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ABSTRACT

Federated learning (FL) is an outstanding distributed machine learning framework
due to its benefits on data privacy and communication efficiency. Since full client
participation in many cases is infeasible due to constrained resources, partial par-
ticipation FL algorithms have been investigated that proactively select/sample a
subset of clients, aiming to achieve learning performance close to the full partici-
pation case. This paper studies a passive partial client participation scenario that
is much less well understood, where partial participation is a result of external
events, namely client dropout, rather than a decision of the FL algorithm. We cast
FL with client dropout as a special case of a larger class of FL problems where
clients can submit substitute (possibly inaccurate) local model updates. Based on
our convergence analysis, we develop a new algorithm FL-FDMS that discovers
friends of clients (i.e., clients whose data distributions are similar) on-the-fly and
uses friends’ local updates as substitutes for the dropout clients, thereby reducing
the substitution error and improving the convergence performance. A complexity
reduction mechanism is also incorporated into FL-FDMS, making it both theo-
retically sound and practically useful. Experiments on MNIST and CIFAR-10
confirmed the superior performance of FL-FDMS in handling client dropout in
FL.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning paradigm where a set of clients with de-
centralized data work collaboratively to learn a model under the coordination of a centralized server.
Depending on whether or not all clients participate in every learning round, FL is classified as ei-
ther full participation or partial participation. While full participation is the ideal FL mode that
achieves the best convergence performance, a lot of effort has been devoted to developing partial
participation strategies via client selection/sampling Karimireddy et al. (2019); Li et al. (2019a);
Yang et al. (2020); Ribero & Vikalo (2020); Chen et al. (2020a); Cho et al. (2020); Lai et al. (2021);
Wu & Wang (2022); Balakrishnan et al. (2021) due to the attractive benefit of reduced resource (i.e.
communication and computation) consumption. Existing works show that some of these partial par-
ticipation strategies Li et al. (2019a); Yang et al. (2020) can indeed achieve performance close to full
participation. Although the details differ, the principal idea of these strategies is the careful selec-
tion of appropriate clients to participate in each FL round. For example, in many cases Karimireddy
et al. (2019); Li et al. (2019a); Yang et al. (2020), clients are sampled uniformly at random so that
the participating clients form an “unbiased” representation of the whole client population in terms
of the data distribution. In others Ribero & Vikalo (2020); Chen et al. (2020a); Cho et al. (2020);
Lai et al. (2021); Wu & Wang (2022); Balakrishnan et al. (2021), “important” clients are selected
more often to lead FL towards the correct loss descending direction.

This paper studies partial participation FL, but from an angle in stark contrast with existing works.
In our considered problem, partial participation is a result of an arbitrary client dropout process,
which the FL algorithm has absolutely no control over. For example, a client may not be able to
participate (in other words, drop out) in a FL round due to, e.g., dead/low battery or loss of the
communication signal. This means that the subset of clients participating in a FL round may not be
“representative” or “important” in any sense. Note that the client dropout process by no means must
be stochastic. Does FL still work with arbitrary client dropout? How does client dropout affect the
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FL performance? How to mitigate the negative impact of client dropout on FL convergence? These
are the central questions that this paper strives to answer.

We shall note that client dropout can occur simultaneously with client selection/sampling and hence
partial participation can be a mixed result of both. As will become clear, our algorithm can be
readily applied to this scenario and our theoretical results can also be extended provided that the
client selection/sampling strategy used in conjunction has its own theoretical performance guarantee.
However, since these results will depend on the specific client selection/sampling strategy adopted,
and in order to better elucidate our main idea, this paper will not consider client selection/sampling.

Main Contributions. (1) Our study starts with a general convergence analysis for a class of FL
problems where clients can submit substitute (inaccurate) local model updates for their true local
model updates in each round. It turns out that this class of FL problems include FL with client
dropout as a special case. The main insight derived from this analysis is that the FL convergence
performance depends on the total substitution error (i.e., the difference between the true update and
its substitute) over the entire course of learning. As such, reducing the substitution error is the key
to improving the FL performance with client dropout. (2) We then introduce the notion of “friend-
ship” among clients, where clients are friends if their data distributions and hence their local model
updates are similar enough. Therefore, an intuitive idea for mitigating the impact of client dropout
is to use the local model update of a friend client (which does not drop out) as a substitute of that
of the dropout client when computing the next global model, since doing so incurs a small sub-
stitution error. (3) Although the idea sounds promising, realizing it is highly non-trivial because
the friendship is unknown. Thus, our algorithm must discover the friendship over the FL rounds
and use the discovered friends for the local model update substitution purpose. We prove that our
algorithm asymptotically achieves the same FL convergence bound when assuming that the friend-
ship is fully revealed. Furthermore, because the vanilla friends discovery mechanism can involve
a large number of model update comparison computations, we develop an improved algorithm that
significantly reduces the computational complexity. With this improvement, our algorithm is both
theoretically sound and practically useful. (4) Experiments on MNIST and CIFAR-10 confirmed
that our algorithm can significantly improve the FL performance in the presence of client dropout.

Related Work. The FedAvg algorithm is an early FL algorithm proposed in konevcny et al. (2016),
which sparked many follow-up works on FL. Early works focus on FL under the assumptions of
i.i.d. datasets and full client participation Stich (2018); Yu et al. (2019b); Wang & Joshi (2018),
and most of the theoretical works show a linear speedup for convergence for a sufficiently large
number of learning rounds. For non-i.i.d. datasets, the performance of FedAvg and its variants were
demonstrated empirically Karimireddy et al. (2019); Jeong et al. (2018); Zhao et al. (2018); Li et al.
(2020); Sattler et al. (2019), and convergence bounds were proven for the full participation case in
Karimireddy et al. (2019); Stich et al. (2018); Yu et al. (2019a); Reddi et al. (2020). With partial
client participation, the convergence of FedAvg was proven in Li et al. (2019a) for strongly convex
functions, and the convergence of a generalized FedAvg with two-sided learning rates was analyzed
in Karimireddy et al. (2019); Yang et al. (2020).

Most existing works on partial participation study strategies that proactively select or sample a subset
of clients to participate in FL. The convergence of simple strategies such as random selection has
been studied in Karimireddy et al. (2019); Li et al. (2019a); Yang et al. (2020). This analysis is
relatively easy because of the “unbiased” nature of random selection. As a more sophisticated
strategy, Cho et al. (2020) selects clients with higher local loss and proves an increased convergence
speed. However, the vast majority of client selection strategies Ribero & Vikalo (2020); Lai et al.
(2021); Wu & Wang (2022) only empirically shows the performance improvement. Very few works
studied biased client selection in FL. In Cho et al. (2022), the authors presented a convergence rate
bound under biased client selection, which contains a constant term due to the bias. In our paper,
partial participation is not a decision of the FL algorithm, and our focus is on how to mitigate the
negative impact of client dropout.

Client dropout is related to the “straggler” issue in FL, which is caused by the delayed local model
uploading by some clients. Existing solutions to the straggler issue can be categorized into the fol-
lowing three types: doing nothing but waiting McMahan et al. (2017), allowing clients to upload
their local models asynchronously to the server Wu et al. (2020); Li et al. (2019b); Xie et al. (2019);
Chen et al. (2020b), and using the stored last updates of the inactive clients to join the model aggre-
gation Yan et al. (2020); Gu et al. (2021). A straggler-resilient FL is proposed in Reisizadeh et al.

2



Under review as a conference paper at ICLR 2023

(2020) that incorporates statistical characteristics of the clients’ data to adaptively select clients.
Some other recent works Ruan et al. (2021); Yang et al. (2022) studied FL with flexible client par-
ticipation where client dropout is part of the considered scenario and provided general convergence
analysis. However, unlike our paper, these works Ruan et al. (2021); Yang et al. (2022) do not
propose mitigation schemes for client dropout.

Our proposed algorithm exploits client similarity for model substitution, which is related to clus-
tered FL Ghosh et al. (2020); Ruan & Joe-Wong (2022); Dennis et al. (2021) which clusters clients
with similar data distributions into the same group. However, our algorithm have a very different
motivation and objective. Moreover, our algorithm only requires computing pair-wise similarity,
which can be computed easily on the server, whereas clustered FL needs to identify a set of clients
belong to the same cluster, which incurs much higher computation and communication overhead.

2 FEDERATED LEARNING WITH CLIENT DROPOUT

We consider a server and a set of K clients, indexed by K = {1, ...,K}, who work together to train
a machine learning model by solving a distributed optimization problem:

min
w∈Rd

{
f(w) :=

1

K

K∑
k=1

F k(w) :=
1

K

K∑
k=1

Eξk∼Dk [F k(w; ξk)]

}
(1)

where F k : Rd → R denotes the objective function, ξk ∼ Dk represents the sample/s drawn from
distribution Dk at the k-th client and w ∈ Rd is the model parameter to learn. In a non-i.i.d. data
setting, which is the focus of this paper, the distributions Dk are different across the clients.

We consider a typical FL algorithm konevcny et al. (2016) working in the client dropout setting.
In each round t, only a subset St ⊆ K of clients participate due to external reasons uncontrollable
by the FL algorithm. We call the clients that are cannot participate or complete the task dropout
(or inactive) clients. Then, FL executes the following four steps among the non-dropout (or active)
clients in round t:

1. Global model download. Each client k ∈ St downloads the global model wt from the server.

2. Local model update. Each client k ∈ St uses wt as the initial model to train a new local model
wk

t+1, typically by using mini-batch stochastic gradient descent (SGD) as wk
t,0 = wt, w

k
t+1 =

wk
t,E , w

k
t,τ+1 = wk

t,τ − ηLg
k
t,τ ,∀τ = 1, ..., E where ξkt,τ is a mini-batch of data samples indepen-

dently sampled uniformly at random from the local dataset of client k, gkt,τ = ∇F k(wk
t,τ ; ξ

k
t,τ )

is the mini-batch stochastic gradient, ηL is the client local learning rate and E is the number of
iterations for local training.

3. Local model upload. Clients upload their local model updates to the server. Instead of uploading
the local model wk

t+1 itself, client k can simply upload the local model update ∆k
t , which is

defined as the accumulative model parameter difference as ∆k
t = −

∑E−1
τ=0 gkt,τ .

4. Global model update. The server updates the global model by using the aggregated local model
updates of the clients in St as wt+1 = wt + ηηL∆t, where ∆t := 1

St

∑
k∈St

∆k
t and η is the

global learning rate and St ≜ |St| denotes the number of the non-dropout clients.

For the main result of this paper, we consider the most general case of the client dropout process by
imposing only an upper limit on the dropout ratio. That is, there exists a constant α ∈ [0, 1) such
that (K −St)/K ≤ α. If all clients drop out in a round, then essentially the round is skipped. Later
in this paper, we will impose additional conditions on the dropout process to facilitate our theoretical
analysis. Also note that if St were a choice of the FL algorithm, then the problem would become FL
with client selection/sampling. We stress again that in our problem, St is not a choice.

3 CONVERGENCE ANALYSIS

Consider a FL round t where the set St of clients are active while the remaining set K\St of clients
dropped out. Thus, one can only use the local model updates ∆k

t of the active clients in St to
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perform global model update since the inactive clients upload nothing to the server. However, rather
than completely ignoring the inactive clients, we write the aggregate model update ∆t in a different
way to include all clients in the equation:

∆t :=
1

St

∑
k∈St

∆k
t =

1

K

∑
k∈St

∆k
t +

∑
k∈K\St

∆̃k
t

 (2)

where in the second equality we simply take ∆̃k
t = 1

St

∑
k∈St

∆k
t . In other words, although the

inactive clients did not participate in the round t’s learning, it is equivalent to the case where an
inactive client k ∈ K\St uses ∆̃k

t = 1
St

∑
k∈St

∆k
t as a substitute of its true local update ∆k

t

(which it may not even calculate due to dropout). Apparently, because ∆̃k
t ̸= ∆k

t in general, such
a substitute leads to an biased error in the global update and hence affects the FL convergence
performance.

Leveraging the above observation, we consider a larger class of FL problems that include client
dropout as a special case. Specifically, imagine that an inactive client k, instead of contribut-
ing nothing, uses a substitute ∆̃k

t for ∆k
t when submitting its local model update. Apparently,

∆̃k
t = 1

St

∑
k∈St

∆k
t is a specific choice of the substitute. We will still use the notation ∆t as the

aggregate model update with local update substitution and the readers should not be confused. Our
convergence analysis will utilize the following standard assumptions about the FL problem.
Assumption 1 (Lipschitz Smoothness). The local objective functions satisfy the Lipschitz smooth-
ness property, i.e.,∃L > 0, such that ∥∇F k(x)−∇F k(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd and ∀k ∈ K.

Assumption 2 (Unbiased Local Gradient Estimator). The mini-batch based local gradient estimator
is unbiased, i.e. Eξk∼Dk [∇F k(x; ξk)] = ∇F k(x), ∀k ∈ K.
Assumption 3 (Bounded Local and Global Variance). There exist constants ρL > 0
and ρG > 0 such that the variance of each local gradient estimator is bounded, i.e.,
Eξk∼Dk

[
∥∇F k(x; ξk)−∇F k(x)∥2

]
≤ ρ2L,∀x, ∀k ∈ K. And the global variability of the local

gradient is bounded by ∥∇F k(x)−∇f(x)∥2 ≤ ρ2G,∀x, ∀k ∈ K.

The following result on the upper bound for the τ -step SGD under full participation will be used.
Lemma 1 (Lemma 4 in Reddi et al. (2020)). For any step-size satisfying ηL ≤ 1

8LE , we have:
∀τ = 0, ..., E − 1

1

K

K∑
k=1

E[∥wk
t,τ − wt∥2] ≤ 5Eη2L(ρ

2
L + 6Eρ2G) + 30E2η2L∥∇f(wt)∥2 (3)

Several additional notations will be handy. Let ∆̄t := 1
K

∑
k∈K ∆k

t be the average local model
update assuming that all clients are active in round t and submitted their true local updates. Thus,
et := ∆t − ∆̄t represents aggregate global update error due to client dropout and local update sub-
stitution in round t. Furthermore, let ekt := ∆̃k

t −∆k
t , ∀k ∈ K\St be the individual substitution

error for an individual inactive client k in round t.
Theorem 1. Let constant local and global learning rates ηL and η be chosen as such that ηL ≤ 1

8EL

and ηηL ≤ 1
4EL . Under Assumption 1-3, the sequence of model wt generated by using model update

substitution with a substitution error sequence e0, ..., eT−1 satisfies

min
t=0,...,T−1

E∥∇f(wt)∥2 ≤
f0 − f∗
cηηLET

+Φ+Ψ(e0, ..., eT−1) (4)

where Φ = 1
c

[
5η2LEL2(ρ2L + 6Eρ2G) +

ηηLL
K σ2

L

]
, c is a constant, f0 ≜ f(w0), f∗ ≜ f(w∗), w∗ is

the optimal model and

Ψ(e0, ..., eT−1) =
1 + 3ηηLLE

cE2T

T−1∑
t=0

Et[∥et∥2] (5)

where the expectation is over the local dataset samples among the clients.
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The above convergence bound contains three parts: a vanishing term f0−f∗
cηηLET as T increases, a

constant term Φ whose size depends on the problem instance parameters and is independent of T ,
and a third term that depends on the sequence of substitution errors e0, ..., eT−1. Thus, by using
constant learning rates η and ηL and assuming that ∥et∥2 is bounded, then the convergence bound is
O(1/T )+C, where C is a constant. The key insight derived by Theorem 1 is that the FL convergence
bound depends on the cumulative substitution error

∑T−1
t=0 Et[∥et∥2]. When there is no dropout

client, namely all clients participated in every round and submitted their true local model updates,
the cumulative substitution error is 0 and hence, Ψ(e0, ..., eT−1) = 0. Thus, the convergence bound
is simply f0−f∗

cηηLET + Φ, which degenerates to the same bound established in Yang et al. (2020) for
the normal full participation case. Next, we derive a more specific bound on Ψ(e0, ..., eT−1) for
the naive dropout case where an inactive client uploads nothing to the server or, equivalently, uses
1
St

∑
k∈St

∆k
t as a substitute. The following additional assumption is needed.

Assumption 4. For any two clients i and j, the local model update difference is bounded as follows:

E[∥∆i(w)−∆j(w)∥2] ≤ σ2
i,j ,∀w (6)

where the expectation is over the local dataset samples.

Assumption 4 provides a pairwise characterization of clients’ dataset heterogeneity in terms of the
local model updates. When two clients i, j have the same data distribution, and assuming that the
min-batch SGD utilizes the entire local dataset (i.e., the local gradient estimator is accurate), then it
is obvious σ2

i,j = 0. We let σ2
P ≜ maxi,j σ

2
i,j be the maximum pairwise difference.

With Assumption 4, the round-t substitution error can then be bounded as E[∥et∥2] ≤ α2σ2
P (See

details in Appendix A.4). Plugging this bound into Ψ(e0, ..., eT−t), we have

Ψ(e0, ..., eT−1) ≤
α2σ2

P (1 + 3ηηLLE)

cE2
≜ Ψ̄ (7)

Note that Ψ̄ is a constant independent of T . This implies that, with constant learning rates ηL and η,
mint E∥∇f(wt)∥2 converges to some value at most Φ+ Ψ̄ as T →∞.

Convergence Rate: By using a local learning rate ηL ∼ O( 1√
T
) and a global learning rate η ∼ O(1),

the convergence rate can be improved to O( 1
E
√
T
) + O(E

2

T ) + O( 1
K

√
T
) + O(α

2σ2
P√

T
) + O(α

2σ2
P

E ).
Similar to the biased client selection in Cho et al. (2022), even with decaying learning rates, the
convergence bound contains a non-vanishing term (i.e., the last term) in the general case. However,
in our case, the non-vanishing term is due to replacing the model of the dropout clients with an
arbitrary model. Nevertheless, with a decreasing and vanishing dropout rate α, the last term also
vanishes and the mint E∥∇f(wt)∥2 converges to 0.

4 FRIEND MODEL SUBSTITUTION

In this section, we develop a new algorithm to reduce or even eliminate the non-vanishing term in
the convergence bound of FL with client dropout. Our key idea is to find a better substitute ∆̃k

t
for ∆k

t when client k drops out in round t in order to reduce Ψ(e0, ..., eT−1). This is possible by
noticing that σ2

i,j are different across client pairs and the local model updates are more similar when
the clients’ data distributions are more similar. Thus, when a client i drops out, one can use the
local model update ∆j

t as a replacement of ∆i
t if j shares a similar data distribution with i, or in our

terminology, j is a friend of i. We make “friendship” formal in the following definition.

Definition 1 (Friendship). Let σ2
F < σ2

P be some constant. We say that clients i and j are friends if
σ2
i,j ≤ σ2

F . Further, denote Bk as the set of friends of client k and Bk = |Bk| as the size of Bk.

Assumption 5 (Friend Presence). In any round t, for any inactive client i ∈ K\St, there exists at
least one active client j that is client i’s friend.

Assumption 5 states that using local model update of a friend to replace that of an inactive client is
feasible. Nevertheless, this assumption can be relaxed so that friends may not be present in every
round when a client drops out. We will cover the relaxed case in the supplementary material.
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Note that although such “friendship” exists among the clients, they are hidden from the FL algo-
rithm. Thus, it is not straightforward to substitute the model update of a dropout client with that
of its friends. Nevertheless, it is still useful to understand what can be achieved assuming that the
friendship information is fully revealed. The convergence bound in this non-realizable case will
serve as an optimal baseline for our algorithm to be developed.

With friend model substitution, the accumulate substitution error can be bounded as E[∥et∥2] ≤
α2σ2

F (see Appendix A.4). Substituting this bound into Ψ(e0, ..., eT−1), we have

Ψ(e0, ..., eT−1) ≤
α2σ2

F (1 + 3ηηLLE)

cE2
≜ Ψ∗ (8)

Note that Ψ∗ is still a constant independent of T but it is much smaller than Ψ̄, since typically
σ2
F ≪ σ2

P . Therefore, the convergence bound can be significantly improved if the algorithm utilizes
the friendship information.

Convergence Rate: With a local learning rate ηL ∼ O( 1√
T
) and a global learning rate η ∼ O(1),

the convergence rate can be improved to O( 1
E
√
T
) + O(E

2

T ) + O( 1
K

√
T
) + O(α

2σ2
F√

T
) + O(α

2σ2
F

E ).
The above convergence bound still has a non-vanishing constant term (i.e., the last term) in the
general case. In some special cases where σ2

F dynamically decreases over round, this term may also
vanish as T → ∞. For example, consider that clients are grouped into clusters and clients from
the same cluster have the identical data distribution. Borrowing the idea from Shi et al. (2022) on
the increasing mini-batch size, the local model update difference of two clients, i.e., σ2

i,jfrom the
same cluster also decreases with an increasing batch size B. Assuming E[∥∆i(w) − ∆j(w)∥2] ≤
σ2
F /B, ∀w, and by using the mini-batch size sequence Bt = B0t where B0 is the initial mini-batch

size, then the last term becomes O(α
2σ2

F lnT
TE ), which goes to 0 as T →∞. Therefore, the constant

term in the convergence rate is eliminated even with constant dropout rate α.

The above analysis shows that the FL convergence can be substaintially improved if the algorithm
can utilize the friendship information. Next, we develop a learning-assisted FL algorithm, called FL
with Friend Discovery and Model Substitution (FL-FDMS), that discovers the friends of clients and
use the model update of the discovered friends for substitution. We prove that FL-FDMS achieves
asymptotically the optimal error bound Ψ∗.

4.1 ALGORITHM (FL-FDMS)

In each FL round t, in addition to the regular steps in the FL algorithm described in Section 3, FL-
FDMS performs different actions depending on whether or not a client drops out. For active clients,
FL-FDMS calculates pairwise similarity scores to learn the similarity between clients. For inactive
clients, FL-FDMS uses the historical similarity scores to find active friend clients and use their local
model updates as substitutes. We describe these two cases in more detail below.

Active Clients. For any pair of active clients i and j in St. The server calculates a similarity score
ri,jt = r(∆i

t,∆
j
t ) based on their uploaded local model updates ∆i

t and ∆j
t . Many functions can be

used to calculate the score. For example, r(∆i
t,∆

j
t ) can simply be the negative model difference,

i.e., −∥∆i
t −∆j

t∥, or the normalized cosine similarity, i.e.,

r(∆i
t,∆

j
t ) =

1

2

(
⟨∆i

t,∆
j
t ⟩

∥∆i
t∥∥∆

j
t∥

+ 1

)
(9)

Because the normalized cosine similarity takes value from a bounded and normalized range [0, 1],
which is more amenable for mathematical analysis, we will use this function in this paper. Clearly, a
higher similarity score implies that the two clients are more similar in terms of their data distribution.

However, a single similarity score calculated in one particular round does not provide accurate sim-
ilarity information because of the randomness in the initial model in that round and the randomness
in mini-batch SGD for local model computation. Thus, the server maintains and updates an average
similarity score Ri,j

t for clients i and j based on all similarity scores calculated so far as follows,

Ri,j
t =


Ni,j

t−1

Ni,j
t−1+1

Ri,j
t−1 +

1

Ni,j
t−1+1

ri,jt , if i, j ∈ St
Ri,j

t−1, otherwise
(10)
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where N i,j
t is the number of rounds where both clients i and j did not drop out up to round t.

Inactive Clients. For any inactive client k, the server looks up Rk,i
t between k and every active

client i ∈ St, finds the one with the highest similarity score, denoted by ϕt(k) = argmaxi∈St
Rk,i

t ,
and uses the local model update ∆

ϕt(k)
t as a substitute for ∆k

t when computing the global update.

4.2 CONVERGENCE ANALYSIS

In this subsection, we analyze the convergence of FL-FDMS. Since Theorem 1 has already proven
the FL convergence bound depending on a general error sequence, we will focus only on bounding
Ψ(e0, e1, ..., eT−1) in our algorithm. The following additional assumptions on the dropout process
are needed.
Assumption 6 (Sufficiently Many Common Rounds). There exists a constant β ∈ (0, 1] so that for
any pair of clients i and j, N i,j

t satisfies N i,j
t ≥ βt,∀t.

We first establish a bound on the probability that ϕt(k) selected by our algorithm is not a friend
of client k. Let Et[r

i,j
t ] = µi,j be the expected similarity score between clients i and j. Thus

δk = mini∈Bk
µk,i − maxi̸∈Bk

µk,i denotes the minimum similarity score gap between a friend
client and a non-friend client. We further let δmin = mink δk for all k ∈ K.
Lemma 2. The probability that our algorithm selects a non-friend client for an inactive client in
round t is upper bounded by 2K exp

(
−βδ2mint

2

)
.

Now, we are ready to bound E∥et∥2 by using FL-FDMS. Firstly, we can show the following bound
on E∥et∥2 (see Appendix A.4):

E∥et∥2 ≤ α2

(
σ2
F + 2K exp

(
−βδ2mint

2

)
(σ2

P − σ2
F )

)
(11)

Plugging this bound into Ψ (see Appendix A.5), we have

Ψ(e0, ..., eT−1) ≤ Ψ∗ + 2KΨ̄
1− exp

(
−βδ2minT

2

)
T
(
1− exp

(
−βδ2min

2

)) (12)

Note that as T → ∞, Ψ(e0, ..., eT−1) → Ψ∗. Therefore, FL-FDMS asymptotically approaches the
convergence bound obtained in the fully revealed friendship information case.

4.3 REDUCING SIMILARITY COMPUTATION COMPLEXITY

FL-FDMS requires pairwise similarity score computation for all active clients in every round, caus-
ing a big computation burden when St is large. We now design a simple mechanism inspired by
Hoeffding races Maron & Moore (1993) to reduce the computational complexity and incorporate it
in FL-FDMS. To this end, we introduce a notion called candidate (friend) set Ckt for each client k,
which keeps the potential friend list of client k. Initially, Ckt is the entire client set K, but over time,
Ckt shrinks by eliminating non-friend clients with high probability. Thus, the server only needs to
compute the similarity score of clients in the candidate friend set of a client k and pick a client from
this set for the substitution purpose. The updating rule for Ckt is as follows. In every round t, for each
client k: (1) Find the client ϕt(k) with the highest similarity score, i.e., ϕt(k) = argmaxi∈Ct

k
Rk,i

t ;

(2) Compute the similarity score gap gk,i = R
k,ϕt(k)
t −Rk,i

t for any other client i ̸= ϕt(k), i ∈ Ckt ;
(3) Eliminate i from Ckt if gk,j ≥ Θt, namely Ckt+1 ← Ckt −{i : gk,i ≥ Θt}, where Θt is a threshold
parameter decreasing over t.

In Theorem 2, we design a specific threshold sequence Θt and prove that our convergence bound in
the previous section holds with high probability.
Theorem 2. Let δf = maxk{maxi∈Bk

µk,i −mini∈Bk
µk,i} be the maximum similarity score gap

among friends of any client, and Bmax = maxk Bk be the maximum number of friends that any

client can have. For any p ∈ (0, 1), by setting Θt =
√

2 ln(2K2TBmax)−2 ln p
βt + δf , FL-FDMS with

complexity reduction yields, with probability at least 1−p, the same bound on Ψ as in equation 69.
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Note that in order to establish the convergence bound, we used several loose bounds in the proof
of Theorem 2, thereby resulting an unnecessarily large threshold sequence Θt. In practice, the
threshold sequence Θt can be chosen much smaller than what is given in Theorem 2, and hence
non-friend clients can be eliminated more quickly with high confidence.

5 EXPERIMENTS

Setup. We perform experiments on two standard public datasets, namely MNIST and CIFAR-10,
which are widely used in FL experiments, in a clustered setting as well as a general setting, in the
case of clustered setting, the clients are grouped into clusters with an equal number of clients, and
in the case of general setting, we use a common way of generating non-i.i.d. FL dataset, the detail
settings can be found in Appendix. We compare FL-FDMS with three variants of FedAvg since in
this paper we describe FL-FDMS in the context of FedAvg.

1. Full Participation (Full). This is the ideal case where all clients participate in FL without
dropout. It is used as a performance upper-bound.

2. Client Dropout (Dropout). In this case, the server simply ignores the dropout clients and per-
forms global aggregation on the non-dropout clients.

3. Staled Substitute (Stale). Another method to deal with dropout clients is to use their last up-
loaded local model updates for the current round’s global aggregation. Such a method was also
used to deal with the “straggler” issue in FL in some previous works Yan et al. (2020); Gu et al.
(2021).
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(a) MNIST (α = 0.3)
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(b) MNIST (α = 0.5)
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(c) MNIST (α = 0.7)
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(d) CIFAR-10 (α = 0.3)
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(e) CIFAR-10 (α = 0.5)

0 100 200 300 400 500
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Full
Dropout
Stale
FDMS

(f) CIFAR-10 (α = 0.7)

Figure 1: Performance comparison on the clustered setting with various α

Performance Comparison. We first compare the convergence performance in the clustered setting
under different dropout ratio α ∈ {0.3, 0.5, 0.7}. Fig. 1 plots the convergence curves on the MNIST
dataset and the CIFAR-10 dataset, respectively. Several observations are made as follows. First,
FL-FDMS outperforms Dropout and Stale in terms of test accuracy and convergence speed, and
achieves performance close to Full in all cases. Second, FL-FDMS reduces the fluctuations caused
by the client dropout on the convergence curve. Third, with a larger dropout ratio, the performance
improvement of FL-FDMS is larger. Fourth, on more complex datasets (e.g., CIFAR-10), FL-
FDMS achieves a even more significant performance improvement.

We note that Stale is the most sensitive to the dropout ratio α and its performance degrades sig-
nificantly as α increases. This is because with a larger α, individual clients has few participating
opportunities. As a result, the staled local models become too outdated to provide useful information
for the current round’s global model updating.
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We also perform experiments in the more general non-iid case to illustrate the wide applicability of
the proposed algorithm. Fig. 7 plots the convergence curves on CIFAR-10 under the general setting.
The results confirm the superiority of FL-FDMS. However, we also note that the improvement is
smaller than that in the clustered setting. This suggests a limitation of FL-FDMS, which works best
when the “friendship” relationship among the clients is stronger.
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(a) CIFAR-10 (α = 0.3)
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(b) CIFAR-10 (α = 0.5)
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(c) CIFAR-10 (α = 0.7)

Figure 2: Performance comparison on the CIFAR-10 general setting with various α

Friend Discovery. FL-FDMS relies on successfully discovering the friends of dropout clients.
In Fig. 3, we show the pairwise similarity scores in the final learning round. In our controlled
clustered setting, 20 clients were grouped into 5 clusters, but this information was not known by
the algorithm at the beginning. As the figure shows, the similarity scores obtained by FL-FDMS
are larger for intra-cluster client pairs and smaller for inter-cluster client pairs, indicating that the
clustering/friendship information can be successfully discovered. Moreover, our experiments show
that the discovered friendship is more obvious for CIFAR-10 than for MNIST. This is likely due to
the different dataset structures and the different CNN models adopted.
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Figure 3: Pairwise similarity scores in the final
learning round.
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Figure 4: Complexity reduction on the CIFAR-
10 clustered setting (α = 0.5).

Computation Complexity. In this set of experiments, we investigate the computational complexity
of FL-FDMS with and without the complexity reduction mechanism (CR) on CIFAR-10 in the clus-
tered setting. For the complexity reduction mechanism, we use two different threshold sequences:
Θt in Theorem 2 (Case 1), and 0.5Θt (Case 2). In Fig.4, we can see that the complexity reduction
mechanism can significantly reduce the computation complexity while still achieving a similar learn-
ing performance. We also notice that a smaller threshold sequence accelerates the client elimination
process while keeping a similar learning performance.

6 CONCLUSION

This paper investigated the impact of client dropout on the convergence of FL. Our analysis treats
client dropout as a special case of local update substitution and characterizes the convergence bound
in terms of the total substitution error. This inspired us to develop FL-FDMS, which discovers
friend clients on-the-fly and uses friends’ updates to reduce the substitution errors, thereby mitigat-
ing the negative impact of client dropout. Extensive experiment results show that discovering the
client “friendship” is possible and friend clients can be a useful resort for addressing client dropout
problems.
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