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Abstract
We propose a novel dynamic asset allocation framework based on a family of
mean-variance-induced utility functions that alleviate the non-monotonicity and time-
inconsistency problems of mean-variance optimization. The utility functions are
motivated by the equivalence between the mean-variance objective and a quadratic
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utility function. Crucially, our framework differs from mean-variance analysis in that
we allow different treatment of upside and downside deviations from a target wealth
level. This naturally leads to a different characterization of possible investment out-
comes below and above a target wealth as risk and potential. Our proposed asset
allocation framework retains two attractive features of mean-variance optimization:
an intuitive explanation of the investment objective and an easily computed optimal
strategy. We establish a semi-analytical solution for the optimal trading strategy in
our framework and provide numerical examples to illustrate its behavior. Finally, we
discuss applications of this framework to robo-advisors.

Keywords Mean-risk optimization · Mean-variance · Expected utility
maximization · Portfolio choice · Risk · Potential · Robo-advising · FinTech

Mathematics Subject Classification 91G10 · 91B05 · 91B16

1 Introduction

Portfolio construction is a central issue in financial economics of interest to both
academics and practitioners. There are twomain schools of thought on how to select an
optimal investment portfolio: the mean-variance framework pioneered by Markowitz
[1] and the expected utility maximization framework justified by the von Neumann–
Morgenstern utility theorem ([2]). The two approaches differ in that themean-variance
framework seeks an optimal trade-off between risk and return, whereas the expected
utility framework searches for the investment mix that maximizes the utility function
of a rational decisionmaker. Despite itsmathematical rigor, expected utilitymaximiza-
tion has not been embraced by the investment community due to its abstract nature.
Because mean-variance optimization is intuitive and easy to implement, it is broadly
used in the investment industry. Mean-risk analysis, a generalization of mean-variance
that uses other risk measures such as Value-at-Risk (VaR) or Conditional-Value-at-
Risk (CVaR) in place of variance, has also been adopted in industry.

Although mean-variance optimization is widely used, this approach suffers from
well-known drawbacks. The most notable shortcoming of the mean-variance frame-
work is that the investor preferences are time-inconsistent and non-monotonic. In
this paper, we propose an alternative to mean-variance preferences that alleviates
these issues. We introduce a parameterized family of utility functions, motivated by
Li and Ng [3] showing that a certain quadratic utility function is equivalent to the
mean-variance objective. In our approach, we keep two attractive features of themean-
variance framework: an intuitive explanation of the objective and an easily-calculated
optimal investment strategy. A key difference between our approach and the mean-
variance framework is that our approach allows investors to treat upside and downside
deviations from a pre-determined investment target differently.

The asymmetric treatment of upside and downside deviations is important for
investors. When volatility is high, investors are likely to experience either a large
upside move or a large downside move. However, investors may not view upside and
downside moves as equally risky—upside may be characterized as the potential for
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gain and downside as undesirable losses. This idea has been recognized in the invest-
ments literature at least since Markowitz [4], who proposed using semi-variance as a
keymeasure of risk. Hogan andWarren [5], Bawa and Lindenberg [6], and Harlow and
Rao [7] expanded this idea of asymmetric risk into equilibrium asset pricing frame-
works. We will refer to risk as the possibility of falling short of an investment target
and potential as the possible outcomes exceeding the investment target. Our proposed
framework distinguishes between risk and potential, and allows the investor to treat
these quantities differently in her portfolio problem.

Our family of utility functions contains three key parameters: target wealth,
potential-aversion, and aweight parameter that captures how investors view risk versus
potential. We first derive the well-posedness conditions for the problem and provide a
semi-analytical solution under general assumptions.We then examine the effects of the
parameters on the investor’s terminal wealth, illustrating how the potential-aversion
parameter affects the terminal wealth in two numerical examples. In the first example,
we assume the underlying returns follow a lognormal distribution. In the second exam-
ple, we investigate the binomial and trinomial models. Our results show that holding
expected terminal wealth constant, reducing the potential-aversion parameter leads to
a Pareto improvement of both risk and potential.

The risk-potential framework prescribes investment decisions that retain attractive
aspects of mean-variance optimization while alleviating its drawbacks. As such, this
framework can be applied to a variety of dynamic asset allocation decisions faced by
investment managers, trading desks, financial advisors, or individual investors. Our
proposed framework has several desirable properties viewed through the lens of asset
allocation decisions. First, the framework provides an economically sound decision-
making process that encourages diversification in the sense that resulting strategies
invest across the full range of available assets. Second, the optimal investment strategy
can be calculated in a dynamic setting in a straightforwardmanner and implemented by
standard algorithms. Third, the framework allows for intuitive graphic representations
of the relationship between investor decisions and expected outcomes.

We illustrate the usefulness of our approach in an application to robo-advisors.
Robo-advisors are digital platforms that provide automated investment advice and
financial services.When settingupan accountwith a robo-advisor, an investor typically
answers a series of questions (Faloon and Scherer [8]) designed to elicit her needs and
preferences. Based on the answers, the robo-advisor offers investment choices that
best suit this particular investor. Once the investment decision has been made, the
robo-advisor then handles most future actions such as portfolio rebalancing without
much additional oversight on the part of the investor.

All robo-advisors are faced with the problem of optimal asset allocation that take
into account specific investor preferences. While the current robo-advising industry
standard uses the mean-variance framework for making investment decisions, we
argue that our mean-variance induced utility functions constitute a superior decision-
making framework compared to mean-variance. In addition to the three desirable
properties highlighted above for general asset allocation problems, our framework
offers a fourth desirable property important for robo-advisors: investor preferences
can be easily elicited through simple questionnaires.
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The remainder of this paper is organized as follows. In Sect. 2, we review
the discrete-time mean-variance problem and its equivalence to an expected utility
maximization problem with a quadratic utility function. We introduce a family of
mean-variance induced utility functions and discuss the role of targetwealth, potential-
aversion, and the weighting parameter in Sect. 3. In Sect. 4, we provide conditions for
the well-posedness of the problem and derive the optimal investment strategy. Section
5 provides an illustration of our approach when returns follows a lognormal distri-
bution, and Sect. 6 shows how our approach works in a binomial setting. Section 7
discusses potential robo-advising applications. Section 8 concludes.

2 Discrete-TimeMean-Variance Optimization Revisited

In this section, we introduce a discrete-time model for the financial market and
revisit the seminalworkofLi andNg [3] ondynamicmean-varianceportfolio selection.
There are n risky assets with random total returns and one risk-free asset having a
deterministic total return. At time zero, an investor with an initial wealth x0 joins
the market and decides how to allocate her wealth among the (n + 1) assets. She can
reallocate her wealth among the (n+1) assets at the beginning of each of the following
(T − 1) periods, where T is the time horizon of the investor. The deterministic total
return of the risk-free asset between time t and t+1 is denoted by rt � 1 and the random
total return of the risky assets by et = [e1t , · · · , ent ]′, where eit is the random total return
of the i’th asset between time t and t + 1. The total returns et , t = 0, · · · , T − 1, are
assumed to be time-independent and, for simplicity, have finite moments of all order.
The last assumption could be relaxed to square-integrability of the total returns for
most of our analysis. Assuming finite moments of all order spares us from tedious case
distinctions later on. It will be obvious under which type of preferences integrability
assumptions could be relaxed. The vector of excess returns for the time period between
t and t + 1 is defined by

Pt =
[
P1
t , P2

t , · · · , Pn
t

]′ =
[
(e1t − rt ), (e

2
t − rt ), · · · , (ent − rt )

]′
.

Weassume thatE
[
PtP′

t

]
is strictly positive definite and thus invertible.Our probability

space is endowed with the filtration generated by the process of excess returns, Ft =
σ(P0,P1, · · · ,Pt−1), and F0 is the trivial σ -algebra over �. Let Xt be the wealth
of the investor at time t and uit , i = 1, 2, · · · , n, be the dollar amount the investor
chooses to invest in the i’th risky asset for the time period between t and t + 1. The
amount invested in the risk-free asset at the beginning of time period t is then equal to
Xt − ∑n

i=1 u
i
t by the self-financing condition. To disregard investing with hindsight,

trading strategies are assumed to be adapted to the filtration (Ft )
T
t=0, but we do not

impose any further restrictions on trading. For a given initial wealth x0 and trading
strategy u = (ut )

T−1
t=0 , the wealth process is determined by

Xt+1 = rt Xt + u′
tPt , t = 0, · · · , T ,

and is an adapted stochastic process.
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A mean-variance investor seeks to determine a trading strategy which optimizes
a trade-off between mean and variance of her terminal wealth. In the discrete-time
setting studied in this paper, the mean-variance investment problem can be formulated
as follows:

sup
u=(ut )

T−1
t=0

E [XT ] − ωVar (XT )

s.t. Xt+1 = rt Xt + u′
tPt , t = 0, 1, · · · , T − 1,

(MV0(ω))

where ω > 0 represents the trade-off parameter between mean and variance. Note
ω is also called the risk-aversion parameter and varying it in (0,+∞) traces out the
efficient frontier in the mean-variance space. Li and Ng [3] showed that the discrete-
time mean-variance problem (MV0(ω)) is equivalent to the following expected utility
maximization problem in the sense that they have the same optimal investment strate-
gies,

sup
u=(ut )

T−1
t=0

E

[
−(XT − γ )2

]
,

s.t. Xt+1 = rt Xt + u′
tPt , t = 0, 1, · · · , T − 1,

(EU0(γ ))

where

γ = 1 + 2ωE[Xmv
T ]

2ω
, (1)

where Xmv
T is the terminalwealth under the optimal strategy. Based on this observation,

Li and Ng [3] solved (MV0(ω)), where dynamic programming cannot be applied
because the variance term causes the problem to be time-inconsistent, by invoking the
solution of (EU0(γ )) which is of a linear-quadratic structure.

Remark 1 A separate literature takes a different approach when investigating time-
inconsistent preferences by considering an agent who cannot pre-commit and instead
seeks to determine a subgame perfect equilibrium, see, e.g., Basak and Chabakauri
[9], Wang and Forsyth [10], Czichowsky [11], Björk and Murgoci [12], Björk et al.
[13], Chiu and Wong [14], Cong and Oosterlee [15], Van Staden et al. [16], He and
Jiang [17, 18], He and Zhou [19].

The variance induced “utility” function in (EU0(γ )) has a quadratic form. Since it is
not monotone, it does not qualify as a standard utility function. Recall that monotonic-
ity of the utility function is necessary and sufficient for the represented preferences
to be consistent with first-order stochastic dominance. Furthermore, due to an inter-
play between time-inconsistency, non-monotonicity, discontinuous asset prices, and
an incomplete financial market, (MV0(ω)) is not time-consistent in efficiency (Cui
et al. [20]). Whereas time inconsistency implies that a global optimal strategy may
fail to be locally optimal for the truncated investment problem with the original risk-
aversion parameter, time inconsistency in efficiency means that the globally optimal
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investment strategy could fail to be locally optimal for any positive risk-aversion trade-
off. When preferences are not time-consistent in efficiency, the investor could exhibit
irrational behavior in some scenarios, such as taking a position which minimizes both
the variance and the expected return. Cui et al. [20] developed a revisedmean-variance
policy which dominates the pre-committed optimal mean-variance portfolio policy—
achieving the same feasible mean-variance combinations while allowing the investor
to receive a free cash flow stream during the investment process, by relaxing the
self-financing condition and allowing investors to withdraw capital when the wealth
level exceeds a threshold value. Dang and Forsyth [21] considered semi-self-financing
mean-variance strategies for continuous time markets by using a Hamilton–Jacobi–
Bellman (HJB) equation: When the wealth level exceeds a threshold, switch to the
minimum variance policy and deposit the extra money into another separate risk-free
account.

Remark 2 Maccheroni et al. [22] took an alternative approach to amend the issue of
non-monotonicity by considering a portfolio selection problem with monotone mean-
variance preferences, represented by theminimalmonotone functional coincidingwith
mean-variance preferences on their domain of monotonicity. Strub and Li [23] showed
that the optimal strategies for the monotone and classical mean-variance preferences
coincide when asset prices are continuous. In this case, the drawbacks related to
the non-monotonicity of mean-variance preferences have no impact on investment
decisions.

3 Mean-Variance-Induced Utility Maximization Problem

The shortcomings due to the decreasing part of the quadratic “utility” function in
(EU0(γ ))motivates us to propose an amelioration to this problem.Wepropose a family
of mean-variance-induced utility functions that alleviates the non-monotonicity issue.
Our family of utility functions embeds (EU0(γ )) as a special case under parametric
restrictions. We formulate the following mean-variance-induced utility maximization
problem:

sup
u=(ut )

T−1
t=0

E
[−(|XT − γ |)α1{XT <γ } − δ(XT − γ )α1{XT �γ }

]

s.t. Xt+1 = rt Xt + u′
tPt , t = 0, 1, · · · , T − 1.

(EU1(γ, δ, α))

Let us discuss this formulation in detail. Compared with the original problem
(EU0(γ )) which was parameterized only by one parameter γ , the new formulation
now contains three parameters: γ , δ and α. γ is the target wealth of the investor and
can be directly mapped to the same parameter in (EU0(γ )). An important insight that
can be inferred from the equivalence between (MV0(ω)) and (EU0(γ )) is that a mean-
variance investor behaves like an investorwith a target wealth γ who seeks tominimize
deviations from this target. This perspective has been employed successfully in the
context of defined contribution pension schemes in Vigna [24] and in the presence of
withdrawals by Dang et al. [25]. In the case of mean-variance preferences, (1) gives us
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an explicit relation between target wealth, risk aversion, and expected terminal wealth.
It is clear that any positive risk-aversion parameter leads to γ � E[Xmv

T ]. Therefore,
any risk-averse mean-variance investor on average does not achieve the implied target
of her preferences. If the risk-aversion parameter goes to infinity, the target wealth
decreases to the terminal wealth resulting from only investing in the risk-free asset.
We thus impose the following lower bound on the target wealth

γ �
T−1∏
t=0

rt x0. (2)

Remark 3 For the time-consistent mean-variance formulation, Cong and Oosterlee
[26] computed an implied target wealth which is implicitly contained in the time-
consistent strategy and depends on the time and current wealth level. Hence the
interpretation of the mean-variance objective as a minimization problem of devia-
tions from an investment target also applies in the time-consistent formulation.

The mean-variance investor equally dislikes terminal wealth levels below the target
and terminal wealth levels above the target, a feature that strikes us as not entirely
realistic. Investors typically view investment gains and losses differently, a fact rec-
ognized at least since Markowitz [4]. This is exactly the motivation for introducing
the parameter δ, which we call potential-aversion. By introducing this parameter, we
allow the investor to distinguish between upside deviations—potential, from downside
deviations—risk.

The mean-variance investor has a potential-aversion of δ = 1 which reflects she
is as averse to outcomes above the target wealth level as she is to outcomes that
fall short of this level. A lower value of the potential-aversion parameter δ reflects
that the investor has a stronger dislike for wealth levels below the target than for
those exceeding the target. This feature does not imply the investor actively seeks
upside. For δ values between zero and one, the investor dislikes deviations above
the target level, just to a lesser extent than her dislike of deviations below. Positive
values of potential-aversion are relevant for investors that are most concerned with
not falling short of an investment target, for example because the target represents a
fixed future obligation. We will show later in Sect. 5 that at least when the distribution
of returns is lognormal, the resulting terminal wealth will simultaneously achieve a
lower expected square deviation of outcomes falling short of the target and a higher
expected square deviation of outcomes exceeding the target than the mean-variance
benchmark for any given expected wealth level. At the same time, terminal wealth
distributions corresponding to a positive potential-aversion remain close to the efficient
frontier in terms of mean-variance trade-off. Such terminal wealth distributions are
thus intuitively appealing to a large number of investors. If δ = 0, the investor is solely
concerned about her wealth levels not reaching her target. This case corresponds to
the below-target semi-variance proposed by Markowitz [4]. In particular, the family
of mean-variance induced utility maximization problems covers optimal investment
problems in which the investor looks for a minimal lower-partial moment portfolio. If
δ becomes negative, potential-aversion turns into potential-seeking behavior, and the
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investor regards wealth levels above her target as positive outcomes she desires rather
than dislikes.

As long as delta remains nonnegative, the problem remains within the realm of
convex optimization and is well-posed, i.e., its supremum is finite. The utility function
becomes non-symmetric with respect to the target wealth γ andwe can effectively flat-
ten out the decreasing part of the quadratic utility function in (EU0(γ )) by decreasing
δ ∈ (0, 1). The case with a negative potential-aversion is more delicate. The investor
actively seeks to exceed her target, and this problemmay become ill-posed, depending
on how strongly her desire to seek potential and what opportunities are being offered
by the financial market. We provide conditions for well-posedness of the problem
in Sect. 4. In this case, the problem is also non-concave, and solutions are therefore
potentially not unique. We refer to Remark 6 for a discussion and to Sect. 6 for an
example where the solution is not unique.

Finally, the parameter α, which we assume to be larger than one, is a weighting
parameter which determines how the investor views deviations of different sizes from
the target wealth γ . For larger values of α, the investor places more emphasis on larger
deviations from γ . In the case of (EU0(γ )), α = 2 corresponds to the Euclidean dis-
tance. Our framework possesses additional flexibility in allowing the value ofα to vary,
thus generalizing (EU0(γ )) along another dimension. If α = 1, the mean-variance-
induced utility function becomes piecewise-linear and the objective resembles models
of portfolio selection under loss-aversion, cf. Shi et al. [27] or Strub and Li [28].
Figure 1 illustrates the effect of the potential-aversion parameter on the shape of the
mean-variance-induced utility function.

Remark 4 We already noted that the objective is not globally concave when potential-
aversion is negative. A further interpretation of the mean-variance-induced utility
function in this case is to regard it as a Friedman–Savage-type utility for a low-income
investor, cf. Figure 2 in Friedman and Savage [29]. The inverse S-shape of this utility
function leads to risk-seeking behavior for large wealth levels, consistent with the
empirical evidence for the house money effect, see, e.g., Thaler and Johnson [30] and
Post et al. [31].

There are numerous approaches in the existing literature trying to amend the short-
comings of the mean-variance framework. However, they all focus on revising the
mean-variance objective directly, mostly by choosing an alternative risk measure.
Contemporaneous with Markowitz [1], the safety-first principle in Roy [32] aimed at
minimizing a disaster probability. Several downside risk-measures such as the semi-
variance and lower partial moments have been proposed in the literature (see [33] for
an overview). Artzner et al. [34] introduced the concept of a coherent risk measure
based on a set of axioms—variance does not satisfy any of them. Maccheroni et al.
[22] investigated the minimal monotone functional coinciding with the mean-variance
preferences on their domain of monotonicity. Our approach is different from those in
that we amend the utility function equivalent to the mean-variance objective instead
of changing the underlying preferences directly.

Our approach has several advantages, in particular with regard to our main objec-
tives of keeping the intuitive explanation of the mean-variance framework and being
able to efficiently compute an optimal investment strategy. For the first objective, it
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is simple to illustrate the equivalence between the mean-variance objective and the
setting in which the investor seeks to minimize deviations from a target wealth. For
the second objective, we will illustrate that the optimal strategy has a piecewise-
linear structure and can be easily computed. Our tractable approach distinguishes this
framework from most other approaches. Jin et al. [35] showed that an optimal solu-
tion to mean-semi-variance and general mean-downside-risk problems exists in single
period settings, but even in this static setting without time-consistency issues, it is
difficult to characterize the solution. In complete markets, Jin et al. [36] showed that
mean-downside-risk problems are generally ill-posed. Notable exceptions for mean-
risk optimization problems where one can characterize the optimal trading strategy
in incomplete discrete-time markets are the safety-first problem as shown in Li et al.
[37] and the mean-CVaR optimization problem studied in Strub et al. [38].

The framework of mean-variance-induced utility functions is time-consistent
because it is essentially an expected utility maximization problem and the tower prop-
erty of the conditional expectation holds. It is thus in particular also time-consistent
in efficiency. While the represented preferences are not monotone for positive values
of the potential-aversion δ, non-monotonicity is alleviated when compared with the
mean-variance framework and fully resolved for nonnegative or negative potential-
aversions. This is illustrated in Fig. 1.

Fig. 1 Mean-variance-induced utility functions for different values of the potential-aversion parameter
Notes This figure shows the mean-variance-induced utility function with target wealth γ = 5, weighting
parameter α = 2 for different values of the potential-aversion parameter
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4 Optimal Investment Strategy

We investigate the well-posedness conditions of the mean-variance-induced utility
maximization problem (EU1(γ, δ, α)), derive its optimal investment strategy, and
discuss the implications of parameter values on trading behavior and the terminal
wealth distribution.

We start with a change of variables in order to move the parameter γ from the
objective into the initial value. Let

Yt = ρt Xt − γ,

where ρt = ∏T−1
l=t rl and ρT = 1 denotes the terminal value of one dollar invested in

the risk-free asset at time t . Then, the new state process Y = (Yt )Tt=0 evolves according
to

Yt+1 = ρt+1Xt+1 − γ = ρt+1
(
rt Xt + P′

tut
) − γ = Yt + ρt+1P′

tut ,

which resembles the dynamics of the wealth process X = (Xt )
T
t=0. Using this change

of variables, we can transform (EU1(γ, δ, α)) into the following equivalent form

sup
u=(ut )

T−1
t=0

E
[−|YT |α1{YT <0} − δY α

T 1{YT �0}
]
,

s.t. Yt+1 = Yt + ρt+1P′
tut , t = 0, 1, · · · , T − 1,

(̃EU1(γ, δ, α))

which still depends on the target wealth γ because of its inclusion in the initial state
y0 = ρ0x0 − γ . Note that a negative YT corresponds to states in which the terminal
wealth XT falls short of the target wealth, and a positive YT corresponds to states in
which the terminal wealth exceeds the target wealth.

To build intuition, we first consider the one period optimization problem by setting
T = 1. The investor chooses u0 ∈ R

n in order to solve

sup
u0∈Rn

E

[
− ∣∣y0 + u′

0P0
∣∣α 1{y0+u′

0P0<0} − δ
(
y0 + u′

0P0
)α 1{y0+u′

0P0�0}
]
. (3)

Because of (2), y0 � 0. If this inequality is strict, i.e., the target wealth is strictly larger
than the initial wealth invested in the risk-free asset, we can write u0 = y0K0 and (3)
becomes

|y0|α sup
K0∈Rn

E

[
− (

1 + K′
0P0

)α 1{1+K′
0P0>0} − δ

∣∣1 + K′
0P0

∣∣α 1{1+K′
0P0�0}

]
. (4)

It is apparent that the optimization problem overK0 ∈ R
n now does not depend on y0

and thus not on the target wealth γ , but only on the potential-aversion δ, the weighting
parameter α, and the financial market represented by the distribution of the excess
returns P0. The following proposition gives conditions on the well-posedness of this
problem.
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Proposition 1 Assume that

max‖L‖=1
E
[− (

L′P0
)α 1{L′P0>0} − δ

∣∣L′P0
∣∣α 1{L′P0�0}

]
< 0. (5)

Then, there is an optimizer K̃0 for the optimization problem in (4) and the optimal
value of this problem is finite and negative.

Proof The objective in (4) can be written as

sup
K0∈Rn

E

[
− (

1 + K′
0P0

)α 1{1+K′
0P0>0} − δ

∣∣1 + K′
0P0

∣∣α 1{1+K′
0P0�0}

]

= sup
k>0

(
kα max‖L‖=1

E

[
−
(
1

k
+ L′P0

)α

1{L′P0> −1
k } − δ

∣∣∣∣
1

k
+ L′P0

∣∣∣∣
α

1{L′P0� −1
k }
])

.

Note that for any k � 1 and L ∈ R
n with ‖L‖ = 1,

∣∣∣∣−
(
1

k
+ L′P0

)α

1{L′P0> −1
k } − δ

∣∣∣∣
1

k
+ L′P0

∣∣∣∣
α

1{L′P0� −1
k }

∣∣∣∣

�
(
1

k
+ L′P0

)α

1{L′P0> −1
k } + |δ|

∣∣∣∣
1

k
+ L′P0

∣∣∣∣
α

1{L′P0� −1
k }

�
(
1 + L′P0

)α 1{L′P0>0} + |δ| ∣∣L′P0
∣∣α 1{L′P0�0} + 1

�1 + (1 + |δ|)
(
1 +

n∑
i=1

|Pi
t |
)α

,

which is integrable because of our assumption that total returns have finite moments
of all order. By dominated convergence and (5), the expectation converges to a strictly
negative number when k goes to infinity. Hence, we can limit ourselves to a compact
set of R

n . Further note that the objective function is continuous in K0 by another
application of dominated convergence with a similar dominating function as above.
We can thus conclude that the optimizer exists and the objective value is finite. If
δ � 0, the objective is obviously negative. If δ < 0, the objective value is negative
because, for any k > 0 and any L ∈ R

n \ {0},

E

[
−
(
1

k
+ L′P0

)α

1{L′P0> −1
k } − δ

∣∣∣∣
1

k
+ L′P0

∣∣∣∣
α

1{L′P0� −1
k }
]

�E

[
− (

L′P0
)α 1{L′P0�0} −

(
1

k
+ L′P0

)α

1{0>L′P0> −1
k } − δ

∣∣L′P0
∣∣α 1{L′P0� −1

k }
]

�E
[− (

L′P0
)α 1{L′P0�0} − δ

∣∣L′P0
∣∣α 1{L′P0�0}

]
,

(5) holds, and the objective is also negative when evaluated at K0 = 0.

Remark 5 Clearly, (5) is satisfiedwhenever potential-aversion is positive. The problem
can only be ill-posed if the investor seeks potential. For the casewith only a single risky
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asset, n = 1, (5) simplifies to the following lower bound for the potential-aversion

−δ < min

{
E
[|P0|α1{P0�0}

]

E
[
(P0)α1{P0>0}

] , E
[
(P0)α1{P0>0}

]

E
[|P0|α1{P0�0}

]
}

,

where the first term corresponds to taking a short position in the risky asset and
the second term to a long position in the risky asset. Hence, assumption (5) implies
the desire for potential must be limited by the opportunities offered in the market.
Otherwise, the investor is tempted to take an infinitely large long or short position in
the risky asset.

If we assume (5) and denote the optimizer and optimal value of problem (4) by
K̃0 and C0, respectively, then the optimal investment strategy for the single period
problem (3) is given by u∗

0 = y0K̃0 and the optimal value of this problem is C0|y0|α .
When y0 = 0, assumption (5) immediately yields the optimal investment strategy
u∗
0 = 0 ∈ R

n and the optimal value is zero, hence we solve the single-period case
completely.

The single-period solution already hints at how we can approach the multi-period
problem, as well as the structure of the optimal investment strategy and value function.
Indeed, the multi-period case can be solved using dynamic programming. If at time
T − 1 the state variable YT−1 is non-positive, we can proceed exactly as in the single-
period setting. The optimal strategy is of the form YT−1K̃T−1 and the value function
CT−1|YT−1|α for some negative constant CT−1. If the state is positive, YT−1 > 0,
we can proceed as above by writing uT−1 = YT−1KT−1 in order to separate the state
from the objective. The resulting optimization problem over KT−1 will be similar to
(4) except the weights for the positive and negative states of 1 + K′

T−1PT−1 will be
interchanged. Hence, the optimizer K̂T−1 specifying the distribution of investment
among the risky assets and the optimal value DT−1 will be different from the case of
a negative state, but the optimal investment strategy is still linear in the state variable,
uT−1 = YT−1K̂T−1, and the optimal value is given by DT−1Y α

T−1. Combining the
nonnegative and positive cases, the optimal strategy will be piecewise linear in the
following form:

uT−1 = YT−1K̃T−11{YT−1�0} + YT−1K̂T−11{YT−1>0}

and the value-to-go function is a piecewise power function with order α,

JT−1(YT−1) = CT−1|YT−1|α1{YT−1�0} + DT−1Y
α
T−11{YT−1>0}.

Note the value-to-go function is of the same form as the original objective function.
We can thus recursively determine the optimal investment proportions, strategies, and
value-to-go functions.
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Motivated by the above reasoning, we recursively define the following functions,
their optimizers, and optimal values. For fixed α � 1 and δ, let CT = −1 and
DT = −δ and define for t = T − 1, T − 2, · · · , 0,

gt (K) := E
[
Ct+1

(
1 + ρt+1K′Pt

)α 1{1+ρt+1K′Pt>0} + Dt+1
∣∣1 + ρt+1K′Pt

∣∣α 1{1+ρt+1K′Pt�0}
]
,

ht (K) := E
[
Ct+1

∣∣1 + ρt+1K′Pt
∣∣α 1{1+ρt+1K′Pt<0} + Dt+1

(
1 + ρt+1K′Pt

)α 1{1+ρt+1K′Pt�0}
]
,

(6)

where the constants Ct and Dt are the optimal values of the those functions for t =
T − 1, T − 2, · · · , 0, i.e.,

Ct = sup
K∈Rn

gt (K) and Dt = sup
K∈Rn

ht (K). (7)

The optimizers are denoted by

K̃t = arg max
K∈Rn

gt (K) and K̂t = arg max
K∈Rn

ht (K). (8)

Proposition 1 immediately extends to the dynamic setting.

Proposition 2 For t = T , T − 1, · · · , 1, we assume that

max‖L‖=1
E
[
Ct

(
L′Pt−1

)α 1{L′Pt−1>0} + Dt
∣∣L′Pt−1

∣∣α 1{L′Pt−1�0}
]

< 0. (A)

Then, the subsequent optimization problems for the functions gt−1 and ht−1 defined in
(6) are well-posed, the optimizers K̃t−1 and K̂t−1 in (8) exist, and the optimal values
(7) are finite.

Proof The proof for the problems resulting from optimizing the functions gt is exactly
as in Proposition 1. The statement for the optimization problems related to ht follows
by noting that we can always consider −L for any given L with ‖L‖ = 1 and this
reverses the sign of L′Pt .

It is clear from the recursive construction of (Ct )
T
t=0 and (Dt )

T
t=0 that both weights

on the utility function are decreasing in time, i.e., Ct � Ct+1 and Dt � Dt+1 for
t = 0, · · · , T − 1. Hence, assumption (5) becomes increasingly hard to hold when
going backwards in time. While it is difficult to obtain analytical expressions for
(Ct )

T
t=0 and (Dt )

T
t=0 in general, the intuition provided in Remark 5 still holds: The

problem can only be ill-posed if the investor seeks potential, and, in this case, the
desire for potential must be limited by the opportunities offered by the market.

Remark 6 While Proposition 1 and Proposition 2 establish existence of the solutions
to (4) and (8), respectively, obtaining conditions for uniqueness when δ < 0 and the
objective is thus non-concave remains an open problem. We refer to Sect. 6 for an
example where the solution is not unique in binomial and trinomial models of the
financial market. In the case that the solution is not unique, we suggest to select the
solution with smallest Euclidean norm.
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Summarizing the arguments of this section leads to the following theorem, which
characterizes the optimal investment strategy for the mean-variance-induced utility
maximization problem.

Theorem 1 Assumeassumption (A) holds for t = T , T−1, · · · , 1and let the recursive
constants (Ct )

T
t=0 and (Dt )

T
t=0 be given by (7) and let (K̃t )

T−1
t=0 and (K̂t )

T−1
t=0 be given

by (8). The optimal investment strategy for (EU1(γ, δ, α)) is

ut = (ρt Xt − γ ) K̃t1{ρt Xt−γ�0} + (ρt Xt − γ ) K̂t1{ρt Xt−γ>0}

for t = 0, 1, · · · , T − 1 and the value-to-go function of this problem is

Jt (Xt ) = Ct |ρt Xt − γ |α 1{Yt�0} + Dt (ρt Xt − γ )α 1{Yt>0}

for t = 0, 1, · · · , T .

Remark 7 A similar result of a piecewise linear optimal strategy in the current wealth
and a value-to-go function which has two parts with different weights was obtained in
the context of discrete-timemean-variance optimization under no-shorting constraints
in Cui et al. [39] and later generalized for mean-variance optimization with cone
constraints byCui et al. [40].Different fromour setting,mean-variance problemsunder
constraints are always well-posed because they can be embedded into an expected
utility maximization problem with a utility function which is bounded from above.

Mean-variance optimization is a special case of our framework. In the mean-
variance case, potential-aversion is δ = 1 and the weighting parameter α = 2. Then,
CT = DT = −1 and thus gT−1(K) = hT−1(K) for all K ∈ R

n . It follows by back-
ward induction that gt = ht , K̃t = K̂t and Ct = Dt < 0 for t = T − 1, · · · , 0 and
we can solve the optimization problems of gt = ht explicitly as they reduce to

min
Kt∈Rn

E

[(
1 + ρt+1K′

tPt
)2]

,

whose solution can easily be derived to be

K̃mv
t = K̂mv

t = − 1

ρt+1
E
[
PtP′

t

]−1
E[Pt ].

We are thus able to recover the optimal strategy for the discrete-time mean-variance
problem first derived in Li and Ng [3],

umv
t = − (ρt Xt − γ )

1

ρt+1
E
[
PtP′

t

]−1
E[Pt ].
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5 An Example with Lognormal Returns

The previous sections establish the basic properties and theoretical foundations of
mean-variance-induced utility functions. In this section, we illustrate the behavior of
our proposed asset allocation framework with a numerical example. Assuming log-
normal returns is a common assumption in finance, see for example the widely used
options pricingmodel of Black and Scholes [41].While we do not make use of particu-
lar properties of the lognormal distribution other than being absolutely continuous and
having finite moments of all order, assuming lognormal returns allows us to explore
the merits and pinpoint unique aspects of our framework in a familiar setting.

Let the cumulative return process, (et )
T−1
t=0 , follow a multivariate lognormal distri-

bution. For the ease of illustration, we let returns in each period t to be independent and
identically distributed. This example serves to illustrate the effect of the model param-
eters on the optimal terminal wealth distribution for the mean-variance induced utility
function. It also demonstrates that the optimal investment strategy can be computed
numerically for one of the most popular distributions of asset returns and discusses
some potential difficulties for numerical computations of optimal strategies. Our set-
ting follows the example in Li and Ng [3]. This example became a benchmark example
studied in numerous follow-up work due to the impact of that paper. An investor with
initial wealth x0 seeks to determine the mean-variance optimal strategy in a multi-
period market with T = 4. The risk-free asset offers a return of rt = 1.04 each period.
There are three risky assets, denoted by A, B and C , whose returns have the following
mean and covariance matrix:

E[et ] = E

⎡
⎣
⎛
⎝
eAt
eBt
eCt

⎞
⎠
⎤
⎦ =

⎛
⎝
1.162
1.246
1.228

⎞
⎠ and Cov(et ) =

⎛
⎝
0.014 6 0.018 7 0.014 5
0.018 7 0.085 4 0.010 4
0.014 5 0.010 4 0.028 9

⎞
⎠ .

(9)

Note that while the mean and the covariance matrix of the excess returns are sufficient
to determine the optimal solution for the classical mean-variance problem, the specific
distribution matters for the mean-variance-induced utility maximization problem. In
order to solve (8) numerically, we simulate 1 000 000 random numbers for lognor-
mally distributed returns given the above mean and covariance. In our analysis, we
focus on the impact of the potential-aversion δ, for which we consider the following
values: δ ∈ {1, 0.5, 0.05, 0,−10−10}. We fix the weighting parameter at α = 2 for an
easy comparison to the mean-variance framework. The calculated optimal investment
proportions, (K̃t )

T−1
t=0 and (K̂t )

T−1
t=0 , are given in Table 1.

Recall that K̃t corresponds to the optimal investment proportions among the risky
assets when the current wealth is below the discounted target wealth. As δ decreases,
the investor prefers investing more in the two riskier assets B and C while keeping the
amount invested in the safer asset A roughly constant, when the current wealth does
not exceed the discounted target wealth. To better understand this result, we split up
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Table 1 Numerically computed optimizers of gt and ht

t = 0 t = 1 t = 2 t = 3

δ = 1 K̃0 =
⎛
⎝

−0.34
−0.56
−1.98

⎞
⎠ K̃1 =

⎛
⎝

−0.36
−0.58
−2.06

⎞
⎠ K̃2 =

⎛
⎝

−0.37
−0.60
−2.19

⎞
⎠ K̃3 =

⎛
⎝

−0.39
−0.62
−2.22

⎞
⎠

K̂0 =
⎛
⎝

−0.34
−0.56
−1.98

⎞
⎠ K̂1 =

⎛
⎝

−0.36
−0.58
−2.06

⎞
⎠ K̂2 =

⎛
⎝

−0.37
−0.60
−2.19

⎞
⎠ K̂3 =

⎛
⎝

−0.39
−0.62
−2.22

⎞
⎠

δ = 0.5 K̃0 =
⎛
⎝

−0.35
−0.60
−2.12

⎞
⎠ K̃1 =

⎛
⎝

−0.34
−0.63
−2.25

⎞
⎠ K̃2 =

⎛
⎝

−0.38
−0.67
−2.36

⎞
⎠ K̃3 =

⎛
⎝

−0.38
−0.71
−2.52

⎞
⎠

K̂0 =
⎛
⎝

−0.35
−0.52
−1.84

⎞
⎠ K̂1 =

⎛
⎝

−0.35
−0.53
−1.90

⎞
⎠ K̂2 =

⎛
⎝

−0.39
−0.54
−1.93

⎞
⎠ K̂3 =

⎛
⎝

−0.39
−0.55
−1.97

⎞
⎠

δ = 0.05 K̃0 =
⎛
⎝

−0.33
−0.78
−2.72

⎞
⎠ K̃1 =

⎛
⎝

−0.32
−0.85
−3.00

⎞
⎠ K̃2 =

⎛
⎝

−0.36
−0.95
−3.29

⎞
⎠ K̃3 =

⎛
⎝

−0.35
−1.05
−3.65

⎞
⎠

K̂0 =
⎛
⎝

−0.35
−0.40
−1.46

⎞
⎠ K̂1 =

⎛
⎝

−0.36
−0.39
−1.44

⎞
⎠ K̂2 =

⎛
⎝

−0.39
−0.38
−1.40

⎞
⎠ K̂3 =

⎛
⎝

−0.39
−0.37
−1.37

⎞
⎠

δ = 0 K̃0 =
⎛
⎝

−0.29
−1.15
−3.97

⎞
⎠ K̃1 =

⎛
⎝

−0.29
−1.19
−4.12

⎞
⎠ K̃2 =

⎛
⎝

−0.34
−1.25
−4.26

⎞
⎠ K̃3 =

⎛
⎝

−0.32
−1.30
−4.46

⎞
⎠

K̂0 =
⎛
⎝
0
0
0

⎞
⎠ K̂1 =

⎛
⎝
0
0
0

⎞
⎠ K̂2 =

⎛
⎝
0
0
0

⎞
⎠ K̂3 =

⎛
⎝
0
0
0

⎞
⎠

δ = −10−10 K̃0 =
⎛
⎝

−0.29
−1.15
−3.97

⎞
⎠ K̃1 =

⎛
⎝

−0.29
−1.19
−4.12

⎞
⎠ K̃2 =

⎛
⎝

0.34
−1.25
−4.26

⎞
⎠ K̃3 =

⎛
⎝

−0.32
−1.30
−4.46

⎞
⎠

K̂0 =
⎛
⎝

−0.47
0.49
2.45

⎞
⎠ K̂1 =

⎛
⎝
0.26
1.17
0.97

⎞
⎠ K̂2 =

⎛
⎝
0.29
1.21
0.92

⎞
⎠ K̂3 =

⎛
⎝
0.35
1.20
0.64

⎞
⎠

Notes the table shows the numerically computed optimizers gt and ht defined in (6) based on simulation of
1 000 000 lognormal random numbers. The risk-free return is rt = 1.04 and the mean and covariance of
the three risky returns are given in (9)

the mean-variance optimal investment proportions by risky asset,

K̃A
0 = K̂A

0 =
⎛
⎝

−0.34
0
0

⎞
⎠ , K̃B

0 = K̂B
0 =

⎛
⎝

0
−0.56

0

⎞
⎠ , K̃C

0 = K̂C
0 =

⎛
⎝

0
0

−1.98

⎞
⎠ .

We also observe similar values for K̃t and K̂t at t = 1, 2, 3. We then simulate trading
under these strategies and consider in what percentage of scenarios the terminal wealth
exceeds the target wealth and lies in the region of the mean-variance induced utility
function influenced by the value of the potential-aversion parameter. If we would trade
according to K̃A

t and K̂A
t , none of the 1 000 000 simulated scenarios would exceed the

target wealth. When trading according to K̃B
t and K̂B

t , 0.15% of scenarios exceed the
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target wealth. When trading according to K̃C
t and K̂C

t , 23.31% of scenarios exceed the
target wealth. Because lowering potential-aversion δ results in a smaller aversion to
scenarios exceeding the target wealth, it is not surprising that the investment in assets
B and C increases, while the investment in asset A remains roughly constant.

Remark 8 The following observations holds in general:When the return distribution is
concentrated around a moderate mean return, then the effect of the potential-aversion
parameter on the optimal strategy is negligible. Indeed, when starting from a wealth
level below the discounted target wealth, one can only enter the region of the utility
function above the target wealth when 1 + ρt+1K′

tPt < 0 at some time t , which is
very unlikely to happen if the return distribution is concentrated around a moderate
mean return.

When the current wealth exceeds the target wealth and so the investor allocations
in the risky assets follow K̂t , lowering the potential-aversion parameter δ reduces
the absolute amount invested in assets B and C . Note that as long as there is pos-
itive potential-aversion, the investor shorts the risky assets when the target wealth
is exceeded and thus in effect follows a strategy with a negative expected return.
Lowering δ thus alleviates this undesirable investment behavior. When there is zero
potential-aversion, the investor stops investing in risky assets as soon as her current
wealth exceeds the discounted target wealth. This is intuitive: when a terminal wealth
with maximal utility can be reached, there is no reason to risk falling back into the
region below the target wealth where utility is strictly lower. When potential-aversion
is negative, the investor seeks outcomes above the target wealth rather than avoiding
them. The optimal strategy achieves a positive expected return independent of whether
current wealth is above or below the discounted target wealth.

Remark 9 The seeming discontinuity of K̂t as a function of potential-aversion δ around
δ = 0 is due to the sensitivity to outliers in the numerical simulation. Moreover, the
numerical values for the case δ = −10−10 are not robust and should be taken with
caution. The reason for this is the same as for Remark 8: K̂t is chosen in maximizing
an objective of the following form:

ht (K) := E
[
Ct+1

∣∣1 + ρt+1K′Pt
∣∣α 1{1+ρt+1K′Pt<0} + Dt+1

(
1 + ρt+1K′Pt

)α 1{1+ρt+1K′Pt�0}
]
.

However, the event 1{1+ρt+1K′Pt<0} happens only for a small number of scenarios, in
particular when ‖K‖ is small. In contrast, ‖Ct+1‖ is large compared to ‖Dt+1‖ when
δ is a small negative number such as δ = −10−10. The objective function thus gives
a large relative weight to a small number of extreme scenarios, thereby making the
optimizer sensitive to outliers.

We next turn our attention to the distribution of the terminal wealth for differ-
ent target wealth and potential-aversion parameters. In the classical mean-variance
framework, there is an explicit relationship between target wealth and expected termi-
nal wealth given in (1). When the potential-aversion parameter is smaller than one, the
investor dislikes large wealth levels exceeding the target wealth less than the mean-
variance investor and thus generally achieves a higher expected terminal wealth than
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a mean-variance investor with the same target wealth. In order to better compare two
different investors and isolate the effect of potential-aversion, we choose the target
wealth for the investor with a lower potential-aversion such that this investor achieves
the same expected terminal wealth as the corresponding mean-variance investor. This
allows us to compare the resulting terminal wealth distributions from several different
perspectives: We consider the trade-offs between mean and standard deviation, mean
and lower standard deviation, mean and upper standard deviation, lower and upper
standard deviation, mean and risk andmean and potential. The corresponding frontiers
are shown in Fig. 2.

We arrange the coordinates in Fig. 2 such that the further northwest the frontier
generated by the strategy optimal for a given potential-aversion δ, the more desirable
that particular strategy is. As one would expect, the mean-standard deviation frontier
shown in Fig. 2(a) shows that the mean-variance optimal strategy with a potential-
aversion of one achieves the best mean-standard deviation trade-off. Lowering the
potential-aversion parameter results in a slightly worsemean-standard deviation trade-
off as long as potential-aversion remains positive, and a considerably worse trade-off
if the potential-aversion parameter is zero or negative. In Fig. 2(b) and 2(c), we split
the standard deviation in a lower part and an upper part, corresponding to outcomes
below and above the mean. Interestingly, in terms of mean-lower standard deviation
trade-off, lowering the aversion to potential improves the performance as long as
potential-aversion is positive, whereas a non-positive aversion to potential still results
in amarkedly larger risk for the same expectedwealth. In terms ofmean-upper standard
deviation, the lower the potential-aversion the better the performance. If an investor
regards lower standard deviation as risk and upper standard deviation as potential,
lowering the potential-aversion δ results in both less risk and more potential as long
as δ remains positive, and a much larger potential at the expense of larger risk when
it is zero or negative. In Fig. 2(d), we plot the upper versus lower standard deviation
and observe that lowering δ results in a better trade-off between these two measures.

Finally, we plot expected wealth against two new deviation measures, riskRγ (X)

and potential Pγ (X):

Rγ (X) :=
√

E
[
(X − γ )2 1{X�γ }

]
and Pγ (X) :=

√
E
[
(X − γ )2 1{X�γ }

]
.

The two measures compute the square root of the average squared distance of
outcomes below and above the target wealth. These two measures can be motivated by
the embedding of the mean-variance problem into the expected utility maximization
problem (EU0(γ )), which reveals that a mean-variance investor seeks to minimize
deviations from the target wealth γ . From this perspective of a target wealth, falling
short of the target is perceived as risk, while exceeding the target is regarded as
potential. Figures 2(e) and 2(f) show that a lower aversion to potential improves the
performance in terms of both risk and potential.

The skewness of the terminal distribution does not depend on the target wealth, but
only on the potential-aversion. This is not surprising because skewness is normalized
by the standard deviation. Table 2 shows that the skewness of the terminal distribution
increases from being strongly negative for the mean-variance investor to strongly pos-
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Fig. 2 Statistics of terminal wealth distributions optimal for varying potential-aversion parameters.
Notes This figure shows the statistics of terminal wealth distributions optimal for varying potential-aversion
parameters δ based on 1 000 000 sample paths. The risk-free return is rt = 1.04 and the three risky returns
are assumed to follow a lognormal distribution with mean and covariance given in (9)

itive for an investor which is potential-seeking as the parameter of potential-aversion
decreases. The exception to this observation is δ = 0, which leads to a smaller skew-
ness than δ = 0.05. When δ = 0, it is optimal to refrain from investing in the risky
assets once the investor’s wealth exceeds the target. Therefore, the investor’s portfolio
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Table 2 Skewness of the terminal distribution

δ = 1 δ = 0.5 δ = 0.05 δ = 0 δ = −10−10

Skew
(
Xγ,δ
T

)
−1.750 1 −0.907 6 2.299 2 1.635 1 3.005 4

Fig. 3 Histograms of terminal wealth distributions optimal for varying potential-aversion parameters.
Notes This figure shows the histograms of the terminal wealth distributions optimal for varying potential-
aversion parameters δ based on 1 000 000 sample paths. The expected terminal wealth of each distribution
is 1.93. The risk-free return is rt = 1.04 and the three risky returns are assumed to follow a lognormal
distribution with mean and covariance given in (9)

contains a smaller allocation to risky assets for δ = 0 than those of δ = 0.05 or
δ = −10−10.

Figure 3 shows the histograms of terminal wealth based on 1 000 000 sample
paths for varying potential-aversion parameters δ. The target wealth γ is selected
such that the expected terminal wealth remains constant at 1.93. This figure confirms
and illustrates the main intuitions we discussed: Decreasing the potential-aversion
parameter δ leads to a higher standard deviation, and this higher standard deviation is
mostly driven by a larger upper standard deviation.

Remark 10 The findings of this section are robust with respect to both the market
parameters and the distribution of the returns, as long as the return distribution is
continuous (the discrete case is discussed in the following Section 6) and not concen-
trated around a moderate mean return, in which case Remark 8 would apply. We refer
to Strub [42] for further numerical examples with multivariate lognormal, multivariate
normal, and multivariate t-distributions.
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6 Binomial and Trinomial Models

The numerical illustration in the previous section, which assumes a lognormal
return distribution, is also applicable to other continuous return distributions. We
further demonstrate the usage of our proposed asset allocation framework in a setting
where the distribution is discrete. Possibly the most popular discrete process used to
describe asset return dynamics is the binomial model (Cox and Ross [43], Cox et al.
[44]), which assumes that there are only two potential outcomes for a given risky asset.
Although conceptually simple, the binomial model can be generalized to approximate
complex return distributions by allowing the number of time periods to increase.

In this section, we study the framework of mean-variance induced utility maxi-
mization in a binomial model with one risky asset and later extend this setting to a
special case of the trinomial model. The simple settings allow us to derive analytical
results that can be compared to the observations we made for the lognormal case in
Sect. 5. We find that the implications for risk, potential, and asset allocation decisions
are qualitatively unchanged whether the underlying return distribution is discrete or
continuous.

We assume that rt = 1 for t = 0, 1, · · · , T − 1 and consider one risky asset whose
return et takes either the value ũ > 1 with probability p ∈ (0, 1) or the value d̃ < 1
with probability 1− p. Let u = ũ − 1 and d = d̃ − 1 denote excess returns. As in the
previous section, we set the weighting parameter α = 2, corresponding to the classical
mean-variance case, and we investigate the impact of potential-aversion δ. Given the
model parameters, the investor needs to find the optimizers gt and ht from (6) and
compute the recursively constants (Ct )

T
t=0 and (Dt )

T
t=0 in (7) in order to determine

the optimal strategy (see Theorem 1). In the binomial case, assumption (A) simplifies
to

Ct+1 pu
2 + Dt+1(1 − p)d2 < 0 and Dt+1 pu

2 + Ct+1(1 − p)d2 < 0, (10)

for t = T , T − 1, · · · , 1, and the functions gt and ht take the following forms:

gt (K ) = p
(
Ct+1 (1 + Ku)2 1{1+Ku>0} + Dt+1 (1 + Ku)2 1{1+Ku�0}

)

+ (1 − p)
(
Ct+1 (1 + Kd)2 1{1+Kd>0} + Dt+1 (1 + Kd)2 1{1+Kd�0}

)
,

ht (K ) = p
(
Ct+1 (1 + Ku)2 1{1+Ku<0} + Dt+1 (1 + Ku)2 1{1+Ku�0}

)

+ (1 − p)
(
Ct+1 (1 + Kd)2 1{1+Kd<0} + Dt+1 (1 + Kd)2 1{1+Kd�0}

)
.

When K < −1/u, the well-posedness condition (10) implies
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g′
t (K ) = 2K

(
Dt+1 pu

2 + Ct+1(1 − p)d2
)

+ 2 (Dt+1 pu + Ct+1(1 − p)d)

> −2

u

(
Dt+1 pu

2 + Ct+1(1 − p)d2
)

+ 2 (Dt+1 pu + Ct+1(1 − p)d)

= 2Ct+1(1 − p)d(−d

u
+ 1)

> 0.

Hence, no admissible K < −1/u maximizes gt when (10) holds. One similarly finds
that g′

t (K ) < 2Ct+1 pu(−u/d + 1) < 0 when K > −1/d and hence K̃t must be in
[−1/u,−1/d]. Solving the first-order condition yields

K̃ b
t = − pu + (1 − p)d

pu2 + (1 − p)d2
= − E[Pt ]

E[P2
t ] = K̃ b,mv

t .

We add here the superscript b to indicate the optimality for the binomial market. Note
that because Yt+1 = Yt (1 + K̃t Pt ) will remain negative in all states of the world, the
investor will trade exactly like a mean-variance investor independently of δ. Hence,
in a binomial market, the potential-aversion parameter is only required to determine
whether the problem is well-posed, but otherwise has no influence on the optimal
asset allocation decision. This result is an extreme version of the observation we made
in Remark 8—potential-aversion has little influence on the optimal trading strategy
when the distribution is concentrated around a modest average return.

Remark 11 Bäuerle and Grether [45] showed that complete markets do not allow free
cash flow streams. In the notation of this paper, free cash flow streams appear when
the auxiliary state Yt becomes positive. In this sense, our finding constitutes a special
case of their more general result on free cash flows.

In order to study the effect of varying potential-aversion parameter values, we
expand the binomial model to a trinomial setting in which there is a small probability
of obtaining a large gain. We first fix the parameter values p, u, d for the binomial
model and assume that (10) holds as well as that

pu + (1 − p)d > 0 and Dt+1 pu
2 + Ct+1(1 − p)d2 > Ct+1 pu

2 + Dt+1(1 − p)d2.
(11)

The first inequality simply says that the risky asset offers a positive expected excess
return and assures that the investor takes a long position in the risky asset when her
wealth lies below the target wealth. The second inequality assures that she still takes a
long position in the risky asset when Dt+1 is positive and her current wealth is above
the target wealth. When (10) holds and Dt+1 > 0, it is straightforward to show that
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ht (K ) has two local maxima given by

K̂ b,1
t = − Ct+1 pu + Dt+1(1 − p)d

Ct+1 pu2 + Dt+1(1 − p)d2
< −1

u
,

K̂ b,2
t = − Dt+1 pu + Ct+1(1 − p)d

Dt+1 pu2 + Ct+1(1 − p)d2
> − 1

d

and that K̂ b
t = K̂ b,2

t when (11) holds. When Dt+1 < 0, we have

K̂ b
t = − pu + (1 − p)d

pu2 + (1 − p)d2
= − E[Pt ]

E[P2
t ] = K̂ b,mv

t ,

as before. When Dt+1 = 0 the optimizer of ht is not unique. Following the suggestion
in Remark 6, we take K̂ b

t = 0 in this case, which is always optimal.
We extend the binomial model to a trinomial model by assuming that the excess

return can take the values w, u and d with probability ε, p(1− ε) and (1− p)(1− ε),
respectively. The interpretation is that there is a small probability ε for a large excess
return

w >
pu2 + (1 − p)d2

pu + (1 − p)d

of the risky asset. The probability ε is assumed to be small enough such that

K̃t (δ) = − Dt+1εw + Ct+1 p(1 − ε)u + Ct+1(1 − p)(1 − ε)d

Dt+1εw2 + Ct+1 p(1 − ε)u2 + Ct+1(1 − p)(1 − ε)d2
∈
(

−1

u
, K̃ b

t

)
,

K̂ a
t (δ) = − Ct+1εw + Dt+1 p(1 − ε)u + Dt+1(1 − p)(1 − ε)d

Ct+1εw2 + Dt+1 p(1 − ε)u2 + Dt+1(1 − p)(1 − ε)d2
∈
(

−1

u
,− 1

d

)
,

in which case K̃t is the optimizer of gt and K̂ a
t is the optimizer of ht when Dt+1 < 0.

If Dt+1 is zero we again take K̂t = 0 following Remark 6. When Dt+1 > 0, the
optimizer of ht is given by

K̂ s
t (δ) = − Dt+1εw + Dt+1 p(1 − ε)u + Ct+1(1 − p)(1 − ε)d

Dt+1εw2 + Dt+1 p(1 − ε)u2 + Ct+1(1 − p)(1 − ε)d2
> − 1

d
.

The superscripts a and s indicate potential aversion and potential seeking, respec-
tively, and we wrote K̃t (δ) and K̂t (δ) in order to emphasize the dependence on δ as
a preference parameter in contrast to the dependence on the market parameters ε, p
and w, u, d.
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Let us now consider the case of two trading periods (T = 2). We first compute the
recursive constants starting from C2 = −1 and D2 = −δ. We then have

C1 =
(

δεw2 + p(1 − ε)u2 + (1 − p)(1 − ε)d2
)−2

×
(

− εδ (p(1 − ε)u(u − w) + (1 − p)(1 − ε)d(d − w))2

− p(1 − ε) (δεw(w − u) + (1 − p)(1 − ε)d(d − u))2

− (1 − p)(1 − ε) (δεw(w − d) + p(1 − ε)u(u − d))2
)

.

To compute D1, we distinguish the cases δ > 0, δ = 0 , and δ < 0. When δ > 0,
K̂ a
1 (δ) maximizes h1 and thus

Da
1 =

(
εw2 + δ p(1 − ε)u2 + δ(1 − p)(1 − ε)d2

)−2

×
(

− εδ2 (p(1 − ε)u(u − w) + (1 − p)(1 − ε)d(d − w))2

− δ p(1 − ε) (εw(w − u) + δ(1 − p)(1 − ε)d(d − u))2

− δ(1 − p)(1 − ε) (εw(w − d) + δ p(1 − ε)u(u − d))2
)

.

When δ = 0, then clearly D1 = 0. Lastly, when δ < 0, K̂ s
1(δ) maximizes h1 and thus

Ds
1 =

(
δεw2 + δ p(1 − ε)u2 + (1 − p)(1 − ε)d2

)−2

×
(

− εδ (δ p(1 − ε)u(u − w) + (1 − p)(1 − ε)d(d − w))2

− δ p(1 − ε) (δεw(w − u) + (1 − p)(1 − ε)d(d − u))2

− δ2(1 − p)(1 − ε) (εw(w − d) + p(1 − ε)u(u − d))2
)

.

If we plug C1 and Da
1 , respectively, D

s
1, back into K̃0(δ) and K̂ a

0 (δ), respectively,
K̂ s
0(δ), we obtain an analytical solution for the optimal trading strategy. The optimal

terminal wealth can then be expressed explicitly as

X2(γ, δ) = γ + (x0 − γ )S(δ),

where

S(δ) := (
1 + K̃0(δ)P0

) (
1 + (

K̃1(δ)1{P0∈{u,d}} + K̂1(δ)1{P0=w}
)
P1
)
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denotes the random component of the optimal terminal wealth. Note that S(δ) is
independent of the initial and target wealth levels and only depends on the potential-
aversion andmarket parameters. Given a target wealth γ1 for amean-variance investor,
we can compute the corresponding target wealth γ (δ) for an investor with lower
potential-aversion which achieves the same expected terminal wealth by

γ (δ) = 1

E [S(δ)]

(
x0 (E [S(1)] − E [S(δ)]) + γ1 (1 − E [S(1)])

)
.

In particular, since γ1 is directly related to the expected terminal wealth of the mean-
variance investor via (1), see also equation (26) in Li and Ng [3], we can determine
γ (δ) explicitly in order to achieve a target expected wealth. Note that, whereas we
can explicitly express the variance of the optimal terminal wealth as Var(X2(δ)) =
(x0 − γ (δ))2 Var (S(δ)), the expressions for the upper- and lower-standard deviation
depend on a cumbersome case distinction for the market parameters. We thus instead
focus on an explicit numerical example to analyze the effect of different degrees
of potential-aversion on the distribution of the terminal wealth. In contrast to the
lognormal case, all values can now be computed explicitly and do not rely on a random
number generator. We consider a market where w = 0.7, u = 0.1, d = −0.1 and
ε = 0.05, p = 0.6.

Figure 4 shows the mean-risk and potential-mean frontiers for varying potential-
aversionparameters δ.Weconsider the samevalues for δ as inSect. 5with the exception
of the negative value. Since returns are bounded, we choose a smaller negative δ to
better illustrate the results. The figure confirms the finding of the previous section,
namely that for a given expected terminal wealth level, lowering the potential-aversion
achieves simultaneously a lower risk and higher potential. The performance with
respect to the mean-standard deviation trade-off decreases only minimally as long as
potential-aversion is nonnegative but is considerable once it becomes negative mainly
because of larger upper standard deviation. This is not surprising since there is only
one risky stock and two trading periods. We refrain from plotting the mean-standard
deviation frontier because the numerical differences are too small and a figure would
thus not add any further insight.

7 Applications to Robo-Advising

Robo-advisors are digital wealth management services primarily targeted at retail
investors. They represent a rapidly growing part of the wealth management industry
with over 290 million investors and over $1367 billion assets under management as of
2021 ([46]). In China alone, robo-advisors currently manage over $91 billion of over
170 million investors ([47]).

All robo-advisors face an important problem: how to choose a decision-making
framework to manage clients’ assets. The current industry practice implicitly assumes
that investors are mean-variance optimizers (Beketov et al. [48], D’Acunto et al. [49],
Betterment [50], Wealthfront [51]). The mean-variance framework has some distinct
advantages relevant for robo-advising applications. The framework has an intuitive
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Fig. 4 Mean-risk and potential-mean frontiers of the terminal wealth distributions optimal for varying
potential-aversion parameters δ in a trinomial model

appeal and is easy to understand, and the investment performance can be illustrated in
terms ofmean-variance diagrams.However, time-inconsistency and non-monotonicity
of the mean-variance allocations are serious drawbacks. Surprisingly, there are so far
only few related papers discussing the asset allocation aspect of robo-advising and
proposing alternatives or amendments to the classical mean-variance setting. Cap-
poni et al. [52] incorporated dynamically evolving and stochastic risk preferences of
a client which are only communicated to the robo-advisor at specific times into a
discrete-time mean-variance objective. They introduced a measure of portfolio per-
sonalization and characterize an optimal interaction frequency that balances a trade-off
between uncertainty about the risk preferences of the agent and behavioral biases the
agent has when communicating with the robo-advisor. Dai et al. [53] considered the
mean-variance criterion for log-returns studied in Dai et al. [54] for robo-advising
applications in continuous-time models. This framework notably does not suffer from
time-inconsistency and does not short a risky asset with positive expected excess
returns. Liang et al. [55] proposed to utilize the framework of predictable forward
performance processes (Angoshtari et al. [56], Strub and Zhou [57]) to model prefer-
ences of clients of robo-advisors and determine an optimal interaction schedule that
balances a trade-off between increasing uncertainty about the client’s beliefs on the
financial market and an interaction cost.

We provide a complementary perspective to existing works studying alternatives
to the mean-variance framework in the robo-advising setting. The framework of
mean-variance induced utility functions we introduced can be a viable alternative
to mean-variance optimization used by robo-advisors. Our earlier analysis show our
approach contains several desirable features for dynamic asset allocation problems.
First, the framework puts forward an economically sound decision-making process
that encourages diversification as the optimal strategies invest across the full range of
available assets. The mean-variance induced utility functions overcome the issue of
time-inconsistency and alleviate the non-monotonicity that make the mean-variance
framework less economically appealing. Second, the optimal investment strategy can
be readily computed in a dynamic setting. This feature has been clearly demonstrated
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in Sects. 5 and 6 for two simple models for the financial market, and it can be extended
tomore complex settings. Third, our framework allows for simple and intuitive graphic
representations, such as Fig. 2, of the relationship between investor preferences and
expected investment outcomes. These illustrations can help robo-advisors and their
clients better understand the consequences of their decisions.

In order to use our proposed framework for investment decisions, the robo-advisor
must elicit investor preferences. Although they are not a perfect tool, questionnaires
have been commonly used to elicit investor preferences (Barsky et al. [58], Holt and
Laury [59]). They are also primarily used by robo-advising firms to evaluate the
risk preference of investors, see Alsabah et al. [60], which is also the first paper to
study algorithmic aspects of robo-advising and employ machine learning methods
to estimate investor risk preferences. For example, Wealthfront asks how investors
would react to significant losses implied by a market decline and whether they are
more concerned with maximizing gains, minimizing losses, or both equally.

One further advantage of the framework ofmean-variance-induced utility functions
is that its key parameters, i.e., the target wealth γ and potential-aversion δ, can be
elicited through simple questions once theweighting parameter is set to the benchmark
value of α = 2. First, the client is asked to communicate her wealth target to the robo-
advisor. This step determines γ . Second, the robo-advisor elicits the potential-aversion
parameter δ. To facilitate the client’s choice of the potential-aversion parameter, the
robo-advisor illustrates its effect on resulting wealth distributions by exposing the
client to the six diagrams in Fig. 2 and the histogram in Fig. 3. A larger potential-
aversion reflects a client that cares less about overshooting the targetwealth and instead
places more importance on not falling short of it. This may be appropriate in cases
where the client has a fixed future obligation such as a tuition payment or a down
payment on a house. In other cases, for example for general long-term investing,
the client might prefer positively skewed distributions that offer high potential. In
such cases, a smaller or even negative potential-aversion parameter might be more
appropriate.

8 Conclusion

In this paper, we introduce a family of mean-variance-induced utility functions
which retain two attractive features of the mean-variance framework—an intuitive
explanation of the objective and an easily-calculated optimal investment strategy. The
utility functions are parameterized by a target wealth, a potential-aversion parameter,
and a weighting parameter. Unlike the classical mean-variance objective, this frame-
work naturally leads to time-consistent optimal strategies. Furthermore, issues related
to non-monotonicity are alleviated with decreasing potential-aversion and completely
resolved for non-positive values of potential-aversion. This framework naturally leads
to two measures of deviation from a target wealth level: risk—the average weighted
outcomes below the target wealth, and potential—the average weighted outcomes
above the target wealth. Our numerical examples in a lognormal setting and the bino-
mial model setting show that a lower potential-aversion parameter is associated with
better portfolio performance in risk and potential, holding expected terminal wealth
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constant. We also illustrate how our framework is applicable to robo-advisors, and we
develop an algorithm to elicit investor preferences.

In exploring our framework through the lognormal and binomial examples, we
deliberately construct two contrived settings to clearly show the implications of our
approach. One potentially interesting future research direction is to investigate our
framework under more general assumptions about the underlying returns process. For
example, it would be intriguing to see an asset allocation exercise involving a more
complex returns process that incorporate empirical regularities such as time-series
predictability or common factors. Richer asset price dynamics may allow for a more
in-depth analysis of our framework compared to alternative approaches.

Our proposed framework can be applied to other investments or portfolio alloca-
tion settings. It may be fruitful to explore a dynamic multi-asset portfolio optimization
problems using our family of asymmetric utility functions, which can provide a com-
plementary perspective to existing papers that derive asset pricing equilibriummodels
using asymmetric preferences. Another potentially interesting idea is to calibrate our
model using market data. The calibrated model parameters may reveal valuable infor-
mation about investor behavior. We leave these questions to future research.
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