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Abstract

We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image perturbations
(noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness
on synthetic distribution shift relates to distribution shift arising in real data. Informed by an
evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little
to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most
current techniques provide no robustness to the natural distribution shifts in our testbed. The
main exception is training on larger and more diverse datasets, which in multiple cases increases
robustness, but is still far from closing the performance gaps. Our results indicate that distribution
shifts arising in real data are currently an open research problem. We provide our testbed and
data as a resource for future work at [https://modestyachts.github.io/imagenet-testbed /.

1 Introduction

Reliable classification under distribution shift is still out of reach for current machine learning
[65, 68, O1]. As a result, the research community has proposed a wide range of evaluation protocols
that go beyond a single, static test set. Common examples include noise corruptions [33, 138], spatial
transformations |28 29], and adversarial examples [5], 84]. Encouragingly, the past few years have
seen substantial progress in robustness to these distribution shifts, e.g., see [13, 28] 34], 55 57,
66, 93, 96), 105], 114, 115] among many others. However, this progress comes with an important
limitation: all of the aforementioned distribution shifts are synthetic: the test examples are derived
from well-characterized image modifications at the pixel level.

Synthetic distribution shifts are a good starting point for experiments since they are precisely defined
and easy to apply to arbitrary images. However, classifiers ultimately must be robust to distribution
shifts arising naturally in the real world. These distribution shifts may include subtle changes in
scene compositions, object types, lighting conditions, and many others. Importantly, these variations
are not precisely defined because they have not been created artificially. The hope is that an ideal
robust classifier is still robust to such natural distribution shifts.


https://modestyachts.github.io/imagenet-testbed/

In this paper, we investigate how robust current machine learning techniques are to distribution shift
arising naturally from real image data without synthetic modifications. To this end, we conduct
a comprehensive experimental study in the context of ImageNet [I8| [70]. ImageNet is a natural
starting point since it has been the focus of intense research efforts over the past decade and a large
number of pre-trained classification models, some with robustness interventions, are available for
this task. The core of our experimental study is a testbed of 204 pre-trained ImageNet models that
we evaluate in 213 different settings, covering both the most popular models and distribution shifts.
Our testbed consists of 10 model predictions and is 100 times larger than prior work [27, [33] 47, [68].
This allows us to draw several new conclusions about current robustness interventions:

Robustness measurements should control for accuracy. Existing work typically argues that
an intervention improves robustness by showing that the accuracy on a robustness test set has
improved (e.g., see [34, 40, 63, 102], 115]). We find that in many cases, this improved robustness
can be explained by the model performing better on the standard, unperturbed test set. For
instance, using different model architectures does not substantially improve the robustness of a
model beyond what would be expected from having a higher standard accuracy. While training more
accurate models is clearly useful, it is important to separate accuracy improvements from robustness
improvements when interpreting the results.

Current synthetic robustness measures do not imply natural robustness. Prior work often
evaluates on synthetic distribution shifts to measure robustness [9, [32], 38]. We find that current
robustness measures for synthetic distribution shift are at most weakly predictive for robustness on
the natural distribution shifts presently available. While there are good reasons to study synthetic
forms of robustness — for instance, adversarial examples are interesting from a security perspective
— synthetic distribution shifts alone do not provide a comprehensive measure of robustness at this
time. Moreover, as the right plot in Figure [1| exemplifies, current robustness interventions are often
(but not always) ineffective on the natural distribution shifts in our testbed.

Training on more diverse data improves robustness. Across all of our experiments, the only
intervention that improves robustness to multiple natural distribution shifts is training with a more
diverse dataset. This overarching trend has not previously been identified and stands out only
through our large testbed. Quantifying when and why training with more data helps is an interesting
open question: while more data is generally helpful, we find some models that are trained on 100
times more data than the standard ImageNet training set but do not provide any robustness.

The goal of our paper is specifically not to introduce a new classification method or image dataset.
Instead, our paper is a meta-study of current robustness research to identify overarching trends that
span multiple evaluation settings. This is particularly important if the ultimate goal of a research
direction is to produce models that function reliably in a wide variety of contexts. Our findings
highlight robustness on real data as a clear challenge for future work. Due to the diminishing returns
of larger training datasets, addressing this robustness challenge will likely require new algorithmic
ideas and more evaluations on natural distribution shifts.



Hypothetical Robustness Intervention Simplified Distribution Shift Plot

- y=x
—— Baseline accuracy

~
v

®

[V

e Standard training .
70 ) )
sl ° Robustness intervention e n
L e Trained with more data
65 -~ Effective 75
Robustness

S

o
[=))
v

(=2}
o

-y =X

—— Baseline accuracy
Hypothetical robust model
Standard models

%4
o

ImageNetV2 (top-1, %)

ImageNetV2 (top-1, %)
[=)]

N

[
v
o

SN
v

60 65 80 85 60 65 70

70 75 75 80 85
ImageNet (top-1, %) ImageNet (top-1, %)

Figure 1: (Left) We plot 78 standard models trained on ImageNet without any robustness
interventions, showing both their accuracy on the standard test set (ImageNet, x-axis)
and on a test set with distribution shift (ImageNetV2, y-axis). All models lie below the
y = x line: their accuracy under this distribution shift is lower than on the standard test
set. Nevertheless, improvements in accuracy on the standard test set almost perfectly
predict a consistent improvement under distribution shift, as shown by the linear fit (red
line). A hypothetical robustness intervention, shown in green, should provide effective
robustness, i.e., the intervention should improve the accuracy under distribution shift
beyond what is predicted by the linear fit.

(Right) We plot most of the 204 models in our testbed, highlighting those with the
highest effective robustness using square markers. These models are still far from closing
the accuracy gap induced by the distribution shift (ideally a robust model would fall on
the y = x line). Figure [2[shows a more detailed version of this plot with error bars for
all points.

2 Measuring robustness

We first discuss how to measure robustness as a quantity distinct from accuracy. In our experiments,
we always have two evaluation settings: the “standard” test set, and the test set with distribution
shift. For a model f, we denote the two accuracies with acc(f) and acca(f), respectively.

When comparing the robustness of two models f, and fj, one approach would be to rank the
models by their accuracy under distribution shift. However, this approach does not disentangle
the robustness of a model from its accuracy on the standard test set. As an example, consider a
pair of models with accuracy acci(f,) = 0.8, acca(f,) = 0.75 (i.e., a 5% drop in accuracy from the
distribution shift), and accy(f) = 0.9, acca(fp) = 0.76 (a 14% drop). Model f;, has higher accuracy
on the second test set, but overall sees a drop of 14% from the standard to the shifted test set. In
contrast, the first model sees only a 5% drop. Hence we would like to refer to the first model as
more robust, even though it achieves lower accuracy on the shifted test set.

Effective robustness. The core issue in the preceding example is that standard accuracy (accy)
acts as a confounder. Instead of directly comparing accuracies under distribution shift, we would



like to understand if a model f; offers higher accuracy on the shifted test set beyond what is expected
from having higher accuracy on the original test set. We call this notion of robustness beyond a
baseline effective robustness. Graphically, effective robustness corresponds to a model being above
the linear trend (red line) given by our testbed of standard models in Figure [1| (left).

To precisely define effective robustness, we introduce 3(z), the baseline accuracy on the shifted test
set for a given accuracy x on the standard test set. On the distribution shifts in our testbed, we
instantiate 8 by computing the parameters of a log-linear fit for the models without a robustness
intervention (the red line in Figure [1). Empirically, this approach yields a good fit to the data. For
other distribution shifts, the baseline accuracy may follow different trends and may also depend on
properties beyond the standard accuracy, e.g., model architecture. Appendix contains detailed
information on how to compute .

Given the accuracy baseline 3, we define the effective robustness of a model as

p(f) = acca(f) — B(acci(f)) -

A model without special robustness properties falls on the linear fit and hence has p(f) = 0. The
main goal of a robustness intervention is to increase p. Models with large p offer robustness beyond
what we can currently achieve with standard models.

Relative robustness. Effective robustness alone does not imply that a robustness intervention
is useful. In particular, a robustness intervention could increase p for a model it is applied to,
but at the same time decrease both accy; and acce. Such a robustness intervention would offer no
benefits. So to complement effective robustness, we also introduce relative robustness to directly
quantify the effect of an intervention on the accuracy under distribution shift. For a model f’ with
robustness intervention, derived from a model f without the intervention, the relative robustness is
T(f") = acca(f’) — acca(f). We graphically illustrate this notion of robustness in Appendix [B.1]

Overall, a useful robustness intervention should obtain both positive effective and relative robustness.
As we will see, only few classification models currently achieve this goal, and no models achieve both
large effective and relative robustness.

3 Experimental setup

We now describe our experimental setup. A model f is first trained on a fixed training set. We then
evaluate this model on two test sets: the “standard” test set (denoted S7) and the test set with a
distribution shift (denoted Ss).

A crucial question in this setup is what accuracy the model f can possibly achieve on the test set
with distribution shift. In order to ensure that the accuracy on the two test sets are comparable, we
focus on natural distribution shifts where humans have thoroughly reviewed the test sets to include
only correctly labeled images [2, 18], [39] 68, 76]E| This implies that an ideal robust classifier does
not have a substantial accuracy gap between the two test sets. Indeed, recent work experimentally
confirms that humans achieve similar classification accuracy on the original ImageNet test set and
the ImageNetV2 replication study (one of the distribution shifts in our testbed) [77].

'For ObjectNet [2], Borji [7] has pointed out potential label quality issues, but also found that a substantial
accuracy drop remains when taking these issues into account.



3.1 Types of distribution shifts

At a high level, we distinguish between two main types of distribution shift. We use the term
natural distribution shift for datasets that rely only on unmodified images. In contrast, we refer to
distribution shifts as synthetic if they involve modifications of existing images specifically to test
robustness. To be concrete, we next provide an overview of the distribution shifts in our robustness
evaluation, with further details in Appendix [E] and visual overviews in Appendices [A] and [J]

3.1.1 Natural distribution shifts

We evaluate on seven natural distribution shifts that we classify into three categories.

Consistency shifts. To evaluate a notion of robustness similar to £,-adversarial examples but
without synthetic perturbations, we measure robustness to small changes across video frames as
introduced by Gu et al. [35] and Shankar et al. [76]. The authors assembled sets of contiguous
video frames that appear perceptually similar to humans, but produce inconsistent predictions for
classifiers. We define S7 to be the set of “anchor” frames in each video, and evaluate the accuracy
under distribution shift by choosing the worst frame from each frame set for a classifier. This is the
“pm-k” metric introduced by Shankar et al. [76].

Dataset shifts. Next, we consider datasets Sy that are collected in a different manner from Sy but
still evaluate a classification task with a compatible set of classes. These distribution shifts test to
what extent current robustness interventions help with natural variations between datasets that are
hard to model explicitly. We consider four datasets of this variety: (i) ImageNetV2, a reproduction
of the ImageNet test set collected by Recht et al. [68]; (ii) ObjectNet, a test set of objects in a variety
of scenes with 113 classes that overlap with ImageNet [2]; and, (iii) ImageNetVid-Robust-anchor
and YTBB-Robust-anchor [76], which are the datasets constructed from only the anchor frames in
the consistency datasets described above. These two datasets contain 30 and 24 super-classes of the
ImageNet class hierarchy, respectively. For each of these distribution shifts, we define Sy to be a
subset of the ImageNet test set with the same label set as So so that the accuracies are comparable.

Adversarially filtered shifts. Finally, we consider an adversarially collected dataset, ImageNet-A
[39]. Hendrycks et al. [39] assembled the dataset by downloading a large number of labeled images
from Flickr, DuckDuckGo, iNaturalist, and other sites, and then selected the subset that was
misclassified by a ResNet-50 model. We include ImageNet-A in our testbed to investigate whether
the adversarial filtering process leads to qualitatively different results. Since ImageNet-A contains
only 200 classes, the standard test set S7 here is again a subset of the ImageNet test set that has
the same 200 classes as ImageNet-A.

3.1.2 Synthetic distribution shifts

The research community has developed a wide range of synthetic robustness notions for image
classification over the past five years. In our study, we consider the following classes of synthetic
distribution shifts, which cover the most common types of image perturbations.



Image corruptions. We include all corruptions from [38], as well as some corruptions from [33].
These include common examples of image noise (Gaussian, shot noise), various blurs (Gaussian,
motion), simulated weather conditions (fog, snow), and “digital” corruptions such as various JPEG
compression levels. We refer the reader to Appendix for a full list of the 38 corruptions.

Style transfer. We use a stylized version of the ImageNet test set [34] [44].

Adversarial examples. We include untargeted adversarial perturbations bounded in fo.- or £5-
norm by running projected gradient descent as described in [55]. We use € = {23, 2.} for /4, and

2557 255
e ={0.1,0.5} for ¢y (further details in Appendix [E.3).

3.2 Classification models

Our model testbed includes 204 ImageNet models covering a variety of different architectures and
training methods. The models can be divided into the following three categories (see Appendix
for a full list of all models and their categories).

Standard models. We refer to models trained on the ILSVRC 2012 training set without a specific
robustness focus as standard models. This category includes 78 models with architectures ranging
from AlexNet to EfficietNet, e.g., [37 b0, [78], 85 [8].

Robust models. This category includes 86 models with an explicit robustness intervention
such as adversarially robust models [13] 27, [72] [74] T01], models with special data augmentation
[20, 28, [34} [41], 100}, 108, 113], and models with architecture modifications [115].

Models trained on more data. Finally, our testbed contains 30 models that utilize substantially
more training data than the standard ImageNet training set. This subset includes models trained on
(i) Facebook’s collection of 1 billion Instagram images [50, [104], (ii) the YFCC 100 million dataset
[104], (iii) Google’s JFT 300 million dataset [82], [102], (iv) a subset of Openlmages [98], or (v) a
subset of the full ImageNet dataset of 21,841 classes |11, 49, [99].

4 Main results

We now present our main experiments. First, we measure how much effective and relative robustness
models achieve on the natural distribution shifts in our testbed. Then we investigate to what extent
robustness on synthetic distribution shift is predictive of robustness on natural distribution shift.

4.1 Results on natural distribution shifts

Following the categorization in Section |3 we measure the robustness of classification models on three
types of natural distribution shift. Appendix[[.2]contains variations of the figures referenced in this sec-
tion. For further detail, we have made interactive plots available at http://robustness.imagenetv2.org/.

Dataset shifts. Figure [2] shows the effective robustness of models on the four dataset shifts in our
testbed. In each case, we find that the standard test accuracy (x-axis) is a good predictor for the
test accuracy under distribution shift (y-axis). The linear fit is best for ImageNetV2, ObjectNet,
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Figure 2: Model accuracies on the four natural dataset shifts: ImageNetV2 (top left),
ObjectNet (top right), ImageNet-Vid-Robust-anchor (bottom left), and YTBB-Robust-
anchor (bottom right). These plots demonstrate that the standard test accuracy (x-axis)
is a reliable predictor for the test accuracy under distribution shift (y-axis), especially for
models trained without a robustness intervention. The notable outliers to this trend are
some models trained on substantially more data. For ObjectNet, ImageNet-Vid-Robust-
anchor, and YTBB-Robust-anchor, we show the accuracy on a subset of the ImageNet
classes on the x-axis to match the label space of the target task (y-axis). Each data
point corresponds to one model in our testbed and is shown with 99.5% Clopper-Pearson
confidence intervals. The axes were adjusted using logit scaling and the linear fit was
computed in the scaled space on only the standard models. The red shaded region is a
95% confidence region for the linear fit from 1,000 bootstrap samples.

and ImageNet-Vid-Robust with respective 72 scores of 1.00, 0.95, and 0.95, but is more noisy for
YTBB-Robust (r? = 0.83). The noisy fit on YTBB-Robust is likely due to the fact that the categories
in YTBB-Robust are not well aligned with those of ImageNet, where the models were trained [76].
Another potential reason is that the video test sets are significantly smaller (2,530 images in YTBB
and 1,109 images in ImageNet-Vid-Robust).
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Figure 3: Model accuracies on the two consistency shifts: ImageNet-Vid-Robust (left),
and YTBB-Robust (right). Both plots are shown with evaluation on pm-0 (anchor frames)
on the x-axis and pm-10 (worst case prediction in a 20-frame neighborhood) on the y-axis.
This plot shows that most current robustness interventions do not provide robustness to
consistency distribution shifts. The notable outliers to this trend are /j-adversarially
robust models and EfficientNet-L2 (NoisyStudent). We color the adversarially robust
models separately in this figure to illustrate this phenomenon. Confidence intervals, axis
scaling, and the linear fit are computed similarly to Figure Q

In the high accuracy regime (above the 76% achieved by a ResNet-50), the main outliers in terms
of positive effective robustness are models trained on substantially more data than the standard
ImageNet training set. This includes a ResNet152 model trained on 11,000 ImageNet classes
(p = 2.1%) [99], several ResNeXt models trained on 1 billion images from Instagram (p = 1.5%)
[56], and the EfficientNet-L2 (NoisyStudent) model trained on a Google-internal JET-300M dataset
of 300 million images (p = 1.1%) [102]. However, not all models trained on more data display
positive effective robustness. For instance, a ResNet101 trained on the same JFT-300M dataset has
an effective robustness of p = —0.23% [82]. We conduct additional experiments to investigate the
effect of training data in Section [5} Appendix [G] contains a full list of models with their effective
robustness numbers. On YTBB-Robust, a few data augmentation strategies and ¢,-robust models
display positive effective robustness; we investigate this further in Appendix

Consistency shifts. We plot the effective robustness of models on consistency shifts in Figure [3
Interestingly, we observe that ¢,-adversarially robust models display substantial effective robustness
to ImageNet-Vid-Robust (average p = 6.7%) and YTBB-Robust (average p = 4.9%). This suggests
that these models are not only more robust to synthetic perturbations, but also offer robustness for
the perceptually small variations between consecutive video frames.

However, these gains in effective robustness do not necessarily lead to relative robustness. On average,
relative robustness on both datasets is negative (average 7 = —8.5% on ImageNet-Vid-Robust and
average 7 = —0.7% on YTBB-Robust for ResNet50 models). See Appendix (Figure for a
visual comparison. Among the models trained on more data, only one achieves both high accuracy
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Figure 4: Model accuracies on ImageNet-A, a dataset adversarially filtered to contain
only images incorrectly classified by a ResNetb0 trained on ImageNet. This filtering
results in a ‘knee’ curve: models with lower ImageNet accuracy than ResNet-50 have
near-chance performance on ImageNet-A, while models with higher ImageNet accuracy
improve drastically on ImageNet-A. ImageNet classes were subsampled to match the
class distribution of ImageNet-A. Confidence intervals and axis scaling are computed
similarly to Figure[2] The linear fit is computed piecewise around the ResNet50 model
accuracy.

and substantial effective robustness: EfficientNet-L2 (NoisyStudent) [102] has p = 2.4% and p = 7.4%
on ImageNet-Vid-Robust and YTBB-Robust, respectively.

Adversarially filtered shifts. ImageNet-A [39] was created by classifying a set of images with a
ResNet50 and only keeping the misclassified images. Interestingly, this approach creates a “knee”
in the resulting scatter plot (see Figure [4): models below a ResNet50’s standard accuracy have
close to chance performance on ImageNet—AE and models above a ResNet50’s standard accuracy
quickly close the accuracy gap. In the high accuracy regime, every percentage point improvement
on ImageNet brings at least an 8% improvement on ImageNet-A. This is in contrast to datasets
that are not constructed adversarially, where the initial accuracy drops are smaller, but later models
make slow progress on closing the gap. These results demonstrate that adversarial filtering does not
necessarily lead to harder distribution shifts.

4.2 Results on synthetic distribution shifts

Given the difficulty of collecting real world data to measure a model’s robustness to natural
distribution shifts, an important question is whether there are synthetic proxies. We now study
to what extent robustness to the above synthetic distribution shifts predicts robustness on these
natural distribution shifts.

2Chance performance is 0.5% as ImageNet-A contains 200 classes.
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Figure 5: Model accuracies under image corruptions (top row) and ¢,-attacks (bottom
row). Similar to Figure [2] the left plots show the effective robustness for each synthetic
distribution shift. Multiple non-standard models achieve substantial effective robustness,
corroborating recent research progress on creating models robust to synthetic shift. The
right plots show the correlation between the effective robustness for each synthetic shift
and the ImageNetV2 distribution shift (top left in Figure [2) for the non-standard models.
Both image corruptions and /p-attacks are very weakly predictive of effective robustness
on ImageNetV2: there are several models that achieve high effective robustness under
the synthetic measures but little to no effective robustness on ImageNetV2.

In Figure [5] we analyze the predictiveness of two commonly studied synthetic robustness metrics:
average accuracy on image corruptions [38], and average accuracy drop under a range of PGD
adversarial attacks [55]. We compare these metrics with effective robustness on ImageNetV2. While
effective robustness is only one aspect (c.f. Section , it is a necessary prerequisite for a model to
have helpful robustness properties.

The plots show that robustness under either of these synthetic distribution shifts does not imply that
the corresponding model has effective robustness on ImageNetV2 (the Pearson correlation coefficients
are r = 0.24 and r = —0.05 for image corruptions and ¢,-adversarial attacks, respectively). Appendix
[C] further extends the experiment by comparing both synthetic distribution shift measures with the
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remaining natural distribution shifts in our testbed and reaches similiar conclusions.

Our analysis of the aggregate measures proposed in prior work does not preclude that specific
synthetic distribution shifts do predict behavior on natural distribution shifts. Instead, our results
show that averaging a large number of synthetic corruptions does not yield a comprehensive robustness
measure that also predicts robustness on natural distribution shift.

To extend on this analysis, in Appendix [H] we find that no individual synthetic measure in our testbed
is a consistent predictor of natural distribution shift, but some synthetic shifts are substantially more
predictive than others. For instance, £),-robustness has the highest correlation with consistency shifts,
and some image corruptions such as brightness or Gaussian blur have higher correlation with dataset
shifts. However, our testbed indicates that these synthetic measures are not necessarily causal, i.e.,
models trained with brightness or Gaussian blur do not have substantial effective robustness on
dataset shifts. Further analyzing relationships between individual synthetic and natural distribution
shifts is an interesting avenue for future work.

4.3 Takeaways and discussion

To recap our results, we now discuss two of the central questions in our paper: Do current robustness
interventions help on real data? And is synthetic robustness correlated with natural robustness?

Across our study, current robustness interventions offer little to no improvement on the natural
distribution shifts presently available.

For dataset shifts, we find that models trained with substantially more data yield a small improvement.
However, the amount of extra data needed is orders of magnitude larger than the standard ImageNet
training set, and the models show only small gains (in the best case improving the accuracy drop
from 8.6% to 7.5% on ImageNetV2 for EfficientNet-L2 NoisyStudent). These results suggest that
current robustness interventions methods do not provide benefits on the dataset shifts in our study.

For consistency shifts, adversarially trained models generally have effective robustness, but usually
little or no relative robustness. On ImageNet-Vid-Robust, the baseline models without adversarial
training still achieve higher accuracy under distribution shift. A notable outlier is EfficietNet-L2
(NoisyStudent) [102], which utilizes self-training and exhibits high effective robustness in the high
accuracy regime. Self-training has recently been shown to help adversarial robustness as well
[10, 61, 94]. Investigating the effect of self-training on robustness is an interesting direction for future
work.

Moreover, we find that current aggregate metrics for synthetic robustness are at most weakly
correlated with natural robustness. Effective robustness under non-adversarial image corruptions or
¢p-attacks does not imply effective robustness to natural distribution shifts. While much progress has
been made on creating models robust to synthetic distribution shift, new methods may be needed to
handle natural shifts.
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Figure 6: To investigate the impact of training data on robustness, we vary the training
data along two axes: the number of images per class (left), and the number of classes
(right). Although models trained on more data provide improvements in effective
robustness, we find that subsampling the training set has no impact on effective robustness.
Confidence intervals, axis scaling, and the linear fit are computed similarly to Figure @

5 How does the amount of training data impact robustness?

As discussed in Section multiple models trained on more data achieve positive effective robustness
on dataset shifts. However, this effect is not uniform. Among others, the ResNet101 model trained
on JFT-300M has negligible effective robustness (p = —0.23%) despite being trained on 300x more
data than standard ImageNet models. A possible explanation is that differences in label diversity or
quality play a role in promoting robustness. We investigate the role of data in more detail with two
experiments.

Varying the number of images per class. We start by subsampling the ILSVRC-2012 training
set by factors of {2, 4, 8, 16, 32} and show the impact on accuracy and robustness on ImageNetV2
in Figure [} While larger training subsets yield higher accuracies, they do not improve effective
robustness, at least for ImageNetV2.

Varying the number of classes. Next, we subsample ImageNet in a more biased way by varying
the set of classes. First, we create three subsets of the ILSVRC training set with 500, 250, and 125
classes and train models on these subsets. We then evaluate all models on the 125 class subset and
show the results in Figure[6] Varying the number of classes again affects accuracies, but does not
impact effective robustness.

Our experiments suggest that neither growing the number of images nor classes in an i.i.d. fashion
are effective robustness interventions. Nevertheless, Figure 2| shows that larger datasets can provide
meaningful robustness improvements. This disparity may be due to limitations of emulating dataset
growth by subsampling ILSVRC. For one, our experiments consider only i.i.d. subsets of the training
images or classes. Another possibility is that increases in dataset size may only improve robustness
after the dataset is large enough so that the accuracy on the original distribution is nearly saturated.
Our experiments only observe dataset sizes smaller than ILSVRC, which may fall below this inflection
point. Studying the effect of data on robustness is an important direction for future work.
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6 Related work

Our work is best seen as a unification of two independent lines of research—synthetic and natural
distribution shift—mnot previously studied together. Synthetic distribution shifts have been studied
extensively in the literature |28, [33] 38, 48] 57, [93]. We incorporate as many prior synthetic measures
of robustness as possible. Our dataset largely confirms the high-level results from these papers
(see Appendix [D] for additional discussion). For example, Ford et al. [3I] provide evidence for the
relationship between adversarial robustness and robustness to Gaussian noise. The study of natural
distribution shifts has been an equally extensive research direction [2, [68], [70, [0T]. When examining
each natural distribution shift individually, we confirm the findings of earlier work that there is a
consistent drop with a linear trend going from ImageNet to each of the other test sets [2] 68, [76].

We study the relationship between these two previously independent lines of work. By creating a
testbed 100x larger than prior work [27, 133, [47, [68], we are able to make several new observations.
For instance, we show that robustness to synthetic distribution shift often behaves differently from
robustness to natural distribution shift. We argue that it is important to control for accuracy when
measuring the efficacy of a robustness intervention. Viewed in this light, most interventions do
not provide effective robustness. The main exception is training with more data, which improves
robustness across natural distribution shifts. In some situations, £,-adversarial robustness helps with
natural distribution shift that asks for consistency across similar looking images.

Appendix [K] contains additional discussion of specific related work in more detail. For instance,
Appendix revisits consistency shifts and explains why, in contrast to previous work [35], we find
consistency robustness is only weakly correlated with color corruption robustness.

Concurrent and subsequent work. An early version of this paper with results on ImageNetV2
and ImageNet-Vid-Robust appeared on OpenReview in late 2019 [90]. Since then, two closely related
papers have been published concurrently with the updated version of this paper.

Djolonga et al. [2I] evaluate 40 models on the same natural distribution shifts as our paper. Our
testbed is larger and contains 200 models with more robustness interventions. Overall both papers
reach similar conclusions. Their focus is more on the connections to transfer learning while we focus
more on comparisons between synthetic and natural distribution shifts. Djolonga et al. [2I] also
explore the performance of various models with a synthetic image dataset.

Hendrycks et al. [40] also study the connections between synthetic robustness and robustness
to natural distribution shifts. This paper introduces a new dataset, ImageNet-R, that contains
various renditions (sculptures, paintings, etc.) of 200 ImageNet classes as a new example of natural
distribution shift. The paper then introduces DeepAugment, a new data augmentation technique
based on synthetic image transformations, and find that this robustness intervention is effective on
ImageNet-R. In Appendix we analyze the ImageNet-R test set and DeepAugment models, as
well as the closely related ImageNet-Sketch test set [95], in more detail.

At a high-level, ImageNet-R and ImageNet-Sketch follow the trends of the other dataset shifts in
our testbed, with models trained on extra data providing the most robustness (up to p = 29.1%
on ImageNet-R, though the effect is not uniform, similar to the other dataset shifts). After the
models trained on more data, we find that DeepAugment (in combination with AugMix [41]) achieves
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substantial effective robustness (p = 11.2%). Interestingly, adversarial robustness also leads to
effective robustness on ImageNet-R. An AdvProp model [I00] achieves the highest absolute accuracy
on ImageNet-R for a model trained without extra data (57.8%) and has effective robustness p = 7.5%.
A model with feature denoising and trained with PGD-style robust optimization [55 [101] achieves
the highest effective robustness on ImageNet-R (p = 22.7%) and also positive relative robustness

(1 =5.7%).

Domain adaptation / transfer learning. Our work is focused on generalizing to out-of-
distribution data without fine-tuning on the target distribution. A complementary approach uses data
from the target domain in order to improve generalization on that particular domain [64]. Depending
on the scenario, robustness (without fine-tuning) or domain adaptation may be more appropriate.
For instance, it may be challenging to record data from the distribution shift, which would prevent
fine-tuning before deployment. In some scenarios, we also expect our model to generalize without
extra data (e.g., because humans can do so [77]). Concurrent work by Djolonga et al. [2I] studies
connections between robustness to distribution shifts and transfer learning. Investigating our testbed
from the perspective of transfer learning is an interesting direction for future research.

Domain generalization. Out-of-distribution generalization as measured in our robustness testbed
is closely related to domain generalization [0}, [60]. In domain generalization, the training algorithm
has access to samples drawn from multiple different distributions (domains). At test time, the model
is evaluated on samples from a new domain that was not present in training. The idea is that having
explicit knowledge of multiple domains at training time may help generalization to a new domain at
test time.

Several papers have proposed algorithms for domain generalization; we refer to Gulrajani & Lopez-
Paz [36] for a comprehensive survey. Our testbed currently does not contain any algorithms explicitly
following the domain generalization paradigm (though pre-training on a different distribution and
then fine-tuning on ImageNet has similarities to domain generalization). A recent meta-study of
domain generalization found that standard empirical risk minimization performs as well or better
than the eight domain generalization algorithms they compared to [36]. This result of Gulrajani
& Lopez-Paz [36] has similarities to our finding that robustness interventions currently rarely
improve over the trend given by standard (ERM) models trained without a robustness intervention.
Evaluating domain generalization approaches on the distribution shifts in our testbed may yield new
insights into the performance characteristics of these algorithms.

Distributionally robust optimization. Distributionally robust optimization (DRO) is another
recently proposed technique to increase robustness to distribution shift [22, 23]. The DRO objective
minimizes the worst case risk over all distributions close to the data distribution (or in the group
DRO setting, the worst case risk over all defined groups). DRO has been used to train adversarially
robust models [79], vision models with higher worst-group accuracies [71], models less reliant on
spurious correlations [81], and many others [24], 62]. For a more thorough discussion on DRO and
related work, we refer the reader to [22]. We are currently unable to include DRO models as we are
not aware of any pre-trained DRO models for ImageNet. We will add DRO models to our testbed as
they become available.
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Adversarial filtering. One of the distribution shifts in our testbed was obtained via adversarial
filtering (ImageNet-A, [39]). Architectures introduced after the model used to filter ImageNet-A
made quick progress in closing the accuracy gap (see Section . A similar phenomenon occurred
in natural language processing. Zellers et al. [I11] introduced Swag, an adversarially filtered test for
grounded commonsense inference, a combination of natural language inference and commonsense
reasoning. At the time of publication, the best model achieved 59% accuracy, while a human expert
achieved 85%. Two months later, Devlin et al. [I9] introduced the BERT model which achieves 86%
accuracy on Swag. This provides further evidence that adversarial filtering can create test sets that
are only hard for a specific (existing) class of models.

In the context of training sets, adversarial filtering is similar to hard negative mining, which is often
used to generate training data for detection models [17, 30, [69, [83]. Bras et al. [§] propose AFLite,
an adversarial filtering algorithm for both refining training sets and creating harder test sets. They
evaluate AFLite on natural language inference tasks and ImageNet classification. An interesting
question is whether combining their algorithm with a ResNet-50 and evaluating later models leads
to similar phenomena as on ImageNet-A [39] and Swag [111].

Fairness in machine learning. Mitchell et al. [59] proposed model cards to document the
performance of machine learning models in a variety of conditions. Their focus is on human-centered
models and distribution shifts arising from demographic groups (race, gender, etc.). Our focus here is
on ImageNet due to the large number of available models and distribution shifts, but the underlying
problem is similar: machine learning models are often brittle under distribution shift. We remark
that ImageNet is known to have geo-diversity deficiencies [75], among other issues [14], 25]. In the
context of Openlmages [51], researchers have proposed the Inclusive Image dataset [I]. Adding
Openlmages and Inclusive Images to our testbed and comparing these distribution shifts to our
existing examples is an interesting direction for future work.

Further domains. Our work is focused on the domain of image classification. There is a long line
of work considering robustness (either natural or synthetic) on other domains |26} 52| [58] [0, [106].
In the context of natural language processing, Belinkov & Bisk [4] explore language model robustness
to synthetic versus natural one-word substitutions and reach similar high-level results, finding there
is limited robustness transfer between the two distributions.

7 Conclusion

The goal of robust machine learning is to develop methods that function reliably in a wide variety of
settings. So far, this research direction has focused mainly on synthetic perturbations of existing
test sets, highlighting important failure cases and initiating progress towards more robust models.
Ultimately, the hope is that the resulting techniques also provide benefits on real data. Our
paper takes a step in this direction and complements the current synthetic robustness tests with
comprehensive experiments on distribution shifts arising from real data.

We find that current image classification models still suffer from substantial accuracy drops on
natural distribution shifts. Moreover, current robustness interventions — while effective against
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synthetic perturbations — yield little to no consistent improvements on real data. The only approach
providing broad benefits is training on larger datasets, but the gains are small and inconsistent.

Overall, our results show a clear challenge for future research. Even training on 1,000 times more data
is far from closing the accuracy gaps, so robustness on real data will likely require new algorithmic
ideas and better understanding of how training data affects robustness. Our results indicate two
immediate steps for work in this area: robustness metrics should control for baseline accuracy, and
robust models should additionally be evaluated on natural distribution shifts. We hope that our
comprehensive testbed with nuanced robustness metrics and multiple types of distribution shift will
provide a clear indicator of progress on the path towards reliable machine learning on real data.

Broader Impact

Robustness is one of the key problems that prevents deploying machine learning in the real world and
harnessing the associated benefits. A canonical example is image classification for medical diagnosis.
As was found when researchers attempted to deploy a neural network to detect diabetes from retina
images, “an accuracy assessment from a lab goes only so far. It says nothing of how the Al will
perform in the chaos of a real-world environment” [3]. Similarly, researcher also found that current
methods for chest X-ray classification are brittle even in the absence of recognized confounders [110)].
If models were robust, then this transfer to the real world would be straightforward. Unfortunately,
achieving robustness on real data is still a substantial challenge for machine learning.

Our work studies how robust current image classification methods are to distribution shifts arising
in real data. We hope that our paper will have a positive effect on the study of distribution shifts
and allow researchers to more accurately evaluate to what extent a proposed technique increases the
robustness to particular forms of distribution shift. This will allow researchers to better understand
how a deployed system will work in practice, without actually having to deploy it first and users
potentially suffering negative consequences.

However, there are several potential ways in which our study could cause unintended harm. It
is possible that our paper might be used as an argument to stop performing research on some
synthetic forms of robustness, e.g., adversarial examples or common corruptions. This is not our
intention. These forms of corruption are interesting independent of any correlation to existing natural
distribution shift (e.g., adversarial examples are a genuine security problem).

We only capture a small number of natural distribution shifts among all the possible distribution
shifts. We selected these shifts because they have been used extensively in the literature and are
concrete examples of the types of distribution shift we would like models to be robust to. It is likely
that there are shifts that we do not capture, and so even if the shifts we define were to be completely
solved, other shifts would remain a concern.

One significant form of distribution shift we do not evaluate is dataset bias in representing different
demographic groups. For example, the Inclusive Images dataset [75] attempts to correct for
the geographical bias introduced in the Open Images dataset [51] by including a more balanced
representation of images from Africa, Asia, and South America. Neglecting such implicit biases
in the data distribution can harm underrepresented demographic groups. Ultimately, evaluating

16



on fixed datasets may not be enough, and validating the fairness and safety of deployable machine
learning requires careful analysis in the application domain.

Finally, more reliable machine learning can also enable negative uses cases, e.g., widespread surveil-
lance or autonomous weapon systems. As with many technologies, these risks require careful
regulation and awareness of unintended consequences arising from technological advances.
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A Testbed overview

Figure 7: An overview of our testbed. Each row is a model, and each column is an evaluation setting.
For the corruptions, we display each of the five severities defined in [38]. We also plot in-memory
and on-disk versions of each corruption as jpeg compression was found to be a confounding factor
in [31]. A few cells are empty due to resource constraints. Testbed code and data is provided at
https://modestyachts.github.io/imagenet-testbed /.
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B Relative and effective robustness

B.1 Relative and effective robustness graphical sketch

A central question we address in our paper is whether current methodologies provide meaningful
robustness to natural distribution shifts. We discuss how both relative robustness and effective
robustness are needed to disentangle the confounding effect of original model accuracy. In Figure
we graphically illustrate this notion of relative robustness.

Hypothetical Robustness Intervention
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B.2 Relative and effective robustness for ResNet50 models

We provide additional plots depicting a subset of the models in our testbed. In order to make an
equal comparison, we only plot ResNeet50 variants, models which slightly modify the training data
or architecture of a base ResNet50. The plots in this section thus describe what the relative and
effective robustness properties of various robustness interventions look like on a standard ResNet50.
The models can be directly compared with each other since the base model before intervention is
the same.

For natural dataset shifts, the plots in Figure [9] demonstrate that the only models that have
consistently positive relative and positive effective robustness are models that are trained on more
data. However, the effect is small, and not all models trained on more data are more robust. On
YTBB-Robust specifically, a few data augmentation strategies from ImageNet-C provide significant
both effective and relative robustness: training on greyscale (p = 6.9%, 7 = 1.8%); training on
pixelate (p = 5.4%, 7 = 2.0%); training on jpeg compression (p = 5.4%, 7 = 6.3%); training on
gaussian noise, contrast, motion blur, and jpeg compression (p = 4.8%, 7 = 5.0%); and training on
gaussian noise (p = 3.6%, 7 = 4.0%). However, this performance is not consistent across the natural
distribution shifts. Exploring why these data augmentation strategies are helpful on YTBB-Robust
is an interesting direction for future work. Additionally, while some /,-adversarially robust models
display significant effective robustness on YTBB-Robust - ¢o robust ResNet50 (p = 6.4%), fins robust
ResNet50 (p = 6.4%), and ResNet50 smoothed with 0.25 gaussian noise and adversarially 1-step
PGD trained (p = 5.0) - in most cases, they fail to provide positive relative robustness.

For natural consistency shifts, the plots in Figure [10| demonstrate that while adversarially robust
models provide effective robustness (average p = 4.3% on ImageNet-Vid-Robust and average p = 3.9%
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on YTBB-Robust), they only sometimes provide relative robustness on YTBB-Robust.

For the adversarially filtered shift, the plot in Figure [11] demonstrates that robustness interventions
have little impact on ImageNet-A accuracy. Most of the "knee"-like response curve can be explained
as an artifact of the adversarial filtering, with the knee occuring at the ResNet50 model accuracy.
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Figure 9: Relative and effective robustness for models that are variants of a ResNetb0. Model
accuracies are displayed on the four natural dataset shifts: ImageNetV2 (top left), ObjectNet (top
right), ImageNet-Vid-Robust-anchor (bottom left), and YTBB-Robust-anchor (bottom right). These
plots demonstrate that the only models that have consistently positive relative and positive effective
robustness are models that are trained on more data. However, the effect is small, and not all models
trained on more data are more robust. Confidence intervals, axis scaling, and the linear fit are
computed similarly to Figure [2]
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Figure 10: Relative and effective robustness for models that are variants of a ResNet50. Model
accuracies are displayed the two consistency shifts: ImageNet-Vid-Robust (left), and YTBB-Robust
(right). These plots demonstrate that while adversarially robust models provide effective robustness,
they do not necessarily provide relative robustness. Confidence intervals, axis scaling, and the linear
fit are computed similarly to Figure @
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Figure 11: Relative and effective robustness for models that are variants of a ResNet50. Model
accuracies are displayed on ImageNet-A, a dataset adversarially filtered to contain only images
incorrectly classified by a ResNet50 trained on ImageNet. Due to the "knee"-like response curve, an
artifact of the adversarial filtering, effective robustness is defined piecewise around the ResNet50
model accuracy point. The plot demonstrates that robustness interventions have little impact on
ImageNet-A accuracy. However, the effect is small, and not all models trained on more data are
more robust. Confidence intervals, axis scaling, and the linear fit are computed similarly to Figure @

30



C Effective robustness scatterplots

In this section, we further explore to what extent robustness to synthetic distribution shifts predicts
robustness on natural distribution shift. We extend the analysis in Figure |5 by computing effective
robustness on all natural distribution shifts and comparingn them against effective robustness on
synthetic distribution shifts.

For natural dataset shifts, the scatter plots in Figure are weakly correlated (the Pearson correlation
coefficients are r = 0.24, —0.05, —0.01, —0.26, 0.61, 0.30, 0.52, 0.36 in reading order), indicating that
improved robustness to corruptions or adversarial attacks in general does not improve effective
robustness under natural dataset shifts. Of the group, the two strongest correlations are effective
robustness between ImageNet-Vid-Robust and image corruptions (r = 0.61) and between YTBB-
Robust and image corruptions (r = 0.52). While not very strong, the correlations are significant,
and exploring this phenomenon between image corruptions and video anchor frames is an interesting
direction for future work.

For natural consistency shifts, the plots in Figure [13] are largely uncorrelated, with the exception
that accuracy on adversarial attacks is correlated with effective robustness on consistency shifts for
Ip adversarially models. However, as explored in Appendix effective robustness on these shifts
does not always imply relative robustness.

For the adversarially filtered shift, as seen in Figure after computing effective robustness piecewise
around the ResNet50 accuracy, there is no observed correlation between the synthetic and natural
robustness measures on ImageNet-A.
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Figure 12: We compare the effective robustness of models with their accuracy drop due to corruptions
(left column) and adversarial attacks (right column). The effective robustness is computed with
respect to linear fits on the four natural dataset shifts: ImageNetV2 (first row), ObjectNet (second
row), ImageNet-Vid-Robust-anchor (third row), and YTBB-Robust-anchor (fourth row). The
measures are largely uncorrelated, indicating that improved robustness to corruptions or adversarial
attacks does not improve effective robustness under natural dataset shifts.
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Figure 13: We compare the effective robustness of models with their accuracy drop due to corruptions
(left column) and adversarial attacks (right column). The effective robustness is computed with
respect to linear fits on the two consistency shifts: ImageNet-Vid-Robust (first row), and YTBB-
Robust (second row). The measures are largely uncorrelated, with the exception that accuracy on
adversarial attacks is correlated with effective robustness on consistency shifts for lp adversarially

models.
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Figure 14: We compare the effective robustness of models with their accuracy drop due to corruptions
(left column) and adversarial attacks (right column). The effective robustness is computed with
respect to a linear fit on ImageNet-A, the adversarially filtered shift. After computing effective
robustness piecewise around the ResNet50 accuracy, there is no observed correlation between the
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D Corruption robustness

Figure 15: A detailed view of corruption robustness, with cells sampled from the main grid in Figure
[l Here we present ResNet50s trained on some of the corruptions from the ImageNet-C benchmark,
as well as the best model trained on more data, FixResNeXt101 32x48d_v2, and the best model
trained on just the standard training set, efficientnet-b8-advprop-autoaug.

We have already seen that corruption robustness does not promote effective robustness, or robustness
to real distribution shift. Here, we analyze whether robustness to some corruptions transfers to
others, and what may contribute to corruption robustness. Figure [15| shows the result of training
various ResNet50§%] on a few corruptions from ImageNet-C.

In line with prior work, this plot here tells us that training against one type of synthetic corruption
or one set of synthetic corruption does not transfer well to other corruptions. There are cases where
transfer does happen, but overall the models are only robust to the corruption they are trained on.

It is also interesting to note (from Figure @ that PGD models actually see a drop in robustness to
low frequency corruptions such as contrast, a phenomenon also observed in [107].

3Each ResNet50 was trained with a batch size of 256 for 120 epochs, starting with a learning rate of 0.1 and
decaying by a factor of 10 every 30 epochs. For the ResNet50s trained on corruptions, we randomly sample a corruption
and severity for each image. Refer to for details on corruptions and severities. We use our custom fast gpu
implementations of these corruptions for training.

34



E Evaluation settings in the testbed

E.1 Natural distribution shifts

For ImageNetV2, we evaluate on the following datasets: imagenetv2-matched-frequency, imagenetv2-
matched-frequency-format-val, imagenetv2-threshold-0.7, imagenetv2-threshold-0.7-format-val, imagenetv2-
top-images, imagenetv2-top-images-format-val. The format-val versions are variants of the original
dataset encoded with jpeg settings similar to the original one. Unless otherwise stated, results in

our paper referring to imagenetv2 are for imagenetv2-matched-frequency-format-val.

For ObjectNet, we obtained a beta version of the dataset through personal correspondance. Each
image in the dataset was then cropped by 2px on each side following the authors’ instructions.
Predictions were taken over only the classes that also appeared in the 1000 classes for the ImageNet
validation set.

For ImageNet-Vid-Robust and YTBB-Robust, we look at the anchor frames in the dataset and
evaluate the benign accuracy for pm0. For pm10, we look at up to 20 nearest frames marked “similar”
to the anchor frame in the dataset and count it as a misclassification if any one of the predictions is
wrong.

For ImageNet-A, predictions were taken over only the classes that also appeared in the 1000 classes
for the ImageNet validation set.

E.2 Corruptions

We include 38 different corruption types: greyscale (in memory), gaussian noise (in memory and on
disk), shot noise (in memory and on disk), impulse noise (in memory and on disk), speckle noise
(in memory and on disk), gaussian blur (in memory and on disk), defocus blur (in memory and on
disk), glass blur (on disk), motion blur (in memory and on disk), zoom blur (in memory and on
disk), snow (in memory and on disk), frost (in memory and on disk), fog (in memory and on disk),
spatter (in memory and on disk), brightness (in memory and on disk), contrast (in memory and on
disk), saturate (in memory and on disk), pixelate (in memory and on disk), jpeg compression (in
memory and on disk), elastic transform (in memory and on disk).

For each corruption, we average over the five severities.

We make sure to make the distinction between in memory corruptions, for which we provide custom
fast gpu implementations, and on disk corruptions, for which we use the publicly available ImageNet-
C dataset, since it was reported in [31] that jpeg compression can have a significant impact on model
accuracies (indeed, as evidenced by Figure .

E.3 Adversarial attacks

We run the following 4 pgd attacks one each model with these settings:
pgd.linf.eps0.5 Norm: 0.5/255, Step size: 5.88e-5, Num steps: 100
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pgd.linf.eps2 Norm: 2/255, Step size: 2.35e-4, Num steps: 100
pgd.12.eps0.1 Norm: 0.1, Step size: 0.01, Num steps: 100
pgd.12.eps0.5 Norm: 0.5, Step size: 0.05, Num steps: 100

Most of the models were attacked with only 10% of the dataset (in a class-balanced manner) due to
computational constraints. These models are displayed with larger error bars in the plots.

E.4 Stylized Imagenet

We use the stylized imagenet dataset used by [34] as another evaluation dataset.

E.5

125 class evaluation

For the 125 subsampled class evaluation, we evaluate on the following classes from ILSVRC:

n01494475
n01829413
n02033041
n02095570
n02112706
n02264363
n02777292
n02895154
n03240683
n03527444
n03838899
n04004767
n04149813
n04355338

n01630670
n01871265
n02037110
n02096294
n02113023
n02280649
n02790996
n02948072
n03250847
n03535780
n03840681
n04009552
n04204238
n04417672

n01644373
n01924916
n02056570
n02096437
n02114855
n02441942
n02795169
n02951585
n03272562
n03642806
n03868242
n04037443
n04208210
n04479046

n01644900
n01944390
n02071294
n02097474
n02128925
n02483708
n02808440
n02977058
n03297495
n03670208
n03873416
n04041544
n04229816
n04505470

n01669191
n01978287
n02085936
n02100236
n02134418
n02486261
n02814533
n03000247
n03337140
n03673027
n03877845
n04067472
n04266014
n07715103
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n01677366
n01980166
n02086079
n02100583
n02138441
n02488291
n02814860
n03110669
n03376595
n03692522
n03884397
n04074963
n04310018
n07875152

n01697457
n02007558
n02093428
n02102318
n02165105
n02492035
n02837789
n03201208
n03379051
n03710193
n03908714
n04099969
n04330267
n09256479

n01742172
n02009229
n02093991
n02105056
n02219486
n02641379
n02859443
n03208938
n03447721
n03775071
n03920288
n04125021
n04335435
n12620546

n01796340
n02017213
n02095314
n02107574
n02226429
n02730930
n02892201
n03216828
n03492542
n03832673
n03933933
n04141975
n04336792



F Models in the testbed

The following list contains all models we evaluated on ImageNet with references and links to the
corresponding source code. Also noted is the model type used to color the plots in the paper.

1.

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.

BiT-M-R50x1-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-research/big
_transfer

. BiT-M-R50x3-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-research/big

_transfer

BiT-M-R101x1-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-research/b
ig_transfer

BiT-M-R101x3-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-research/b
ig_transfer

BiT-M-R152x4-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-research/b
ig_transfer

FixPNASNet [92]. Standard training model. https://github. com/facebookresearch/FixRes
FixResNeXt101 32x48d [92]. Trained with more data model. https://github.com/facebookresearch/FixRes

FixResNeXt101 32x48d v2 [92]. Trained with more data model. https://github.com/facebookresearch/
FixRes

FixResNet50 [92]. Standard training model. https://github.com/facebookresearch/FixRes
FixResNet50CutMix [92]. Robustness intervention model. https://github.com/facebookresearch/FixRes

FixResNet50CutMix_ v2 [92]. Robustness intervention model. https://github.com/facebookresearch/FixR
es

FixResNet50 no_adaptation [92]. Standard training model. https://github. com/facebookresearch/FixRes
FixResNet50 v2 [92]. Standard training model. https://github.com/facebookresearch/FixRes

alexnet [50]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

alexnet 1pf2 [115]. Robustness intervention model. https://github.com/adobe/antialiased-cnns

alexnet 1pf3 [IT5]. Robustness intervention model. https://github.com/adobe/antialiased-cnns

alexnet lpf5 [115]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
bninception [46]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

bninception-imagenet21k [46]. Trained with more data model. https://github.com/dmlc/mxnet-model-gall
ery/blob/master/imagenet-21k-inception.md

cafferesnet101 |37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
densenet121 [43]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
densenet121 1pf2 [IT5]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
densenet121 1pf3 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
densenet121 1pf5 [IT5]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
densenet161 [43]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

densenet169 [43]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

37


https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/dmlc/mxnet-model-gallery/blob/master/imagenet-21k-inception.md
https://github.com/dmlc/mxnet-model-gallery/blob/master/imagenet-21k-inception.md
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

densenet201 [43]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
dpnl07 [1I]. Trained with more data model. https://github.com/Cadene/pretrained-models.pytorch
dpn131 [1I]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
dpn68 [11]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
dpn68b [II]. Trained with more data model. https://github.com/Cadene/pretrained-models.pytorch
dpn92 [1I]. Trained with more data model. https://github.com/Cadene/pretrained-models.pytorch
dpn98 [11]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

efficientnet-b0 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/master/models/o
fficial/efficientnet

efficientnet-b0-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b0-autoaug [I5]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b1 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/master/models/o
fficial/efficientnet

efficientnet-bl-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-bl-autoaug [I5]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b2 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/master/models/o
fficial/efficientnet

efficientnet-b2-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b2-autoaug [15]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b3 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/master/models/o
fficial/efficientnet

efficientnet-b3-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b3-autoaug [I5]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b4 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/master/models/o
fficial/efficientnet

efficientnet-b4-advprop-autoaug [I00]. Robustness intervention model. https://github. com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b4-autoaug [15]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b5 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/master/models/o
fficial/efficientnet

efficientnet-b5-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet
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efficientnet-b5-autoaug [I5]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b5-randaug [I6]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b6-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b6-autoaug [15]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b7-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b7-autoaug [15]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b7-randaug [16]. Standard training model. https://github.com/tensorflow/tpu/tree/master/
models/official/efficientnet

efficientnet-b8-advprop-autoaug [I00]. Robustness intervention model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-12-noisystudent [102]. Trained with more data model. https://github. com/rwightman/pytorch-i
mage-models

facebook adv_trained resnetl52 baseline [I0I]. Robustness intervention model. https://github.com/fac
ebookresearch/ImageNet-Adversarial-Training

facebook adv_trained resnet152 denoise [I01]. Robustness intervention model. https://github.com/faceb
ookresearch/ImageNet-Adversarial-Training

facebook adv_trained resnextl01 denoiseAll [I0I]. Robustness intervention model. https://github.com/f
acebookresearch/ImageNet-Adversarial-Training

fbresnet152 [37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
google resnetl01 jft-300M [82]. Trained with more data model.

googlenet /inceptionvl [85]. Standard training model. https://github.com/pytorch/vision/tree/master/to
rchvision/models

inceptionresnetv2 [37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
inceptionv3 [86]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
inceptionv4 [87]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

instagram-resnext101 32x16d [56]. Trained with more data model. https://github.com/facebookresearch/
WSL-Images

instagram-resnext101 32x32d [56]. Trained with more data model. https://github.com/facebookresearch/
WSL-Images

instagram-resnext101 32x48d [56]. Trained with more data model. https://github.com/facebookresearch/
WSL-Images

instagram-resnext101 32x8d [56]. Trained with more data model. https://github.com/facebookresearch/
WSL-Images

mnasnet0_5 [89]. Standard training model. https://github.com/pytorch/vision/tree/master/torchvisio
n/models
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mnasnetl 0 [89]. Standard training model. https://github.com/pytorch/vision/tree/master/torchvisio
n/models

mobilenet v2 [73]. Standard training model. https://github.com/pytorch/vision/tree/master/torchvis
ion/models

mobilenet v2 1pf2 [IT5]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
mobilenet v2 Ipf3 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
mobilenet _v2 1pf5 [II5]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
nasnetalarge [I17]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
nasnetamobile [I17]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
pnasnetblarge [53]. Standard training model. https://github. com/Cadene/pretrained-models.pytorch
polynet [I16]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
resnet101 [37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

resnet101-tencent-ml-images [97]. Trained with more data model. https://github.com/Tencent/tencent-ml-
images

resnet101 _cutmix [I08]. Robustness intervention model. https://github.com/clovaai/CutMix-PyTorch
resnet101 Ipf2 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet101 1pf3 [IT15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet101 lpf5 [IT15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet152 [37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
resnet152-imagenet11k [99]. Trained with more data model. https://github.com/tornadomeet/ResNet
resnet18 [37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

resnet18-rotation-nocrop 40 [28]. Robustness intervention model. https://github.com/MadryLab/spatial-
pytorch

resnet18-rotation-random_ 30 [28]. Robustness intervention model. https://github.com/MadryLab/spatial-
pytorch

resnet18-rotation-random 40 [28]. Robustness intervention model. https://github.com/MadryLab/spatial-
pytorch

resnet18-rotation-standard 40 [28]. Robustness intervention model. https://github.com/MadryLab/spatial-
pytorch

resnet18-rotation-worst10 30 [28]. Robustness intervention model. https://github.com/MadryLab/spatial-
pytorch

resnet18-rotation-worst10 40 [28]. Robustness intervention model. https://github.com/MadryLab/spatial-
pytorch

resnet18 Ipf2 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet18 Ipf3 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet18 Ipf5 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns

resnet18 ssl [104]. Trained with more data model. https://github.com/facebookresearch/semi-supervise
d-ImageNet1K-models

40


https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Tencent/tencent-ml-images
https://github.com/Tencent/tencent-ml-images
https://github.com/clovaai/CutMix-PyTorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tornadomeet/ResNet
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models

102.

103.
104.
105.
106.
107.
108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.
119.
120.
121.
122.
123.

124.
125.
126.
127.
128.

resnet18 swsl [I04]. Trained with more data model. https://github.com/facebookresearch/semi-supervi
sed-ImageNet1K-models

resnet34 [37]. Standard training model. https://github. com/Cadene/pretrained-models.pytorch
resnet34 Ipf2 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet34 Ipf3 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet34 Ipf5 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet50 [37]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

resnet50-randomized smoothing mnoise 0.00 [13]. Standard training model. https://github.com/locuslab/
smoothing

resnet50-randomized _smoothing noise 0.25 [I3]. Robustness intervention model. https://github.com/loc
uslab/smoothing

resnet50-randomized smoothing noise 0.50 [I3]. Robustness intervention model. https://github.com/loc
uslab/smoothing

resnet50-randomized _smoothing noise_1.00 [I3]. Robustness intervention model. https://github.com/loc
uslab/smoothing

resnet50-smoothing adversarial DNN _2steps eps 512 mnoise 0.25 [72]. Robustness intervention model.
https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing adversarial DNN _2steps _eps 512 mnoise 0.50 [T2]. Robustness intervention model.
https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing adversarial DNN _2steps eps 512 mnoise 1.00 |[72]. Robustness intervention model.
https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing adversarial PGD _1step eps 512 noise 0.25 [72]. Robustness intervention model.
https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing adversarial PGD_1step eps_ 512 mnoise 0.50 [72]. Robustness intervention model.
https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing adversarial PGD _1step eps 512 noise 1.00 [72]. Robustness intervention model.
https://github.com/Hadisalman/smoothing-adversarial

resnet50-vtab [I12]. Standard training model. https://tfhub.dev/s?publisher=vtab
resnet50-vtab-exemplar [I12]. Standard training model. https://tfhub.dev/s?publisher=vtab
resnet50-vtab-rotation [I12]. Standard training model. https://tfhub.dev/s?publisher=vtab
resnet50-vtab-semi-exemplar [I12]. Standard training model. https://tfhub.dev/s?publisher=vtab
resnet50-vtab-semi-rotation [I12]. Standard training model. https://tfhub.dev/s?publisher=vtab

resnet50 _adv-train-free [74]. Robustness intervention model. https://github.com/mahyarnajibi/FreeAdve
rsarialTraining

resnet50 augmix [4I]. Robustness intervention model. https://github.com/google-research/augmix
resnet50__aws_baseline. Standard training model.

resnet50 cutmix [I08]. Robustness intervention model. https://github.com/clovaai/CutMix-PyTorch
resnet50 cutout [20]. Robustness intervention model. https://github.com/clovaai/CutMix-PyTorch

resnet50 deepaugment [40]. Robustness intervention model. https://github.com/hendrycks/imagenet-r
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resnet50 deepaugment augmix [40]. Robustness intervention model. https://github.com/hendrycks/image
net-r

resnet50 feature cutmix [108]. Robustness intervention model. https://github.com/clovaai/CutMix-PyTo
rch

resnet50 imagenet 100percent batch64 original images. Standard training model.

resnetb0 imagenet subsample 125 classes batch64 original images. Standard training model.
resnetb0_imagenet subsample 1 of 16 batch64 original images. Standard training model.

resnetb0 imagenet subsample 1 of 2 batch64 original images. Standard training model.
resnetb0_imagenet subsample 1 of 32 batch64 original images. Standard training model.

resnetb0 imagenet subsample 1 of 4 batch64 original images. Standard training model.

resnet50 imagenet subsample 1 of 8 batch64 original images. Standard training model.

resnet50 imagenet subsample 250 classes batch64 original images. Standard training model.

resnet50 imagenet subsample 500 classes batch64 original images. Standard training model.
resnet50 12 eps3 robust [27]. Robustness intervention model. https://github.com/MadryLab/robustness
resnet50 linf eps4 robust [27]. Robustness intervention model. https://github.com/MadryLab/robustness
resnet50 linf eps8 robust [27]. Robustness intervention model. https://github.com/MadryLab/robustness
resnet50 Ipf2 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet50 Ipf3 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet50 Ipf5 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
resnet50 mixup [I13]. Robustness intervention model. https://github.com/clovaai/CutMix-PyTorch

resnet50 ssl [I04]. Trained with more data model. https://github.com/facebookresearch/semi-supervise
d-ImageNet1K-models

resnet50 swsl [104]. Trained with more data model. https://github.com/facebookresearch/semi-supervi
sed- ImageNet1K-models

resnet50 trained on_SIN [34]. Robustness intervention model. https://github.com/rgeirhos/texture-vs

-shape

resnetb0 trained on SIN and IN [34]. Robustness intervention model. https://github.com/rgeirhos/te
xture-vs-shape

resnet50 trained on SIN and IN then finetuned on IN [34]. Robustness intervention model. https:
//github.com/rgeirhos/texture-vs-shape

resnet50 with brightness aws. Robustness intervention model.
resnet50 with contrast aws. Robustness intervention model.
resnetb0_with defocus blur aws. Robustness intervention model.
resnetb0_with fog aws. Robustness intervention model.
resnetb0_with frost aws. Robustness intervention model.

resnetb0_ with gaussian noise aws. Robustness intervention model.

resnet50 with gaussian noise contrast motion blur jpeg compression aws. Robustness intervention
model.
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resnet50 with greyscale aws. Robustness intervention model.
resnet50 _with jpeg compression aws. Robustness intervention model.
resnetb0_with motion blur _aws. Robustness intervention model.
resnetb0_with pixelate aws. Robustness intervention model.
resnetb0_with saturate aws. Robustness intervention model.
resnetb0 with spatter aws. Robustness intervention model.

resnet50 with zoom blur aws. Robustness intervention model.

resnext101 32x16d _ssl [104]. Trained with more data model. https://github.com/facebookresearch/semi

-supervised-ImageNet1K-models

resnext101 32x4d [103]. Standard training model. https://github.com/Cadene/pretrained-models.pytorc
h

resnext101 32x4d ssl [I04]. Trained with more data model. https://github.com/facebookresearch/semi

-supervised-ImageNet1K-models

resnext101 32x4d _swsl [I04]. Trained with more data model. https://github.com/facebookresearch/semi

+supervised-ImageNet1K-models

resnext101 32x8d [I03]. Standard training model. https://github. com/pytorch/vision/tree/master/torc
hvision/models

resnext101 32x8d deepaugment augmix [40]. Robustness intervention model. https://github.com/hendr
ycks/imagenet-r

resnext101 32x8d _ssl [I04]. Trained with more data model. https://github.com/facebookresearch/semi

-supervised-ImageNet1K-models

resnext101 32x8d_swsl [I04]. Trained with more data model. https://github.com/facebookresearch/semi

+supervised-ImageNet1K-models

resnext101 64x4d [103]. Standard training model. https://github.com/Cadene/pretrained-models.pytorc
h

resnextb0 32x4d [103]. Standard training model. https://github.com/pytorch/vision/tree/master/torc
hvision/models

resnext50 32x4d ssl [I04]. Trained with more data model. https://github.com/facebookresearch/semi-s
upervised-ImageNet1K-models

resnext50 32x4d swsl [I04]. Trained with more data model. https://github.com/facebookresearch/semi

-supervised-ImageNet1K-models

se_resnet101 [42]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
se_resnet152 [42]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
se_resnet50 [42]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

se_resnext101 32x4d [42]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

se_resnext50 32x4d [42]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

senet154 [42]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
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shufflenet v2 x0 5 [54]. Standard training model. https://github.com/pytorch/vision/tree/master/to
rchvision/models

shufflenet v2 x1 0 [54]. Standard training model. https://github.com/pytorch/vision/tree/master/to
rchvision/models

squeezenetl 0 [45]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
squeezenetl 1 [45]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vgegll [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

vggll bn [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vggl3 [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vggl3 bn [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vggl6 [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vggl6 bn [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vggl6 bn Ipf2 [115]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
vggl6 bn Ipf3 [115]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
vggl6é bn 1pf5 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns
vggl6 1pf2 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns

vggl6 1pf3 [I15]. Robustness intervention model. https://github.com/adobe/antialiased-cnns

vggl6 1pf5 [115]. Robustness intervention model. https://github.com/adobe/antialiased-cnns

vggl9 [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
vggl9 bn [78]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch

wide resnet101 2 [I09]. Standard training model. https://github.com/pytorch/vision/tree/master/to
rchvision/models

wide resnet50 2 [I09]. Standard training model. https://github.com/pytorch/vision/tree/master/torc
hvision/models

xception [I2]. Standard training model. https://github.com/Cadene/pretrained-models.pytorch
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GG Model accuracies

Table 1: Top-1 model accuracies on ImageNet validation set, effective robustness as calculated with
respect to ImageNetV2, an average over all the corruptions, and an average over all the pgd attacks.
Note that since we take an average of many attacks, the PGD column can no longer be considered a
worst-case attacker for the model (look to for specific attacks).

Model accuracies

Model ImageNet ImageNetV2 Avg. corr.  Avg. PGD
accuracy  eff. robust. accuracy accuracy
efficientnet-12-noisystudent 88.32 1.11
FixResNeXt101 32x48d v2 86.36 0.97 65.65
FixResNeXt101 32x48d 86.26 0.95 65.56
instagram-resnext101 32x48d 85.44 1.26 65.53 24.1
efficientnet-b8-advprop-autoaug 85.37 0.51 71.85
BiT-M-R152x4-ILSVRC2012 85.18 -0.31 67.26
efficientnet-b7-advprop-autoaug 85.09 0.66 68.92
instagram-resnext101 32x32d 85.09 1.54 64.77 24.4
BiT-M-R101x3-ILSVRC2012 84.78 -1.35 63.44
efficientnet-b6-advprop-autoaug 84.76 0.75 68.65 50.67
efficientnet-b7-randaug 84.73 0.11 69.12
efficientnet-b7-autoaug 84.33 0.32 62.77
efficientnet-b5-advprop-autoaug 84.3 0.51 67.76 50.17
resnext101 32x8d swsl 84.29 1.19 63.17 23.22
instagram-resnext101 32x16d 84.18 1.51 63.22 29.19
BiT-M-R50x3-ILSVRC2012 84.15 -0.76 60.23
efficientnet-b6-autoaug 84.13 0.14 63.42 34.29
FixPNASNet 83.7 -0.0 61.35 22.8
efficientnet-b5-autoaug 83.63 0.25 62.3 32.43
efficientnet-b5-randaug 83.53 0.08 63.35 34.41
resnext101 32x4d _swsl 83.23 1.41 60.09 21.73
efficientnet-b5 83.11 0.17 60.28 35.18
pnasnetblarge 82.74 0.21 61.76 29.46
instagram-resnext101 32x8d 82.69 1.59 60.81 30.13
efficientnet-b4-advprop-autoaug 82.69 0.42 64.88 50.72
efficientnet-b4-autoaug 82.55 0.17 59.59 34.24
BiT-M-R101x1-ILSVRC2012 82.52 -0.42 58.28
nasnetalarge 82.51 0.48 61.74 36.99
efficientnet-b4 82.23 -0.64 57.2 37.06
resnextb50 32x4d _ swsl 82.18 1.26 56.38 21.09
resnext101 32x16d_ssl 81.84 0.3 58.63 22.34
resnext101 32x8d _ssl 81.63 0.73 57.96 20.82
senet154 81.3 -0.07 54.11 30.65
resnet50_swsl 81.18 1.35 53.95 21.39
efficientnet-b3-advprop-autoaug 81.09 0.29 60.6 51.09
efficientnet-b3-autoaug 81.05 0.17 55.5 31.76
resnext101_32x4d_ssl 80.93 0.48 55.65 20.54
polynet 80.86 0.36 54.02 23.05
BiT-M-R50x1-ILSVRC2012 80.4 -0.63 52.21 12.5
resnext50_32x4d _ssl 80.33 0.44 52.57 19.75
inceptionresnetv2 80.27 0.32 56.85 34.85
se_resnext101 32x4d 80.24 0.47 52.26 28.77
efficientnet-b3 80.21 -0.48 53.31 34.22
inceptionv4 80.08 0.5 55.52 28.02

Table continues onto next page
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Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr.  Avg. PGD
accuracy  eff. robust. accuracy accuracy
resnext101 32x8d deepaugment 79.9 0.25 65.56
_augmix
resnet101 cutmix 79.83 -0.39 50.15 25.6
efficientnet-b2-autoaug 79.78 0.17 53.5 30.93
FixResNet50CutMix _v2 79.76 -1.21 43.44 18.19
dpnl07 79.75 -0.47 52.37 30.64
FixResNet50CutMix 79.74 -1.22 43.39 18.14
efficientnet-b2-advprop-autoaug 79.6 -0.25 55.17 46.33
dpnl31 79.43 -0.2 52.06 30.38
dpn92 79.4 -0.65 49.29 25.69
resnext101 32x8d 79.31 -0.34 49.68 25.38
resnet50 ssl 79.23 0.52 50.15 20.57
dpn98 79.22 0.08 51.82 30.14
google resnet101 jft-300M 79.2 -0.23 53.49 26.84
FixResNet50 v2 79.1 -0.62 43.31 15.38
se_resnext50 32x4d 79.08 0.27 50.65 24.74
FixResNet50 79.0 -0.67 43.25 15.3
resnext101 64x4d 78.96 -0.2 52.06 23.57
efficientnet-b2 78.89 -0.39 50.05 33.88
wide resnet101 2 78.85 -0.87 48.2 25.24
xception 78.82 0.06 51.7 26.32
efficientnet-bl-autoaug 78.72 -0.07 51.19 30.69
se_resnet152 78.66 0.45 50.94 28.42
resnet50 cutmix 78.6 -1.1 44.7 26.46
efficientnet-b1l-advprop-autoaug 78.54 -0.23 53.7 46.54
wide resnet50 2 78.47 -0.61 46.23 26.13
se resnet101 78.4 0.43 50.12 28.2
resnet152 78.31 0.27 47.81 22.48
resnet101-tencent-ml-images 78.25 0.04 47.77
resnetb0 feature cutmix 78.21 -0.42 44.33 25.36
resnext101 32x4d 78.19 -0.13 50.96 22.38
resnet101 Ipf3 78.12 -0.27 46.52 22.48
efficientnet-b1 77.91 -0.24 47.07 31.33
resnet101 Ipf5 77.91 0.1 46.54 23.13
resnet101 Ipf2 77.8 0.3 46.06 22.01
se_resnet50 77.64 0.08 48.11 27.55
resnext50 32x4d 77.62 0.1 45.56 22.52
resnet50_augmix 77.54 -0.53 50.78 26.01
resnet50 mixup 77.47 -0.54 48.2 21.95
fbresnet152 77.39 0.02 49.98 23.4
resnet101 77.37 0.01 46.06 21.85
inceptionv3 77.32 0.29 49.83 25.72
densenet161 77.14 0.13 49.36 22.22
efficientnet-b0-advprop-autoaug 77.08 0.21 49.9 44.31
resnet50_cutout 77.07 -0.65 43.81 19.8
FixResNet50 no_adaptation 77.04 -0.02 44.68 20.61
dpn68b 77.03 -0.28 45.67 18.7
resnet50 Ipf5 77.03 -0.53 43.54 22.03
densenet201 76.9 -0.12 47.63 23.95
efficientnet-b0-autoaug 76.84 -0.39 45.27 30.66
resnetb0 1pf3 76.82 -0.12 43.3 21.83
resnet50_1pf2 76.79 -0.25 42.22 20.91

Table continues onto next page
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Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr.  Avg. PGD
accuracy  eff. robust. accuracy accuracy
resnet50 trained on SIN and I 76.72 -0.04 43.96 22.78
N then finetuned on IN
resnet50 deepaugment 76.66 0.73 53.91 29.65
efficientnet-b0 76.53 -0.79 43.84 31.05
resnet50-vtab-rotation 76.5 -0.49 41.93
cafferesnet101 76.2 0.08 44.83 25.54
resnet152-imagenet11k 76.18 2.09 47.33 30.64
resnetb0 aws_ baseline 76.14 -0.36 42.13 21.46
resnet50 76.13 -0.77 41.59 21.24
resnet50 imagenet 100percent b 75.98 -0.56 41.61 21.89
atch64 original images
dpn68 75.87 -0.56 45.46 17.71
resnet50 deepaugment augmix 75.82 -0.08 58.29 33.73
resnet50- 75.69 0.31 41.75 21.32
randomized smoothing noise 0.00
densenet169 75.6 0.19 46.67 21.79
resnet50-vtab 75.54 0.22 43.61
resnetb0_with brightness aws 75.28 -0.28 43.9 22.78
resnet50 with spatter aws 75.21 -0.29 42.81 22.45
densenet121 Ipf3 75.14 -0.35 40.48 20.01
densenet121 Ipfh 75.03 0.13 41.84 21.13
densenet121 Ipf2 75.03 0.41 41.24 20.82
resnetb0 with saturate aws 74.89 -0.27 42.4 20.46
resnet50 trained on SIN and IN 74.59 0.55 47.91 22.96
resnet34 1pf2 74.48 0.15 41.54 20.96
densenet121 74.43 0.13 43.54 20.01
resnet34 1pf3 74.34 0.25 42.22 20.97
vggl9 bn 74.22 0.18 37.94 16.51
resnet34_1pf5 74.19 0.46 41.22 21.09
resnet50-vtab-exemplar 74.1 0.3 44.73
nasnetamobile 74.08 -0.29 44.78 22.89
vggl6 bn_Ipfb 74.04 -0.4 36.19 18.91
vggl6 bn Ipf2 74.01 0.13 36.06 17.81
vggl6é bn Ipf3 73.92 0.5 36.33 18.33
resnetb0_with frost aws 73.78 0.29 42.39 20.96
resnet50_with_jpeg compression 73.63 -0.21 41.76 38.34
_aws
bninception 73.52 1.0 40.59 21.27
mnasnetl 0 73.46 -0.47 36.42 18.78
vggl6 bn 73.36 -0.09 35.69 16.19
resnet34 73.31 0.12 40.48 21.23
resnet18_swsl 73.29 1.74 39.95 18.79
resnetb0_with gaussian noise aws 72.97 0.21 45.56 43.88
resnet50 with gaussian noise ¢ 72.72 0.05 51.8 22.91
ontrast motion blur jpeg comp
ression _aws
mobilenet v2 1pf2 72.62 -0.56 34.46 17.46
resnetl8 ssl 72.6 1.24 39.51 19.19
mobilenet v2 Ipf3 72.57 -0.23 34.78 17.6
mobilenet _v2 1pf5 72.51 -0.1 34.9 17.73
vggl9 72.38 -0.01 32.43 20.65
vggl6  Ipfs 72.33 0.15 31.89 19.86

Table continues onto next page
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Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr.  Avg. PGD
accuracy  eff. robust. accuracy accuracy
vggl6 Ipf3 72.19 -0.19 32.18 19.37
vggl6_ Ipf2 72.16 -0.2 31.98 19.13
resnetb0_with contrast aws 72.0 -0.42 40.85 17.29
mobilenet  v2 71.88 -0.13 33.96 17.49
resnetb0_with fog aws 71.76 -0.83 37.9 17.19
resnet18 Ipf3 71.68 -0.43 36.84 20.17
vgglh 71.59 -0.33 31.3 20.14
vggl3 bn 71.59 0.01 31.76 15.16
resnet18 1pf2 71.39 -0.09 36.88 19.8
resnetl8 Ipf5 71.39 -0.51 36.86 20.22
resnet18-rotation-standard 40 71.28 -0.05 36.46 20.26
vggll bn 70.37 -0.1 31.7 18.05
resnet50- 70.29 0.28 40.66 63.94
randomized smoothing noise 0.25
vggl3 69.93 -0.27 28.53 19.32
googlenet /inceptionvl 69.78 1.01 38.84 21.85
resnet18 69.76 0.46 35.01 19.51
shufflenet v2 x1 0 69.36 -0.48 30.87 16.66
resnet18-rotation-worst10 30 69.13 0.72 34.06 22.51
vggll 69.02 -0.33 28.61 22.38
resnet18-rotation-random 30 68.88 0.19 32.88 18.63
resnet18-rotation-worst10 40 68.6 -0.05 32.24 22.65
resnet50 with pixelate aws 68.5 1.17 39.58 18.85
resnet18-rotation-random 40 68.35 0.73 31.87 17.89
facebook adv_trained resnext101 68.33 -0.11 40.86 41.42
_denoiseAll
resnet50-smoothing adversarial 67.87 -0.31 40.57 62.89
_ DNN _2steps_eps 512 noise 0.
25
mnasnet0_ 5 67.6 -0.37 27.9 17.39
resnet50 with motion blur aws 67.46 1.49 38.71 15.34
resnet18-rotation-nocrop 40 65.37 1.23 30.1 20.5
facebook adv_trained resnet152 65.32 0.38 37.97 39.48
__denoise
bninception-imagenet21k 65.24 1.78 32.8 30.3
resnet50- 64.24 0.04 39.8 61.41
randomized smoothing noise 0.50
resnetb0_with greyscale aws 63.33 0.49 28.33 18.16
resnet50 linf eps4 robust 62.42 0.53 32.37 60.3
facebook adv_ trained resnet152 62.34 0.58 35.77 37.63
_ baseline
resnet50-smoothing adversarial 62.19 -0.04 39.14 59.26
_ DNN_2steps_eps_512 noise 0.
50
resnet50-vtab-semi-exemplar 61.62 0.98 33.85
resnet50_with zoom blur aws 61.25 1.22 33.27 13.01
resnet50-vtab-semi-rotation 60.92 0.94 26.38
shufflenet v2 x0 5 60.55 -0.27 23.58 16.08
resnet50_adv-train-free 60.49 -0.03 29.41 57.42
resnet50-smoothing adversarial 60.47 -0.45 37.21 58.49

_PGD_1Istep_eps_512_ mnoise 0.2
5

Table continues onto next page
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Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr.  Avg. PGD
accuracy  eff. robust. accuracy accuracy

resnet50 trained on_SIN 60.18 1.4 39.42 19.25

squeezenetl 1 58.18 0.12 20.18 16.08

squeezenetl 0 58.09 -0.26 20.17 18.06

resnet50_12_eps3_robust 57.9 0.33 31.83 56.25

alexnet 1pf2 57.23 -0.38 22.54 29.09

alexnet 1pf3 56.89 -0.41 22.77 30.67

alexnet Ipf5 56.58 -0.41 22.77 31.71

alexnet 56.52 -0.28 21.55 24.08

resnet50-smoothing adversarial 54.66 -0.31 35.7 53.09

_PGD_1step eps 512 noise 0.5

0

resnet50- 53.12 0.12 34.93 52.11

randomized smoothing noise 1.00

resnetb0-smoothing adversarial 51.87 0.23 34.43 50.95

_ DNN_2steps_eps_ 512 mnoise 1.

00

resnetb0 linf eps8 robust 47.91 1.35 23.93 46.97

resnet50-smoothing adversarial 44.28 0.2 29.84 43.57

_PGD_1step eps 512 noise 1.0

0

resnetb0 with defocus blur_aws 31.9 1.3 18.18 9.29

End of table
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H Synthetic robustness correlation with natural robustness

In this section, we investigate which individual synthetic robustness measures are most predictive of
natural distribution shift. For each of the synthetic shifts in our testbed, we compute the effective
robustness for each model and measure the Pearson correlation coefficients against the effective
robustness under each of the natural distribution shifts in our testbed.

Table 2] provides a full list of the correlation numbers, and Figures [I0] to 22] show scatter plots of
the two highest correlated synthetic shifts for each natural distribution shift. We find that some
of the synthetic shifts are more predictive than others, but none have high correlation with all of
the natural shifts. For instance, £,-robustness has the highest correlation with consistency shifts,
but only low correlation with dataset shifts. On the other hand, some image corruptions such
as brightness, gaussian blur, defocus blur, and saturate have higher correlation with the dataset
shifts. It is worth nothing our testbed indicates that these synthetic measures are not causal, i.e.,
models trained on brightness, gaussian blur, defocus blur, or saturate do not have significant positive
effective robustness on dataset shifts. Further analyzing these fine-grained connections between
synthetic and natural forms of distribution shift is an important direction for future work.

Table 2: Pearson correlation coefficients between all synthetic and natural distribution shifts in
our testbed. For each distribution shift, effective robustness was calculated using a linear fit on the
standard models. The correlation between synthetic and natural effective robustness was then only
computed after filtering out the standard models.

Pearson correlation coefficients

Synthetic shift ImageNetV2 ObjectNet ImageNetVid YTBB ImageNetVid YTBB  ImageNet-
(pm-0) (pm-0) (pm-10) (pm-10) A

avg_corruptions 0.25 0.06 0.6 0.5 0.65 0.52 0.02

avg pgd -0.04 -0.19 0.3 0.35 0.84 0.7 -0.12

brightness in- 0.34 0.11 0.32 0.3 0.29 0.23 0.13

memory

brightness on-disk 0.56 0.48 0.56 0.39 0.22 0.15 0.16

contrast_in- 0.15 0.07 0.14 0.04 -0.61 -0.5 0.14

memory

contrast _on-disk 0.26 0.28 0.17 0.05 -0.61 -0.54 0.15

defocus _blur_in- 0.27 -0.04 0.66 0.56 0.43 0.27 -0.05

memory

defocus_blur_on- 0.39 0.39 0.65 0.49 0.28 0.17 0.12

disk

elastic_transform_in 0.14 -0.12 0.49 0.42 0.75 0.63 -0.15

memory

elastic_transform on 0.3 0.21 0.57 0.41 0.65 0.58 0.01

disk

fog in-memory 0.14 0.07 -0.04 -0.07 -0.59 -0.56 0.02

fog on-disk 0.28 0.31 0.04 -0.03 -0.64 -0.6 0.04

frost _in-memory 0.15 -0.12 0.42 0.44 0.54 0.42 -0.02

frost _on-disk 0.32 0.15 0.53 0.45 0.44 0.36 0.08

gaussian_blur_in- 0.27 -0.07 0.67 0.57 0.47 0.33 -0.05

memory

gaussian_blur _on- 0.41 0.4 0.65 0.48 0.26 0.16 0.13

disk

Table continues onto next page
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Pearson correlation coefficients (continued from previous page)

Synthetic shift ImageNetV2 ObjectNet ImageNetVid YTBB ImageNetVid YTBB  ImageNet-
(pm-0) (pm-0) (pm-10) (pm-10) A

gaussian_noise in- -0.01 -0.13 0.41 0.38 0.68 0.51 -0.04

memory

gaussian_noise on- 0.08 0.0 0.4 0.34 0.71 0.62 0.07

disk

glass_blur_on-disk 0.24 0.17 0.56 0.45 0.61 0.53 -0.0

greyscale 0.3 0.17 0.11 0.29 0.09 -0.06 0.04

impulse noise in- -0.06 -0.1 0.35 0.34 0.65 0.45 -0.05

memory

impulse noise on- 0.04 0.0 0.34 0.31 0.72 0.6 0.03

disk

jpeg__compression _in 0.04 -0.11 0.43 0.41 0.8 0.62 -0.01

memory

jpeg_compression o1 0.09 0.01 0.44 0.4 0.8 0.65 0.03

disk

motion blur_in- 0.2 -0.02 0.51 0.43 0.56 0.41 -0.08

memory

motion blur on- 0.32 0.25 0.58 0.43 0.39 0.31 0.07

disk

pgd.12.eps0.1 -0.03 -0.01 0.18 0.25 0.64 0.44 -0.33

pgd.12.eps0.5 -0.05 -0.22 0.31 0.34 0.71 0.63 -0.11

pgd.linf.eps0.5 -0.05 -0.23 0.28 0.33 0.84 0.7 -0.13

pgd.linf.eps2 0.01 -0.18 0.3 0.31 0.76 0.69 0.05

pixelate in- 0.27 0.03 0.61 0.48 0.66 0.53 0.05

memory

pixelate on-disk 0.31 0.16 0.62 0.46 0.63 0.54 0.12

saturate in- 0.35 0.08 0.4 0.43 0.38 0.27 0.12

memory

saturate on-disk 0.55 0.43 0.46 0.41 0.26 0.16 0.13

shot noise_in- -0.01 -0.14 0.41 0.39 0.69 0.51 -0.05

memory

shot noise on- 0.07 -0.01 0.4 0.35 0.71 0.62 0.06

disk

snow _in-memory 0.26 0.02 0.39 0.35 0.61 0.55 0.04

snow _on-disk 0.33 0.14 0.5 0.43 0.6 0.51 0.04

spatter _in-memory 0.09 -0.06 0.36 0.36 0.8 0.66 -0.08

spatter on-disk 0.26 0.08 0.5 0.43 0.75 0.63 -0.04

speckle noise in- 0.0 -0.13 0.43 0.39 0.71 0.55 -0.04

memory

speckle noise on- 0.08 -0.02 0.42 0.36 0.74 0.66 0.02

disk

stylized _imagenet 0.32 0.24 0.31 0.3 0.44 0.31 -0.02

zoom blur in- 0.21 0.23 0.45 0.35 0.45 0.36 -0.01

memory

zoom _blur_on- 0.26 0.21 0.55 0.41 0.49 0.39 0.0

disk

End of table
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Figure 16: Plots of the two synthetic distribution shifts with the highest correlation with ImageNetV2,

compared similarly to Figure
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Figure 18: Plots of the two synthetic distribution shifts with the highest correlation with ImageNet-
Vid-Robust pm-0, compared similarly to Figure
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Figure 20: Plots of the two synthetic distribution shifts with the highest correlation with ImageNet-
Vid-Robust pm-10, compared similarly to Figure
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Figure 21: Plots of the two synthetic distribution shifts with the highest correlation with YTBB-
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I Information on our main figures

I.1 Constructing beta

For each distribution shift, we construct the baseline accuracy function S by analyzing the linear
relationship between model performance on the original and shifted distributions. In particular,
when constructing 5 we only include "standard models," models that had not been designed with
any robustness properties in mind or have not been trained on any data other than the standard
1,000-class ImageNet training set. Before constructing the predictor, model accuracies are then
transformed according to the logit distribution; this transform assigns greater mass at the tails and
experimentally provided the best linear fits. § is then simply the linear predictor of the shifted
distribution based on the independent variable (the original distribution), computed in this scaled
space.

I.2 Ablations on our main figures

Here we provide various versions of the main figures in the main text. In each plot, we use logit scaling
to demonstrate that gains in performance at higher accuracies represent greater progress. The 95%
confidence intervals were empirically computed from the bootstrapped samples. The bootstrapping
was performed by computing 1,000 linear fits by sampling the models with replacement.
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Figure 23: Only standard models are shown in these plots. Otherwise, they are identical to the main
plots in the main text. This is done to better illustrate the quality of the linear fit.
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Distrib_ution Shift to ObjectNet
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Figure 24: The x-axes are not subsampled in these plots (they are performance on the full ImageNet

validation set). Otherwise, they are identical to the main plots in the main text. This is done to
clarify that subsampling the axes does not skew the discussed results.
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Figure 25: The full y=x line is shown here in these plots. Otherwise, they are identical to the main
plots in the main text. This is done to illustrate the performance gap due to distribution shift for
each of the natural shifts.
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J Example images of distribution shifts in our testbed

J.1 Natural distribution shift images

Figure 26: Dataset shifts. Examples from ImageNetV2 (first row), ObjectNet (second row), ImageNet-
Vid-Robust (third row), and YTBB-Robust (fourth row).

i

)

Figure 27: Consistency shifts. Sequences of video frames from ImageNet-Vid-Robust (top) and
YTBB-Robust (bottom).
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Figure 28: Adversarial shifts. Examples from ImageNet-A.

J.2 Synthetic distribution shift images
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(c) contrast (d) defocus blur  (e) elastic transform

(h) gaussian blur (i) gaussian noise (j) greyscale

jpeg compressi
3 f] -
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(r) spatter (s) speckle noise  (t) stylized imagenet

(u) zoom blur (v) £p-attack

Figure 29: Sample demonstration of the synthetic distribution shifts in our testbed. Note: This list
is not complete. See Appendix |E| for a complete list.
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K Additional discussion of related work

K.1 TImageNet-R & ImageNet-Sketch

Recently, Hendrycks et al. [40] studied robustness of classifiers to a new dataset that measure
distribution shift, ImageNet-R, along with a new data augmentation method, DeepAugment. The
authors make a number of comparisons in relation to an earlier version of this manuscript [90]. In

order to provide more clarity, we integrate the ImageNet-R dataset and the DeepAugment models
into our testbed in this paper.
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Figure 30: Model accuracies on two datasets: ImageNet-R (left), and ImageNet-Sketch (right).
Both datasets create a distribution shift by selectively sampling images of renditions or sketches,
respectively. Evaluations on these distribution shifts are similar to each other and follow the high-level
trends of the other natural dataset distribution shifts in our testbed, with models trained on extra
data providing the most robustness (though the effect is not uniform). On the left plot, DeepAugment
models are highlighted in dark brown squares, and ImageNet classes were subsampled to match the
class distribution of ImageNet-R; the ImageNet-Sketch class distribution already matches ImageNet.
Confidence intervals, axis scaling, and the linear fit are computed similarly to Figure |2|

ImageNet-R. In Figure 30} we plot model accuracies on ImageNet-R(endition) [40] and a similar
dataset of sketches, ImageNet-Sketch [95]. We find that a few of the models trained on more data
substantially outperform the rest. The top-right green cluster on both plots consists of several
ResNet and ResNeXt models trained on 1 billion Instagram images [56] 92} 104] and EfficientNet-L2
(NoisyStudent) trained on the JFT-300M dataset of 300 million images [102].

However, as with the other dataset shifts, not all models trained on more data follow this trend.
Several ResNet models trained on either the YFCC 100 Million images dataset [104] or the full
ImageNet 21k-class dataset [49] have close to zero or negative effective robustness.

When interpreting the results of models trained on more data, a caveat is that the extra training
data may contain renditions that do not occur in ImageNet. To clarify this point, we have reached
out to the authors of [56] to obtain more information about the Instagram dataset. We will update

66



Effective Robustness Scatterplot Effective Robustness Scatterplot

%)) 1))
n %]
[J] (]
C C
<5 <0
— 3 i |
U o [e]
Z70 . =70
X4 (X4 .
ge g ge - :
Eg 3.5 Eg
k) o o® S, k) PR
= B Lt = ™ o i
Ll Co » & - W I
2 o L Al O Pe
-5 i 0 5 10_ 15 20 ’ -15 -10 -5 0 5 10 15. 20 25 30 35 40 45
Corruptions Averaged Effective Robustness Lp Attacks Effective Robustness
Lp adversarially robust e Other robustness intervention Trained with more data

Figure 31: We compare the effective robustness of models with their accuracy drop due to corruptions
(left) and adversarial attacks (right). The effective robustness is computed with respect to the linear
fit on ImageNet-R. The measures are weakly correlated, indicating that improved robustness to
corruptions or adversarial attacks does not in general improve effective robustness under ImageNet-R.

our paper when sufficient data becomes available to estimate the relative frequency of renditions in
the Instagram dataset. In the meantime, we note that the performance of the Instagram-trained
models gives an answer to a question between the following two extremes: (i) How much performance
on ImageNet-R do current models gain from a large, uncurated set of social media images that
contains renditions? (ii) How much robustness to ImageNet-R do current models gain from a large,
uncurated set of social media images that contains little to no renditions?

Interestingly, we also find that a number of /,-adversarially robust models provide substantial
effective and relative robustness on both datasets. The top-left cluster of three yellow points on
both plots are feature denoising models trained by Xie et al. [I0I]. These results suggest that
adversarial robustness and denoising blocks can be viable approaches for distribution shift comprised
of renditions or sketches.

A natural follow-up question is whether synthetic robustness is correlated with ImageNet-R robustness.
Similar to Appendix [C] in Figure [3I] we compare effective robustness on synthetic distribution shifts
against effective robustness on ImageNet-R. The scatter plots are weakly correlated (the Pearson
correlation coefficients are » = 0.35,0.30), indicating that improved robustness to corruptions or
adversarial attacks in general does not improve effective robustness on ImageNet-R. However, there
does appear to be a strong trend for the brown points in the left plot. Indeed, the correlation
coefficient computed for only the “other robustness intervention” models is 7 = 0.76, suggesting
that for this category of models, image corruptions robustness is well correlated with ImageNet-R,
robustness.

DeepAugment. Hendrycks et al. [40] also introduce a new data augmentation method, Deep-
Augment, which generates data augmentations by distorting the weights and activations of an
image-to-image translation network. As seen in Figure the DeepAugment-+Augmix models, the
top two dark brown squares on the left plot, have higher effective robustness on ImageNet-R than
most other models (p = 11.2% for ResNeXt101 and p = 10.2% for ResNet50).
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As mentioned above, some of the models trained on the large Instagram and JFT-300M datasets
outperform all other approaches on ImageNet-R including DeepAugment, but it is unclear how many
images of renditions these datasets contain. Among the other models trained only on ImageNet, the
comparison between ¢,-adversarial robustness and DeepAugment is nuanced. The £,-robust model of
[101] has higher effective robustness but reduces standard ImageNet accuracy. The highest accuracy
on ImageNet-R is also achieved by a model with an £,-based robustness intervention (an AdvProp
model [100]), but the model is derived from EfficientNet [88] which achieves higher standard accuracy
than the wide ResNeXt model [I03] used in DeepAugment. An interesting question for future work is
how and why £,-robustness helps on ImageNet-R, e.g., by training a ResNeXt model with AdvProp.

On the anchor frames of ImageNet-Vid-Robust and YTBB-Robust, DeepAgument provides effective
robustness comparable to models trained on multiple synthetic perturbations (e.g., a combination of
Gaussian noise, contrast, motion blur, and JPEG compression). On ImageNetV2 and ObjectNet,
DeepAugment does not provide effective robustness.

For ImageNet-C corruptions [38], the combination of DeepAugment and AugMix offers substantial
robustness. Excluding ¢,-adversarially robust models in the low accuracy regime, the two models
with highest effective robustness to ImageNet-C corruptions are DeepAugment- and Augmix- trained
ResNet50 (p = 14.2%) and ResNeXt101 (p = 13.2%). To put this in context, a ResNet50 trained
directly on four of the ImageNet-C corruptions (Gaussian noise, contrast, motion blur, and JPEG
compression) achieves an effective robustness of p = 13.3%.

K.2 Video robustness

In the context of video robustness, Gu et al. [35] have previously measured the performance of image
classifiers on video sequences from the YouTube-BoundingBoxes(YT-BB) dataset [67]. They find
that video robustness is strongly correlated with accuracy on color corruptions such as brightness,
hue, and saturation, with correlation coefficients r near 0.95. There are two potential reasons our
testbed finds these measures to be only weakly correlated with robustness on YTBB-Robust and
ImageNet-Vid-Robust (r ranging from 0.1 to 0.5 - full table in Appendix :

Standard accuracy as a confounder. The analysis in [35] does not account for standard accuracy
as a confounder. The authors consider video robustness as accuracy within k frames of an anchor
frame given that the anchor frame was correctly classified. While this definition does somewhat
account for models with higher standard accuracies, it is natural to expect that models with
higher standard accuracy are still more likely to predict the neighboring frames correctly given that
the anchor frame was predicted correctly. Thus, standard accuracy will be correlated with video
robustness. Moreover, our testbed reveals that standard accuracy is also correlated with corruption
accuracy, and hence corruption accuracy will be correlated with video robustness as well.

Additionally, it is worth noting that correlation does not mean that robustness to color corruptions
cause robustness on videos. For instance, our testbed contains a model trained on saturation as
data augmentation. While this model is highly robust to saturation (exhibiting only a 1% drop
from standard accuracy to accuracy under saturations, compared to a baseline model exhibiting
a 12% drop), it is no more video robust than a baseline without the saturation training (the
saturation-trained model still experiences an 18% video robustness drop, compared to a baseline
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model exhibiting a 19% drop). This example further shows the need for our measure of effective
robustness as it explicitly corrects for the confounding effect of standard accuracy.

Differences in data preparation. Gu et al. [35] split the full YT-BB dataset into training,
validation, and testing splits, and evaluate ImageNet models on sequences from the test split. In
contrast, Shankar et al. [T6] derive datasets from ImageNet-Vid and Youtube-BB through a rigorous
cleaning process: inspecting and annotating each sequence with human experts to check that subjects
appear in frame throughout the sequence, match the correct class, and are not very blurry. This
cleaning process indicates the derived datasets (ImageNet-Vid-Robust and YTBB-Robust) are better
calibrated to measuring classification performance.

69



	1 Introduction
	2 Measuring robustness
	3 Experimental setup
	3.1 Types of distribution shifts
	3.1.1 Natural distribution shifts
	3.1.2 Synthetic distribution shifts

	3.2 Classification models

	4 Main results
	4.1 Results on natural distribution shifts
	4.2 Results on synthetic distribution shifts
	4.3 Takeaways and discussion

	5 How does the amount of training data impact robustness?
	6 Related work
	7 Conclusion
	A Testbed overview
	B Relative and effective robustness
	B.1 Relative and effective robustness graphical sketch
	B.2 Relative and effective robustness for ResNet50 models

	C Effective robustness scatterplots
	D Corruption robustness
	E Evaluation settings in the testbed
	E.1 Natural distribution shifts
	E.2 Corruptions
	E.3 Adversarial attacks
	E.4 Stylized Imagenet
	E.5 125 class evaluation

	F Models in the testbed
	G Model accuracies
	H Synthetic robustness correlation with natural robustness
	I Information on our main figures
	I.1 Constructing beta 
	I.2 Ablations on our main figures

	J Example images of distribution shifts in our testbed
	J.1 Natural distribution shift images
	J.2 Synthetic distribution shift images

	K Additional discussion of related work
	K.1 ImageNet-R & ImageNet-Sketch
	K.2 Video robustness


