et al. (2022) present a unified compression framework for vi-
sion transformers, and Shi et al. (2023) present a similar pruning framework for multiple modalities.
While our method is similar to these works, we note that our method can work across architecture
types, modalities and training paradigms, and is agnostic to particular quirks of each of these domains.

3 METHOD

In this section, we describe our approach for model compression. For simplicity of presentation, we
illustrate our technique on feed-forward networks and restrict ourselves to structured pruning. The
ideas here can be extended to other architectures (e.g., 1x1 convolutions in CNNs), and other efficient
building blocks (e.g., unstructured sparsity, low-rank factorization, quantization) in a straightforward
manner (see Table 1 for details).

3.1 REGULARIZING THE FLOPS

Consider the following problem: we are given a pre-trained feed forward neural network (FFN)
f∗(x) = σ(W ∗

Dσ(W ∗
D−1σ(. . . σ(W

∗
1 x)))), where W ∗

i ∈ Rdi+1×di for all i ∈ [D], and a dataset
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{(xi, yi)}ni=1. Our goal is to compress f∗ while simultaneously performing well on the learning task.
This problem can be formulated as the following optimization problem

min
W

1

n

n∑
i=1

ℓ(xi, yi;W) + λ× Latency(W). (1)

HereW = {Wi}Di=1, with Wi ∈ Rd′
i+1×d′

i being the weight matrix at layer i, λ is the regularization
parameter which trades-off latency with accuracy and ℓ is the supervised loss. Directly optimizing
the above objective is intractable because Latency(W) is a discrete function of the dimensions of
weight matrices, and is hardware specific.

We now present a technique for solving Equation (1). To begin with, we substitute Latency(W) with
FLOPs(W)1. In App B.1, we extend it to actual latency. The objective in this case is given by

min
W

1

n

n∑
i=1

ℓ(xi, yi;W) + λ

D∑
i=1

d′id
′
i+1. (2)

To solve this objective, we associate masks with each neuron in the network. In particular, we
parameterize the weight matrix in the ith layer as Wi × diag(αi). Here αi ∈ {0, 1}di are the mask
variables of layer i. If αi,j is set to 0, then the jth neuron in the (i − 1)th layer will be pruned.
The FLOPs regularizer2 can now be written in terms of masks as

∑D
i=1 ∥αi∥0∥αi+1∥0, where αD+1

is the static vector of all 1’s. To make this objective continuous and amenable to gradient based
optimization, one class of techniques place a Bernoulli distribution Bern(pi,j) over each of the masks
αi,j and solve the resulting smoothed objective where expectation is taken w.r.t. the random masks
αi’s (Chaudhuri et al., 2020; Louizos et al., 2017; Wang et al., 2019) The resulting problem is NP-hard,
and the discrete nature of αi’s makes the optimization unstable. To overcome this, Chaudhuri et al.
(2020); Louizos et al. (2017); Wang et al. (2019) rely on a heuristic which involves relaxing Bernoulli
distribution to a continuous distribution such as LogisticSigmoid. However, the main drawback of the
resulting algorithm is that it is hard to implement in practice and requires very careful annealing of the
parameters of LogisticSigmoid distribution. Further, the performance of such techniques is not well
understood theoretically, even for simple and fundamental problems such as sparse linear regression.

Another common approach to convert the discrete objective in Equation (2) into a continuous function
is to replace the ℓ0 norm on αi’s with ℓ1 norm

min
W,αi∈Rdi

1

n

n∑
i=1

ℓ(xi, yi;α,W) + λ

D∑
i=1

∥αi∥1∥αi+1∥1. (3)

This approach is both theoretically grounded (Tibshirani, 1996; Negahban et al., 2009) and easier to
implement in practice (Parikh et al., 2014; Yun et al., 2021). Consequently, recent SOTA compression
techniques relied on ℓ1 norm surrogates to compute the FLOPs regularizer (Gordon et al., 2018; Shi
et al., 2023). A major drawback of ℓ1 norm though is that it does not promote sparsity in the presence
of batch normalization and layer normalization (Ioffe & Szegedy, 2015; Ba et al., 2016). To see
this, consider the following 1-hidden layer network: σ(BN(W2diag(α2)σ(BN(W1diag(α1)x)))).
One can scale down all entries of α1 and scale up the weights W1 without affecting the output of the
network. Doing this reduces the objective value in Equation (3), but doesn’t induce any sparsity in
the network. In practice, we in fact notice this behaviour during optimization of Equation (3), which
leads to sub-optimal solutions. We demonstrate this phenomenon empirically in Section 3.3. Note
that adding ℓ2 penalty on the weights (i.e., weight decay) doesn’t mitigate this issue as any scaling
of α′s can be absorbed by the batch norm parameters without changing the output of the network.
Further, such approaches also need a post-training thresholding step on the masks to achieve sparsity
in practice, adding another hyper-parameter to the method.

1FLOPs is also a discrete function of dimensions of Wi, and the resulting optimization problem is still
intractable.

2The expression we write here actually corresponds to the Multiply-Accumulate Operations (MACs). Each
MAC usually corresponds to two FLOPs. However, we abuse notation slightly and use FLOPs throughout the
paper, since this term is more widely used in prior literature.
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3.2 INDUCING SPARSITY THROUGH ℓ1
ℓ2

REGULARIZER

We now introduce our approach for making the objective in Equation (2) continuous. Instead of using
ℓ1 as a proxy, we replace ℓ0 norm over masks (∥αi∥0) with ℓ1

ℓ2
penalty (

√
di∥αi∥1/∥αi∥2) and solve

the following optimization problem

min
W,αi∈Rdi

1

n

n∑
i=1

ℓ(xi, yi;α,W) + λ

D∑
i=1

√
di∥αi∥1
∥αi∥2

√
di+1∥αi+1∥1
∥αi+1∥2

. (4)

The
√
di term in the numerator normalizes the penalty to lie between [0, di]. When αi’s are all

1’s, the regularizer evaluates to FLOPs. Observe that this regularizer is invariant to scaling of α’s.
Consequently, the value of the regularizer cannot simply be reduced by scaling down αi’s. In our
experiments in Sections 3.3 and 4.3, we show that this handles batch, layer normalizations better than
ℓ1 regularizer. Several works have studied this regularizer in the context of sparse linear regression
and showed that is recovers the underlying sparse signal under mild conditions on the data (Yin et al.,
2014; Rahimi et al., 2019; Wang et al., 2020a). Yang et al. (2019) and Diao et al. (2023) used a
similar ℓ1

ℓ2
regularizer for network pruning, but their techniques don’t optimize latency or FLOPs, and

rely on post-training thresholding to get sparsity.

For certain technical reasons described in the next paragraph, we add a positivity constraint on αi’s
and solve the following objective

min
W,αi∈Rdi

+

1

n

n∑
i=1

ℓ(xi, yi;α,W) + λ

D∑
i=1

√
di
∑di

j=1 αi,j

∥αi∥2

√
di+1

∑di+1

j=1 αi+1,j

∥αi+1∥2
. (5)

Note that we consider αi ∈ Rdi
+ rather than discrete or bounded values. We would like to highlight

that this change doesn’t reduce the representational power of our model. It is mainly done for
computational reasons.

Importance of positivity constraints. The objective in Equation (4) is continuous, but not smooth.
For such losses, standard optimization techniques such as SGD, Adam are slow to converge to
stationary points (Boyd et al., 2004). Furthermore, these algorithms don’t output exact sparse
solutions. This forces additional post-processing steps to be introduced into the compression pipeline.
For example, Gordon et al. (2018); Yang et al. (2019) rely on Adam optimizer and add a pruning step
at the end, where masks that are close to 0 are pruned away. This is quite cumbersome in practice as
one needs to choose appropriate thresholds for pruning, which introduces an additional tunable hyper-
parameter, and needs re-training after pruning. To overcome this, we add a positivity constraint to the
mask variables and modify the objective to Equation (5). This makes the regularizer smooth (except
at all 0’s vector), and easy to optimize using SGD, Adam. After each SGD/Adam update, we simply
project the masks back to the space of positive real numbers. The overall update looks as follows

W ←W − η∇W(L(α,W) + λR(α)), α← max(0, α− η∇α(L(α,W) + λR(α))).

Here L(α,W) is the empirical risk and R(α) is the regularizer. Notice, the only additional step
compared to traditional optimization, is the clipping of α’s. In our ablation studies in Sections 3.3
and 4.3, we validate the importance of this projection step, together with ℓ1

ℓ2
norm, in encouraging

sparse solutions.

Hardware-aware compression - While we deal with FLOPs in this section, our method can also
be extended to optimize the actual latency. We model the on-device latency as a sum of latencies
of the individual matrix multiplications involved in the model. The latencies are looked up from an
interpolated latency table constructed from on-device measurements. The ℓ1

ℓ2
regularizer is crucial to

this interpolation, as it is normalized and lies between [0, di]. We refer the reader to Appendix B.1
for more details on our approach and empirical evaluation.

3.3 VERIFICATION OF DESIGN CHOICES

To empirically demonstrate the drawbacks of using ℓ1 penalty for model compression, we perform
experiments on the FashionMNIST dataset with a single hidden layer fully connected network which
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Figure 2: Comparison of ℓ1, ℓ1
ℓ2

induced FLOPs regularizer for pruning on FashionMNIST: Figures (a)
and (b) depict the evolution of the statistics of the mask variables (α) as training progresses. Figure (c) shows the
relation between the actual FLOPs of the model and the value of the proxy computed by Equations 3, 4. Figure
(d) shows the evolution of the Frobenius norm of the weight matrix.

has a batch norm layer after the first linear layer. We prune out the input to the network using a
mask α on the input. We compare the performance of networks compressed using FLOPs regularizer
induced by ℓ1 and ℓ1

ℓ2
norms. We use SGD for optimization of both the objectives. Furthermore, we

pre-train the network using standard CE loss, and initialize α = 1. We track the variance of the
absolute values of the entries of α, i.e.

∑d
i=1(|αi|−µα)2

d , where µα =
∑d

i=1 |αi|
d . We also track the

mean µα of the absolute values of the entries of α. Finally, we plot out the curve between FLOPs and
the considered norm of α (i.e., ℓ1, ℓ1

ℓ2
). Figure 2 presents the results from these experiments. We can

see that the ℓ1 objective is mis-aligned with the actual value of FLOPs, while the regularizer computed
using ℓ1

ℓ2
is a better proxy. We also find that the mean and variance of α′s sharply decreases when ℓ1

induced FLOPs regularizer is used for compression. This indicates that all entries of α are uniformly
scaled down to a small, non-zero value, reducing the value of the regularizer, while not providing any
sparsity. As seen from the figure, ℓ1

ℓ2
does not suffer from this drawback. Finally, we note that the

frobenius norm of the weight matrix W increases when ℓ1 regularization is used on α, suggesting
that the network is simply scaling down α′s and scaling up the weights to evade the regularizer.

4 EXPERIMENTS

In this section, we apply our framework to large scale pre-training and transfer learning tasks on
standard language and vision benchmarks. To demonstrate the versatility of our technique, we
perform experiments on multiple model families (MobileNet, EfficientNet, ResNet, BERT), and
multiple building blocks (pruning, low-rank factorization). Note that in this section, we provide
accuracy v/s MACs (Multiply-Accumulate operations) trade-off for various tasks3. Since we focus on
structured pruning, a decrease in FLOPs (or MACs) would correlate with a decreased latency as well.
In addition to this, in Sec 4.3, we also present experiments using the actual on-device latency instead
of FLOPs and show that our searched models are indeed faster on device. Further, we also present a
case study integrating quantization into our framework in Appendix A.1, demonstrating its versatility.

4.1 LARGE SCALE CLASSIFICATION ON IMAGENET

MobileNet Family - We begin by comparing the performance of our technique with baselines on
MobileNetV3 compression, for ImageNet classification. We rely on low-rank factorization + pruning
for the compression. The results from this experiment are presented in Figure 1. By varying the
strength of our regularization, we obtain models with different MACs and accuracies. We find that
models produced by our method significantly outperform MobileNetV3 and TuNAS in the high and
mid-MACs regime. In particular, for the same accuracy as MobileNetV3Large, our approach finds
a model with 15% fewer MACs. In comparison with TuNAS, we achieve 30% reduction in MACs
at the same level of accuracy. We however find that our model is at par with MobileNetV3Small
in the low MACs regime, indicating that the former is already well-tuned for this task. In terms of
compute needed for training, TuNAS is the most expensive among all the techniques we tried; it took
2 days to train with our hardware setup. In contrast, our method took 13 hours (3− 4× faster than
TuNAS), and MorphNet took 10 hours. Note that MobileNetv3 is a highly compressed model for
edge deployment, and previous works have found it challenging to compress the model further. Our
method can still provide a better FLOPs v/s accuracy trade-off, providing evidence for its efficacy.

3Note that while we use the term “FLOPs" to describe computational cost in the paper, we report MACs for
computer vision models, in line with prior work.
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Figure 3: (a) Pruning ResNet on ImageNet - We compare against HALP and PAS, two recent
SOTA techniques to prune ResNet-50, and achieve better performance over different FLOP regimes.
(b),(c),(d) - Ablation studies on Mobilenetv3 We compare using ℓ1 and ℓ1

ℓ2
norms in our regularizer,

with subscript p indicating that projected-Adam was used for optimization. We also experiment with
combining low-rank (LR) factorization with channel pruning. Finally, we show on device latency-
accuracy tradeoff with using the actual latency regularizer for compressing MobileNetv3

ResNet Family - We also compress the ResNet architecture for ImageNet classification, using our
method. In particular, we compress the 1× 1 convolutions using pruning and low-rank factorization.
We compare our method against HALP (Shen et al., 2021) and PAS (Li et al., 2022), two state
of the art methods for neural architecture search and model compression for ResNet. Our method
compresses ResNet-101 to a model with similar FLOPs as ResNet-50, while simultaneously achieving
better performance than the baseline ResNet-50. Furthremore, our technique outperformns SOTA
methods for the same number of FLOPs by up to 1.5%, as seen in Fig 3.

4.2 TRANSFER LEARNING

A common paradigm in deploying machine learning models today is to first pre-train them on a
large scale dataset such as ImageNet, and then fine-tune them for the desired target task. However,
deploying large models is not feasible on edge devices. Our technique provides a light-weight
modification to the standard fine-tuning procedure by producing a highly compressed model with
comparable transfer learning performance on the specific task. We demonstrate this on vision and
language tasks.

Vision tasks. We consider the task of fine-tuning an ImageNet pre-trained model for a smaller dataset.
We consider Cars196 (Krause et al., 2013) and Food101 (Bossard et al., 2014) as the target datasets,
and compare against the MobileNetV3 and EfficientNet families of models. We use ImageNet
pre-trained models for initialization. We plot the FLOP-accuracy curves in Fig 4. We compress
MobileNetv3Large and EfficientNet-B4 and EfficientNet-B2 architectures while fine-tuning them
on the target target task. We find that our method consistently improves over baseline architectures
across various FLOPs regimes. This is because our technique is able to adaptively prune the model
based on the difficulty of the classification task. On both the tasks, we see 1% accuracy gains over
MobileNetV3 small. The accuracy gains persist at the latency footprint of MobileNetV3Large-
0.75, where we see over 1.5% accuracy gains on both datasets. On EfficientNet, we see upto 40%
reduction in FLOPs without any drop in accuracy on Food101, and around 20% reduction in FLOPs
on the Cars196 dataset for the largest models (B4). We also see around 30% FLOP reduction while
maintaining the transfer learning performance of the B1 and B0 variants. This demonstrates that our
learnt models can scale better than the heuristic scaling described in (Tan & Le, 2019).
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Figure 4: Accuracy-FLOPs trade-off on vision transfer learning tasks: Figures (a) and (b) depict
the the fine-tuning performance of models found by our method while compressing MobileNetv3Large
and baseline MobileNetV3 on Cars-196 and Food-101 datasets. Figures (c) and (d) show the
performance on the EfficientNet family of architectures, where baselines are EfficientNetB0-B4,
while our method compresses EfficientNet B4 and B2.
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Fine-tuning BERT on GLUE. We consider 5 datasets of the GLUE benchmark (Wang et al., 2018)
that are commonly used in the literature, and fine-tune a pre-trained BERT-Base model with our
FLOPs regularizer. We re-parameterize the weight matrices of the feed forward network of each
transformer block with our low-rank+sparse parameterization. We compare our approach against
model pruning, where SOTA numbers are taken from Fig. 6 of Kwon et al. (2022), reporting the
maximum accuracy among Liu et al. (2021); Lin et al. (2020c); Lagunas et al. (2021); Wang et al.
(2020b); Xia et al. (2022); Sajjad et al. (2023). We also report the performance of widely-used
distillation based baselines (Sanh et al., 2020; Sun et al., 2019). Figure 1 presents the average
performance on the 5 datasets, and Figure 7 in appendix presents the performance on each dataset. In
both these figures, we plot the relative non-embedding FLOPs of the compressed model w.r.t BERT-
base against the drop in accuracy w.r.t BERT-base (similar to Kwon et al. (2022)). We find that on 4
of the 5 datasets considered, our technique provides a higher accuracy for the same number of FLOPs,
indicating the efficacy of our method. On MRPC, a dataset with very few samples, our method is
worse off for models with higher FLOPs, but outperforms the baselines in the low FLOP regime.

4.3 ABLATION STUDIES ON MOBILENETV3

Effect of optimization choices. In section 3 we provided small scale experiments to justify our design
choices of using projected-Adam and ℓ1

ℓ2
norm. In this section we perform large-scale ablation studies

on MobileNetV3 for ImageNet training. The results from this experiment are presented in Figure 3.
Without projected-Adam, we notice that the optimization algorithm doesn’t converge to sparse
solutions. Consequently, the resulting models do not have large reduction in MACs. The accuracy of
these models also takes a big hit. On the other hand, using ℓ1 norm based FLOPs regularizer with
projected-Adam suffers from the scaling issue described in Sec 3.3. This leads to a large fraction of
channels being pruned for some blocks, producing a model with deteriorated accuracy. Our method
has 2-4% better accuracy in the high and mid FLOPs regimes than these alternatives.
Comparing different building blocks. In Table 1, we described ways to integrate various building
blocks into our framework. In Figure 3, we demonstrate the accuracy vs inference time trade-offs
of using two of these building blocks in our framework, namely Pruning and Pruning+Low-rank
Factorization. We find that the extra flexibility provided by the Low-Rank Factorization leads to
models with fewer MACs for the same accuracy, and the difference is even more pronounced for
smaller models. We note that channel pruning alone can give us 10% reduction in MACs over the
MobileNetV3 family at the same accuracy level. In particular, at 73.4% accuracy, our model has
136Mn MACs compared to 155Mn MACs of the MobileNetV3 family model. Similarly, at 75.5%
accuracy, our model has 198Mn MACs compared to 216Mn MACs of MobileNetV3 family model.
Adding Low-Rank structure introduces another 5% reduction in MACs, with no loss in accuracy.
This also shows the effectiveness of our algorithm across multiple building blocks.
Hardware-aware compression. We now optimize for actual on-deive latency by considering latency
based ℓ1/ℓ2 surrogates (see Eq 7 in Appendix for more details on the surrogate). We provide empirical
evidence on the effectiveness of this approach for MobileNetV3 on Pixel 6. We measure the latency on
the device’s CPU. We compare the accuracy-latency curves of models produced using FLOPs, latency
regularizers (see Fig 3). Observe that using the latency regularizer leads to models with smaller
latencies and consequently better latency-accuracy tradeoff compared to using the FLOP regularizer.
We also find these models to have better performance than MobileNetV3 (0.5− 2% improvement in
accuracy for similar latency), despite MobileNetV3 being hand-crafted for faster inference on mobile
devices. Note that latencies here are actual on-device inference latencies of the models.

5 CONCLUSION AND FUTURE WORK

In this work, we presented an end-to-end technique for neural network compression. Our approach
applies to a wide variety of efficient blocks including pruning, unstructured sparsity, quantization. At
the core of our algorithm is a novel surrogate for FLOPs, latency that relies on ℓ1

ℓ2
norms, and works

with batchnorm, layernorm. Our algorithm is computationally efficient and runs in same amount of
time as needed for training a single model. We demonstrated the efficacy of our approach on various
pre-training and transfer learning tasks on standard language and vision benchmarks. As a future
work, it will useful to incorporate more efficient building blocks such as block diagonal matrices into
our framework. Another interesting direction would be to make our technique more hardware aware
by incorporating hardware level parameters such as tiling into our search process.
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A USING QUANTIZATION WITH OUR FRAMEWORK

In this section, we present the parameterization of Wi for quantization. Similar to the main paper,
we consider a FFN. For each layer of the network, we would like to search over {1, 2, 4 . . . B} bit
quantizations of its weights4. Let Wi be the weight matrix of layer i. Let clip(Wi; ri,l, ri,u) be the
weight matrix restricted to [ri,l, ri,u]

clip(Wi; ri,l, ri,u) = ri,u − ReLU(ri,u − ri,l − ReLU(Wi − ri,l)).

When clear from the context, we use the short hand notation clip(Wi) to denote clip(Wi; ri,l, ri,u).
Let Wi,b to be the b-bit quantization of Wi, and let r(b)i,l , r

(b)
i,u be the range parameters associated with

Wi,b. Wi,b is obtained by uniformly gridding the range (r
(b)
i,u − r

(b)
i,l ) into 2b points and assigning

each element of Wi to its nearest grid point

Wi,b = r
(b)
i,l +

r
(b)
i,u − r

(b)
i,l

2b − 1

⌊
clip(Wi)− r

(b)
i,l

(r
(b)
i,u − r

(b)
i,l )/(2

b − 1)

⌉
.

Here ⌊·⌉ denotes the round-to-nearest-integer function. To choose between Wi,1,Wi,2 . . .Wi,B , we
introduce binary mask variables αi,1, αi,2 . . . αi,B . This leads us to the following parameterization
of Wi

αi,1 (Wi,1 + αi,2 (Wi,2 −Wi,1 + αi,4 (Wi,4 −Wi,2 + αi,8 (. . . )))) (6)
αi,b = 0 implies the weights can be parameterized with fewer than b bits. Observe that the above
expression can be rewritten as

αi,1(1− αi,2)Wi,1 + αi,1αi,2(1− αi,4)Wi,2 + αi,1αi,2αi,4(1− αi,8)Wi,4 . . .

The FLOPs needed to compute the output of this layer is given by
[∥αi,1(1− αi,2)∥0 + 2∥αi,1αi,2(1− αi,4)∥0 + 4∥αi,1αi,2αi,4(1− αi,8)∥0 + . . . ] didi+1

Since searching for binary masks is computationally intractable, we make them continuous; that
is, we let αi,b ∈ [0, 1],∀b ∈ {1, 2, 4, . . . B}. We consider a continuous FLOPs surrogate which is
obtained by computing ℓ1/ℓ2 norm of

[αi,1(1− αi,2), 2αi,1αi,2(1− αi,4), 4αi,1αi,2αi,4(1− αi,8) . . . ].

This leads us the following regularizer
αi,1(1− αi,2) + 2αi,1αi,2(1− αi,4) + 4αi,1αi,2αi,4(1− αi,8) . . .√

(αi,1(1− αi,2))2 + (2αi,1αi,2(1− αi,4))2 + (4αi,1αi,2αi,4(1− αi,8))2 . . .
didi+1.

Remark 1. There are several other works that have attempted to learn the amount of quantiza-
tion/precision to use at each layer Chen et al. (2021); Uhlich et al. (2019); Van Baalen et al. (2020).
However, unlike our work, these works do not directly optimize for FLOPs, latency. We would like to
note that our parameterization is closely related to the parameterization of Van Baalen et al. (2020).

Straight Through Estimator (STE). Note that the training objective for quantization is non-
differentiable. So, in our experiments, we use STE to optimize the objective Bengio et al. (2013).
This is a standard technique for performing quantization aware training.

A.1 EXPERIMENTAL RESULTS

In this set of experiments, we consider CIFAR-10 classification and compress a 3 layer CNN using
quantization. We use the quantization formulation presented in Table 1 and search over {2, 4, 8, 16}
bit quantizations for each layer. We compare with a baseline which uses the same level of quantization
at each layer. Fig 5 presents the results from this experiments. The details of the implementation
can be found in the appendix. We find that our technique compresses the model size by almost 55%
without drop in accuracy (as compared to a model with 16-bit weights). Our technique also outputs a
model which is 1.4% more accurate than a 2-bit quantized model with only 4% more FLOPs. In the
plot on the right in Fig 5, we visualize the learned bit-widths of our models. We find that later layers
are assigned a smaller bit width, indicating the importance of learning expressive filters early in the
network. The different models in our plots were found by varying the the value of the regularizer
coefficient, and hence no combinatorial search over bit-widths is required.

4B is typically a power of 2
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Figure 5: Quantization on CIFAR-10: Figure (a) compares the performance of our technique for dynamic
quantization against fixed-bit quantization for a 4 layer CNN on CIFAR-10. The baselines have weights quantized
to 2,4,8, 16 bits. Fig (b) depicts the learnt bitwidths for different layers of the models found by our technique,
with the labels denoting the number of MACs (in Bn) of the models.

B HARDWARE AWARE COMPRESSION

B.1 METHOD

In this section, we extend the FLOPs regularizer to take the latency on the target hardware into
account. The resulting regularizer is especially useful for performing hardware aware network
compression. Our key observation is that the inference on a neural network can be broken down
into a series of matrix multiplication operations. For example, inference on a depth D FFN involves
D matrix-vector multiplications, which take-up majority of the time. So, getting a good estimate
of the inference time of the overall network boils down to having a good estimate of the latency of
matrix-vector multiplication. To this end, we rely on lookup tables. Before the start of the pruning
phase, we construct a 2-dimensional lookup-table T whose (d1, d2)

th entry is the on-device latency
of multiplying a matrix of size d1 × d2 with a vector of size d2. Such a table is easy to construct,
given access to the target device. Next, to incorporate the look-up table T into our pruning algorithm,
we convert it into a continuous function by performing linear interpolation on the entries in the
table Späth (1995). To be precise, for any (x, y) ∈ [d1, d1+1]× [d2, d2+1], where d1, d2 ∈ N∪{0},
we define T (x, y) as: T (x, y) = t1 + (t2 − t1)(y − d2), where t1 = T (d1, d2) + (T (d1 + 1, d2)−
T (d1, d2))(x−d1), and t2 = T (d1, d2+1)+(T (d1+1, d2+1)−T (d1, d2+1))(x−d1). Note that
in contrast to black-box NAS techniques like Yang et al. (2018) which search over a discrete space of
number of filters for each block, our approach needs the latency surrogate to be differentiable, and
hence we need interpolated latency tables. See the appendix for details on how we construct the tables.

We use this interpolated lookup table to construct our latency regularizer as follows

D∑
i=1

T

(√
di∥αi∥1p
∥αi∥2

,

√
di+1∥αi+1∥1p
∥αi+1∥2

)
. (7)

In the above expression, our differentiable surrogate for ∥αi∥0 (i.e.,
√
di∥αi∥1p/∥αi∥2), is used to

index the lookup table. We note that ℓ1
ℓ2

norm is very crucial for this technique to be successful.

This is because
√
di∥αi∥1p

∥αi∥2
is normalized and always lies between [0, di]. In contrast, using ℓ1 norm

surrogate in the regularizer gives us T (∥αi∥1, ∥αi+1∥1). Scaling αi by a constant can drastically
change this regularizer, and makes the optimization unstable.

B.2 EXPERIMENTAL RESULTS.

In Eq 7, we propose a latency surrogate for optimizing the actual on-device inference latency. In
this section, we provide empirical evidence of the effectiveness of this approach for MobileNetv3
on Pixel 6. We use CPU with no quantization. We compare the accuracy-latency curves of models
produced using FLOPs, latency regularizers (see Fig 6). Observe that using the latency regularizer
leads to models with smaller latencies and consequently better latency-accuracy tradeoff compared to
using the FLOP regularizer. We also find these models to have better performance than MobileNetV3
(0.5− 2% improvement in accuracy for similar latency), despite MobileNetv3 being hand-crafted for
faster inference on mobile devices. Note that latencies here are actual on-device inference latencies
of the models.
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Figure 6: Left plot shows the accuracy-latency curves of models obtained using FLOPs, latency regularizers.
Right table compares the performance of our latency regularized models with MobileNetV3 baseline.

C IMPLEMENTATION AND EXPERIMENTAL DETAILS

In this section, we provide additional details about the implementation of our technique. We warm-
start our pruning procedure with the pre-trained model (i.e., f∗ in Section 3) that is made available
to us. In our experiments, we noticed that this speeds up the convergence of our algorithm. For
both MobileNetV3 and BERT compression, we rely on simultaneous pruning, low-rank factorization
of weights (see Table 1 for details). Here, we parameterize weights Wi as Uidiag(βi)Vidiag(αi);
setting entries of βi to 0 helps reduce the rank of the weight matrix, and αi helps in pruning. We
initialize Ui, Vi, βi by performing SVD on the weight matrices of the pre-trained network. In our
experiments, we apply our technique only to the 1× 1 convolution layers in the network, for which
the formulation of our regularizer remains the same as the one described in the preceding text. We
anneal our regularization strength λ, increasing it linearly in order to stabilize the training. Finally, we
fine-tune the model returned by our pruning algorithm on the training data to improve its performance
(this simply involves setting the FLOPs regularization coefficient to 0). During the fine-tuning and
pruning phases, we leverage the pre-trained model by adding a distillation loss to the standard cross-
entropy loss Hinton et al. (2015). We perform distillation between the logits of the pre-trained model
and the logits of the model being fine-tuned.

C.1 IMAGENET PRETRAINING

Our algorithm was implemented using TensorFlow 2.0. We use the pre-trained MobileNetV3 (or
EfficientNet) models provided in this framework to warm-start our models. We initialize Ui, βi, Vi

to the SVD of the 1x1 convolution filters, and the entries of αi uniformly at random between
[0, 0.5]. We use Adam for optimization with its default parameters, and searched over learning rates
in the set {10−4, 5 × 10−5, 10−5}, with cosine decay, which is standard practice. The distillation
coefficient was searched among {0.1, 0.25, 0.5, 0.9} and the distillation temperature was searched
among {2, 3, 4}. For our ImageNet experiments, We trained our model for 70000 steps, linearly
annealing the regularizer for the first 50000 steps. We fine-tuned the obtained model for another
50000 steps. For the transfer learning experiments, we reduced these to 25000 for training and 15000
for fine-tuning. We used a batch size of 2048 for all experiments. Our regularizer coefficient was
varied from 10−8 to 10−6. This range was determined by looking at the magnitude of the cross-
entropy loss and the FLOPs regularizer, and making sure that they are similar. MobileNet pre-training
took up around 13 hours.

C.2 TRANSFER LEARNING

BERT. For the BERT fine-tuning experiments, we start off with a pre-trained BERT model and
introduce our parameterization in a similar manner as described above. We use AdamW to optimize,
and search over learning rates among {10−4, 5× 10−5, 10−5}. Our regularizer coefficient was varied
from 10−7 to 5 ∗ 10−6. Each fine-tuning run taking between 20 mins - 1 hour.

EfficientNet, MobileNet. For EfficientNet and MobileNet experiments, we have similar experimen-
tal setup and hyper-parameter search space as MobileNet ImageNet pretraining described in App C.1,
with the exception that we do not do any model distillation. We also use RMSProp for EfficientNet
with exponential decay as the LR schedule, as this was the optimizer of choice for its pre-training.
We train for 25000 steps with the regularizer, and fine-tune for another 25000 steps.
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Figure 7: Fine-tuning tradeoffs of BERT on GLUE benchmark.
.

C.3 QUANTIZATION

We train a CNN with four convolution layers, with [64,128,256,128] filters and kernel size of 3 with
stride being 1 for each layer. We additionally have batch-norm layers after each conv layer. We
search for learning rate over {1e-4, 5e-4, 1e-3, 5e-3} for the baseline and our model, and regularizer
coefficient over {1e-9, 3e-9, 5e-9, 7e-9, 1e-8}. We train for 100 epochs with a batch size of 512 on a
single V100 GPU, and use Adam with CosineDecay for the learning rate.

C.4 LATENCY TABLES

As mentioned in the main paper, the actual on-device latencies are calculated on Pixel6 for our latency
experiments. We populated the latency lookup-table T specified in Appendix B.2 by profiling the
corresponding 1× 1 convolution/matrix-vector multiplication latency, on the device. Note that the
convolution operation is much better optimized than matrix multiplication operation on the Pixel6
kernel. Hence, for our latency experiments on MobileNet, the latency table was populated by profiling
the 1× 1 convolution operations.

A 1x1 convoultion operation is identified by input dimension, input channels and the number of filters
(output channels). Strides can also be different but all 1x1 convolutions in the MobileNet architecture
have stride 1. In the MobileNet architecture we encounter feature maps with input dimensions
indim ∈ I = {1, 7, 14, 28, 56, 112, 224}. Moreover, the input (inc) and output channels (outc) are
constrained by inc, outc ∈ D = {d |∀d ∈ N and d < 1281}. Hence we construct the table T , each
member of which can be accessed via T (indim, inc, outc). Note that profiling T (indim, inc, outc). for
every possible value of (indim, inc, outc) ∈ I ×D ×D is expensive. We must therefore pick certain
tuples (inc, outc) for each indim ∈ I for which we calculate actual on-device latencies. The rest of
the table is populated using linear interpolation. We pick these tuples such that they cover the 1× 1
convolutions that are encountered in the MobileNet Architecture. For indim = α, let β denote the
maximum possible value of inc, and γ denote the maximum possible value of outc in MobileNet. We
construct set Pin which denotes values that are likely to be encountered by the regularizer for inc and
similarly Pout for outc. Finally, the actual on-device latencies are calculated for T (α, Pin × Pout).
Construction of Pin and Pout is done by choosing an appropriate θ and adding all values in the range
(β−θ, β] to Pin, and (γ−θ, γ] to Pout. Also, from the remaining ranges i.e. (0, β−θ] and (0, γ−θ]
points are sampled exponentially by choosing the midpoint of the range every time and changing the
lower limit of the range to the midpoint for certain iterations.

The experimental setting and hyper-parameter configurations we use for latency table experiments is
same as the one for FLOPs experiments (see Section C.1).

D COMBINATION OF BUILDING BLOCKS

Table 1 presents the parameterization of weight matrices that lets us search over multiple building
blocks simultaneously.

E LIMITATIONS AND BROADER IMPACT

One limitation of our work is that we only study popular building blocks such as sparsity, pruning,
low-rank factorization and quantization. Extending our work to more building blocks such as block
sparsity and other forms of structured sparsity is an interesting future direction. Another limitation,
which is related to the implementation of our technique, is the need to manually implement the
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Table 1: Table describing regularizers used by our technique for various efficient building blocks . One can
easily design regularizers for searching over a combination of building blocks. For example, row 5 presents
regularizer for low-rank + pruning, which we use in our large-scale experiments.

Efficient
Building Block Parameterization of Wi

FLOPs
(ith layer)

Regularizer (FLOPs surrogate)
(ith layer)

Pruning Wi × diag(αi) ∥αi∥0∥αi+1∥0
√
di∥αi∥1p

∥αi∥2

√
di+1∥αi+1∥1p

∥αi+1∥2

Unstructured Sparsity
Wi ⊙ αi, where αi ∈ Rdi+1×di

+ ,
⊙ is the elementwise

multiplication operator
∥Vec(αi)∥0

√
didi+1∥Vec(αi)∥1p

∥Vec(αi)∥2

Low-rank Factorization
Uidiag(βi)Vi,

where Ui ∈ Rdi+1×di,∗ ,
di,∗ = min{di, di+1}

(di + di+1)∥βi∥0 (di + di+1)

√
di,∗∥βi∥1p

∥βi∥2

Quantization
(1, 2, 4 bit quantization)

Wi,1 + αi,2(∆i,2 + αi,4(∆i,4)),
where αi,2, αi,4 ∈ [0, 1], are
mask variables, Wi,b is the
b-bit quantization of Wi,
∆i,2 = Wi,2 −Wi,1,
∆i,4 = Wi,4 −Wi,2

∥(1− αi,2)∥0didi+1 +
2∥αi,2(1− αi,4)∥0didi+1 +
4∥αi,2αi,4∥0didi+1

ℓ1
ℓ2

norm over
the vector [(1− αi,2) ,
2αi,2(1− αi,4) , 4αi,2αi,4]
×didi+1

Pruning +
Low-rank Factorization

Uidiag(βi)Vidiag(αi),
where Ui ∈ Rdi+1×di,∗ ,
di,∗ = min{di, di+1}

(∥αi∥0 + ∥αi+1∥0)∥βi∥0

(√
di∥αi∥1p

∥αi∥2
+

√
di+1∥αi+1∥1p

∥αi+1∥2

)
×
√

di,∗∥βi∥1p

∥βi∥2

Pruning +
Unstructured Sparsity

(Wi ⊙ βi)× diag(αi),
⊙ is the elementwise

multiplication operator
∥Vec(βi × diag(αi))∥0

√
didi+1∥Vec(βi×diag(αi))∥1p

∥Vec(βi×diag(αi))∥2

Pruning +
Quantization

(1, 2, 4 bit quantization)

(
Wi,1 + αi,2(∆i,2 + αi,4(∆i,4))

)
×diag(βi),

(
∥(1− αi,2)∥0 +

2∥αi,2(1− αi,4)∥0 +
4∥αi,2αi,4∥0

)
× ∥βi∥0∥βi+1∥0

(
ℓ1
ℓ2

norm of
the vector [(1− αi,2) ,
2αi,2(1− αi,4) , 4αi,2αi,4]

)
×

√
di∥βi∥1p

∥βi∥2

√
di+1∥βi+1∥1p

∥βi+1∥2

FLOPs regularizer for various architectures. An automated solution that takes in any architecture and
computes the FLOPs regularizer would make our framework easy to use.

In terms of broader impact, we believe our technique can be used to find more efficient architectures
for large language models such as GPT. This can help democratize these models, and also reduce
their carbon footprint.
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