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Abstract
Classifier-free guidance (CFG) has emerged as a
pivotal advancement in text-to-image latent diffu-
sion models, establishing itself as a cornerstone
technique for achieving high-quality image syn-
thesis. However, under high guidance weights,
where text-image alignment is significantly en-
hanced, CFG also leads to pronounced color dis-
tortions in the generated images. We identify
that these distortions stem from the amplifica-
tion of sample norms in the latent space. We
present a theoretical framework that elucidates
the mechanisms of norm amplification and anoma-
lous diffusion phenomena induced by classifier-
free guidance. Leveraging our theoretical insights
and the latent space structure, we propose an An-
gle Domain Guidance (ADG) algorithm. ADG
constrains magnitude variations while optimizing
angular alignment, thereby mitigating color dis-
tortions while preserving the enhanced text-image
alignment achieved at higher guidance weights.
Experimental results demonstrate that ADG sig-
nificantly outperforms existing methods, generat-
ing images that not only maintain superior text
alignment but also exhibit improved color fidelity
and better alignment with human perceptual pref-
erences.

1. Introduction
The Stable Diffusion series (Rombach et al., 2022; Esser
et al., 2024), along with other latent-diffusion-based genera-
tive models (Ramesh et al., 2022; Labs, 2024), has revolu-
tionized text-to-image generation and related downstream
tasks (Zhang et al., 2023; Zhao et al., 2024; Zhang et al.,
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2024). These models operate by performing diffusion in the
latent space, which is then decoded into the image space, ef-
fectively transforming textual descriptions into high-quality
images with intricate details and compelling visual effects.
A key component of this process is the Classifier-Free Guid-
ance (CFG) mechanism (Ho & Salimans, 2021), which
enhances generation quality through linear extrapolation of
the conditional score function with a guidance weight.

Despite its effectiveness, CFG introduces several challenges.
Research has shown that increasing the guidance weight im-
proves text alignment but at the cost of reduced sample diver-
sity (Ho & Salimans, 2021). More critically, when the guid-
ance weight surpasses a certain threshold, the quality of the
generated images deteriorates significantly, leading to a loss
of detail and overall visual degradation. Theoretically, this
phenomenon may be attributed to the non-commutativity
between the tilting process, driven by the conditional like-
lihood, and the noise addition process (Wu et al., 2024;
Chidambaram et al., 2024). This non-commutativity results
in a deviation of the CFG-generated samples from the tar-
get distribution, manifesting as performance degradation,
particularly at high guidance weights.

Several approaches have been proposed to mitigate these
issues. Techniques such as variable weighting schemes and
additional Langevin sampling iterations have been intro-
duced to counteract the decline in image quality (Chung
et al., 2025; Xia et al., 2024; Bradley & Nakkiran, 2024;
Sadat et al., 2025). While these methods have shown some
efficacy in reducing quality degradation for specific tasks,
they remain constrained by their reliance on a linear combi-
nation of conditional score functions. This linear framework
limits their ability to maintain generation quality, highlight-
ing the need for a more comprehensive solution.

In this paper, we first observe that higher guidance weights
are associated with larger sample norms in latent space,
leading to high image saturation and color distortion. We
then provide a theoretical analysis of the CFG mechanism,
demonstrating that the linear extrapolation of the score func-
tion inevitably causes norm amplification and anomalous
diffusion behavior. Building on this analysis, we propose
an Angle Domain Guidance (ADG) algorithm, inspired by
the high-dimensional Gaussian assumption in latent space
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Figure 1. Comparison of ADG and CFG using the same random seed with the prompt ”A bathroom with a toilet and a bathtub.” At low
guidance weights, ADG accurately aligns with the prompt, while CFG fails to do so. At high guidance weights, ADG remains stable,
whereas CFG suffers from abnormal saturation and color distortion.

inherent in variational autoencoders. The ADG algorithm
transforms the score function into an expectation over a
time-dependent distribution, which is then enhanced in the
angular domain before being re-mapped back into the score
function for diffusion. Experimental results on the COCO
dataset demonstrate that the ADG algorithm outperforms
the baseline, particularly in generating images that are better
aligned with textual descriptions, underscoring its potential
to overcome the limitations of existing methods. The imple-
mentation is available at github.com/jinc7461/ADG.

2. Background
2.1. Conditional Diffusion Model

Diffusion models are composed of two fundamental pro-
cesses: a forward process that gradually transforms the
target distribution into Gaussian noise, and a reverse pro-
cess that reconstructs the target distribution from the noise
distribution (Song et al., 2021b). The forward process is
governed by the following stochastic differential equation
(SDE):

dxt = f(xt, t)dt+ g(t)dw, x0 ∼ p0(·|c), (1)

where w denotes the Wiener process, and p0(·|c) represents
the conditional target distribution, with c denoting a con-
dition (such as text in text-to-image models). Specifically,
p0(·|∅) represents the unconditional distribution.

In this work, we adopt the widely used Variance Preserving
(VP) SDE (Song et al., 2021b) for the forward process:

dxt = −β(t)

2
xtdt+

√
β(t)dw, x0 ∼ p0(·|c), (2)

where the dynamics ensure that pT approximates a standard
Gaussian distribution for sufficiently large T . The transition
distribution of xt conditioned on x0 is given by:

xt|x0 ∼ N (
√
ᾱtx0, β̄tI), (3)

where ᾱt = exp
(∫ t

0
−β(τ) dτ

)
and β̄t = 1− ᾱt.

The reverse process, which reconstructs the target distribu-
tion, corresponds to the time-reversed SDE:

dx̃t =

[
−β(t)

2
x̃t − β(t)∇x̃t

log pt(x̃t|c)
]
dt+

√
β(t)dw̃,

(4)
where w̃ represents the reverse Wiener process, pt is the
distribution of xt in (2), and ∇ log pt is referred to as the

2

https://github.com/jinc7461/ADG


Angle Domain Guidance: Latent Diffusion Requires Rotation Rather Than Extrapolation

score function. Alternatively, the sampling process can be
described by the following reverse-time ordinary differential
equation (ODE):

dx̄t =

[
−β(t)

2
x̄t −

β(t)

2
∇x̄t

log pt(x̄t|c)
]
dt, (5)

which eliminates the stochastic noise sampling during the
process, making it more commonly used in practice.

According to classical results from probability theory (An-
derson, 1982), if the reverse-time process—either SDE or
ODE—is initialized with qT = pT , then the marginal dis-
tributions match at all times, i.e., qt = pt for all t ∈ [0, T ].
Consequently, if it is possible to sample from pT and ob-
tain the score function ∇x log pt(x|c) for different times t,
one can generate samples from the target distribution p0 by
discretizing either (4) or (5).

Since the score function ∇x log pt(x|c) is generally in-
tractable and pT is approximated as a standard Gaussian
distribution, practical first-order discretization methods for
(4) and (5) correspond to the DDPM sampler (Ho et al.,
2020) and DDIM sampler (Song et al., 2021a), respectively:

xt−∆t =

√
ᾱt−∆t

ᾱt
xt +

(
1− ᾱt

ᾱt−∆t

)
sθ(xt, t, c)

+

√
1− ᾱt

ᾱt−∆t
η, (6)

xt−∆t =

√
ᾱt−∆t

ᾱt
xt +

1

2

(
1− ᾱt

ᾱt−∆t

)
sθ(xt, t, c),

(7)

where sθ(xt, t, c) is a neural network trained to approxi-
mate the score function, η ∼ N (0, I), and xT ∼ N (0, I).

To enhance the stability of neural network training, in prac-
tice, the network is trained to approximate −

√
β̄t∇ log pt

by ϵθ, rather than directly approximating ∇ log pt by sθ.
This approach mitigates numerical instabilities and im-
proves convergence during training.

2.2. Classifier-Free Guidance

While the theoretical foundations of vanilla conditional sam-
pling based on diffusion models are well-established, di-
rectly using (4) or (5) for generation often results in low-
quality outputs (Ho & Salimans, 2021). To address this
limitation, the Classifier-Free Guidance (CFG) technique
was introduced. CFG aims to sample from a modified dis-
tribution p0,ω(x) ∝ p0(x)p

ω(c|x), which represents the
unconditional data distribution tilted by the conditional like-
lihood. Using Bayes’ theorem, this distribution can be re-
formulated as:

p0,ω(x) ∝ p1−ω
0 (x)pω0 (x|c),

and the gradient of the log-probability becomes:

∇ log p0,ω(x) = (1− ω)∇ log p0(x) + ω∇ log p0(x|c).

Inspired by this formulation, the Classifier-Free Guidance
(CFG) method replaces the score function ∇x̄t

log pt(x̄t|c)
with a weighted combination of the unconditional and con-
ditional score functions, denoted as scfg,ω(x̄t, t, c), defined
as:

scfg,ω(x̄t, t, c) = (1− ω)∇x̄t log pt(x̄t|∅)
+ ω∇x̄t log pt(x̄t|c), (8)

in the reverse process. For the ODE sampler, this process
can be expressed as:

dx̄t = [−x̄t − scfg,ω(x̄t, t, c)] dt. (9)

In the above equation, ω, referred to as the guidance weight,
quantifies the strength of the tilting toward the conditional
distribution which is always bigger than 1. However, due
to the non-commutativity of the tilting process with the
forward process, for any t > 0,

∇ log pt,ω(x) ̸= scfg,ω(x, t, c), (10)

where pt,ω(x) is the distribution of xt in (2) with p0(·|c)
replaced by pt,ω. This discrepancy implies that CFG does
not strictly correspond to a sampling process targeting p0,ω
as the true target distribution.

3. Revisiting Classifier-Free Guidance
3.1. Norm Amplification in CFG

While Classifier-Free Guidance (CFG) effectively addresses
the limitations of vanilla conditional diffusion models, it
introduces notable side effects. Specifically, increasing the
guidance weight has a significant impact on the generated
samples: they exhibit larger ℓ2-norms, and the correspond-
ing decoded images show higher saturation levels, often
accompanied by distortion. Figure 2 illustrates this phe-
nomenon, depicting how the ℓ2-norm of x0 varies with
changes in the guidance weight, and the relationship be-
tween the latent variable norm and image saturation.

This phenomenon can be understood through the interplay
between the conditional and unconditional distributions.
When CFG operates on a conditional probability distribution
that aligns with the ”surface” of the unconditional distribu-
tion, the generated samples tend to deviate further from the
overall distribution, resulting in larger norms. To formalize
this, we consider the case of a Gaussian mixture model:

p0(x) =

C∑
c=1

πcN (x|µc, I), (11)
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where πc denotes the mixing coefficient satisfying∑C
c=1 πc = 1, and the conditional distribution is given

by:
p0(x|c) = N (x|µc, I).

Definition 3.1 (surface class). A class c∗ is a surface class
if there exists a hyperplane defined by w⊤x+ b = 0 such
that w⊤µc∗ + b = 0, and for all c ̸= c∗, (w⊤µc + b) <
0, indicating that µc lies strictly on the same side of the
hyperplane and w points to the outer side of the uncoditional
distribution.

We focus on a surface class c∗, defined as a class whose
mean µc∗ lies at a vertex of the polytope formed by
{µc}Cc=1. This concept is formalized in Definition 3.1.

2.a Latent Variable Norm with Different Guidance Weights

2.b Relationship Between Latent Variable Norm and Image
Saturation

Figure 2. Average latent variable norm (ℓ2) and image saturation
under different guidance weights using CFG with SD3.5 (d=38).
Prompts are randomly selected from 100 samples in the COCO
dataset. As the guidance weight increases, the norm of the hidden
space samples generated by the CFG algorithm increases, which
leads to oversaturation of the corresponding images.

Samples generated by CFG diffusion (9) are more likely to

move toward the outer regions of the distribution compared
to samples generated by standard conditional diffusion (5).
This tendency is captured in Theorem 3.2, which quantifies
the norm amplification effect.

Theorem 3.2 (Norm amplification). For the same initial
point xT , let x̂0 denote the sample obtained using the CFG
sampler (9), and x0 denote the sample obtained using the
ODE sampler (5). Then:

w⊤x̂0 > w⊤x0, (12)

indicating that CFG-sampled points align more strongly
with the outer direction defined by w.

The result highlights how CFG encourages samples to move
toward outer regions, with their ℓ2-norms growing as the
guidance weight increases. Figure 3 visualizes this behavior,
showing how samples deviate from the data distribution
under different guidance weights.

3.2. Anomalous Diffusion in CFG

Building on Theorem 3.2, we further investigate the geomet-
ric and probabilistic properties of CFG sampling in the latent
space. Specifically, we define a family of time-dependent
latent manifolds Mt as:

Mt = {x | s⊤cfg,ω(x, t, c
∗)∇ log pt(x|c∗) ≤ 0}. (13)

Regions defined by Mt exhibit anomalous diffusion, where
the update direction of sampled points tends toward areas
with lower probability density.

Theorem 3.3 (Anomalous diffusion). For the unit normal
vector w of the hyperplane in Definition 3.1, there exists a
constant C1 > 0, dependent on p0, ω, and t, such that:

ᾱtµc∗ + kw ∈ Mt, ∀k ∈ (0, C1]. (14)

Furthermore, the constant C1 increases as the guidance
weight ω become larger.

Theorem 3.3 establishes that CFG sampling induces anoma-
lous diffusion phenomena within the neighborhood extend-
ing beyond the boundaries of the conditional distribution.
As the guidance weight ω increases, the anomalous regions
defined by Mt expand, amplifying the deviation of CFG-
generated samples from the original conditional distribution.

To provide theoretical insight while maintaining concise-
ness, we outline the proof of Theorem 3.3. First, we charac-
terize the score function via Lemma 3.4.

Lemma 3.4 (Lemma 1 of (Huang et al., 2023)). For any
t ∈ (0, T ], the score function is given by:

∇x log pt(x|c) =
√
ᾱtx̂

(c)
0 − x

β̄t
, (15)
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3.a ω = 1 3.b ω = 3 3.c ω = 5

Figure 3. Generated sample distributions of a four-component Gaussian mixture model under varying guidance weights. True component
means are marked, and samples corresponding to surface classes move further from the distribution as ω increases.

where

x̂
(c)
0 = Ex0∼qc,t,x [x0],

qc,t,x(x0) ∝ p0(x0|c) exp
(
−∥x−

√
ᾱtx0∥22

2β̄t

)
.

Lemma 3.4 shows that the score function can be character-
ized by the expectation of the conditional distribution tilted
by a time-dependent Gaussian distribution. Using this result,
scfg,ω can be rewritten as:

scfg,ω = (ω − 1)
ᾱt(x̂

(c)
0 − x̂

(∅)
0 )

β̄t

+
ᾱtx̂

(∅)
0 − x

β̄t
. (16)

The distinction between scfg,ω and ∇x log pt(x|c∗) lies in
the first term of (16). For a point x = ᾱtµc∗ + kw with
sufficiently small k, we find:

w⊤(x̂
(c)
0 − x̂

(∅)
0 ) > ϵ, (17)

where ϵ > 0. Further, noting that ∇x log pt(x|c∗) = −kw,
we have:

s⊤cfg,ω(x, t, c
∗)∇ log pt(x|c∗) < −ϵk + k2, (18)

thereby proving the original proposition.

From the analysis, it can be seen that the CFG method is
equivalent to enhancing x̂

(c)
0 to x̂

(c)
0 +(ω−1)(x̂

(c)
0 − x̂

(∅)
0 ).

While this enhancement effectively amplifies features that
align with the target distribution, it unintentionally leads to
excessively large norms, causing oversaturation and distor-
tion artifacts when the guidance weight is high.

4. Angle-Domain Guidance Sampling (ADG)
Building upon the insights presented in Section 3, we iden-
tify Classifier-Free Guidance (CFG) as an operation that

reinforces x̂0 linearly, leading to generated samples with
excessively high norms. While CFG effectively captures
features aligned with the target distribution, it also inflates
sample magnitudes, resulting in oversaturation, artifacts,
and unrealistic images at high guidance weights. To miti-
gate these issues, we propose the Angle-Domain Guidance
Sampling (ADG) method, which focuses on the directional
alignment of samples with the target while limiting changes
in their magnitudes. A simplified version of ADG is pro-
vided in Appendix E as Algorithm 8.

4.1. Motivation for ADG

The primary motivation underlying ADG is that the direc-
tional information encoded in x̂0 is often sufficient to guide
samples toward the target distribution. Latent space dif-
fusion models are typically based on the assumption of a
high-dimensional isotropic Gaussian inherent in variational
autoencoders (Kingma, 2013), which concentrates around
a spherical shell with a fixed radius (Wainwright, 2019).
Although due to limitations in network capacity, training
data, and other factors, the latent space distribution cannot
be fully modeled by a high-dimensional Gaussian, this as-
sumption still offers valuable insights. Specifically, CFG
can be seen as enhancing x̂0 in the linear domain, while
emphasizing the differences in both the angle and magni-
tude between x̂

(c)
0 and x̂

(∅)
0 . While norm adjustments may

marginally improve semantic alignment, excessive norm
amplification at high guidance weights becomes detrimen-
tal, resulting in oversaturation and distortion. Therefore,
ADG shifts the focus to differences in the angular domain,
while constraining variations in the magnitude domain.

4.2. Methodology

The proposed ADG algorithm is comprehensively described
in Algorithm 1. Figure 5 illustrates the distinct behaviors
of x̂0 under ADG compared to CFG, emphasizing the en-
hanced stability and directional control achieved by ADG.
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Figure 4. Comparison of generated images using different guidance strategies for the prompt “Part of a small bathroom in need of
repair.” The rows correspond to different guidance algorithms: ADG (top), CFG (middle), and CFG++ (bottom). The columns represent
increasing guidance weights: 2, 4, 6, 8, and 10 (from left to right).

Unlike CFG, which often leads to exaggerated magnitudes
in x̂0, ADG introduces a refined mechanism that prioritizes
alignment with direction. Moreover, Proposition 4.1 formal-
izes the constraints imposed by ADG on the magnitude of
x̂0. These constraints ensure a balanced trade-off between
directional guidance and structural integrity, resulting in
improved sample quality.

Algorithm 1 Angle-Domain Guidance Sampling (ADG)
Require: xT ∼ N (0, I),1 < ω ∈ R, Decoder D
for t = T to 1 do
x̂
(c)
0 = (xt −

√
1− ᾱtϵθ(x, t, c))/

√
ᾱt

x̂
(∅)
0 = (xt −

√
1− ᾱtϵθ(x, t, ∅))/

√
ᾱt

γ = arccos

(
(x̂

(∅)
0 )⊤x̂

(c)
0

∥x̂(∅)
0 ∥2∥x̂(c)

0 ∥2

)
γω = threshold((ω − 1)γ, π/3)

x̂0,ω = cos(γω)x̂
(c)
0 + sin(γω)

sin(γ) (x̂
(c)
0 − proj

x̂
(∅)
0

(x̂
(c)
0 ))

xt−1 =
√
ᾱt−1x̂0,ω +

√
1− ᾱt−1

xt−ᾱtx̂0,ω√
1−ᾱt

end for
I = D(x0)

Proposition 4.1. For any t ∈ (0, T ], x̂0,ω and x̂
(c)
0 defined

in Algorithm 1 satisfy the following property:

∥x̂0,ω∥2 ≤
√
2∥x̂(c)

0 ∥2. (19)

ADG demonstrates remarkable flexibility, making it adapt-
able to a wide range of sampling frameworks. It is compat-
ible with advanced deterministic samplers, such as DPM-
Solver (Lu et al., 2022a;b), as well as stochastic samplers
like DDPM. This versatility arises from the fact that all sam-
pling algorithms can be expressed as weighted combinations
of xt, x̂0, and Gaussian noise. By replacing the original
x̂0 with x̂0,ω derived from ADG, the method seamlessly
generalizes across various diffusion-based approaches. Ad-
ditionally, ADG extends naturally to flow-matching genera-
tive models (Lipman et al., 2023), which are mathematically
equivalent to diffusion models with some assumptions(Patel
et al., 2024). Detailed derivations of ADG’s extension to
flow-matching models are provided in Appendix F.

5. Experiment
5.1. Text-To-Image Task

To evaluate the effectiveness of our proposed method, we
conduct experiments using Stable Diffusion v3.5 (d=38)
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Table 1. Results of 10 NFE generation with SD v3.5 (d=38) on COCO10k, best performance includes finer grained data.

METHOD
ω = 2 ω = 4 ω = 6

CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓
ADG (PROPOSED) 0.315 0.727 17.4 0.319 0.928 17.1 0.321 0.964 16.9
CFG 0.316 0.711 17.5 0.318 0.835 16.9 0.317 0.586 17.1
CFG++ (λ = ω/12.5) 0.315 0.574 17.1 0.306 -0.148 18.0 0.282 -0.980 19.8
APG 0.315 0.651 17.5 0.317 0.910 17.2 0.319 0.964 16.9

ω = 10 ω = 15 BEST PERFORMANCE

CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓
ADG (PROPOSED) 0.322 0.970 16.6 0.324 0.940 16.8 0.324 0.970 16.6
CFG 0.304 -0.142 17.7 0.290 -0.659 20.3 0.318 0.843 16.6
CFG++(λ = ω/12.5) 0.257 -1.509 21.4 0.246 -1.680 22.6 0.315 0.574 17.1
APG 0.318 0.935 16.4 0.316 0.691 16.1 0.319 0.966 16.1

Figure 5. Comparison of angular domain guidance (ADG) and
classifier-free guidance (CFG). The left diagram illustrates the
ADG update, which preserves the latent variable norm by focusing
on angular adjustments, while the right diagram shows the CFG,
which amplifies the norm due to direct linear adjustments. The
black line represents the potential manifold structure.

on the COCO dataset(Lin et al., 2014), comparing against
CFG (Ho & Salimans, 2021), CFG++ (Chung et al., 2025),
and APG (Sadat et al., 2025). For CFG++ and APG, we
adopt the recommended parameter setting from the origi-
nal papers. We assess sample quality using three metrics:
FID (Heusel et al., 2017), CLIP score (Radford et al., 2021),
and ImageReward (Xu et al., 2024). ImageReward is de-
signed to align with human preferences, evaluating images
based on text alignment, aesthetic appeal, and safety con-
siderations. Quantitative results are summarized in Table 1,
while Figure 4 provides a qualitative comparison of gen-
erated images. To ensure a fair comparison, fine-grained
experimental results for the baseline methods are included
in the appendix. The ”Best performance” column in Table 1
aggregates these results.

Our experiments reveal several key advantages of ADG.
First, ADG demonstrates robustness at high guidance

weights, maintaining stable performance even under condi-
tions where baselines exhibit significant color distortions
and quality degradation. Second, ADG consistently outper-
forms baselines across all guidance weights in text-image
consistency metrics (CLIP and IR) while remaining compet-
itive in FID. Notably, ADG achieves substantial improve-
ments in IR, indicating better alignment with human pref-
erences. Finally, ADG exhibits a wide operational range,
delivering superior generation performance across a broad
spectrum of guidance weights. In contrast, baseline methods
experience rapid performance decay beyond their optimal
operating points, highlighting the limitations of these meth-
ods in comparison to ADG.

5.2. Ablation Study

We investigate two variants of the proposed ADG algorithm,
described in Appendix E as Algorithm 6 and Algorithm 7.
The first variant removes the maximum turning angle con-
straint, while the second introduces normalization to the
norm of x̂0,ω . Table 2 presents the performance metrics for
these variants under ω = 8.

Table 2. Results of 10 NFE generation with SD v3.5 (d=38) on
COCO10k under ω = 8.

Method CLIP ↑ IR ↑ FID ↓
ADG (Proposed) 0.322 0.970 16.7
ADG w/o angle constraint 0.275 -0.782 28.6
ADG w normalization 0.322 0.958 16.6

The experimental results indicate that normalization has a
limited impact on ADG’s performance. The comparable
performance between the normalized ADG and the original
framework demonstrates that the ADG algorithm effectively
controls the norm of generated samples. This finding further
confirms that angular domain adjustment, rather than norm
adjustment, serves as the primary mechanism for enhancing
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6.a ADG 6.b ADG without angle constraint 6.c ADG with normalization

Figure 6. Comparison of different ADG variants. ADG without angle constraint exhibits significant degradation, while ADG with
normalization remains stable.

text-image alignment.

Furthermore, the necessity of the maximum turning angle
constraint is evident. Removing this constraint leads to a
substantial decline in performance across all evaluation met-
rics. As illustrated in Figure 6, the unconstrained variant
exhibits severe instability, particularly when the angular de-
viation (ω−1)γ urpasses the critical threshold of π, leading
to pathological guidance directions and ultimately catas-
trophic generation failures.

5.3. Compatibility with High order Samplers

To demonstrate the compatibility of our proposed Angular
Domain Guidance (ADG) algorithm with different mod-
els and samplers, we conducted experiments with SD v2.1
using DPM-Solver sampler(Lu et al., 2022a). As shown
in Table 3, ADG consistently outperforms CFG across all
evaluation metrics, achieving higher CLIP scores and Im-
ageReward while maintaining competitive FID performance.
These results highlight ADG’s seamless integration with
high-order samplers and its ability to enhance performance
across multiple dimensions.

Table 3. Results of 25 NFE generation with SD v2.1 on COCO
10k using DPM-Solver under ω = 8.

METHOD CLIP ↑ IR ↑ FID ↓
ADG (PROPOSED) 0.322 0.467 16.6
CFG 0.313 0.399 16.6

6. Discussion
Angle Domain Guidance (ADG) is introduced as an al-
ternative to the widely adopted Classifier-Free Guidance
(CFG) in latent-diffusion-based text-to-image (T2I) genera-

tion. ADG addresses critical limitations of CFG, including
norm amplification and oversaturation under high guidance
weights, by leveraging angular-domain updates in the latent
space. This heuristic approach stabilizes the sampling pro-
cess and consistently improves semantic alignment, image
fidelity, and diversity metrics.

The theoretical analysis presented in this work primarily
focuses on the limitations of CFG. Specifically, we demon-
strate how linear-domain amplification in CFG leads to
deviations from the target distribution, resulting in undesir-
able artifacts such as oversaturation. While these insights
informed the design of ADG, it is important to note that, like
CFG, ADG remains a heuristic approach without formal
theoretical guarantees.

In comparison to existing methods, ADG introduces a novel
perspective by shifting the focus from linear to angular-
domain adjustments. This shift not only mitigates the iden-
tified issues with CFG but also ensures seamless integra-
tion with current samplers and latent diffusion frameworks.
However, ADG is specifically designed for latent diffusion
models, which dominate modern T2I generation due to their
computational efficiency. If future advancements explore
diffusion processes in the image domain, ADG may require
significant adaptations to remain effective.

The ADG framework is highly extensible and can be adapted
to other generative tasks, such as video synthesis(Liu et al.,
2024), 3D content generation(Lin et al., 2023) or depth
impainting(Sun et al., 2025). Future research could also
explore integrating ADG with techniques aimed at reducing
sampling iterations(Li & Cai, 2024; Lu et al., 2022a), to
enhance its efficiency for real-time applications. These
extensions would further solidify ADG’s role as a versatile
and robust solution for advancing generative modeling.

8
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7. Conclusion
We present Angular Domain Guidance (ADG), a novel ap-
proach designed to address the limitations of Classifier-Free
Guidance (CFG) in diffusion-based text-to-image genera-
tion. By leveraging angular-domain updates in the latent
space, ADG enable stable and high-quality image genera-
tion. Experimental results demonstrate that ADG consis-
tently outperforms existing methods across multiple evalua-
tion metrics, including semantic alignment, image fidelity,
and diversity. These findings underscore ADG’s potential
as a robust and effective alternative for advancing text-to-
image generation.
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ure modes—particularly norm amplification and anomalous
diffusion under high guidance weights—the paper identifies
key limitations in linear-domain extrapolation. The pro-
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A. Related Work
A.1. Theoretical Analyses of Classifier-Free Guidance

To the best of our knowledge, four key studies have provided theoretical analyses of Classifier-Free Guidance (CFG). Below,
we elucidate the connections and distinctions between our theoretical contributions and these prior works.

Comparison to Chidambaram et al.(Chidambaram et al., 2024).

This work studies the performance of the CFG-based ODE sampling method in two scenarios: (1) one-dimensional
compactly supported distributions with two components, and (2) one-dimensional Gaussian mixture distributions with two
components. They conclude that as the guidance weight increases, the sampling process tends to concentrate on the edges
of the conditional distribution. Additionally, even a small nonzero error in score estimation can cause sampling results to
deviate significantly from the target distribution’s support under sufficiently large guidance weights.

The key difference in our theoretical analysis lies in its broader applicability to high-dimensional settings with multiple
components. We demonstrate that the phenomenon of sampling concentrating on the edges only occurs for surface classes, a
distinction that is absent in (Chidambaram et al., 2024) due to the nature of their one-dimensional two-component scenarios,
where all classes inherently behave as surface classes. By incorporating this insight, our work provides a more nuanced
understanding of CFG’s behavior in complex, high-dimensional generative tasks, offering theoretical explanations for
phenomena that remain unaddressed in their framework.

Comparison to Wu et al.(Wu et al., 2024).

This work investigates the impact of the guidance weight on sampling performance under Gaussian Mixture Models (GMMs).
The authors evaluate two key metrics: ”classification confidence,” characterized by the conditional likelihood of the output
distribution, and ”distribution diversity,” quantified by the differential entropy of the output distribution. They theoretically
prove that CFG sampling not only increases classification confidence but also reduces distribution diversity.

Our work differs from theirs in two significant aspects. First, we operate under more relaxed assumptions; while (Wu et al.,
2024) requires the components of the Gaussian mixture to be approximately orthogonal, our analysis accommodates more
general configurations of GMMs. Second, we argue that high classification confidence is not always desirable. For example,
in a one-dimensional GMM with two components centered at 1 and -1, respectively, and sharing the same variance 1, a
sampling point located at 1000 exhibit extremely high classification confidence but would not constitute a meaningful
sample from the target distribution.

Comparison to Bradley and Nakkiran(Bradley & Nakkiran, 2024).

This work analyzes CFG under the assumption that both the conditional and unconditional distributions follow zero-mean
one-dimensional Gaussian distributions. Under this assumption, they derive a closed-form solution for the output distribution,
showing that it does not correspond to the expected gamma-weighted distribution. Additionally, they conduct numerical
studies on one-dimensional two-component Gaussian mixture models, finding that the output distribution similarly fails to
match the expected gamma-weighted distribution.

The authors further reinterpret CFG as a predictor-corrector method, alternating between a denoising predictor (based on the
ODE of the conditional distribution) and a sharpening corrector (employing Langevin dynamics). This perspective provides
new insights into the iterative nature of CFG sampling.

In contrast, our work extends beyond the limitations of one-dimensional Gaussian assumptions. We study CFG in high-
dimensional settings involving multi-component distributions and introduce the notion of surface classes. Our analysis
reveals that phenomena such as norm amplification are closely linked to the geometry of these surface classes, providing a
more general and nuanced understanding of CFG behavior in complex generative settings.

Comparison to Xia et al.(Xia et al., 2024).

This work builds on the findings of (Bradley & Nakkiran, 2024) and extends the data assumptions to high-dimensional
isotropic Gaussian distributions with different parameters for the conditional and unconditional distributions. Under
these assumptions, the authors derive a closed-form solution for the CFG output distribution and further confirm its
inconsistency with the gamma-weighted distribution. Additionally, they propose relaxing the constraints in the gamma-
weighted distribution by introducing more flexible guidance coefficients, allowing the corrected distribution to better align
with diffusion theory.
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In contrast, we abandon the Gaussian distribution assumption to gain deeper insights into the behavior of CFG output
distributions in more general scenarios. Our analysis covers high-dimensional settings with multiple components and
highlights the geometric and probabilistic distinctions that emerge in such cases. Specifically, we introduce the concept
of surface classes, demonstrating that the phenomena of norm amplification and edge sampling predominantly occur for
surface classes. By broadening the theoretical scope and proposing practical solutions such as angular-domain adjustments,
our work addresses the limitations of CFG in real-world generative tasks with greater generality and flexibility.

A.2. Improvements to Classifier-Free Guidance

Comparison to CFG++(Chung et al., 2025).

This work, inspired by diffusion model-based inverse problem solvers, proposes performing denoising under the guidance
of a weight smaller than 1, followed by re-noising guided by the unconditional distribution. However, this method is

equivalent to using a time-varying guidance weight in CFG, defined as ωt = λ

√
β̄tᾱt−1√

β̄tᾱt−1−
√

β̄t−1ᾱt

. CFG++ remains confined

to the framework of linear-domain guidance and still exhibits color distortions under high λ. Additionally, our experiments
reveal that its optimal guidance weight is highly sensitive to the inference step size, further limiting its applicability (see
Appendix G.5).

Algorithm 2 CFG++
Require: xT ∼ N (0, I),0 < λ ≤ 1
for t = T to 1 do
ϵ
(c)
t,ω = (1− λ)ϵθ(x, t, ∅) + λϵθ(x, t, c)

x̂
(c)
0 = (xt −

√
1− ᾱtϵ

(c)
t,ω)/

√
ᾱt

xt−1 =
√
ᾱt−1x̂

(c)
0 +

√
1− ᾱt−1ϵθ(x, t, ∅)

end for

Comparison to PCG(Bradley & Nakkiran, 2024).

This work decomposes each iteration of the DDPM-style CFG sampler into a denoising step, corresponding to one step of
DDIM, and a sharpening step, corresponding to one step of Langevin dynamics. The proposed PCG algorithm performs
one denoising step followed by N sharpening steps within each iteration, aiming to enhance the output. However, this
enhancement is also carried out within the linear domain. Due to the N -fold increase in the number of function evaluations
(NFE) compared to standard CFG algorithms, its practicality is significantly reduced. Furthermore, the authors explicitly
state, “we do present PCG primarily as a tool to understand CFG.” As such, we did not compare the proposed algorithm in
this work with our method.

Algorithm 3 PCG
Require: xT ∼ N (0, I),1 < ω ∈ R
for t = T to 1 do
s = −β̄tϵθ(xt, t, c)

x̂
(c)
0 = (xt −

√
1− ᾱtϵθ(xt, t, c))/

√
ᾱt

xt−1 =
√
ᾱt−1x̂

(c)
0 +

√
1− ᾱt−1

xt−x̂
(c)
0√

1−ᾱt

κ =
(
1− ᾱt

ᾱt−1

)
for k = 1 to N do
η ∼ N (0, I)

ϵ
(c)
t−1,ω = (1− ω)ϵθ(x, t− 1, ∅) + ωϵθ(x, t− 1, c)

xt−1 = xt−1 − κ
2

ϵ
(c)
t−1,ω

β̄t−1
+
√
κη

end for
end for
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Comparison to ReCFG(Xia et al., 2024).

This work relaxes the constraint of the weighting coefficients summing to one in traditional CFG by introducing a
precomputed lookup table f . Strict implementation of ReCFG requires precomputing this lookup table for all conditions,
which is impractical for open-condition models like T2I. For datasets like ImageNet, where images have explicit category
labels, the authors propose precomputing the table based on categories rather than text conditions. However, in real-world
scenarios, text prompts do not always correspond to specific categories, making this method unsuitable for general T2I tasks.
Consequently, we do not compare their algorithm with ours.

Algorithm 4 ReCFG
Require: xT ∼ N (0, I),1 < ω ∈ R, trained lookup table f .
for t = T to 1 do
λ = f(c)

ϵ
(c)
t,ω = λ(1− ω)ϵθ(x, t, ∅) + ωϵθ(x, t, c)

x̂
(c)
0 = (xt −

√
1− ᾱtϵ

(c)
t,ω)/

√
ᾱt

xt−1 =
√
ᾱt−1x̂0,ω +

√
1− ᾱt−1ϵ

(c)
t,ω

end for

Comparison to APG(Sadat et al., 2025)

This work attributes image oversaturation and degradation to the parallel component of the difference vector ∆x̂0 =

x̂
(c)
0 − x̂

(∅)
0 with respect to x̂

(c)
0 , denoted as ∆x̂0,∥. Building on this observation, they propose reducing the influence of the

parallel component in CFG by replacing ∆x̂0,CFG = ∆x̂0,∥ +∆x̂0,⊥ with ∆x̂0,APG = η∆x̂0,∥ +∆x̂0,⊥, where η < 1,
to mitigate its adverse effect on image quality. In addition, this work introduces an extra negative momentum mechanism
and imposes a constraint on the norm of ∆x̂0. While removing the parallel component slows the norm growth, it does not
fully resolve the issue of norm amplification. However, its algorithm does not directly constrain the norm of ∆x̂0,CFG, and
thus fails to address the issue of excessive latent norm under high guidance weights. As a result, image degradation still
occurs when the guidance weight is large.

Algorithm 5 APG
Require: xT ∼ N (0, I),1 < ω ∈ R, β < 0, r ∈ R+, 0 ≤ η < 1
∆x̂0,history = 0
for t = T to 1 do
x̂
(c)
0 = (xt −

√
1− ᾱtϵθ(x, t, c))/

√
ᾱt

x̂
(∅)
0 = (xt −

√
1− ᾱtϵθ(x, t, ∅))/

√
ᾱt

∆x̂0 = x̂
(c)
0 − x̂

(∅)
0

∆x̂
∥
0 =

⟨∆x̂0,x̂
(c)
0 ⟩

⟨x̂(c)
0 ,x̂

(c)
0 ⟩

x̂
(c)
0

∆x̂⊥
0 = ∆x̂0 −∆x̂

∥
0

∆x̂0 = η∆x̂
∥
0 +∆x̂⊥

0

∆x̂0 = ∆x̂0 min
(
1, r

∥∆x̂0∥

)
∆x̂0,history = ∆x̂0 − β∆x̂0,history

x̂0,ω = x̂
(c)
0 + (ω − 1)∆x̂0,history

xt−1 =
√
ᾱt−1x̂0,ω +

√
1− ᾱt−1

xt−ᾱtx̂0,ω√
1−ᾱt

end for

B. Proof of Theorem 3.2
We now consider a strengthened proposition of Theorem 3.2:

Theorem B.1. Assume the data follows the model (11) and c∗ is the surface class of the distribution. Consider two state
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variables xt and zt governed by the following ODEs:

dxt

dt
=

β(t)

2
[−xt −∇xt

log pt(xt|c∗)] , (20)

dzt

dt
=

β(t)

2
[−zt − (1 + ω)∇zt

log pt(zt|c∗) + ω∇zt
log pt(zt)] . (21)

If the initial conditions satisfy x⊤
Tµc∗ ≤ z⊤

Tµc∗ , then for any t ∈ [0, T ), the following inequality holds:

x⊤
t µc∗ < z⊤

t µc∗ .

Proof. For Gaussian distributions and Gaussian mixture distributions, the score functions admit closed-form expressions.
For the conditional score function:

∇x log pt(x|c∗) = ∇x

(
−d

2
log(2π)− ∥x− ᾱtµc∗∥22

2

)
= −x+ ᾱtµc∗ , (22)

and for the marginal score function:

∇x log pt(x) =
∇x

(∑C
c=1 πcN (x|ᾱtµc, I)

)
∑C

c=1 πcN (x|ᾱtµc, I)

= −x+ ᾱt

C∑
c=1

π∗
c (x)µc, (23)

where π∗
c (x) =

πcN (x|ᾱtµc,I)∑C
c′=1

πc′N (x|ᾱtµc′ ,I)
.

Substituting (22) and (23) into (20) and (21) yields:

dxt

dt
=

β(t)

2
[−ᾱtµc∗ ] , (24)

dzt

dt
=

β(t)

2

[
−ᾱtµc∗ − ωᾱt

(
µc∗ −

C∑
c=1

π∗
c (x)µc

)]
. (25)

By taking the projection along w⊤µc∗ , we have:

dw⊤xt

dt
=

β(t)

2

[
−ᾱtw

⊤µc∗
]
, (26)

dw⊤zt

dt
=

β(t)

2

[
−ᾱtw

⊤µc∗ − ωᾱt

C∑
c=1

π∗
c (x)

(
w⊤µc∗ −w⊤µc

)]
. (27)

From Definition 3.1, it follows that:
w⊤µc∗ −w⊤µc < 0, ∀c ̸= c∗,

which implies:
dw⊤zt

dt
<

dw⊤xt

dt
, ∀t ∈ [0, T ).

Using the ODE comparison theorem and the initial condition x⊤
Tµc∗ ≤ z⊤

Tµc∗ (notice that the ODE is time-reversed), we
conclude that:

x⊤
t µc∗ < z⊤

t µc∗ , ∀t ∈ [0, T ).
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C. proof of Theorem 3.3
Using Lemma 3.4, we express the score functions as:

∇x log pt(x|c∗) =
√
ᾱtEx0∼qc∗,t,x

[x0]− x

β̄t
, (28)

∇x log pt(x|∅) =
√
ᾱtEx0∼q∅,t,x [x0]− x

β̄t
, (29)

where the conditional distributions qc∗,t,x and q∅,t,x are given by:

qc∗,t,x(x0) ∝ N (x0;µc∗ , I) exp

(
−∥x−

√
ᾱtx0∥22

2β̄t

)
, (30)

q∅,t,x(x0) ∝
C∑

c=1

wcN (x0;µc, I) exp

(
−∥x−

√
ᾱtx0∥22

2β̄t

)
. (31)

For qc∗,t,x, we calculate:

N (x0;µc∗ , I) exp

(
−∥x−

√
ᾱtx0∥22

2β̄t

)
∝ exp

(
−∥x0 − µc∗∥22 −

∥x−
√
ᾱtx0∥22

2β̄t

)
(32)

∝ exp

(
−
(
1 +

ᾱt

β̄t

)
x⊤
0 x0 + 2

(
µc∗ +

√
ᾱt

β̄t
x

)⊤

x0

)
. (33)

Since β̄t = 1− e−2t and ᾱt = e−2t, the expectation is:

Ex0∼qc∗,t,x
[x0] = β̄tµc∗ +

√
ᾱtx. (34)

Substituting this back, we find:

∇x log pt(x|c∗) =
√
ᾱt(β̄tµc∗ +

√
ᾱtx)− x

β̄t
(35)

=
√
ᾱtµc∗ − x. (36)

Thus, for x =
√
ᾱtµc∗ + kw, we have:

∇x log pt(x|c∗) = −kw. (37)

similarly, we have

C∑
c=1

wcN (x0;µc, I) exp

(
−∥x−

√
ᾱtx0∥22

2β̄t

)
∝

C∑
c=1

wc exp

(
−∥x0 − µc∥22 −

∥x−
√
ᾱtx0∥22

2β̄t

)
(38)

∝
C∑

c=1

w(1)
c,xN

(
x0; β̄tµc +

√
ᾱtx,

1√
β̄t

I

)
, (39)

where

w(1)
c,x = wc exp

(∥∥x−
√
ᾱtµc

∥∥2
2

)
. (40)

Let

w(3)
c,x =

wcN (x;
√
ᾱtµc, I)∑C

l=1 wlN (x;
√
ᾱtµl, I)

.
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We then have:

q∅,t,x(x0) =

C∑
c=1

w(3)
c,xN

(
x0; β̄tµc +

√
ᾱtx,

1√
β̄t

I

)
. (41)

From this, the expectation of x0 with respect to q∅,t,x becomes:

Ex0∼q∅,t,x [x0] =

C∑
c=1

w(3)
c,x

(
β̄tµc +

√
ᾱtx

)
=

√
ᾱtx+ β̄t

C∑
c=1

w(3)
c,xµc. (42)

Now consider the difference between the expectations under qc∗,t,x and q∅,t,x:

Ex0∼qc∗,t,x
[x0]− Ex0∼q∅,t,x [x0] = β̄t

C∑
c=1

w(3)
c,x (µc∗ − µc)

= β̄t

∑
c̸=c∗

w(3)
c,x (µc∗ − µc) , (43)

where the second equality uses the fact that for c = c∗, the term cancels out.

Next, we calculate the dot product of scfg,ω with ∇ log pt(x|c∗):

s⊤cfg,ω∇ log pt(x|c∗) =

(
(ω − 1)

√
ᾱt

(
Ex0∼qc∗,t,x

[x0]− Ex0∼q∅,t,x [x0]
)

β̄t
+∇ log pt(x|c∗)

)⊤

∇ log pt(x|c∗)

= −k(ω − 1)

√
ᾱt

β̄t

∑
c̸=c∗

w(3)
c,x (µc∗ − µc)

⊤
w + k2w⊤w, (44)

where the second term ∇ log pt(x|c∗) contributes k2w⊤w and the projection of the difference in expectations contributes
the first term.

Without loss of generality, assume w is a unit vector. From Definition 3.1, we know that µ⊤
c∗w > µ⊤

c w for c ̸= c∗. Define
the following terms for clarity:

δ = min
c̸=c∗

(µc∗ − µc)
⊤w > 0, (45)

R2 = max
c∈c∗

∥µc∥22, (46)

λ = min
c̸=c∗

wc

wc∗
. (47)

Now consider the dot product of scfg,ω and ∇ log pt(x|c∗). For k <
√
ᾱtR, we have:

s⊤cfg,ω∇ log pt(x, c
∗) ≤ −k(ω − 1)

√
ᾱt

β̄t

∑
c̸=c∗

w(3)
c,xδ + k2. (48)

Substituting the expression for w(3)
c,x, we get:

s⊤cfg,ω∇ log pt(x, c
∗) ≤ k2 − k(ω − 1)

√
ᾱt

β̄t
δ
∑
c̸=c∗

wcN (x;
√
ᾱtµc, I)∑C

l=1 wlN (x;
√
ᾱtµl, I)

. (49)
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Using the decomposition of the weights, we write:∑
c ̸=c∗

wcN (x;
√
ᾱtµc, I)∑C

l=1 wlN (x;
√
ᾱtµl, I)

= 1− wc∗N (x;
√
ᾱtµc∗ , I)∑C

l=1 wlN (x;
√
ᾱtµl, I)

. (50)

Substitute the Gaussian density terms and simplify:

wc∗N (x;
√
ᾱtµc∗ , I)∑C

l=1 wlN (x;
√
ᾱtµl, I)

=
1

1 +
∑

l ̸=c∗
wl

wc∗
N (x;

√
ᾱtµl,I)

N (x;
√
ᾱtµc∗ ,I)

. (51)

Using the exponential decay property of the Gaussian distribution:

N (x;
√
ᾱtµl, I)

N (x;
√
ᾱtµc∗ , I)

≤ exp

(
−∥

√
ᾱtµc∗ + kw −

√
ᾱtµl∥22

2

)
. (52)

Combining terms:

wc∗N (x;
√
ᾱtµc∗ , I)∑C

l=1 wlN (x;
√
ᾱtµl, I)

≥ 1

1 + (C − 1)λ exp
(
− 9ᾱtR2

2

) . (53)

Substitute back into the original inequality:

s⊤cfg,ω∇ log pt(x, c
∗) ≤ k2 − k(ω − 1)

√
ᾱt

β̄t
δ

1− 1

1 + (C − 1)λ exp
(
− 9ᾱtR2

2

)
 . (54)

For 0 < k < min

(
√
ᾱtR, (ω − 1)

√
ᾱt

β̄t
δ

(
1− 1

1+(C−1)λ exp
(
− 9ᾱtR

2

2

)
))

, we conclude:

s⊤cfg,ω∇ log pt(x, c
∗) < 0.

D. Proof of Proposition 4.1
For convenience, we define the following notation:

x̂asist =
1

sin(γ)

(
x̂
(c)
0 − proj

x̂
(∅)
0

(x̂
(c)
0 )
)
.

It follows that:
∥x̂asist∥2 =

∥∥∥x̂(c)
0

∥∥∥
2
.

We now compute the norm of x̂0,ω:

∥x̂0,ω∥2 =

√
sin2 ((ω − 1)γ) ∥x̂asist∥22 + 2 sin ((ω − 1)γ) cos ((ω − 1)γ) ⟨x̂asist, x̂

(c)
0 ⟩+ cos2 ((ω − 1)γ)

∥∥∥x̂(c)
0

∥∥∥2
2

=
∥∥∥x̂(c)

0

∥∥∥
2

√√√√√1 + sin(2(ω − 1)γ)
⟨x̂asist, x̂

(c)
0 ⟩∥∥∥x̂(c)

0

∥∥∥2
2

≤
∥∥∥x̂(c)

0

∥∥∥
2

√
1 + sin(2(ω − 1)γ)

≤
√
2
∥∥∥x̂(c)

0

∥∥∥
2
.

This completes the proof.
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E. Variants of ADG
The implementation details of the two variant algorithms mentioned in Section 5 are outlined here. Algorithm 6 removes the
constraint on the maximum turning angle, allowing for more flexible updates. On the other hand, Algorithm 7 normalizes
the corrected x̂0 to ensure consistency in its magnitude.

Algorithm 6 ADG w/o angle constraint
Require: xT ∼ N (0, I),1 < ω ∈ R
for t = T to 1 do
x̂
(c)
0 = (xt −

√
1− ᾱtϵθ(x, t, c))/

√
ᾱt

x̂
(∅)
0 = (xt −

√
1− ᾱtϵθ(x, t, ∅))/

√
ᾱt

γ = arccos

(
(x̂

(∅)
0 )⊤x̂

(c)
0

∥x̂(∅)
0 ∥2∥x̂(c)

0 ∥2

)
γω = (ω − 1)γ

x̂0,ω = cos(γω)x̂
(c)
0 + sin(γω)

sin(γ) (x̂
(c)
0 − proj

x̂
(∅)
0

(x̂
(c)
0 ))

xt−1 =
√
ᾱt−1x̂0,ω +

√
1− ᾱt−1

xt−ᾱtx̂0,ω√
1−ᾱt

end for

Algorithm 7 ADG with Normalization
Require: xT ∼ N (0, I),1 < ω ∈ R
for t = T to 1 do
x̂
(c)
0 = (xt −

√
1− ᾱtϵθ(x, t, c))/

√
ᾱt

x̂
(∅)
0 = (xt −

√
1− ᾱtϵθ(x, t, ∅))/

√
ᾱt

γ = arccos

(
(x̂

(∅)
0 )⊤x̂

(c)
0

∥x̂(∅)
0 ∥2∥x̂(c)

0 ∥2

)
γω = threshold((ω − 1)γ, π/3)

x̂0,ω = cos(γω)x̂
(c)
0 + sin(γω)

sin(γ) (x̂
(c)
0 − proj

x̂
(∅)
0

(x̂
(c)
0 ))

x̂0,ω = x̂0,ω
∥x̂(c)

0 ∥2

∥x̂0,ω∥2

xt−1 =
√
ᾱt−1x̂0,ω +

√
1− ᾱt−1

xt−ᾱtx̂0,ω√
1−ᾱt

end for

Moreover, considering that ADG introduces relatively substantial modifications compared to CFG, which may hinder its
ease of adoption in existing frameworks, we further propose a simplified variant that can be more seamlessly integrated into
current pipelines. This simplified method is also derived from our analysis of CFG, and directly mitigates the degradation
issue by explicitly constraining the norm of x̂0.

Algorithm 8 Simplified ADG
Require: xT ∼ N (0, I),1 < ω ∈ R
for t = T to 1 do
x̂
(c)
0 = (xt −

√
1− ᾱtϵθ(x, t, c))/

√
ᾱt

x̂
(∅)
0 = (xt −

√
1− ᾱtϵθ(x, t, ∅))/

√
ᾱt

x̂0,CFG = x̂
(c)
0 + (ω − 1)(x̂

(c)
0 − x̂

(∅)
0 )

x̂0,ADG = x̂0,CFG
∥x̂(c)

0 ∥
∥x̂0,CFG∥

xt−1 =
√
ᾱt−1x̂0,ADG +

√
1− ᾱt−1

xt−ᾱtx̂0,ADG√
1−ᾱt

end for
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Table 4. Results of 10 NFE generation with SD v3.5 (d=38) on COCO10k (CFG).

VALUE ω = 2 ω = 3 ω = 3.5 ω = 4 ω = 4.5

CLIP↑ 0.316 0.317 0.318 0.318 0.318
IR↑ 0.711 0.831 0.843 0.835 0.792
FID↓ 17.5 17.2 17.0 16.9 16.6

VALUE ω = 5 ω = 6 ω = 8 ω = 10 BEST

CLIP↑ 0.318 0.317 0.311 0.304 0.318
IR↑ 0.735 0.586 0.219 -0.142 0.843
FID↓ 16.6 17.1 17.2 17.7 16.6

F. Extension of Flow Matching Model for ADG Algorithm
The generative model based on Flow Matching introduces a time-dependent vector field vt =

dxt

dt , which is used to learn
the continuous transformation path from a Gaussian distribution p0 to a target distribution p1 and subsequently perform
sampling. Notably, this notation differs from that in diffusion models, where the target distribution is denoted as p1. A key
concept in the Flow Matching-based model is the conditional probability paths, which are defined as:

p(xt|x1) = N (xt, µt(x1), σ
2
t (x1)I).

The conditional probability paths most used in generative tasks are expressed as:

p(xt|x1) = N (xt, tx1, (1− (1− σmin)t)
2I).

Under this setting, the ideal reference flow is given by:

ut =
Ex1|xt

[x1]− (1− σmin)xt

1− (1− σmin)t
.

Thus, the Flow Matching model’s Adaptive Directional Guidance (ADG) can be written as:

x̂
(c)
1 = (1− (1− σmin)t)v

(c)
t (xt) + (1− σmin)xt, (55)

x̂
(∅)
1 = (1− (1− σmin)t)v

(∅)
t (xt) + (1− σmin)xt, (56)

γ = arccos

(
(x̂

(∅)
1 )⊤x̂

(c)
1

∥x̂(∅)
1 ∥2∥x̂(c)

1 ∥2

)
, (57)

γω = threshold((ω − 1)γ, π/3), (58)

x̂1,ω = cos(γω)x̂
(c)
1 +

sin(γω)

sin(γ)

(
x̂
(c)
1 − proj

x̂
(∅)
1

(x̂
(c)
1 )
)
, (59)

vt =
x̂1,ω − (1− σmin)xt

1− (1− σmin)t
, (60)

xt+∆t = vt∆t+ xt. (61)

G. Futher Experiment
G.1. Fine Grained Experimental Results

We present the fine-grained experimental results of CFG and CFG++ here. Around the maximum value of the coarse-grained
results, the step size is reduced to identify better-performing ω values for the reference algorithms. Notably, ADG without
fine-grained hyperparameter tuning consistently outperforms the reference algorithms across the metrics and maintains its
superiority over a wide range of ω. This is attributed to its emphasis on angular domain guidance.
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Table 5. Results of 10 NFE generation with SD v3.5 (d=38) on COCO10k (CFG++, λ = ω/12.5).

VALUE ω = 1 ω = 1.5 ω = 2 ω = 2.5 ω = 3

CLIP↑ 0.296 0.311 0.315 0.315 0.314
IR↑ -0.161 0.456 0.574 0.477 0.300
FID↓ 18.1 17.3 17.1 17.2 17.2

VALUE ω = 4 ω = 6 ω = 8 ω = 10 BEST

CLIP↑ 0.306 0.282 0.268 0.257 0.315
IR↑ -0.148 -0.980 -1.290 -1.509 0.574
FID↓ 18.0 19.8 20.6 21.4 17.1

G.2. Evaluation of Generated Image Quality with LLM

In this section, we leverages GPT-4o to assess the quality of generated images from multiple perspectives. Our evaluation
simultaneously considers three crucial aspects: image quality and authenticity, text-image alignment, and semantic consis-
tency. As demonstrated in Table 6, the evaluation results reveal that ADG exhibits overwhelming advantages over CFG,
particularly under large guidance weights. The superior performance of ADG can be attributed to its ability to maintain
high-fidelity image generation while ensuring precise alignment with textual descriptions, even when subjected to strong
guidance conditions. This multi-faceted evaluation approach provides a more robust and reliable assessment of the generated
images.

Table 6. Evaluation of Generated Image Quality with GPT-4o.
ω 2 4 6 8 10

ADG better 228(83.21%) 1284(85.31%) 4744(95.44%) 6276(97.96%) 8001(99.00%)
CFG better 46(16.79%) 221(14.69%) 179(4.56%) 131(2.04%) 81(1.00%)
Similar 9726 8495 5077 3593 1918

G.3. Evaluation with Complex Text Prompts

To evaluate ADG under more complex prompts, we curated 500 complex text prompts using GPT. Our experiments show
that ADG significantly outperforms CFG under these conditions. For guidance weight ω = 8, ADG achieves a CLIP score
of 0.355 and an IR score of 1.566 while CFG scores lower with a CLIP score of 0.338 and an IR score of 0.766. Examples
of the generated outputs are partially illustrated in Figure 7.

G.4. Qualitative Results at Extreme Guidance Weight

To further evaluate the robustness of ADG under extreme guidance conditions, we conduct additional experiments using a
guidance weight of ω = 20. Figure 8 presents representative samples generated by both CFG and ADG.

As shown, CFG exhibits severe artifacts, including oversaturation, unnatural textures, and significant semantic drift from the
input prompts. In contrast, ADG consistently produces visually coherent and semantically faithful images, even under such
high guidance weight. These results further validate the stability and effectiveness of ADG in extreme settings.

G.5. Results with Different Guidance Weight and NFE

We show the methods with different guidance weights and NFEs as in Figures 9 to 11. Notably, the ADG and CFG
algorithms maintain relative stability across various NFEs, while the CFG++ algorithm does not. For instance, with a
guidance weight of 0.2, the CFG++ algorithm exhibits a relatively normal saturation at NFE=10. However, at NFE=40, it
shows noticeable oversaturation, and similar trends can be observed with guidance weights of 0.3, 0.4, and 0.5.

This behavior may be due to the CFG++ algorithm being equivalent to a time-varying guidance weight CFG algorithm. The
time-varying guidance weight, influenced by the discrete step size, likely causes its instability relative to both the CFG and
ADG algorithms.
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7.a ADG 7.b CFG

Figure 7. Comparison of ADG and CFG with complex text prompts under ω = 8. While CFG shows notable degradation, ADG with
normalization maintains stable performance.

Another noteworthy point is that, for different NFE values, ADG consistently generates images that align well with the
textual prompt while maintaining relative stability in image content under the same random seed. In contrast, CFG and
CFG++ exhibit significant variations in image content across different NFE values. This further highlights the relative
stability of our proposed algorithm.

Figure 9. Generated images using ADG for the prompt “The church is up on the hill in the country” Rows correspond to different
numbers of function evaluations (NFE): 40 (top), 20 (middle), and 10 (bottom). Columns represent increasing guidance weights: 2, 4, 6,
8, and 10 (from left to right). The same random seed is used across all generations.
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8.a ADG 8.b CFG

Figure 8. Comparison of ADG and CFG with complex prompts at ω = 20. ADG maintains stability, while CFG produces distorted and
misaligned results. The prompt is “A room with blue walls and a white sink and door”.

Figure 10. Generated images using CFG for the prompt “The church is up on the hill in the country” Rows correspond to different
numbers of function evaluations (NFE): 40 (top), 20 (middle), and 10 (bottom). Columns represent increasing guidance weights: 2, 4, 6,
8, and 10 (from left to right). The same random seed is used across all generations.
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Figure 11. Generated images using CFG++ for the prompt “The church is up on the hill in the country” Rows correspond to different
numbers of function evaluations (NFE): 40 (top), 20 (middle), and 10 (bottom). Columns represent increasing guidance weights: 0.1, 0.2,
0.3, 0.4, and 0.5 (from left to right). The same random seed is used across all generations.

G.6. More Results on COCO datasets

In this section, we provide more images generated by ADG and reference algorithms for comparison as in Figures 12 to 14.
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Figure 12. conditional COCO samples using ADG (ω = 6, NFE=10).
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Figure 13. conditional COCO samples using CFG (ω = 6, NFE=10).
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Figure 14. conditional COCO samples using CFG++ (λ = 0.3, NFE=10).
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