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ABSTRACT

Gradient Orthogonal Projection (GOP) is an efficient strategy in continual learning
to mitigate catastrophic forgetting. Despite its success so far, GOP-based methods
often suffer from the learning capacity degradation problem with an increasing
number of tasks. To address this problem, we propose a novel and plug-and-play
method to learn new tasks in low-coherence subspaces rather than orthogonal sub-
spaces. Specifically, we construct a unified cost function with the DNN parameters
lying on the Oblique manifold. A corresponding gradient descent algorithm is
developed to jointly minimize the cost function that involves both inter-task and
intra-task coherence. We then provide a theoretical analysis to show the advan-
tages of the proposed in the stability and plasticity. Experimental results show
that the proposed method has prominent advantages in maintaining the learning
capacity, when the number of tasks increases, especially on a large number of tasks,
compared with baselines.

1 INTRODUCTION

Although Deep Neural Networks (DNNs) have achieved promising performance in many tasks, their
applications are limited for continual learning, suffering from catastrophic forgetting French (1999).
When tasks are to be learned sequentially, catastrophic forgetting refers to the phenomenon of new
knowledge interfering with old knowledge. Research in continual learning, also known as incremental
learning Aljundi et al. (2018a); Chaudhry et al. (2018a); Chen & Liu (2018); Aljundi et al. (2017),
and sequential learning Aljundi et al. (2018b); McCloskey & Cohen (1989), aims to find effective
algorithms that enable DNNs to simultaneously achieve plasticity and stability, i.e., to achieve both
high learning capacity and high memory capacity.

Various methods have been proposed to avoid or mitigate the catastrophic forgetting De Lange et al.
(2019), either by replaying training samples Rolnick et al. (2019); Ayub & Wagner (2020); Saha
et al. (2021), or reducing mutual interference of model parameters, features or model architectures
between different tasks Zenke et al. (2017); Mallya & Lazebnik (2018); Wang et al. (2021). Among
these methods, Gradient Orthogonal Projection (GOP) Chaudhry et al. (2020); Zeng et al. (2019);
Farajtabar et al. (2020); Li et al. (2021) is an efficient continual learning strategy that advocates
projecting gradients with the orthogonal projector to prevent the knowledge interference between
tasks. GOP-based methods have achieved encouraging results in mitigating catastrophic forgetting.
However, from Fig. 1, we observe that these methods suffer from the learning capacity degradation
problem. Namely, their learning capacity is gradually degraded as the number of tasks increases
and eventually becomes unlearnable. Specifically, when learning multiple tasks, e.g., more than 30
tasks in Fig. 1, their performance on new tasks dramatically decreases. These results suggest that the
GOP-based methods focus on the stability and somewhat ignore the plasticity. Ignoring the plasticity
may limit the task-learning capacity of models, i.e., The performance of the model on a new task
when learning multiple tasks consecutively.

To address this issue, we propose a novel projection-based method, called Low-coherence Subspace
Projection (LcSP), which learns new tasks in low-coherence subspaces rather than orthogonal
subspaces. Specifically, LcSP utilizes low-coherence projectors at each layer to project both features
and gradients into subspaces with low coherence. To achieve this, we construct a unified cost

1



Under review as a conference paper at ICLR 2024

function to find projectors and develop a gradient descent algorithm on the Oblique manifold to
jointly minimize inter-task coherence and intra-task coherence among the projectors. Minimizing
the inter-task coherence can reduce the mutual interference between tasks while minimizing the
intra-task coherence can enhance the model’s expressive power. Restricting projectors on the Oblique
manifold can avoid the scale ambiguity Aharon et al. (2006); Wei et al. (2017), i.e., preventing the
parameters of the projector from being extremely large or extremely small. Moreover, the algorithm
we propose for constructing low-coherence projectors is a plug-and-play module. By reusing this
module, LcSP can be easily extended to most GOP methods. For example, based on LcSP, we provide
the algorithm pseudo-code for continual learning with GPM Saha et al. (2021), which can be used in
both task-incremental and class-incremental settings, in the Appendix A.2.

2 RELATED WORK

In this section, we briefly review some existing works of continual learning and the GOP-based
methods.

Replay-based Strategy. The basic idea of replay-based approaches is to use limited memory to store
small amounts of data (e.g., raw samples) from previous tasks, called episodic memory, and to replay
them when training a new task. Some of the existing works focused on selecting a subset of raw
samples from the previous tasks Rolnick et al. (2019); Isele & Cosgun (2018); Chaudhry et al. (2019);
Zhang et al. (2020). In contrast, others concentrated on training a generative model to synthesize new
data that can substitute for the old data Shin et al. (2017); Van de Ven & Tolias (2018); Lavda et al.
(2018); Ramapuram et al. (2020).

Regularization-based Strategy. This strategy prevents catastrophic forgetting by introducing a
regularization term in the loss function to penalize the changes in the network parameters. Existing
works can be divided into data-focused and prior-focused methods De Lange et al. (2021). The
Data-focused methods take the previous model as the teacher and the current model as the student,
transferring the knowledge from the teacher model to the student model through knowledge distillation.
Typical methods include LwF Li & Hoiem (2017), LFL Jung et al. (2016), EBLL Rannen et al. (2017),
DMC Zhang et al. (2020) and GD-WILD Lee et al. (2019). The prior-focused methods estimate
a distribution over the model parameters, assigning an importance score to each parameter and
penalizing the changes in significant parameters during learning. Relevant works include SI Zenke
et al. (2017), EWC Kirkpatrick et al. (2017), RWalk Chaudhry et al. (2018a), AGS-CL Jung et al.
(2020) and IMM Lee et al. (2017).

Parameter Isolation-based Strategy. This strategy considers dynamically modifying the network ar-
chitecture by pruning, parameter mask, or expansion to greatly or even completely reduce catastrophic
forgetting. Existing works can be roughly divided into two categories. One is dedicated to isolating
separate sub-networks for each task from a large network through pruning techniques and parameter
masks, including PackNet Mallya & Lazebnik (2018), PathNet Fernando et al. (2017), HAT Serra
et al. (2018) and Piggyback Mallya et al. (2018). Another class of methods dynamically expands
the network architecture, increasing the number of neurons or sub-network branches, to break the
limits of expressive capacity (Rusu et al., 2016; Aljundi et al., 2017; Xu & Zhu, 2018; Rosenfeld &
Tsotsos, 2018). However, as the number of tasks growing, this approach also complicates the network
architecture and increases the computation and memory consumption.

Gradient Orthogonal Projection-based Strategy. Methods based on GOP strategies, which reduce
catastrophic forgetting by projecting gradient or features with orthogonal projectors, have been shown
to be effective in continual learning with encouraging results Farajtabar et al. (2020); Zeng et al.
(2019); Saha et al. (2021); Wang et al. (2021); Chaudhry et al. (2020). According to the different
ways of finding the projector, we can further divide the existing works into Context Orthogonal
Projection (COP) and Subspace Orthogonal Projection (SOP). Methods based on COP, such as OWM
Zeng et al. (2019), Adam-NSCL Wang et al. (2021), and GPM Saha et al. (2021), always rely on
the context of previous tasks to build projectors. In contrast to COP, SOP-based methods such as
ORTHOG-SUBSPACE Chaudhry et al. (2020) use hand-crafted, task-specific orthogonal projectors
and yield competitive results.

A related work to ours is TRGP Lin et al. (2022), which leverages the parameters of the most
relevant old tasks for the new task to enhance forward knowledge propagation. The task-correlation
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is computed by the norm of gradient projection onto the input subspace of each task. Unlike TRGP,
LcSP does not depend on the Single Value Decomposition (SVD) algorithm to obtain the projector.
Instead, LcSP derives the projector by minimizing the task coherence on the Oblique Manifold, where
task coherence is the measure of alignment between projectors. Our experiments show that LcSP
surpasses TRGP on such as Split CIFAR100 and miniImageNet benchmarks. Moreover, LcSP has
low computational overhead and is faster than TRGP.

3 CONTINUAL LEARNING SETUP

In continual learning, the learner needs to learn multiple tasks sequentially. Let us assume that there
are T tasks, denoted by Tt for t = 1, . . . , T with its training data Dt = {(xi, yi, τt)

Nt
i=1}. Here, the

data (xi, yi) ∈ X × Yt is assumed to be drawn from some independently and identically distributed
random variables, and τt ∈ T denotes the task identifier. In the TIL setting, the data Dt can be
accessed if and only if task Tt arrives. When episodic memory is adopted, a limited number of data
samples drawn from old tasks can be stored in the replay bufferM so that Dt ∪M can be used for
training when task Tt arrives.

Assuming that a network f parameterized with Φ = {θ, φ} consists of two parts, where θ denotes
the parameters of the backbone network and φ denotes the parameters of the classifier. Let f(x; θ) :
X × T → H denote the backbone network parameterized with θ = {Wl}Ll=1, which encodes the
data samples x into feature vector. Let f(x;φ) : H → Y denote the classifier parameterized with
φ = w which returns the classification result of the feature vector obtained by f(x; θ). The goal of
TIL is to learn T tasks sequentially with the network f and finally achieve the optimal loss on all
tasks.

Evaluation Metrics Once the training on all tasks is finished, we evaluate the performance of
algorithm by calculating the average accuracy A and forgetting F Chaudhry et al. (2020) of the
network on the T tasks {T1, ..., TT }. Suppose all tasks come sequentially, let Acci,j denote the test
accuracy of the network on task Ti after learning task Tj , where i ≤ j. The average accuracy is
defined as

A =
1

T

T∑
i=1

Acci,T , (1)

and the forgetting is defined as

F =
1

T − 1

T−1∑
i=1

max
j∈{i,...,T−1}

(Acci,j −Acci,T ). (2)

4 CONTINUAL LEARNING IN LOW-COHERENCE SUBSPACES

In this section, we describe the details of the LcSP algorithm based on hierarchical projection. In
addition, LcSP can also be extended to more GOP methods. In the Appendix A.2, we provide the
LcSP algorithm based on GPM, which can be used in class-incremental setting. In the following, we
begin by introducing how to find task-specific, low-coherence projectors for LcSP on the Oblique
manifold. We then describe how to use it in a specific DNN architecture to project features and
gradients. Finally, we analyze the factors that enable LcSP to maintain plasticity and stability.

4.1 PRELIMINARY

Since our proposed algorithm involves knowledge related to optimization on oblique manifold, we
first introduce the related mathematical definitions and concepts here to help readers better understand
the context.

Optimization on the Oblique manifold, i.e., the solution lies on the Oblique manifold, is a well-
established area of research Absil et al. (2009); Absil & Gallivan (2006); Selvan et al. (2012). Here,
we briefly summarize the main steps of the optimization process. We refer readers who are interested
in the relevant content to Absil et al. (2009) for more details.
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Formally, the Oblique manifold OM(n, p) is defined as

OM(n, p) ≜ {X ∈ Rn×p : diag(X⊤X) = Ip}, (3)

representing the set of all n× p matrices with normalized columns. OM can also be considered as
an embedded Riemannian manifold of Rn×p, endowed with the canonical inner product

⟨X1, X2⟩ = trace
(
X⊤

1 X2

)
, (4)

where trace(·) represents the sum of the diagonal elements of the given matrix. For a given point X
on OM, the tangent space at X , denoted by TXOM, is defined as

TXOM(n, p) = {U ∈ Rn×p : diag(X⊤U) = 0}. (5)

Further, the tangent space projector PX at X which projects H ∈ Rn×p into TXOM, is represented
as

PX(H) = H −X ddiag
(
X⊤H

)
, (6)

where ddiag sets all off-diagonal entries of a matrix to zero. When optimizing on OM, the kth
iteration Xk must move along a descent curve on OM for the cost function, such that the next
iteration Xk+1 will be fixed on the manifold. This is achieved by the retraction

RXk
(U) = normalize(Xk + U), (7)

where normalize scales each column of the input matrix to have unit length. Finally, with this
knowledge, we can extend the gradient descent algorithm to solve any unconstrained optimization
problems on OM, which can be summarized as

U = PXk
(∇Xk

J),

Xk+1 = RXk
(−αU),

(8)

where J denotes the cost function and ∇Xk
J denotes the Euclidean gradient at the kth iteration and

α is the step size.

4.2 CONSTRUCTING LOW-COHERENCE PROJECTORS ON OBLIQUE MANIFOLD

In the following, we first introduce the concept of coherence metric. The coherence metric is usually
used in compressed sensing and sparse signal recovery to describe the correlation of the columns of a
measurement matrix Candes et al. (2011); Candes & Romberg (2007). Formally, the coherence of a
matrix M is defined as

µ(M,N) =

 maxj<k
|⟨Mj ,Mk⟩|

∥Mj∥2∥Mk∥2
, M = N ;

maxi,j
|⟨Mi,Nj⟩|

∥Mi∥2∥Nj∥2
, M ̸= N,

(9)

where Mj and Mk denote the column vectors of matrix M . Without causing confusion, we use
µ(M) to denote µ(M,M). To measure the coherence between different projectors, we introduce the
Babel function Li & Lin (2018), measuring the maximum total coherence between a fixed atom and a
collection of other atoms in a dictionary, which can be described as follows.

B(P,M) = max
i∈M

∑
j∈P

|⟨Mi, Pj⟩|
∥Mi∥ ∥Pj∥

(10)

where M denotes a fixed atom and P denotes target projector. With the concept of a coherence metric
in mind, we then introduce the main optimization objective in finding projectors. Specifically, suppose
that the DNN has learned the task T1, T2, ..., Tt−1 in the subspace S1,S2, ...,St−1, respectively,
P1, P2, .., Pt−1 denote the projectors of all previous tasks. When learning task Tt, we project features
and gradients into a dt-dimensional low-coherence subspace St with projector Pt so that the LcSP
can prevent catastrophic forgetting. The projector Pt can be found by optimizing

argminB(Pt,M),

s.t. Pt ∈ Rm×m, rank(Pt) = dt.
(11)

Here M = {P1, ..., Pt−1} denotes the collection of projectors of previous tasks.Two considerations
need to be taken in solving Eq. (11), i.e., considering the rank constraint and the column vector’s
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scale (L2 norm) constraint. Empirically, extremely large or small length (L2 norm) of the projected
column vector can lead to unstable training, as shown in Appendix A.1. We constrain the length of
the projected column vectors to be equal to 1 because when the projection matrix Pt satisfies the
constraints and is orthogonal, the length of the gradient does not change after it has been projected,
and thus does not affect the convergence rate. Therefore, we rephrase the rank and scale constrained
problem as a problem on the Oblique manifold OM(m, dt), by setting Pt = OtO

⊤
t , Ot ∈ Rm×dt ,

and normalizing the columns of Ot , i.e, diag(O⊤
t Ot) = In, where diag(·) represents the diagonal

matrix and In is the n× n identity matrix.

With these settings, the new cost function J(·) and the optimization problem can be described as
follows:

J(Ot,M) =

{
λ ·B(OtO

⊤
t ,M) + γ · µ(OtO

⊤
t ), t > 1

µ(OtO
⊤
t ), t = 1

,

Ot = argminJ(Ot,M), s.t. Ot ∈ OB(m, dt).

(12)

In the cost function J(Ot,M), we define an inter-task optimization objective B(OtO
⊤
t ,M), which

measures the coherence between the current task projector Pt and the previous task projectors
Pi (i < t). Following the intuition of the GOP method, we minimize B(OtO

⊤
t ,M) to reduce

the interference between tasks, thereby overcoming catastrophic forgetting. In contrast, we define
an intra-task optimization objective µ(OtO

⊤
t ), which measures the coherence of the current task

projector Pt itself. We observe that using a projector with a particularly low rank means selecting a
small portion of parameters to learn new tasks and will severely limit the model’s plasticity, resulting
in poor performance on new tasks. Therefore, we make Ot full-rank by minimizing µ(OtO

⊤
t ), in

order to maintain the model’s learning ability for new tasks. For the first task, since there is no
interference from other tasks, we only need to focus on µ(OtO

⊤
t ). When learning the t-th task

(t > 1), we consider both B(OtO
⊤
t ,M) and µ(OtO

⊤
t ), and to cope with different scenarios more

flexibly, we utilize parameters γ and λ to provide a trade-off between them. In the Appendix A.1,
we provide relevant ablation experiments and numerical analysis and summarize our algorithm for
finding Ot in OM for task Tt.

4.3 APPLICATION OF LOW-COHERENCE PROJECTORS IN DNNS

With the LcSP at hand, the following introduces some technical details of applying LcSP in DNNs.
When learning task Tt, LcSP first constructs task-specific projector P l

t for each layer before training,
and freezes them during training. These projectors are used to project the features and gradients,
ensuring that the DNN learns in the low-coherence subspace. Specifically, suppose that a network
f with L linear layers admits a DNN architecture, let W l

t , xl
t, z

l
t, σ

l, and P l
t denote the model

parameters, the input features, the output features, the activation function, and the introduced low-
coherence projector in layer l ∈ {1, ..., L}, respectively. LcSP introduces P l

t immediately after W l
t

such that the pre-activation features are projected into the subspace, i.e.,

zlt = (xl
tW

l
t )P

l
t ,

xl+1
t = σl(zlt).

(13)

According to the chain rule of derivation, the gradients at W l
t will also be multiplied with P t

l in
backpropagation, as follows

∂L
∂(W l

t )(i,:)
=

∂L
∂zlt

∂zlt
∂(W l

t )(i,:)

=
∂L
zLt

L−1∏
k=l

∂zk+1
t

∂zkt
· (xl

t)i · P l
t ,

(14)

where (W l
t )(i,:) represents the ith row of W l

t and (xl
t)i is the ith element of xl

t. In Convolutional
Neural Networks (CNNs), the input and the output typically represent the image features and have
more than two dimensions, e.g., input channel, output channel, height, and width. In this case, we
reshape zl ∈ Rcout ×(cin·h·w) to zl ∈ R(cin·h·w)×cout and align the dimension of projector with the
output channel so that P l

t ∈ Rcout×cout . After the projection, we recover the shape of zlt so that it can
be used as input for the next layer.
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4.4 METHOD ANALYSIS

In this section, we provide an analysis on the plasticity and the stability of LcSP.

Stability Analysis. Let θ = {W l
t}Ll=1 denote the parameter set of f ; ∆θ = {∆W 1

t , . . . ,∆WL
t }

denote set of variation values of parameters after learning task Tt; Pt = {P l
t}Ll=1 denote the projectors

set obtained by LcSP; xl
q,t and zlq,t denote the input and output when feeding the data of task Tq

(q ≤ t) into the network f , which has been optimized in learning task Tt.
Lemma 1. Assume that f is fed the data of task Tt (q < t), then f can effectively overcomes
catastrophic forgetting if

zlq,q ≈ zlq,t, ∀q ≤ t (15)

holds for l ∈ {1, 2, ..., L}.

Lemma 1 suggests that f can overcome catastrophic forgetting if the output of f to previous tasks
is invariant. In the following, we prove that LcSP achieves approximate invariance to the output of
previous tasks.

Proof. Suppose q = t− 1. When l = 1, xl
q,t = xl

q,q . Then

zlq,t = xl
q,t(W

l
q +∆W l

t )P
l
q

= xl
q,tW

l
qP

l
q + xl

q,t∆W l
tP

l
q

= zlq,q + xl
q,t∆W l

tP
l
q.

(16)

Let glt denote the gradient when training the network on task Tt. In backpropagation, ∆W l
t = gltP

l
t .

Then xl
q,t∆W l

tP
l
q = xl

q,tg
l
tP

l
tP

l
q . If the inter-task coherence µ(P l

t , P
l
q) ≈ 0, then P l

tP
l
q ≈ 0.

Projectors satisfying this condition can be found by LcSP. We can prove that zlq,q ≈ zlq,t holds for all
layers by repeating the above process.

This proof can also be generalized to any previous task Tq .

Plasticity Analysis. Let g̃lt = gltP
l
t denote the projected gradient at W l

t . f can achieve optimal loss
on task Tt if ⟨glt, g̃lt⟩ > 0 holds for each l ∈ {1, . . . , L}, where ⟨·, ·⟩ represents the inner product.
Here, we prove that ⟨glt, g̃lt⟩ > 0 holds for each l ∈ {1, . . . , L}.
Proof. Let g̃lt = gltP

l
t denote the projected gradient, we have

⟨glt, g̃lt⟩ = gtg̃
l
t⊤ = gltO

l
tO

l
t

⊤
glt

⊤

= ⟨gltOl
t, g

l
tO

l
t⟩ = ∥gltOl

t∥ > 0.
(17)

Note that ∥gltOl
t∥ is always positive unless gltO

l
t is 0. This result is easy to generalize to each layer.

5 EXPERIMENTS

In this section, we evaluate our approach on several popular continual learning benchmarks and com-
pare LcSP with previous state-of-the-art methods. The result of accuracy and forgetting demonstrate
the effectiveness of our LcSP, especially when the number of tasks is large.

5.1 BENCHMARKS

We evaluate the effectiveness of our algorithms in several widely used continuous learning datasets:
Permuted MNIST, Rotated MNIST, Split CIFAR100, and Split miniImageNet. The Permuted MNIST
dataset is derived from MNIST LeCun (1998) by randomly permuting the image pixels with different
seeds for different tasks. The Rotated MNIST dataset is another variation of MNIST that rotates
the images by a random angle between [0, π] for each task. For both Permuted MNIST and Rotated
MNIST, we generate 10 sequential tasks with 10 classes each. The Split CIFAR100 dataset is obtained
by dividing CIFAR100 into 20 tasks, where each task contains five randomly selected classes (without
replacement) from the total of 100 classes. The Split miniImageNet dataset, used in Chaudhry et al.
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Table 1: The average accuracy and forgetting results of the proposed LcSP and baselines.

Methods Permuted MNIST Rotated MNIST Split CIFAR100 Split miniImageNet

A(%) F A(%) F A(%) F A(%) F

EWC Kirkpatrick et al. (2017) 89.97 0.04 92.68 0.03 68.80 0.02 52.01 0.12
A-GEM Chaudhry et al. (2018b) 83.56 0.14 93.36 0.02 63.98 0.15 57.24 0.12
ER-Res Chaudhry et al. (2019) 87.24 0.11 94.16 0.01 71.73 0.06 58.94 0.07
HAT Serra et al. (2018) - - - - 72.06 0.00 59.78 0.03
OWM Zeng et al. (2019) 90.71 0.01 93.35 0.01 50.94 0.30 - -
GPM Saha et al. (2021) 93.91 0.03 95.22 0.01 72.48 0.00 60.41 0.00
Adam-NSCL Wang et al. (2021) - - - - 75.95 0.04 63.27 0.06
TRGP Saha et al. (2021) 96.34 0.01 96.79 0.01 74.46 0.01 61.78 0.01
ORTHOG-SUBSPACE Chaudhry et al. (2020) 93.43 0.02 94.46 0.01 64.30 0.07 51.40 0.10

LcSP (ours) 95.16 0.02 96.12 0.01 76.47 0.00 67.90 0.00

Table 2: Total training time measured on a single GPU after learning all the tasks. The training time
is normalized with respect to the value of GPM. We refer Saha et al. (2021) for a specific value.

Methods Training Time [s]

Permuted MNIST Split CIFAR100 Split miniImageNet

EWC Kirkpatrick et al. (2017) 2.63 1.76 1.22
A-GEM Chaudhry et al. (2018b) 1.82 3.48 2.19
ER-Res Chaudhry et al. (2019) 1.06 1.49 0.82
HAT Serra et al. (2018) - 1.62 0.90
OWM Zeng et al. (2019) 6.77 2.41 -
Adam-NSCL Wang et al. (2021) - 1.20 1.51
ORTHOG-SUBSPACE Chaudhry et al. (2020) 1.72 1.90 3.69
TRGP Saha et al. (2021) 3.03 3.36 4.39
GPM Saha et al. (2021) 1.00 1.00 1.00

LcSP (ours) 0.90 0.71 0.95

(2018b), is created by splitting 100 classes of miniImageNet into 20 sequential tasks with 5 classes
each. In addition, we conducted fair comparison experiments using the same settings on the longer
Permuted MNIST (containing 150 tasks) and Permuted CIFAR10 (containing 64 tasks). Compared
to baselines, we verified that LcSP is better able to maintain the learning capability on long task
sequences.

5.2 BASELINES

We compare the proposed method with several state-of-the-art approaches that consider sequential
task learning in fixed network architecture. These approaches include GOP-based methods, such
as Orthogonal Weight Modulation (OWM) Zeng et al. (2019), Adam-NSCL Wang et al. (2021),
Gradient Projection Memory (GPM) Saha et al. (2021), Trust Region Gradient Projection (TRGP)
Lin et al. (2022) and ORTHOG-SUBSPACE Chaudhry et al. (2020), regularization-based methods,
such as HAT Serra et al. (2018) and Elastic Weight Consolidation (EWC) Kirkpatrick et al. (2017),
and replay-based methods, such as Experience Replay with reservoir sampling (ER-Res) Chaudhry
et al. (2019) and Averaged GEM (A-GEM) Chaudhry et al. (2018b).

5.3 IMPLEMENTATION DETAILS

For experiments on Permuted MNIST, we use a fully connected network with two hidden layers,
each of which is with 256 neurons, by utilizing ReLU activations. Consistent with GPM, we use a
5-layer AlexNet Krizhevsky et al. (2012) for experiments on CIFAR100 and a standard ResNet18
for experiments on miniImageNet. For experiments on MNIST, all tasks share the same classifier.
For experiments on CIFAR and miniImageNet, each task requires a task-specific classifier. For all
experiments, LcSP does not use episodic memory to store data samples for data replay. For all
methods, we use Stochastic Gradient Descent (SGD) uniformly. The learning rate is set to 0.01 for
experiments on MNIST and 0.003 for experiments on CIFAR and ImageNet. Both λ and γ in Eq. (12)
are set to 1. All experiments were run five times with five different random seeds.

5.4 MAIN RESULTS

Permuted MNIST and Rotated MNIST. In this experimental setup, a single-head classifier is
employed for all tasks. HAT and Adam-NSCL are excluded from the comparison as require a
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Figure 1: (a) and (b) show the average accuracy and forgetting of the last 10 tasks on Permuted
MNIST when learning 150 tasks. (c) and (d) show the average accuracy and forgetting of the last 5
tasks on Permuted CIFAR10 when learning 64 tasks.
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Figure 2: The accuracy of the last task on Permuted MNIST (left) and Permuted CIFAR10 (right),
respectively.

separate classifier for each task. Tab. 3 presents that LcSP obtained competitive results on MNIST.
LcSP outperformed other baselines while was slightly inferior to TRGP, with average accuracies of
95.16% and 96.12%, respectively. We found that LcSP outperformed other methods mainly due to
its hierarchical projection mechanism, which effectively minimized task interference. Moreover, by
keeping the projectors with low coherence, LcSP could utilize the network capacity more efficiently.
However, LcSP also had some limitations. It did not apply projection to the classification layer, which
resulted in more severe forgetting on this layer compared to TRGP. Although LcSP was exceeded by
TRGP in average accuracy, it had a considerably shorter training time than TRGP, as shown in Tab. 2,
which made LcSP more efficient and practical in comparison.

Split CIFAR100. In this experiment, we adopted the multi-head setup, which enabled us to compare
with HAT and Adam-NSCL. As shown in Tab. 3, LcSP outperformed all baselines, achieving an
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average accuracy of 76.47%, exceeding the baselines by 23.53% ∼ 0.52%, and marginally surpassing
Adam-NSCL. Moreover, our results showed that LcSP achieved zero forgetting. This was explained
by two factors. First, by using the distinct classification heads for each task, LcSP avoided forgetting
on the classification layer. Second, due to the ample network capacity to accommodate all tasks,
LcSP did not need to compromise some stability for plasticity.

Split miniImageNet. In this experiment, we assessed the effectiveness of our algorithm on a deeper
network (standard ResNet18). Tab. 3 shows that our method achieved a remarkable improvement in
average accuracy over the baseline methods, from 15.89% to 4.53%. This indicates that LcSP has
good scalability on deep neural networks and can be applied to large datasets and more complex
tasks.

Comparisons of Learning 150 Tasks and 64 Tasks. To demonstrate the promising advantage of the
proposed methods in learning a long sequence of tasks, the following experiments compare the results
with 64 tasks and 150 tasks. Note that, in Fig. 1, LcSP (orthogonal) is a variant that uses orthogonal
projectors, while LcSP (low-coherence) uses low-coherence projectors. Figs. 1(a) and 1(b) report the
average accuracy and forgetting of the last 10 tasks, with learning 150 tasks on Permuted MNIST.
Figs. 1(c) and 1(d) report the average accuracy and forgetting of the last 5 tasks with learning 64
tasks on Permuted CIFAR10. The average accuracy of all methods, except LcSP (low-coherence),
dramatically declines or remains low as the number of tasks increases. Furthermore, it can be seen
from Fig. 1(d) that all methods except ORTHOG-SUBSPACE have almost no forgetting. This result
indicates that methods using orthogonal projectors gradually lose their learning capacity with the
increasing number of tasks. The proposed method uses the low-coherence projector to relax the
orthogonal constraint, effectively solving this problem.

Efficiency Analysis. To evaluate the practicality of the LcSP, we measured the total training time of
all algorithms on a single GPU, normalized by the time of GPM. As shown in Tab. 2, the proposed
LcSP trains faster than all baselines on MNIST and Split CIFAR100, and slightly slower than HAT
and ER-Res on Split miniImageNet. The main reasons why LcSP training is faster than other GOP-
based baselines are as follows. Firstly, LcSP uses dimensionally aligned projectors to project features,
which is faster than manual projection of gradients (e.g. Adam-NSCL, GPM, and TRGP) during
backpropagation. Secondly, LcSP trains the network parameters directly in Euclidean space, whereas
ORTHOG-SUBSPACE trains the network parameters on Stiefel manifolds. This makes LcSP faster
than ORTHOG-SUBSPACE, especially on deep neural networks. Thirdly, in contrast to TRGP which
uses the post-projection gradient length to calculate task correlation and trust region projections,
LcSP only needs to calculate the coherence of the projectors to evaluate task coherence. Since the
number of parameters of the projectors is much smaller than the number of parameters of the model,
LcSP can be trained faster than TRGP.

5.5 ABLATION STUDIES

Learning Capacity Degradation in Gradient Orthogonal Projection. To further investigate
the learning capacity degradation problem, we give the accuracy of baselines for the last task on
Permuted MNIST and Permuted CIFAR10. As shown in Fig. 2, all baselines, except LcSP, suffer
from this problem with different degrees and show some decrease in accuracy compared to the initial
(66.16% ∼ 24.63% on Permuted MNIST and 24.8% ∼ 3.48% on Permuted CIFAR10). These
results suggest that learning capacity degradation is the critical factor that results in degrading the
performance of GOP-based methods in the case of a large number of tasks.

6 CONCLUSION

This paper experimentally observes that GOP methods in continual learning suffer from the learning
capacity degradation problem. Specifically, the performance of the GOP methods on new tasks
gradually decreases as the number of tasks increases. This paper proposed a novel method, namely
LcSP, to address this problem. Instead of learning in orthogonal subspace, LcSP projects features and
gradients via low-coherence projectors to minimize inter-task and intra-task coherence. Extensive
experiments show that our approach works well in alleviating forgetting and has a significant
advantage in maintaining learning capacity, especially in learning long-sequence tasks. In future
work, the LcSP can be extended to more continual learning methods, and improve the learning
capability of DNN models with larger number of tasks.
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A APPENDIX

In this section, we provide supplementary ablation experiments and numerical analysis to support our main
findings. Moreover, we also present the comparison results of LcSP and the baseline methods in terms of
inference speed. Finally, we summarize the two algorithmic procedures of LcSP, which are based on hierarchical
projection and GPM respectively.
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Figure 3: The average accuracy and forgetting of the last 20 tasks on Permuted MNIST (left) and
Permuted CIFAR10 (right). The x-axis shows the number of tasks learned and y-axis represents the
corresponding average accuracy and forgetting on the last 20 tasks.

A.1 ABLATION EXPERIMENTS AND NUMERICAL ANALYSIS

In Tab. 3, we provide the average accuracy and forgetting rate with the standard deviation values on different
datasets. Tab. 4 demonstrates the computational overhead of the low-coherence projector construction algorithm.
In Tab. 5 and Tab. 6, we provide a comparison of computational overhead for forward reasoning between LcSP
and the baseline approaches. In Tab. 7 and Tab. 8, we provide preliminary experimental results of LcSP on
ImageNet-1k.
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Figure 4: Average accuracy and forgetting for different λ and γ on Permuted MNIST. A fully
connected network with 2 hidden layers, each with 64 neurons, is used for this experiment.
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Figure 5: (a) gives the ablation study for different ranks of projectors on MNIST. (b) shows the
average rank of all projectors when the number of tasks increases. Here, the dimension m of features
is 64. (c) and (d) show accuracy and forgetting performance when columns of projectors have
different scales.

Additional results on Permuted MNIST and Permuted CIFAR10 Readers may wonder whether
our conclusion holds if we evaluate the average performance with more tasks (e.g., the average accuracy and
forgetting on the last 20 tasks). As shown in Fig.3, LcSP still outperforms all baselines with a significant
advantage. However, the phenomenon of learning capacity degradation in baselines becomes more imperceptible,
e.g., the average accuracy of OWM on Permuted CIFAR10 is consistently low, rather than significantly decreasing.
Fig. 4 gives the ablation study and shows the performance of our method with different λ and γ. When λ equals
γ, the result of average accuracy on Permuted MNIST reached the highest. Results reached the worst when
either λ or γ is equal to zero. These results indicate that both inter-task and intra-task coherence should be
minimized to solve the plasticity and stability dilemma.

Ablation Studies and Experiments for Rank and Scale Constraints. Further ablation studies and experiments
are conducted to investigate the effects of the rank and scale constraints on the expressive power (plasticity) and
stability of DNNs. The result in Fig. 5(a) suggests that projecting features or gradients into subspaces with low
dimensions (e.g., lower than 5 in Fig. 5(a) ) will decrease the expressive power of a DNN. Finally, Fig. 5(c) and
Fig. 5(d) give an ablation study for scale constraints on the projector’s columns. In Fig. 5(c) and Fig. 5(d), when
the columns of the projector have unit length, the average accuracy reaches the highest. The result gets worse
when the length of the projector’s columns is too small or too large.

A.2 ALGORITHM PSEUDO CODE

In the following, we provide pseudo-code implementations of two algorithms, i.e., the Low Coherence Projector
Construction Algorithm (shown in Algorithm 1) and the Continual Learning Algorithm with GPM based on
LcSP (shown in Algorithm 2).
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Table 3: The average accuracy and forgetting results along with the standard deviation values on
different datasets. Memory denotes whether the method is trained using a replay strategy with
episodic memory.

Methods Memory Permuted MNIST (10 tasks) Permuted MNIST (20 tasks)

Accuracy(%) Forgetting Accuracy(%) Forgetting

EWC % 89.97(±0.57) 0.04(±0.01) 92.68(±0.76) 0.03(±0.01)

AGEM ! 83.56(±0.16) 0.14(±0.01) 93.36(±0.42) 0.02(±0.01)

ER-Res ! 87.24(±0.31) 0.11(±0.01) 94.16(±0.31) 0.01(±0.01)

OWM % 90.71(±0.11) 0.01(±0.00) 93.35(±0.79) 0.01(±0.00)

GPM % 93.91(±0.16) 0.03(±0.00) 95.22(±0.23) 0.01(±0.02)

TRGP % 96.34(±0.11) 0.01(±0.00) 96.59 (±0.23) 0.01(±0.02)

ORTHOG-SUBSPACE % 93.43(±0.03) 0.02(±0.01) 94.46(±0.91) 0.01(±0.01)

LcSP % 95.16(±0.46) 0.02(±0.01) 96.12(±0.21) 0.01(±0.01)

Methods Memory Split CIFAR100 Split miniImageNet

Accuracy(%) Forgetting Accuracy(%) Forgetting

EWC % 68.80(±0.88) 0.02(±0.01) 52.01(±2.53) 0.12(±0.03)

AGEM ! 63.98(±1.22) 0.15(±0.02) 57.24(±0.72) 0.12(±0.01)

ER-Res ! 71.73(±1.19) 0.06(±0.01) 58.94(±2.92) 0.07(±0.01)

HAT % 72.06(±0.50) 0.00(±0.00) 59.78(±0.57) 0.03(±0.00)

OWM % 50.94(±0.60) 0.30(±0.01) - -
ORTHOG-SUBSPACE ! 64.3(±0.59) 0.07(±0.01) 51.4(±1.44) 0.10(±0.01)

GPM % 72.48(±0.40) 0.00(±0.00) 60.41(±0.61) 0.00(±0.00)

Adam-NSCL % 75.95 0.04 63.27 0.06

TRGP % 74.46(±0.32) 0.01(±0.00) 61.78(±0.60) 0.01(±0.01)

LcSP (ours) % 76.47(±0.36) 0.00(±0.00) 67.9(±0.40) 0.00(±0.00)

Table 4: Convergence Speed and Time Cost of Constructing Pt by Optimizing Loss Function J(Ot)
in ResNet18. The stage Represents the block structure in ResNet18.

stage1 stage2 stage3 stage4
dims 64 128 256 512
times (seconds) 0.01 0.02 0.10 1.04
iterations 15 15 19 27
cost val 3.01× 10−16 5.69× 10−14 5.97× 10−14 9.28× 10−16

grad L2 norm 6.93× 10−8 9.54× 10−7 9.78× 10−7 1.22× 10−7

Table 5: Comparison of Inference Computational Cost Based on AlexNet.
OWM GPM TRGP LcSP

FLOPs 26,676,256 23,202,880 23,284,800 27,523,680
Mean Inference Time (ms) 1.249 1.152 1.270 1.474

Table 6: Comparison of Inference Computational Cost Based on ResNet18.
Adam-NSCL ORTHOG-SUBSPACE TRGP LcSP

FLOPs 558,538,572 556,708,864 558,548,992 558,965,376
Mean Inference Time (ms) 10.089 3.957 5.335 5.893

Table 7: Performance of LcSP based on ResNet18 on ImageNet-1k: We focus on the average accuracy
and forgetting rate of the last 5 tasks of LcSP to validate whether the model can maintain learning
ability while overcoming catastrophic forgetting. There are a total of 25 tasks, each with 40 classes.

5 10 15 20 25

Average Accuracy (latest 5 tasks) 52.53 51.68 52.31 51.26 51.72
Forgetting 0.04 0.05 0.04 0.04 0.05
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Table 8: Performance of LcSP based on ResNet18 on ImageNet-1k: Here we focus on the average
accuracy and forgetting rate of the last 20 tasks of LcSP. There are a total of 100 tasks, each with 10
classes.

20 40 60 80 100

Average Accuracy (latest 20 tasks) 47.19 46.52 47.38 48.26 48.31
Forgetting 0.09 0.09 0.08 0.08 0.09

Algorithm 1 Construct the Ot on OM for Task Tt
1: function FIND_PROJECTOR(M) :
2: Input:M← {P1, . . . , Pt−1}
3: Output: Ot

4: RX(U) := normalize(X + U)
5: X0 ← random initialization on OM
6: k ← 0
7: Set tolerance error 0 ≤ E ≪ 1
8: while True do
9: G← ∇f(Xk)

10: U ← G−Xk ddiag(X
⊤
k G)

11: if ∥U∥ ≤ E then
12: break
13: end if
14: α ∈ (0, 0.5), β ∈ (0, 1)
15: t← 1
16: while J(RXk

(−t · U),M) > J(Xk,M)− α · t · ∥U∥22 do
17: t← β · t
18: end while
19: Xk+1 ← RXk

(−t · U)
20: k ← k + 1
21: end while
22: Ot = Xk

23: Return Ot

Algorithm 2 Algorithm for Continual Learning with GPM based on LcSP
1: Ml ← [], for all l = 1, 2, ..., L
2: M← {(M)lL}
3: W←W0

4: for τ ∈ 1, 2, ..., T do
5: Pτ ← FIND_PROJECTOR(M)
6: repeat
7: Bn ∼ Dtrain

τ
8: ∇WLτ ← SGD(Bn, fW)
9: ∇WLτ ← PROJECTION(∇WLτ , Pτ )

10: W←W − α∇WLτ

11: until convergence
12: Bns ∼ Dtrain

τ
13: Rτ ← forward(Bns

, fW),whereRτ = {(Rl
τ )

L
l=1}

14: for layer, l = 1, 2, ..., L do
15: R̂l

τ ← PROJECTION(Rl
τ ,M

l)

16: Ûl
τ ← SVD(Rl

τ )

17: k ← criteria(R̂l
τ ,R

l
τ , ϵ

l
th)

18: M l ←
[
M l, Û l

τ [0 : k]
]

19: end for
20: end for
21: Return fW,M
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