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Abstract

While task generalisation is widely studied in the context of single-agent reinforcement
learning (RL), little research exists in the context of multi-agent RL. The research that does
exist usually considers task generalisation implicitly as a part of the environment, and when
it is considered explicitly there are no theoretical guarantees. We propose Goal-Oriented
Learning for Multi-Task Multi-Agent RL (GOLeMM), a method that achieves provably
optimal task generalisation that, to the best of our knowledge, has not been achieved before
in MARL. After learning an optimal goal-oriented value function for a single arbitrary task,
our method can zero-shot infer the optimal policy for any other task in the distribution
given only knowledge of the terminal rewards for each agent for the new task and learnt
task. Empirically we show that our method is able to generalise over a full task distribution,
while representative baselines are only able to learn a small subset of the task distribution.

1 Introduction

Cooperative multi-agent problems are ubiquitous in real-world applications, such as automated warehouses
(Wurman et al., 2008), and train routing (Mohanty et al., 2020). Often, a multi-agent problem can be de-
composed into a distribution of tasks, where all tasks share common properties, and solving the problem
requires generalising over this task distribution. For example, consider an automated warehouse with multi-
ple autonomous robots and shelves. Each robot is assigned a shelf (or set of shelves) that it must navigate to
in the fewest steps. Here there exists a task distribution, where each task is defined by the shelves assigned to
each robot, and the common properties across tasks include the warehouse layout and the robot dynamics.

An increasingly prevalent approach to tackling this class of problems is cooperative multi-agent reinforce-
ment learning (MARL) (Zhang et al., 2021), where multiple agents learn via trial and error to accomplish
a task while coordinating their actions with each other in the process. While the combination of MARL and
deep learning has recently had great success in tackling challenging multi-agent problems (Vinyals et al.,
2019; Berner et al., 2019) these methods have been severely hampered by poor sample efficiency. Training
in these cases requires monumental amounts of compute not accessible to much of the scientific community.

While there is considerable research in generalising over a task distribution in the context of single-agent
RL (Schaul et al., 2015; Yang et al., 2020; Tasse et al., 2021), there exists little research in the multi-agent
setting with task generalisation usually only occurring implicitly as a property of the environment and
achieved through the use of deep learning. Although Chen et al. (2021) explicitly consider multi-agent task
generalisation in the context of agent scaling, there exists no previous literature that explicitly considers
provable task generalisation in a multi-agent setting, to the best of our knowledge.

In this work, we propose Goal Oriented Learning for Multi-Task Multi-Agent Reinforcement Learning
(GOLeMM), an approach that provably generalises over a task distribution after learning a world value
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function (WVF) (Nangue Tasse et al., 2020), a type of goal-oriented general value function, for a single
arbitrary task. We consider a distribution of goal-oriented tasks where, for each task and agent, there exists a
set of goal states that the agent wishes to reach and these are constant across the task distribution. However,
each task is uniquely defined by the rewards associated with these goals. We prove that the WVF for a
particular task encodes how to optimally reach every goal for every agent while considering coordination
between agents. We then prove that this knowledge can be transferred to another task allowing for new
tasks to be solved without further learning—provided knowledge of the task-specific goal rewards. As a
result, our approach achieves optimal task generalisation after learning a single arbitrary task. Additionally,
we leverage symmetries present in the WVF to improve the sample efficiency of learning that single task.
Since our method only requires learning a single task before it can generalise over the task distribution,
it can generalise in substantially fewer steps than representative baselines which must learn each task
independently. We show this improved sample efficiency of task generalisation empirically in a domain
inspired by an automated warehouse.

2 Background

Collaborative multi-agent tasks are often modelled as collaborative multi-agent Markov decision processes
(CM-MDPs) (Guestrin, 2003; Kok & Vlassis, 2006), denoted by M = (I, {Si}i∈I , {Ai}i∈I ,P, {Ri}i∈I), where:
(i) I = {1, ..., n} denotes the set of n > 1 agents; (ii) Si denotes the specific state space of agent i, with the
(joint) state space of the environment defined as S ⊆ S1× ...×Sn; (iii) Ai denotes the action space of agent
i with the joint action space defined as A := A1 × ... × An, (iv) P : S × A → S denotes the deterministic
transition dynamics; (v) Ri : S × A × S → [Rmin, Rmax], with Rmin < 0 ≤ Rmax, is the bounded agent
reward function that determines the immediate reward received by agent i after the joint action a ∈ A is
taken in joint state s ∈ S and the agents transition to joint state s′ ∈ S. The team (global) reward is then
defined by R(s, a, s′) :=

∑
i∈I Ri(s, a, s′).

We consider goal-oriented tasks and a special case of episodic tasks where termination occurs at an agent
level upon reaching a goal (absorbing) state. For each agent i ∈ I, there exists a set of goals Gi ⊆ Si

such that if an agent i experiences a transition to a goal state gi ∈ Gi, then it will terminate and receive an
associated terminal reward. On subsequent steps, it will receive rewards of zero and it will not be able to
change state. We use the notation ⟨si, s−i⟩ to represent a joint state s where s−i denotes all elements of s
excluding si, ⟨si, s−i⟩ denotes the concatenation of si and s−i, and S−i = {×Sj}j∈I\{i} denotes the cross
product of all agent state spaces except for agent i. Then, for a terminated agent i ∈ I where si ∈ Gi, we
have P(⟨si, s−i⟩, a) = ⟨si, s−i′⟩ and Ri(⟨si, s−i⟩, a, ⟨si, s−i′⟩) = 0 for all (s−i, s−i′) ∈ S−i × S−i and for all
a ∈ A. Finally, we will use T i to denote the first timestep upon which the next state of agent i is a goal—that
is si

T i ̸= si
T i+1 ∈ G

i. We assume T i < 0 if agent i has already terminated, that is si ∈ Gi.

The set of tasks M can then be defined such that tasks share the same agent state spaces, agent ac-
tion spaces, dynamics and non-terminal rewards, which is described by a background CM-MDP MB =
(I, {Si}i∈I , {Ai}i∈I ,P, {Ri

B}i∈I), and each task M ∈ M is uniquely specified by a set of agent terminal re-
ward functions {R̂i

M}i∈I , where R̂i
M specifies the reward achieved by agent i when experiencing a terminal

transition to gi in the task M . Formally, the task distributionM, which we refer to as the world, is defined by

M(MB) := {(I, {Si}i∈I , {Ai}i∈I ,P, {Ri
M}i∈I)|∀i ∈ I, ∀(s, a, s′) ∈ S ×A× S

Ri
M (s, a, s′) =

{
R̂i

M (si′), if si ̸= si′ ∈ Gi

Ri
B(s, a, s′), otherwise

}

In this work, we assume that there exists a centralised controller (CC) that jointly specifies the actions of
each agent. In the centralised setting, a CM-MDP is a special case of an MDP allowing for single-agent
reinforcement learning algorithms to be used (Kok & Vlassis, 2006). As such the CC aims to learn an optimal
joint policy π∗ : S 7→ Pr(A) that when followed maximises the expected sum of team rewards. Under a
joint policy π̄ the expected team return is defined by the value function V π(s) := Eπ[

∑∞
t=0 R(st, at, st+1)].
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Similarly, the action value function Qπ̄(s, a) := Eπ
s′ [R(s, a, s′)+V π(s)] defines the expected return from joint

state s when executing joint action a and following π thereafter. The optimal Q-value function is given by
Q∗(s, a) = maxπ Qπ(s, a) and the optimal joint policy can be retrieved by acting greedily with respect to Q∗

at each joint state: π(s) ∈ arg maxa∈A Q∗(s, a). Finally, since we are interested in goal-reaching tasks, we
assume the shortest path setting where the optimal joint policy must be proper. A joint policy is proper if all
agents are guaranteed to eventually reach a terminal agent state while following it. This is equivalent to the
definition of proper policies in the single-agent setting (Van Niekerk et al., 2019). Similarly to Nangue Tasse
et al. (2020), we assume that the value functions for improper joint policies are unbounded from below.

3 Task Generalisation via World Value Functions

3.1 Multi-Agent World Value Functions

In this section we extend world value functions (WVFs) (Nangue Tasse et al., 2020)1 to the multi-agent
setting and prove that these multi-agent WVFs encode how all agents can jointly reach all joint goals that are
reachable under the dynamics of the environment. To achieve this, we first define extended agent reward
functions which penalise each agent for reaching goals they did not intend to reach, and then we define the
extended team reward function similarly to the original team reward function.

Definition 1. The extended agent reward function R̄i : S × Gi ×A× S 7→ R for agent i is defined by

R̄i(s, gi, a, s′) :=
{

R̃min if si ̸= si′ ∈ Gi \ {gi},
Ri(s, a, s′) otherwise

where R̃min ≤ n((Rmin−Rmax)D+Rmin), D = maxs ̸=s′∈S maxπ∈Πp
E[T (s′|π, s)], T is the number of timesteps

required to reach s′ from s under π and Πp is the set of proper joint policies.

Definition 2. The extended team reward function R̄ : S × G × A × S 7→ R is defined by R̄(s, g, a, s′) :=∑
i∈I R̄i(s, gi, a, s′).

We wish to learn a goal-oriented joint policy that directs agents to assigned joint goals. We denote this joint
policy as a joint world policy (JWP) π̄ : S × G 7→ Pr(A). We then define the WVF Q̄π̄ associated with π̄
similarly to the single-agent definition of WVFs except defined using the team reward function. We note that
in the special case where the CM-MDP consists of n = 1 agent, this definition of the WVF is analogous to
that of Nangue Tasse et al. (2020).

Definition 3. The world value function Q̄π̄ : S × G × A 7→ R under a world joint policy π̄ is defined by
Q̄π̄(s, g, a) := Eπ̄

s′ [R̄(s, g, a, s′) + V̄ π̄(s, g)] where the state world value function V̄ π̄ : S × G 7→ R under π̄ is
defined as V̄ π̄(s, g) := Eπ̄[

∑∞
t=0 R̄(st, g, at, st+1)].

Since the WVF satisfies the Bellman equations the optimal JWP can be retrieved from the optimal WVF by
maximising over joint actions: π̄∗

M (s, g) ∈ arg maxa∈A Q̄∗
M (s, g, a). The optimal state world value function

(SWVF) can be retrieved similarly: V̄ ∗
M (s, g) = maxa∈A Q̄∗

M (s, g, a). Additionally since we consider a CC,
the optimal WVF can be learnt using any suitable single-agent RL algorithm with minor modification, which
we describe in Subsection 3.4. However, the optimal WVF and associated optimal JWP do not immediately
solve the given task since they define their own reward function. Thus, we must retrieve the optimal Q-value
function from the optimal WVF. We do this by maximising over joint goals on the optimal WVF, which is
possible due to the team reward function being retrievable from the extended team reward function—also
by maximising over joint goals. These are given in the following theorem.

Theorem 1. Let RM and R̄M be the team reward function and extended reward function for a task M ∈M. Let
Q∗

M and Q̄∗
M be the corresponding optimal Q-value function and optimal world value function. For all (s, a, s′) ∈

S ×A× S, we have (i) RM (s, a, s′) = maxg∈G R̄M (s, g, a, s′), and (ii) Q∗
M (s, a) = maxg∈G Q̄∗

M (s, g, a) 2.

1Originally referred to as extended value functions by Nangue Tasse et al. (2020), but later generalised to world value functions
(Tasse et al., 2022).

2Proofs are provided in the appendix

3



We can then retrieve the optimal joint policy from the optimal WVF directly with π∗(s) ∈ arg maxa∈A
{

maxg∈G Q̄∗
M (s, g, a)

}
to solve the current task. We can also retrieve the optimal value function from the

optimal SWVF with V ∗
M (s) = maxg∈G V̄ ∗

M (s, g). This is illustrated in Figure 1 for a two-agent ring world.

(a) Optimal value function V ∗ (b) Optimal state world value function V̄ ∗

Figure 1: Value functions in a two-agent ring world. (a) shows the heatmap of values associated with a two
agent ring world. The ring world can be decomposed into the agent states corresponding to agent 1 and
agent 2 which are shown on the top and right of the figure with the coordinates of the associated agent goals
highlighted in green. An agent terminates upon taking a ‘WAIT’ action at the coordinate of a goal. (b) shows
the heatmaps corresponding to the joint state values associated with each joint goal in the WVF. We can see
that we can retrieve (a) from (b) with V ∗(s) = maxg∈G V̄ ∗(s, g).

Next we show that an optimal WVF provably encodes how all agents can optimally reach all joint goals
provided that the joint goals are reachable under the dynamics of the environment, which we refer to as
mastery. Due to interactions between agents and the dynamics of the environment, it may only be possible
for a subset of the agents to reach their assigned goal. Thus, we informally define mastery as the property
where the number of agents who reach their assigned goal is maximised. More formally, it is the sum of
conditional probabilities of each agent reaching their assigned goal when starting at some joint state:

Definition 4. Let Q̄∗
M be the optimal world value function for a task M ∈ M. Then Q̄∗

M has mastery if for
all (s, g) ∈ S × G there exists an optimal joint world policy π̄∗

M (s, g) ∈ arg maxa∈A Q̄∗
M (s, g, a) such that

π̄∗
M ∈ arg maxπ̄

∑
i∈I P (si

T i+1 = gi|s, g, π̄, M).

Theorem 2. Let Q̄∗
M be the optimal world value function for a task M ∈M. Then Q̄∗

M has mastery.

Since the optimal WVF has mastery, there exists an associated optimal JWP that will ensure that the maxi-
mum number of agents reach their assigned goal—if they are reachable in the environment. This property is
powerful because it (along with Theorem 1) shows that the optimal WVF encodes both how the agents can
jointly reach every (reachable) goal and how to solve the associated task. This is leveraged in the following
section to enable zero-shot task generalisation after learning the optimal WVF for a single task.
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3.2 Task Generalisation

In this section, we show that WVFs encode the common properties across the task distribution as specified by
the background CM-MDP. This allows for knowledge learnt in one task to be transferred to another, where
the learned optimal WVF for one task can then be used to zero-shot infer the optimal policy of any other
task in the task distribution—given the goal rewards that define the new task. We first show that we can
retrieve the optimal Q-value function from the optimal WVF by maximising over the set of reachable joint
goals. We will focus on the set of non-terminated agents Ĩ whose joint goals are reachable, ignoring the
goals of terminated agents since they cannot reach any goal. We use the notation gĨ to denote the assigned
agent goals of non-terminated agents and define gĨ reachable from s′ as meaning that every non-terminated
agent i ∈ Ĩ can reach their assigned goal in g when all agents start at s′. Additionally, by the assumption of
all optimal joint policies being proper, for every s′ = P(s, a) there will be at least one joint goal where the
non-terminated agents can reach their goal and GR will never be empty if s /∈ G.

Lemma 1. Let Q̄∗
M be the optimal world value function for a task M ∈ M. For all (s, a) ∈ S × A let

GR = {g | ∀g ∈ G where gĨ is reachable from s′ = p(s, a)} be the set of joint goals reachable by the non-
terminated agents Ĩ = {i | ∀i ∈ I where si /∈ Gi}. Then Q∗

M (s, a) = maxg∈GR
Q̄∗

M (s, g, a).

If we look back at the definition of the task distributionM we see that the common properties across tasks
are defined by the background CM-MDP B which is also the task MB ∈M in the task distribution with zero
terminal rewards. By Theorem 2 the optimal WVF for MB encodes how to optimally reach every reachable
joint goal in the task which is constant across tasks in the task distribution. Thus, we show that the set
of optimal WJPs for every task is equal to the set of optimal WJPs for the background CM-MDP except for
where a WJP is defined on an unreachable joint goal. What changes across tasks is the set of goal rewards
{R̂i

M}i∈I and as such we show that the optimal WVF for a task M ∈ M can be decomposed into the sum of
the optimal WVF for the background CM-MDP and the the sum of associated goal rewards for that task for
agents that have not terminated provided that the given joint goal is reachable.

Theorem 3. Let Q̄∗
M and Q̄∗

MB
be the optimal world value functions for the task M ∈ M and the background

CM-MDP MB , and for all i ∈ I. Let {R̂i
M}i∈I be the set of agent terminal reward functions for the task

M . For all (s, a) ∈ S × A and for all g ∈ {gr | ∀gr ∈ G where gĨ
r reachable from s′ = p(s, a)}, we have

Q̄∗
M (s, g, a) = Q̄∗

MB
(s, g, a) +

∑
i∈I R̂i

M (gi)1si /∈Gi

Thus every optimal WVF in the world can be decomposed into what information is shared across the world
and what differs. Provided we have knowledge of what changes across tasks, that is the agent terminal
rewards, we can leverage the shared information to zero-shot infer the optimal WVF for a new task given
the optimal WVF of another task and the associated goal rewards of both tasks.

Theorem 4. Let Q̄∗
M1

be the optimal world value function for a task M1 ∈M. Let {R̂i
M1
}i∈I and {R̂i

M2
}i∈I be

the sets of agent terminal reward functions for the tasks M1 and M2 ∈ M. For all (s, a) ∈ S × A and for all
g ∈ {gr | ∀gr ∈ G where gĨ

r reachable from s′ = p(s, a)}, we have

Q̄∗
M2

(s, g, a) = Q̄∗
M1

(s, g, a) +
∑
i∈I

(R̂i
M2

(gi)− R̂i
M1

(gi))1si /∈Gi

If we directly combine Theorem 4 and Lemma 1 we can zero-shot infer the optimal Q-value function for a
new task M2 with Q∗

M2
(s, a) = maxg∈GR

{
Q̄∗

M1
(s, g, a)+

∑
i∈I(R̂i

M1
(gi)− R̂i

M2
(gi))1si∈Gi

}
. But, this requires

knowledge of the dynamics of the environment in order to compute GR. Thus, we show that although
Theorem 4 does not hold for G \ GR we show that using Theorem 4 to infer the value of unreachable joint
goals will still provide values that are smaller than that for reachable joint goals. This means that we can
optimally infer the Q-value function from the inferred WVF by maximising over the full set of joint goals -
thus requiring no extra knowledge of the environment.
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Theorem 5. Let Q̄∗
M1

be the optimal world value function for a task M1 ∈M. Let {R̂i
M1
}i∈I and {R̂i

M2
}i∈I be

the sets of agent terminal reward functions for the tasks M1 and M2 ∈M. For all (s, a) ∈ S ×A

Q∗
M2

(s, a) = max
g∈G

{
Q̄∗

M1
(s, g, a) +

∑
i∈I

(R̂i
M1

(gi)− R̂i
M2

(gi))1si∈Gi

}
After learning the optimal WVF for a single arbitrary task and given knowledge of the task specific goal
rewards we can optimally zero-shot infer the optimal Q-value function and thus optimal joint policy for any
task in the task distribution leading to optimal task generalisation.

3.3 Symmetry

While WVFs are powerful in that they allow for zero-shot task generalisation after learning a single task,
learning that single task has the potential for poor sample efficiency due to the exponential explosion in the
size of joint state joint action joint goal space as the number of agents increases. Thus, we propose leveraging
symmetries in the environment to reduce the number of values that must be learnt. Particularly we reduce
the number of joint goals that must be learnt. First we consider symmetries present from our definition of
termination occurring at an agent level and next we consider the special case of homogeneous agents.

3.3.1 Agent Level Termination
Consider a terminated agent i ∈ I where si ∈ Gi, by our assumptions on agent level termination the reward
obtained by agent i will always be zero. This is regardless of the goal agent i was trying to reach, and as
such there exists an equivalence relation in the WVF where all the goals of a terminated agent are equivalent.
Thus, we substitute the goal followed by agent i with a dummy variable gi,T represented the equivalence
class containing all elements of Gi. This is given in the following theorem.

Theorem 6. For all i ∈ I. Let gi,T ∈ Gi. For all (s−i, g−i) ∈ S−i × G−i, for all (si, gi) ∈ Gi × Gi, for all a ∈ A
we have: Q̄∗(s, ⟨g−i, gi,T ⟩, a) = Q̄∗(s, ⟨g−i, gi⟩, a).

Thus, when an agent i is terminated we can reduce the joint goal space that must be considered by a factor of
|Gi|. This theorem also supports multiple terminated agents, further reducing the size of the joint goal space.

3.3.2 Homogeneity
Consider tasks where agents are homogeneous and interchangeable such that for all permutations Perm we
have p(Perm(s), P erm(a)) = Perm(s′) and Ri(Perm(s), P erm(a), P erm(s′)) = Ri(s, a, s′)∀i ∈ I, and for
all (i, j) ∈ I × I we have Si = Sj , Ai = Aj , and Ri(s, a, s′) = Rj(s, a, s′). As a result the WVF is invariant
under the permutation of the joint state, joint action and joint goal as shown in the following theorem.

Theorem 7. Let Q̄π̄
M be the world value function for a task M ∈ M under a joint world policy π̄. Q̄π̄

M is
invariant to any permutation Perm applied to the joint state, joint action and joint goal. That is, for all
permutations Perm and for all (s, g, a) ∈ S×G×A we have: Q̄π̄(s, g, a) = Q̄π̄(Perm(s), P erm(g), P erm(a))

Due to this, there exists a set of equivalence classes where each contains every permutation of a particular
joint goal. We define a new set of joint goals Gb ⊆ G known as the set of base joint goals which contains one
joint goal from each equivalence class. As a result of Theorem 7 we only need to learn the values associated
with each base joint goal gb ∈ Gb and can retrieve the values associated with the full set of joint goals using
Q̄(Permgb,g(s), P ermgb,g(g), P ermgb,g(a)) = Q̄(s, gb, a) where Permgb,g is the permutation that converts
gb to g. The upper bound for the size of the joint goal space is |G| =

∏
i∈I |Gi| = |Gj | where j is any agent

due to homogeneity and the associated upper bound for the size of the base joint goal space is |Gb| = |Gj |Pn.
Thus, the size of the base joint goal space is significantly smaller than that of the joint goal space.

3.4 Learning a WVF

In order to learn the WVF we extend goal-oriented learning (GOL) to the multi-agent setting and leverage the
symmetries described in Subsection 3.3. Since we consider a CC, GOL only requires minor modification to be
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applied to the multi-agent setting. Specifically, we must now compute the extended agent reward functions
and extended team reward function. To leverage symmetry from homogeneity, we simply learn the values
associated with the set of base joint goals Gb, and to leverage symmetry from agent level termination, we
augment the space of joint goals with the dummy variable gi,T when appropriate for terminated agents. The
full pseudocode for this with an additional ablation experiment are given in the appendix.

4 Experiments

In this section we empirically demonstrate that given a fixed step quota for pretraining, our method can
optimally learn or infer the full task distribution, while comparative methods can only learn a small subset
of the tasks. We consider a tabular grid world domain with two homogeneous agents and a varying number
of goals with randomised locations. Each goal has an associated reward of 10 or −10, denoting whether
that goal is desirable or not. For each number of goals and layout of goals, there exists a task distribution
containing all possible assignments of ‘desirable’ or ‘undesirable’ rewards to said goals. Figure 2 shows a
variety of grid world layouts, and we note that each grid shown is just one task sampled from the associated
task distribution for that particular layout.

Since agents are homogeneous, all agents share the same reward function and receive the same terminal
rewards upon reaching goals. The reward function is sparse, with agents either receiving a terminal reward
or a step reward of -0.01. The action space of each agent is the cardinal directions and a ‘STAY’ action. The
dynamics are such that agents cannot occupy the same position or pass through each other. To achieve a goal,
an agent must take the ‘STAY’ action while at the coordinate of a goal, upon which it terminates and receives
the associated reward. In order to align this domain with our problem definition, we augment the agent state
space with a done status such that the goal states are represented as (coordinate of goal, done=True) and an
agent transitions into this state upon taking the ‘STAY’ action at the state (coordinate of goal, done=False).

Figure 2: Sample grid world layouts with varying numbers of goals—each represented by colored squares.
Squares are blue if desirable and red if undesirable. The two agents are represented by colored circles.

In Figure 3(a) we compare the number of tasks learnt or inferred by GOLeMM against those learnt by tradi-
tional Q-learning operating on the joint spaces referred to as centralised Q-learning (CQL), and independent
Q-learning (IQL). We vary the number of goals and the locations of goals. For each run, we measure how
many tasks can be optimally learnt or inferred given a fixed step quota of six million for learning. Here we
randomly sample a task from the associated task distribution, optimally learn or infer the task, and then
sequentially move onto a new task where optimality is evaluated by comparing evaluated returns against
optimal returns as computed by optimal multi-agent path finding. In the case of GOLeMM our method
learns the optimal WVF for the first task seen then uses Theorem 5 to zero-shot infer the rest of the tasks
and we assume it has knowledge of the goal rewards for each task. Since our method only needs to learn
a single task and is then able to zero-shot infer the rest of task distribution we observed that it was able to
optimally learn or infer the full task distribution for 99.81% of the runs where in the remaining runs it was
only unable to optimally infer 1 or 2 tasks. We suspect this is due to minor sub-optimality in the learnt WVF
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which was not picked up by our method of evaluating optimality. Since CQL and IQL must learn each task
independently they are only able to learn a small subset of the task distribution while ours on average is able
to learn the full task distribution whose size is exponential in the number of goals.

(a) Number of tasks learnt/inferable (b) Steps until convergence

Figure 3: Results in the grid world. (a) The number of tasks learnt/inferable given a fixed step quota
for GOLeMM, CQL and IQL as a function of number of goals. The y-axis is plotted on a log scale. (b)
shows the steps until optimal convergence of CQL, IQL and GOL as a function of the number of goals in the
environment. For each algorithm and each number of goals in (a-b), 512 runs were executed with varying
goal locations and the mean was taken to plot the lines along with 95% confidence intervals. The confidence
intervals in (a) are too small to be seen due to the high number of runs and the log scale.

Figure 3(b) shows the number of steps until optimal convergence of GOLeMM for learning a single task
compared to that of IQL and CQL as a function of the number of goals in the environment. We see that
our method outperforms a representative centralised method, CQL, but is substantially less sample efficient
in learning a single task than a representative decentralised method, IQL. Although our method must learn
how to achieve every joint goal in the environment it is still able to learn quicker than CQL which only needs
to learn how to achieve the current task. We believe this is due to the goal-oriented exploration inherent in
our method and the leveraging of symmetries. IQL is more sample efficient on learning a single task because
it requires less values to learn. However even in a setting with minimal coordination between agents like
this one, we observed that IQL failed to converge to an optimal solution for a non-negligible percentage of
the tasks when the number of goals is low: approximately 6.2% for 4 goals, 3.1% for 6 goals, 0.3% for 8
goals, and 0% for the rest. Finally, although GOLeMM has a higher upfront cost of learning a single task
than IQL, it is clear that the increased upfront cost of learning a single task is made up for by being able to
immediately generalise over the task distribution.

5 Conclusion

In this work we extend WVFs to the multi-agent setting and prove that they capture the common properties
across the world. Using this, after learning the WVF for an arbitrary task we are able to zero-shot infer the
optimal policy for any other task given knowledge of the terminal rewards. Thus we have proposed a method
for optimally generalising over a task distribution in a multi-agent setting which to the best of our knowledge
is the first work to do so. Empirically we show that given a fixed step quota our method can infer the entire
task distribution, while comparative methods are only able to learn a small percentage with the gap between
our method and theirs growing exponentially as the number of goals in the environment increases. Finally,
we note that there is number of limitations in the current work. For example, we focused on the centralised
setting, but this presents challenges in terms of agent scaling (the joint action space grows exponentially
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with the number of agents). While these assumptions are similar to those made in prior theoretical works,
an exciting direction for future works is to relax them, extending our results to the broader distributions of
tasks and RL algorithms.
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A Appendix

A.1 Proofs & Supporting Lemmas

A.1.1 World Value Functions

Theorem 1. Let RM and R̄M be the team reward function and extended reward function for a task M ∈ M.
Let Q∗

M and Q̄∗
M be the optimal Q-value function and optimal world value function for a task M ∈ M. For all

(s, a, s′) ∈ S ×A× S, we have:

(i) RM (s, a, s′) = max
g∈G

R̄M (s, g, a, s′), and

(ii) Q∗
M (s, a) = max

g∈G
Q̄∗

M (s, g, a).

Proof.

(i) Let (s, g, a) ∈ S × G ×A with R̃(s, g, a, s′) =
∑

i∈I R̃i(s, gi, a, s′).

max
g∈G

R̃(s, g, a, s′) = max
g∈G

∑
i∈I

R̃i(s, gi, a, s′)

=
∑
i∈I

max
gi∈Gi

R̃i(s, gi, a, s′)

=
∑
i∈I

Ri(s, a, s′) By Nangue Tasse et al. (2020)

= R(s, a, s′).

(ii) Each g ∈ G can be thought of as defining a CM-MDP Mg = (I, {Si}i∈I , {Ai}i∈I ,P, {Ri
Mg
}i∈I)

with the team reward function defined as RMg(s, a, s′) = R̃M (s, g, a, s′) =
∑

i∈I R̃i
M (s, gi, a, s′)

and optimal action-value function Q∗
Mg

(s, a) = Q̄∗
M (s, g, a). By the use of R(s, a, s′) =

maxg∈G R̃(s, g, a, s′) and from Van Niekerk et al. (2019) (2019, Corollary 1), we have that
Q∗

M (s, a) = maxg∈G Q∗
Mg

(s, a) = maxg∈G Q̄∗
M (s, g, a).

Theorem 2. Let Q̄∗
M be the optimal world value function for a task M ∈M. Then Q̄∗

M has mastery.

Proof.
Let Q̄∗

M be the optimal world value function for a task M ∈ M. Let (s, a) ∈ S × A. Let Ĩ = {i|∀i ∈
I where si /∈ Gi} be the set of non-terminated agents.

For all i ∈ I \ Ĩ and for all π̄ ∈ Π̄ where Π̄ is the set of all optimal joint world policies:

P (si
T i+1 = gi|s, g, π̄, M) =

{
1 if si = gi

0 otherwise

= P (si
T i+1 = gi|s, g, M)

Since each agent i ∈ I \ Ĩ has already terminated at a goal si ∈ Gi.
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arg max
π̄

∑
i∈I

P (si
T i+1 = gi|s, g, π̄, M) = arg max

π̄

{∑
i∈Ĩ

P (si
T i+1 = gi|s, g, π̄, M)

+
∑

i∈I\Ĩ

P (si
T i+1 = gi|s, g, π̄, M)

}
= arg max

π̄

∑
i∈Ĩ

P (si
T i+1 = gi|s, g, π̄, M)

Thus, we only need to consider the non terminated agents in Ĩ.

Let π̄∗(s, g) ∈ arg maxa∈A Q̄∗(s, g, a) be a deterministic optimal world joint policy for the task M . Let π̄g

be a deterministic world joint policy that satisfies π̄g ∈ arg maxπ̄

∑
i∈I

P (si
T i+1 = gi|s, g, π̄, M). Similarly to

before this implies π̄g ∈ arg maxπ̄

∑
i∈Ĩ

P (si
T i+1 = gi|s, g, π̄, M). We use proof by contradiction and assume

∑
i∈I

P (si
T i+1 = gi|s, g, π̄∗, M) <

∑
i∈I

P (si
T i+1 = gi|s, g, π̄g, M)

Let

G⋆,i
T i−1 = Eπ̄∗

[
T i−1∑
t=0

R̄i(st, gi, at, st+1)]

Gg,i
T i−1 = Eπ̄g

[
T i−1∑
t=0

R̄i(st, gi, at, st+1)]

P i,∗ = P (si
T i+1 = gi|s, g, π̄∗, M)

P i,g = P (si
T i+1 = gi|s, g, π̄g, M)

P ∗ =
∑
i∈Ĩ

P i,∗

P g =
∑
i∈Ĩ

P i,g

m = |Ĩ|

We first show that the following inequality holds

∑
i∈Ĩ

(G⋆,i
T i−1 −Gg,i

T i−1) +
∑
i∈Ĩ

R̂i
M (gi)(P i,∗ − P i,g) < (P ∗ − P g)R̃min

We do this by first establishing (i) an upper bound on
∑
i∈Ĩ

(G⋆,i
T i−1−Gg,i

T i−1) +
∑
i∈Ĩ

R̂i
M (gi)(P i,∗−P i,g) and (ii)

a lower bound on (P ∗ − P g)R̃min.
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(i) D corresponds to the maximum length of a trajectory under an optimal joint policy, thus T i ≤ D. Since
Rmin ≤ R̄i(s, g, a, s′) ≤ Rmax, we have G⋆,i

T i−1 ≤ Rmax(D − 1) and −Gg,i
T i−1 ≤ −Rmin(D − 1). Therefore,

G⋆,i
T i−1 −Gg,i

T i−1 ≤ (Rmax −Rmin)(D − 1)

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 −Gg,i

T i−1) ≤
∑
i∈Ĩ

(Rmax −Rmin)(D − 1)

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 −Gg,i

T i−1) ≤ m(Rmax −Rmin)(D − 1) since m = |Ĩ|

Let Ĩ+ = {i|∀i ∈ Ĩ where P i,∗ − P i,g ≥ 0}.

R̂i
M (gi) ≤ Rmax ∀i ∈ Ĩ+

R̂i
M (gi)(P i,∗ − P i,g) ≤ Rmax(P i,∗ − P i,g) ∀i ∈ Ĩ+

=⇒
∑
i∈Ĩ+

R̂i
M (gi)(P i,∗ − P i,g) ≤ Rmax

∑
i∈Ĩ+

(P i,∗ − P i,g)

Since π̄g and π̄∗ are deterministic, P i,∗ ∈ {0, 1} and P i,g ∈ {0, 1} for all i ∈ Ĩ. Thus,

P i,∗ − P i,g ≤ 1 ∀i ∈ Ĩ+

=⇒
∑
i∈Ĩ+

(P i,∗ − P i,g) ≤ m since |Ĩ+| ≤ |Ĩ|

=⇒ Rmax

∑
i∈Ĩ+

(P i,∗ − P i,g) ≤ mRmax

=⇒
∑
i∈Ĩ+

R̂i
M (gi)(P i,∗ − P i,g) ≤ mRmax

Let Ĩ− = {i|∀i ∈ Ĩ where P i,∗ − P i,g < 0}.

R̂i
M (gi) ≥ Rmin ∀i ∈ Ĩ−

=⇒ R̂i
M (gi)(P i,∗ − P i,g) ≤ Rmin(P i,∗ − P i,g) ∀i ∈ Ĩ−

=⇒
∑
i∈Ĩ−

R̂i
M (gi)(P i,∗ − P i,g) ≤ Rmin

∑
i∈Ĩ−

(P i,∗ − P i,g)

P i,∗ − P i,g ≥ −1 ∀i ∈ Ĩ−

=⇒
∑
i∈Ĩ−

(P i,∗ − P i,g) ≥ −m since |Ĩ−| ≤ |Ĩ|

=⇒ Rmin

∑
i∈Ĩ−

(P i,∗ − P i,g) ≤ −mRmin

=⇒
∑
i∈Ĩ−

R̂i
M (gi)(P i,∗ − P i,g) ≤ −mRmin
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∑
i∈Ĩ

R̂i
M (gi)(P i,∗ − P i,g) =

∑
i∈Ĩ+

R̂i
M (gi)(P i,∗ − P i,g) +

∑
i∈Ĩ−

R̂i
M (gi)(P i,∗ − P i,g)

=⇒
∑
i∈Ĩ

R̂i
M (gi)(P i,∗ − P i,g) ≤ m(Rmax −Rmin)

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 −Gg,i

T i−1) +
∑
i∈Ĩ

R̂i
M (gi)(P i,∗ − P i,g) ≤ m(Rmax −Rmin)D from before

ii) Since P i,∗ ∈ {0, 1} and P i,g ∈ {0, 1} for all i ∈ Ĩ we have P ∗ ∈ N and P g ∈ N. This along with the
assumption P ∗ < P g implies P ∗ − P g ≤ −1.

n((Rmin −Rmax)D + Rmin) ≥ R̃min by definition

=⇒ n((Rmin −Rmax)D + Rmin)(P ∗ − P g) ≤ R̃min(P ∗ − P g) since P ∗ − P g < 0

Rmin −Rmax < 0
=⇒ n(Rmin −Rmax)D < 0 since nD > 0

n(Rmin −Rmax)D + nRmin < n(Rmin −Rmax)D since nRmin < 0
=⇒ n((Rmin −Rmax)D + Rmin) < 0

=⇒ −n((Rmin −Rmax)D + Rmin) ≤ n((Rmin −Rmax)D + Rmin)(P ∗ − P g) since − 1 ≥ P ∗ − P g

=⇒ n((Rmax −Rmin)D −Rmin) ≤ n((Rmin −Rmax)D + Rmin)(P ∗ − P g)

n((Rmin −Rmax)D + Rmin)(P ∗ − P g) ≤ R̃min(P ∗ − P g)
=⇒ n((Rmax −Rmin)D −Rmin) ≤ R̃min(P ∗ − P g)

m(Rmax −Rmin)D ≤ n(Rmax −Rmin)D since m ≤ n and (Rmax −Rmin)D ≥ 0
=⇒ m(Rmax −Rmin)D + nRmin < n(Rmax −Rmin)D since nRmin < 0

=⇒ m(Rmax −Rmin)D < n((Rmax −Rmin)D −Rmin)
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Thus,

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 −Gg,i

T i−1) +
∑
i∈Ĩ

R̂i
M (gi)(P i,∗ − P i,g) < (P ∗ − P g)R̃min

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 + P i,∗R̂i

M (gi))− P ∗R̃min <
∑
i∈Ĩ

(Gg,i
T i−1 + P i,gR̂i

M (gi))− P gR̃min

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 + P i,∗R̂i

M (gi))− P ∗R̃min + mR̃min <
∑
i∈Ĩ

(Gg,i
T i−1 + P i,gR̂i

M (gi))− P gR̃min + mR̃min

=⇒
∑
i∈Ĩ

(G⋆,i
T i−1 + P i,∗R̂i

M (gi) + (1− P i,∗)R̃min) <
∑
i∈Ĩ

(Gg,i
T i−1 + P i,gR̂i

M (gi) + (1− P i,g)R̃min)

Since mR̃min − P ∗R̃min =
∑
i∈Ĩ

(1− P i,∗)R̃min and mR̃min − P gR̃min =
∑
i∈Ĩ

(1− P i,g)R̃min.

By substituting we have

∑
i∈Ĩ

(Eπ̄∗
[
T i−1∑
t=0

R̄i(st, gi, at, st+1)] + P (si
T i+1 = gi|s, g, π̄∗, M)R̂i

M (gi) + P (si
T i+1 ̸= gi|s, g, π̄∗, M)R̃min)

<∑
i∈Ĩ

(Eπ̄g
[
T i−1∑
t=0

R̄i(st, gi, at, st+1)] + P (si
T i+1 = gi|s, g, π̄g, M)R̂i

M (gi) + P (si
T i+1 ̸= gi|s, g, π̄g, M)R̃min)

=⇒ V̄ ∗
M (s, g) < V̄ π̄g

M (s, g)

Which is a contradiction. Thus, we must have π̄∗ ∈ arg maxπ̄

∑
i∈I

P (si
T i+1 = gi|s, g, π̄, M). Therefore, we

have proved that Q̄∗
M has mastery.

A.1.2 Task Generalisation

Lemma A1. 3 Let V̄ π̄
M and Q̄π̄

M be the state world value function and world value function for a task M ∈ M
under a joint world policy π̄. For all (s, g, a) ∈ S × G ×A

(i) V̄ π̄
M (s, g) =

∑
i∈I

V̄ i,π̄
M (s, g), where V̄ i,π̄

M (s, g) := Eπ̄[
∞∑

t=0
R̄i

M (st, gi, at, st+1)] for all i ∈ I, and

(ii) Q̄π̄
M (s, g, a) =

∑
i∈I

Q̄i,π̄
M (s, g, a), where Q̄i,π̄

M (s, g, a) := Eπ̄
s′ [R̄i

M (s, gi, a, s′) + V̄ i,π̄
M (s′, g)] for all i ∈ I.

Proof. Let (s, g, a) ∈ S × G ×A.

3Supporting Lemmas specific to the appendix have the prefix A.
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(i)

V̄ π̄
M (s, g) := Eπ̄[

∞∑
t=0

R̄M (st, g, at, st+1)]

= Eπ̄[
∞∑

t=0

∑
i∈I

R̄i
M (st, gi, at, st+1)] By Definition 2

=
∑
i∈I

Eπ̄[
∞∑

t=0
R̄i

M (st, gi, at, st+1)]

=
∑
i∈I

V̄ i,π̄
M (s, g)

(ii)

Q̄π̄
M (s, g, a) := Eπ̄

s′ [R̄M (s, g, a, s′) + V̄ π̄
M (s′, g)]

= Eπ̄
s′ [

∑
i∈I

R̄i
M (s, gi, a, s′) +

∑
i∈I

V̄ i,π̄
M (s′, g)] By Definition 2 and (i)

=
∑
i∈I

{Eπ̄
s′ [R̄i

M (s, gi, a, s′) + V̄ i,π̄
M (s′, g)]}

=
∑
i∈I

Q̄i,π̄
M (s, g, a)

Lemma A2. Let V̄ π̄
M and Q̄π̄

M be the state world value function and world value function for a task M ∈ M
under a joint world policy π̄. For all (s, g, a) ∈ S × G ×A:

(i) V̄ π̄
M (s, g) =

∑
i∈Ĩ

V̄ i,π̄
M (s, g),

where V̄ i,π̄
M (s, g) := Eπ̄[

∞∑
t=0

R̄i
M (st, gi, at, st+1)] for all i ∈ Ĩ, and

(ii) Q̄π̄
M (s, g, a) =

∑
i∈Ĩ

Q̄i,π̄
M (s, g, a),

where Q̄i,π̄
M (s, g, a) := Eπ̄

s′ [R̄i
M (s, gi, a, s′) + V̄ i,π̄

M (s′, g)] for all i ∈ Ĩ,

where Ĩ = {i|∀i ∈ I where si /∈ G}.

Proof. For all (s, g, a) ∈ S × G ×A:

(i) For all i ∈ I \ Ĩ

V̄ i,π̄
M (s, g) = Eπ̄[

∞∑
t=0

R̄i
M (st, gi, at, st+1)]

= 0

15



By assumptions on agent level termination if si
0 ∈ Gi, that is if i ∈ I \ Ĩ, then R̄i

M (st, gi, at, st+1) = 0
for all t ∈ [0,∞). Therefore we have

V̄ π̄
M (s, g) =

∑
i∈I

V̄ i,π̄
M (s, g)

=
∑
i∈Ĩ

V̄ i,π̄
M (s, g)

(ii) For all i ∈ I \ Ĩ

Q̄i,π̄
M (s, g, a) = Eπ̄

s′ [R̄i
M (s, gi, a, s′ + V̄ i,π̄

M (s′, g))]
= 0 Since si ∈ Gi and from (i)

Therefore, Q̄π̄
M (s, g, a) =

∑
i∈Ĩ

Q̄i,π̄
M (s, g, a)

Lemma A3. Let Q̄π̄
M and V̄ π̄

M be the world value function and world state value function for a task M ∈ M
under a world joint policy π̄. Let {R̂i

M}i∈I be the set of agent terminal reward functions.

For all (s, g, a) ∈ S × G ×A:

(i)

V̄ π̄
M (s, g) =

∑
i∈Ĩ

{
Eπ̄

[T i−1∑
t=0

R̄i
M (st, gi, at, st+1)

]
+ P (si

T i+1 = gi | s, g, π̄, M)R̂i
M (gi)

+ P (si
T i+1 ̸= gi | s, g, π̄, M)R̃min

}
(ii)

Q̄π̄
M (s, g, a) =

∑
i∈Ĩ

{
R̄i

M (s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=1
R̄i

M (st, gi, at, st+1)
]

+ P (si
T i+1 = gi | s, g, a, π̄, M)R̂i

M (gi)

+ P (si
T i+1 ̸= gi | s, g, a, π̄, M)R̃min

}
where Ĩ = {i|∀i ∈ I where si /∈ Gi}.

Proof. Let (s, g, a) ∈ S × G ×A. Let Ĩ = {i|∀i ∈ I where si /∈ Gi}. Let i ∈ Ĩ.

(i)

V̄ i,π̄
M (s, g) = Eπ̄[

∞∑
t=0

R̄i
M (st, gi, at, st+1)]

= Eπ̄[
T i∑

t=0
R̄i

M (st, gi, at, st+1)]
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Since, by assumptions on agent level termination, R̄i
M (st, gi, at, st+1) = 0 for all t ∈ [T i,∞)

V̄ i,π̄
M (s, g) = Eπ̄[

T i−1∑
t=0

R̄i
M (st, gi, at, st+1)] + Eπ̄[R̄i

M (sT i , gi, aT i , sT i+1)]

= Eπ̄[
T i−1∑
t=0

R̄i
M (st, gi, at, st+1)] + P (si

T i+1 = gi|s, g, π̄, M)R̂i
M (gi)

+ P (si
T i+1 ̸= gi|s, g, π̄, M)R̃min

since

R̄i
M (sT i , gi, aT i , sT i+1) =

{
R̂i

M (gi) if si
T i+1 = gi

R̃min otherwise

Therefore,

V π̄
M (s, g) =

∑
i∈Ĩ

{
Eπ̄

[T i−1∑
t=0

R̄i
M (st, gi, at, st+1)

]
+ P (si

T i+1 = gi | s, g, π̄, M)R̂i
M (gi)

+ P (si
T i+1 ̸= gi | s, g, π̄, M)R̃min

}
(ii)

Q̄i,π̄
M (s, g, a) = Eπ̄

s′ [R̄i
M (s, gi, a, s′) + V̄ i,π̄

M (s′, g)]

= R̄i
M (s, gi, a, s′) + Eπ̄

s′ [Eπ̄[
∞∑

t=1
R̄i

M (st, gi, at, st+1)]] By determinism

assumption

= R̄i
M (s, gi, a, s′) + Eπ̄[

∞∑
t=1

R̄i
M (st, gi, at, st+1)]

= R̄i
M (s, gi, a, s′) + Eπ̄[

T i∑
t=1

R̄i
M (st, gi, at, st+1)]

Consider CASE 1 where si′
/∈ Gi, then

Q̄i,π̄
M (s, g, a) = R̄i

M (s, gi, a, s′) + Eπ̄[
T i−1∑
t=1

R̄i
M (st, gi, at, st+1)]

+ P (si
T i+1 = gi|s, g, a, π̄, M)R̂i(gi) + P (si

T i+1 ̸= gi|s, g, a, π̄, M)R̃min

Consider CASE 2 where si′ ∈ Gi, then:

R̄i
M (s, gi, a, s′) =

{
R̂i

M (gi) if si′ = gi

R̃min otherwise

and

P (si
T i+1 = gi|s, g, a, π̄, M) =

{
1 if si′ = gi

0 otherwise
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Therefore,

Q̄i,π̄
M (s, g, a) = P (si

T i+1 = gi|s, g, a, π̄, M)R̂i
M (gi) + P (si

T i+1 ̸= gi|s, g, a, π̄, M)R̃min

+ Eπ̄[
T i−1∑
t=1

R̄i
M (st, gi, at, st+1)]

Since Eπ̄[
T i−1∑
t=1

R̄i
M (st, gi, at, st+1)] = Eπ̄[

∞∑
t=1

R̄i
M (st, gi, at, st+1)] = 0 when si

0 ∈ Gi.

Combining CASE 1 and CASE 2 we get

Q̄i,π̄
M (s, g, a) = (R̄i

M (s, gi, a, s′) + Eπ̄[
T i−1∑
t=1

R̄i
M (st, gi, at, st+1)]

+ P (si
T i+1 = gi|s, g, a, π̄, M)R̂i(gi) + P (si

T i+1 ̸= gi|s, g, a, π̄, M)R̃min)1si /∈Gi

+ (P (si
T i+1 = gi|s, g, a, π̄, M)R̂i

M (gi) + P (si
T i+1 ̸= gi|s, g, a, π̄, M)R̃min

+ Eπ̄[
T i−1∑
t=0

R̄i
M (st, gi, at, st+1)])1si∈Gi

= R̄i
M (s, gi, a, s′)1si′ /∈Gi + Eπ̄[

T i−1∑
t=1

R̄i
M (st, gi, at, st+1)]

+ P (si
T i+1 = gi|s, g, a, π̄, M)R̂i(gi) + P (si

T i+1 ̸= gi|s, g, a, π̄, M)R̃min

By Lemma A2 we get:

Qπ̄
M (s, g, a) =

∑
i∈Ĩ

{
R̄i

M (s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=0
R̄i

M (st, gi, at, st+1)
]

+ P (si
T i+1 = gi | s, g, a, π̄, M)R̂i

M (gi)

+ P (si
T i+1 ̸= gi | s, g, a, π̄, M)R̃min

}

Lemma A4. Let Q̄∗
M be the optimal world value function for a task M ∈ M. For all (s, g, a) ∈ S × Gr × A,

where GR = {g | ∀g ∈ G where gĨ is reachable from s′ = p(s, a)} is the set of joint goals reachable by the
non-terminated agents Ĩ = {i | ∀i ∈ I where si /∈ Gi} and m = |Ĩ|, then

mRminD ≤ Q̄∗
M (s, g, a) ≤ mRmaxD

Proof. Let (s, g, a) ∈ S × Gr × A, where GR = {g | ∀g ∈ G where gĨ is reachable from s′ = p(s, a)}, Ĩ =
{i | ∀i ∈ I where si /∈ Gi} and m = |Ĩ|.

By Lemma A2 and Lemma A3

Q̄∗
M (s, g, a) =

∑
i∈Ĩ

Q̄i,∗
M (s, g, a)
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where

Q̄i,∗
M (s, g, a) =R̄i

M (s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=1
R̄i

M (st, gi, at, st+1)
]

+ P (si
T i+1 = gi | s, g, a, π̄, M)R̂i

M (gi)
+ P (si

T i+1 ̸= gi | s, g, a, π̄, M)R̃min

Since Q̄∗
M has mastery (by Theorem 2) and since gĨ is reachable from s′ = p(s, a)

P (si
T i+1 = gi | s, g, a, π̄, M) = 1 ∀i ∈ Ĩ

=⇒ Q̄i,∗
M (s, g, a) = R̄i

M (s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=1
R̄i

M (st, gi, at, st+1)
]

+ R̂i
M (gi) ∀i ∈ Ĩ

By definition of T i, st+1 /∈ Gi for all t ∈ [1, T i − 1], therefore

R̄i
M (st, gi, at, st+1) = Ri

M (st, at, st+1)
=⇒ Rmin ≤ R̄i

M (st, gi, at, st+1) ≤ Rmax

=⇒ Rmin(D − 2) ≤ Eπ̄
[T i−1∑

t=1
R̄i

M (st, gi, at, st+1)
]
≤ Rmax(D − 2) since T i ≤ D

R̄i
M (s, gi, a, s′)1si′ /∈Gi =

{
0 if si′ ∈ Gi

Ri
M (s, a, s′) otherwise

= Ri
M (s, a, s′)1si′ /∈Gi

=⇒ Rmin ≤ Ri
M (s, a, s′)1si′ /∈Gi ≤ Rmax

=⇒ RminD ≤ R̄i
M (s, gi, a, s′)1si′ /∈Gi + Eπ̄

[T i−1∑
t=1

R̄i
M (st, gi, at, st+1)

]
+ R̂i

M (gi) ≤ RmaxD

=⇒ RminD ≤ Q̄i,∗
M (s, g, a) ≤ RmaxD

=⇒ mRminD ≤ Q̄∗
M (s, g, a) ≤ mRmaxD

Lemma A5. Let π̄∗ be the optimal world joint policy associated with a task M ∈ M. Let R̄i
M be the extended

reward function for agent i for the task M . For all i ∈ I and (s, gi, a) ∈ S × Gi ×A, we have

Rmin(D − 1) ≤ Eπ̄∗
[
T i−1∑
t=0

R̄i
M (st, gi, at, st+1)] ≤ Rmax(D − 1)

where s0 = s and a0 = a.

Proof. Let (s, gi, a) ∈ S × Gi ×A. By definition of T i, we have st+1 /∈ Gi for all t ∈ [0, T i − 1]. Therefore, for
all t ∈ [0, T i − 1]

R̄i
M (st, gi, at, st+1) = Ri

M (st, at, st+1)
=⇒ Rmin ≤ R̄i

M (st, gi, at, st+1) ≤ Rmax
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T i ≤ D since D is the maximum length of any trajectory under an optimal joint policy.

=⇒ Rmin(D − 1) ≤ Eπ̄∗
[
T i−1∑
t=0

R̄i
M (st, gi, at, st+1)] ≤ Rmax(D − 1)

Lemma 1. Let Q̄∗
M be the optimal world value function for a task M ∈ M. For all (s, a) ∈ S × A let

GR = {g | ∀g ∈ G where gĨ is reachable from s′ = p(s, a)} be the set of joint goals reachable by the non-
terminated agents Ĩ = {i | ∀i ∈ I where si /∈ Gi}. Then,

Q∗
M (s, a) = max

g∈GR

Q̄∗
M (s, g, a)

Proof. Let Q̄∗
M be the optimal world value function for a task M ∈M and π̄∗ be an associated deterministic

optimal joint world policy. Let (s, a) ∈ S × A. Let GR = {g | ∀g ∈ G where gĨ is reachable from s′ = p(s, a)}
be the set of joint goals reachable by the non-terminated agents Ĩ = {i | ∀i ∈ I where si /∈ Gi}. Let gr ∈ Gr

and gu ∈ G \ Gr. Let m = |Ĩ|.

Let

Q̄i,∗
M (s, g, a) = R̄i

M (s, gi, a, s′)1si,′ /∈Gi + Eπ̄∗
[
T i−1∑
t=0

R̄i
M (st, gi, at, st+1)] + P (si

T i+1 = gi | s, g, a, π̄, M)R̂i
M (gi)

+ P (si
T i+1 ̸= gi | s, g, a, π̄, M)R̃min

By Lemma A3 we have Q̄∗
M (s, g, a) =

∑
i∈Ĩ

Q̄i,∗
M (s, g, a).

We first consider gr. Let Gi,r
T i−1 = Eπ̄∗ [

T i−1∑
t=0

R̄i
M (st, gi

r, at, st+1)] and let P i,r = P (si
T i+1 = gi

r|s, gr, a, π̄∗, M).

Since gĨ
r is reachable, by mastery

∑
i∈Ĩ

P i,r = m. Thus, P i,r = 1 for all i ∈ Ĩ. From this we get,

Q̄i,∗
M (s, gr, a) = R̄i

M (s, gi
r, a, s′)1si,′ /∈Gi + Gi,r

T i−1 + R̂i
M (gi

r)

We consider two cases.
CASE 1: si,′ ∈ Gi

Gi,r
T i−1 = 0 since T i = 0 if si ̸= si,′ ∈ Gi. Therefore, Q̄i,∗

M (s, gr, a) = R̂i
M (gi

r) which means
Q̄i,∗

M (s, gr, a) ≥ Rmin.

Case 2: si,′
/∈ Gi

Q̄i,∗
M (s, gr, a) = R̄i

M (s, gi
r, a, s′) + Gi,r

T i−1 + R̂i
M (gi

r)

= Eπ̄∗
[
T i−1∑
t=0

R̄i
M (st, gi

r, a, st+1)] + R̂i
M (gi

r)

T i − 1 ≤ D − 1 since D is the maximum length of any trajectory. Thus, Eπ̄∗ [
∑T i−1

t=0 R̄i
M (st, gi

r, a, st+1)] ≥
Rmin(D − 1). Since R̂i

M (gi
r) ≥ Rmin we get Q̄i,∗

M (s, gr, a) ≥ DRmin.
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Combining case 1 and case 2 we get

Q̄i,∗
M (s, gr, a) ≥ DRmin

=⇒
∑
i∈Ĩ

Q̄i,∗
M (s, gr, a) ≥ mDRmin

=⇒ Q̄∗
M (s, gr, a) ≥ mDRmin

Next we consider gu. Let Gi,u
T i−1 = Eπ̄∗ [

T i−1∑
t=0

R̄i
M (st, gi

u, at, st+1)] and P i,u = P (si
T i+1 = gi

r|s, gu, a, π̄∗, M).

Since π̄∗ is deterministic then P i,u ∈ {0, 1}.

Since gĨ
u is unreachable from s′ = p(s, a) then there exists J ⊆ Ĩ where P i,r = 0 for all i ∈ J and J ̸= {}.

That is, J represents the non-terminated agents that will reach the wrong goal.

For all i ∈ Ĩ \ J , we have Q̄i,∗
M (s, gu, a) = R̄i

M (s, gi
u, a, s′)1si,′ /∈Gi + Gi,u

T i−1 + R̂i
M (gi

u) which implies
Q̄i,∗

M (s, gu, a) ≤ DRmax similarly to before.

Let j ∈ J . Then, Q̄j,∗
M (s, gu, a) = R̂j

M (s, gi
u, a, s′)1sj,′ /∈Gj + Gj,u

T j−1 + R̃min. We consider two cases.

Case 1: sj,′ ∈ Gj

Q̄j,∗
M (s, gu, a) = R̃min

=⇒ Q̄j,∗
M (s, gu, a) ≤ n((Rmin −Rmax)D + Rmin)

Case 2: sj,′
/∈ Gj

Q̄j,∗
M (s, gu, a) = R̄j

M (s, gj
u, a, s′) + Gj,u

T j−1 + R̃min

= Eπ̄∗
[
T j−1∑
t=0

R̄j
M (st, gj

u, at, st+1)] + R̃min

=⇒ Q̄j,∗
M (s, gu, a) ≤ (D − 1)Rmax + R̃min

Combining case 1 and case 2, we have Q̄j,∗
M (s, gu, a) ≤ (D − 1)Rmax + R̃min. Next we establish the upper

bound on Q̄∗
M (s, gu, a).

Q̄∗
M (s, gu, a) =

∑
i∈Ĩ\J

Q̄i,∗
M (s, gu, a) +

∑
i∈J

Q̄i,∗
M (s, gu, a)

=⇒ Q̄∗
M (s, gu, a) ≤ (m− l)DRmax + l((D − 1)Rmax + R̃min) where l = |J |

=⇒ Q̄∗
M (s, gu, a) ≤ (mD − l)Rmax + lR̃min

=⇒ Q̄∗
M (s, gu, a) ≤ (mD − l)Rmax + l(n(Rmin −Rmax)D + Rmin)

=⇒ Q̄∗
M (s, gu, a) ≤ (mD − l − lnD)Rmax + ln(D + 1)Rmin

Next we show mDRmin > (mD − l − lnD)Rmax + ln(D + 1)Rmin.
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m ≤ ln since m ≤ n and l ≥ 1
=⇒ mD − lnD ≤ 0 since D > 0

=⇒ mD − lnD − l < 0 since − l < 0
=⇒ (mD − lnD − l)Rmax ≤ 0 since Rmax ≥ 0

mD ≤ lnD

=⇒ mD < lnD + ln since ln > 0
=⇒ mDRmin > ln(D + 1)Rmin since Rmin < 0
=⇒ mDRmin > (mD − lnD − l)Rmax

=⇒ Q̄∗
M (s, gr, a) > Q̄∗

M (s, gu, a)

From this we get, for all (s, g, a) ∈ (S \ G)× G ×A

Q∗
M (s, a) = max

g∈G
Q̄∗

M (s, g, a) by Theorem 1

= max{max
g∈Gr

Q̄∗
M (s, g, a), max

g∈G\Gr

Q̄∗
M (s, g, a)}

= max
g∈Gr

Q̄∗
M (s, g, a)

In the case of (s, a) ∈ G × A we get Q̄∗
M (s, g, a) = 0 for all g ∈ G, which leads to Q∗

M (s, a) =
max
g∈Gr

Q̄∗
M (s, g, a) = 0.

Thus, for all (s, g, a) ∈ S × G ×A we have Q∗
M (s, a) = max

g∈Gr

Q̄∗
M (s, g, a).

Theorem 3. Let Q̄∗
M and Q̄∗

MB
be the optimal world value functions for the task M ∈ M and the background

CM-MDP MB , and for all i ∈ I. Let {R̂i
M}i∈I be the set of agent terminal reward functions for the task M . For

all (s, a) ∈ S ×A and for all g ∈ {gr | ∀gr ∈ G where gĨ
r reachable from s′ = p(s, a)}, we have

Q̄∗
M (s, g, a) = Q̄∗

MB
(s, g, a) +

∑
i∈I

R̂i
M (gi)1si /∈Gi

Proof. Let {R̂i
M}i∈I be the extended reward functions for the task M and the background CM-MDP, MB .

Let (s, a) ∈ S × A and let g ∈ {gr | ∀gr ∈ G where gĨ
r reachable from s′ = p(s, a)} with Ĩ = {i for all i ∈

I where si /∈ Gi}.

By mastery, there exists π̄∗
M (s, g) ∈ arg maxa∈A Q̄∗

M (s, g, a) where π̄∗
M ∈ arg maxπ̄

∑
i∈I p(si

T i+1 =
gi|s, π̄, M). Let π̄∗

M (s, g) ∈ arg maxa∈A Q̄∗
M (s, g, a) be an optimal joint world policy for the task M that

satisfies π̄∗
M ∈ arg maxπ̄

∑
i∈I p(si

T i+1 = gi|s, π̄, M).

Similarly, let π̄∗
B(s, g) ∈ arg maxa∈A Q̄∗

B(s, g, a) be an optimal joint world policy for the background CM-MDP
that satisfies π̄∗

B ∈ arg maxπ̄

∑
i∈I p(si

T i+1 = gi|s, π̄, B).
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My Lemma A3, we have

Q∗
M (s, g, a) =

∑
i∈Ĩ

{
R̄i

M (s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=0
R̄i

M (st, gi, at, st+1)
]

+ P (si
T i+1 = gi | s, g, a, π̄, M)R̂i

M (gi)

+ P (si
T i+1 ̸= gi | s, g, a, π̄, M)R̃min

}
Since gĨ reachable from s′ = p(s, a), by mastery

P (si
T i+1 = gi | s, g, a, π̄, M) = 1 for all i ∈ Ĩ .

Therefore

Q∗
M (s, g, a) =

∑
i∈Ĩ

{
R̄i

M (s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=0
R̄i

M (st, gi, at, st+1)
]

+ R̂i
M (gi)

}
.

R̄i
M (s, gi, a, s′) = R̄i

B(s, gi, a, s′) for all si′
/∈ Gi.

R̄i
M (s, gi, a, s′)1si′ /∈Gi = R̄i

B(s, gi, a, s′)1si′ /∈Gi for all si′ ∈ Si.

It follows that

Q∗
M (s, g, a) =

∑
i∈Ĩ

{
R̄i

B(s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=0
R̄i

B(st, gi, at, st+1)
]

+ R̂i
M (gi)

}

= max
π̄

{∑
i∈Ĩ

{
R̄i

B(s, gi, a, s′)1si′ /∈Gi + Eπ̄
[T i−1∑

t=0
R̄i

B(st, gi, at, st+1)
]

+ R̂i
M (gi)

}}

=
∑
i∈Ĩ

{
R̄i

B(s, gi, a, s′)1si′ /∈Gi

}
+ max

π̄

{∑
i∈Ĩ

Eπ̄
[T i−1∑

t=0
R̄i

B(st, gi, at, st+1)
]}

+
∑
i∈Ĩ

R̂i
M (gi)

Similarly

Q∗
B(s, g, a) =

∑
i∈Ĩ

{
R̄i

B(s, gi, a, s′)1si′ /∈Gi

}
+ max

π̄

{∑
i∈Ĩ

Eπ̄
[T i−1∑

t=0
R̄i

B(st, gi, at, st+1)
]}

+
∑
i∈Ĩ

R̂i
B(gi)

=
∑
i∈Ĩ

{
R̄i

B(s, gi, a, s′)1si′ /∈Gi

}
+ max

π̄

{∑
i∈Ĩ

Eπ̄
[T i−1∑

t=0
R̄i

B(st, gi, at, st+1)
]}

since R̂i
B(gi) = 0 for all i ∈ I and gi ∈ Gi.

Therefore

Q∗
M (s, g, a) =Q∗

B(s, g, a) +
∑
i∈Ĩ

R̂i
M (gi)

=Q∗
B(s, g, a) +

∑
i∈I

R̂i
M (gi)1si /∈Gi .
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Theorem 4. Let Q̄∗
M1

be the optimal world value function for a task M1 ∈M. Let {R̂i
M1
}i∈I and {R̂i

M2
}i∈I be

the sets of agent terminal reward functions for the tasks M1 and M2 ∈ M. For all (s, a) ∈ S × A and for all
g ∈ {gr | ∀gr ∈ G where gĨ

r reachable from s′ = p(s, a)}, we have

Q̄∗
M2

(s, g, a) = Q̄∗
M1

(s, g, a) +
∑
i∈I

(R̂i
M2

(gi)− R̂i
M1

(gi))1si /∈Gi

Proof. Let (s, a) ∈ S × A and let g ∈ {gr | ∀gr ∈ G where gĨ
r reachable from s′ = p(s, a)} and where Ĩ =

{i | ∀i ∈ I where si /∈ Gi}

By Theorem 3, we have

Q∗
B(s, g, a) =Q∗

M1
(s, g, a)−

∑
i∈Ĩ

R̂i
M1

(gi)1si /∈Gi

=Q∗
M2

(s, g, a)−
∑
i∈Ĩ

R̂i
M2

(gi)1si /∈Gi .

It follows that

Q∗
M1

(s, g, a)−
∑
i∈Ĩ

R̂i
M1

(gi)1si /∈Gi = Q∗
M2

(s, g, a)−
∑
i∈Ĩ

R̂i
M2

(gi)1si /∈Gi

Q̄∗
M2

(s, g, a) = Q̄∗
M1

(s, g, a) +
∑
i∈I

(R̂i
M2

(gi)− R̂i
M1

(gi))1si /∈Gi

Theorem 5. Let Q̄∗
M1

be the optimal world value function for a task M1 ∈M. Let {R̂i
M1
}i∈I and {R̂i

M2
}i∈I be

the sets of agent terminal reward functions for the tasks M1 and M2 ∈M. For all (s, a) ∈ S ×A

Q∗
M2

(s, a) = max
g∈G

{
Q̄∗

M1
(s, g, a) +

∑
i∈I

(R̂i
M2

(gi)− R̂i
M1

(gi))1si∈Gi

}
Proof. Let M1 ∈ M and M2 ∈ M. Let Q̄∗

M1
be the optimal world value function for M1 and let π̄∗

1 be an
associated deterministic optimal world joint policy. Let {R̂i

M1
}i∈I and {R̂i

M2
}i∈I be the sets of agent terminal

reward functions for the tasks M1 and M2.

Let (s, a) ∈ S × A. Let GR = {g | ∀g ∈ G where gĨ is reachable from s′ = p(s, a)} be the set of joint goals
reachable by the non-terminated agents Ĩ = {i | ∀i ∈ I where si /∈ Gi} and let m = |Ĩ|. Let gr ∈ Gr and let
gu ∈ G \ Gr. Let ˜̄Q∗

M2
(s, g, a) = Q̄∗

M1
(s, g, a) +

∑
i∈I

(R̂i
M2

(gi)− R̂i
M1

(gi))1si /∈Gi for all i ∈ I and for all g ∈ G.

We first consider gr.

Q̄∗
M1

(s, gr, a) +
∑
i∈Ĩ

(R̂i
M2

(gi
r)− R̂i

M1
(gi

r))1si /∈Gi = Q̄∗
M2

(s, gr, a) by Theorem 4

=⇒ Q̄∗
M1

(s, gr, a) +
∑
i∈Ĩ

(R̂i
M2

(gi
r)− R̂i

M1
(gi

r))1si /∈Gi ≥ mRminD by Lemma A4

Next we consider gu. For all i ∈ Ĩ let

˜̄Qi,∗
M2

(s, gu, a) = Q̄i,∗
M2

(s, gu, a) + R̂i
M2

(gi
u)− R̂i

M1
(gi

u)
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Therefore, ˜̄Q∗
M2

(s, gu, a) =
∑
i∈Ĩ

˜̄Qi,∗
M2

(s, gu, a).

Let Gi,u
T i−1 = Eπ̄∗ [

T i−1∑
t=0

R̄i
M (st, gi

u, at, st+1)] and P i,u = P (si
T i+1 = gi

r|s, gu, a, π̄∗, M).

By Lemma A2 and Lemma A3 we get

˜̄Qi,∗
M2

(s, gu, a) =R̂i
M1

(s, gu, a, s′)1si,′ /∈Gi + Gi,u
T i−1 + P i,uR̂i

M1
(gi

u) + (1− P i,u)R̃min

+ R̂i
M2

(gi
u)− R̂i

M1
(gi

u)

Since π̄∗
M2

is deterministic then P i,u ∈ {0, 1}. Since gĨ
u is unreachable from s′ = p(s, a) then there exists

J ⊆ Ĩ where P i,u = 0 for all i ∈ J and J ̸= {}. Let j ∈ J and let j′ ∈ Ĩ \ J .

˜̄Qj′,∗
M2

(s, gu, a) = R̄j′

M1
(s, gu, a, s′)1sj′ /∈Gj′ + Gj′,u

T j′ −1 + R̂j′

M1
(gj′

u )

+ R̂j′

M2
(gj′

u )− R̂j′

M1
(gj′

u )

= R̄j′

M1
(s, gu, a, s′)1sj′ /∈Gj′ + Gj′,u

T j′ −1 + R̂j′

M2
(gj′

u )

=
{

R̄j′

M1
(s, gu, a, s′) + Gj′,u

T j′ −1 + R̂j′

M2
(gj′

u ) if sj′
/∈ Gj′

R̂j′

M2
(gj′

u ) otherwise

=

Eπ̄∗

M1
[
T j′

−1∑
t=0

R̄j′

M1
(st, gj′

u , at, st+1)] + R̂j′

M2
(gj′

u ) if sj′
/∈ Gj′

R̂j′

M2
(gj′

u ) otherwise

=⇒ ˜̄Qj′,∗
M2

(s, gu, a) ≤
{

Rmax(D − 1) + Rmax if sj′
/∈ Gj′

Rmax otherwise
by Lemma A5

=⇒ ˜̄Qj′,∗
M2

(s, gu, a) ≤ RmaxD

=⇒
∑

i∈Ĩ\J

˜̄Qj′,∗
M2

(s, gu, a) ≤ (m− l)RmaxD

˜̄Qj,∗
M2

(s, gu, a) = R̄j
M1

(s, gu, a, s′)1sj /∈Gj + Gj,u
T j−1 + R̃min

+ R̂j
M2

(gj
u)− R̂j

M1
(gj

u)

=


Eπ̄∗

M1
[
T j−1∑
t=0

R̄j
M1

(st, gj
u, at, st+1)] + R̃min

+R̂j
M2

(gj
u)− R̂j

M1
(gj

u) if sj /∈ Gj

R̃min + R̂j
M2

(gj
u)− R̂j

M1
(gj

u) otherwise

=⇒ ˜̄Qj,∗
M2

(s, gu, a) ≤
{

(Rmax)(D − 1) + R̃min + Rmax −Rmin if sj /∈ Gj

R̃min + Rmax −Rmin otherwise
similarly to before

=⇒ ˜̄Qj,∗
M2

(s, gu, a) ≤ RmaxD −Rmin + R̃min

=⇒
∑
i∈J

˜̄Qi,∗
M2

(s, gu, a) ≤ l(RmaxD −Rmin + R̃min)
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˜̄Q∗
M2

(s, gu, a) =
∑
i∈Ĩ

˜̄Qi,∗
M2

(s, gu, a)

=
∑

i∈Ĩ\J

˜̄Qi,∗
M2

(s, gu, a) +
∑
i∈J

˜̄Qi,∗
M2

(s, gu, a)

=⇒ ˜̄Q∗
M2

(s, gu, a) ≤ (m− l)RmaxD + l(RmaxDRmin + R̃min)

=⇒ ˜̄Q∗
M2

(s, gu, a) ≤ (m− ln)DRmax + (ln(D + 1)− l)Rmin

Now we show that (m− ln)DRmax + (ln(D + 1)− l)Rmin ≤ mDRmin which implies
˜̄Q∗

M2
(s, gu, a) < ˜̄Q∗

M2
(s, gr, a).

m− ln ≤ 0 since m ≤ n and l ≥ 1
=⇒ (m− ln)DRmax ≤ 0

ln ≥ m

=⇒ lnD ≥ mD

=⇒ lnD + ln− l ≥ mD since ln ≥ l

=⇒ Rmin(lnD + ln− l −mD) < 0 since Rmin < 0
=⇒ (ln(D + 1)− l)Rmin < mDRmin

=⇒ (m− ln)DRmax + (ln(D + 1)− l)Rmin < mDRmin since (m− ln)DRmax ≤ 0

=⇒ ˜̄Q∗
M2

(s, gu, a) < ˜̄Q∗
M2

(s, gr, a)

Therefore,

max
g∈G
{ ˜̄Q∗

M2
(s, g, a)} = max

g∈Gr

{ ˜̄Q∗
M2

(s, g, a)}

= max
g∈Gr

{Q̄∗
M2

(s, g, a)} by Theorem 4

= Q∗
M2

(s, a) by Lemma 1

A.1.3 Symmetry

Theorem 6. For all i ∈ I. Let gi,T ∈ Gi. For all (s−i, g−i) ∈ S−i × G−i, for all (si, gi) ∈ Gi × Gi, for all a ∈ A
we have

Q̄∗(s, < g−i, gi,T >, a) = Q̄∗(s, < g−i, gi >, a)
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Proof. For all i ∈ I, for all (si) ∈ Gi, for all (s−i, g−i, a) ∈ S−i × G−i ×A, and for all (gi,T , gi) ∈ Gi × Gi:

Q̄∗(s, ⟨gi,T , g−i⟩, a) = max
π̄

{
Q̄π̄(s, ⟨gi,T , g−i⟩, a)

}
= max

π̄

{∑
j∈Ĩ

{Q̄j,π̄(s, ⟨gi,T , g−i⟩, a)}
}

= max
π̄

{∑
j∈Ĩ

{Eπ̄
s′ [R̄j(s, gj , a, s′) + Eπ̄[

∞∑
t=0

R̄j(st, gj , a, st+1)]]}
}

Similarly,

Q̄∗(s, ⟨gi, g−i⟩, a) = max
π̄

{∑
j∈Ĩ

{Eπ̄
s′ [R̄j(s, gj , a, s′) + Eπ̄[

∞∑
t=0

R̄j(st, gj , a, st+1)]]}
}

Since si ∈ Gi then i /∈ Ĩ. Therefore,

Q̄∗(s, ⟨gi,T , g−i⟩, a) = Q̄∗(s, ⟨gi, g−i⟩, a)

Theorem 7. Let Q̄∗
M be the optimal world value function for a task M ∈ M. Q̄∗

M is invariant to any permuta-
tion Perm applied to the joint state, joint action and joint goal. That is, for all permutations Perm and for all
(s, g, a) ∈ S × G ×A we have

Q̄∗(s, g, a) = Q̄∗(Perm(s), P erm(g), P erm(a))

Proof. Let (s, a, g) ∈ S ×A× G.

Q̄∗(s, g, a) = Eπ̄∗

s′ [R̄(s, g, a, s′) + Eπ̄∗
[

∞∑
t=0

R̄(st, g, at, st+1)]]

= R̄(s, g, a, s′) + Eπ̄∗
[

∞∑
t=0

R̄(st, g, at, st+1)]] since s′ = P(s, a) is deterministic

Since the agents are homogeneous we have P(Perm(s), P erm(a)) = Perm(s′) and
R̄(s, g, a, s′) = R̄(Perm(s), P erm(g), P erm(a), P erm(s′)). Thus, Perm(st+1) = P(Perm(st), P erm(at))
for all t ∈ [1,∞).

Q̄∗(s, g, a) = R̄(Perm(s), P erm(g), P erm(a), P erm(s′))

+ Eπ̄∗
[

∞∑
t=0

R̄(Perm(st), P erm(g), P erm(at), P erm(st+1))]

= Q̄∗(Perm(s), P erm(g), P erm(a))
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A.2 Goal-Oriented Learning

Algorithm 1: Goal-Oriented Learning
Input : Task M ∈M and joint goal library DG

Initialise: World value function Q̄M

foreach episode do
Observe an initial joint-state s ∈ S
Sample a joint goal g ∈ G
while episode is not done do

a←

arg max
a∈A

Q̄M (s, g, a) probability 1− ε

a random joint-action probability ε

Take joint-action a, observe agent rewards {ri}i∈I and next joint-state s′

D′
G ← augment according to Theorem 6 and Theorem 7

for g′ ∈ D′
G do

for i ∈ I do
if si ̸= si′ ∈ G \ {g′} then

ri′ ← R̃min

else
ri′ ← ri

r′ ←
∑
i∈I

ri′

Q̄M (s, g′, a) α←−
[
r′ + max

a′∈A
Q̄M (s′, g′, a′)

]
− Q̄M (s, g′, a)

s̄← s̄′
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A.3 Ablation

In this experiment, we consider the same domain, but set all goals to be desirable. We perform an ablation to
compare the effects of leveraging various symmetries on the sample efficiency of learning as a function of the
number of goals. Sample efficiency is quantified by the number of learning steps required to optimally solve
the task. We consider a task to be optimally solved if the current evaluated return is equal to the optimal
return as computed by optimal multi-agent pathfinding. The algorithms we consider are GOL leveraging no
symmetries, GOL only leveraging symmetry from homogeneity, GOL only leveraging symmetry from agent
level termination and GOL that leverages all symmetries. Figure 4 demonstrates how leveraging symmetries
drastically improves the sample efficiency of learning the WVF, which is to be expected since fewer values
need to be learnt.

Figure 4: Ablation showing effect of leveraging various symmetries on steps required until optimal
convergence of learning WVF. (Less is better) For each number of goals and variant of algorithm, 512 runs
were executed with the mean plotted and 95% confidence intervals shown.

29


