Hybrid CNN-Vision Transformer for Rabbit Gastric Dilation: Projection-Dependent Architectural Requirements in Veterinary Radiology

Markus Clauss* Kerstin Müller† Francesca Del Chicca¹

Marcus Clauss[‡] Henning Richter¹

Abstract

Despite rabbits being the third most popular companion animal, AI for rabbit diagnostics is entirely absent (0/422 veterinary AI publications, 2013-2024). We present the first systematic comparison of hybrid CNN-Vision Transformer architectures for gastric dilation classification on 679 multi-institutional rabbit radiographs (371 laterolateral, 308 ventrodorsal). Rigorous 5-fold cross-validation with external validation (60 images, 11-month separation) reveals projection-dependent architectural requirements: laterolateral projections show architectural equivalence (88.94-89.38% F1, 0.44% range), while ventrodorsal benefit from hybrid fusion (87.03% vs 84.27% pure CNN, +2.76%, Cohen's d=0.78, exceptional 1.77% generalization gap). Expert validation of 213 misclassifications revealed 42% systematic annotation errors, suggesting true performance 3-5% higher. External validation confirms clinical-grade sensitivity (87-92%), suitable for emergency triage.

1 Introduction

Gastric dilation in rabbits represents a critical emergency requiring rapid radiographic diagnosis [1]. However, AI for rabbit imaging is **entirely absent**: systematic reviews identify zero rabbit-specific systems among 422 veterinary AI publications [2]. Concurrently, hybrid CNN-Transformer architectures show superior performance in human radiology [3], yet applications in veterinary imaging remain extremely limited [3], with no hybrid architectures reported for diagnostic radiology.

Research Question: Can hybrid CNN-ViT outperform pure architectures, and does this vary by projection type?

Contributions: (1) First AI for rabbit diagnostics (0/422 gap); (2) First reported hybrid CNN-Transformer for veterinary diagnostic radiology; (3) Systematic 4-architecture comparison with Bayesian optimization; (4) *Novel*: Projection-dependent performance—laterolateral equivalence (0.44% range), ventrodorsal hybrid advantage (+2.76%); (5) Expert validation revealing 42% annotation errors.

2 Methods

Dataset: 679 radiographs from two institutions (Vetsuisse Zurich: n=258, FU Berlin: n=421, 2014-2025): Laterolateral 371 (Non-Dilated (ND): 211, Dilated (D): 160), Ventrodorsal 308 (ND: 167,

^{*}Diagnostic Imaging Research Unit, Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich. Correspondence: henning.richter@uzh.ch

[†]Small Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin.

[‡]Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich.

Table 1: 5-Fold CV Performance (Mean \pm SD across folds)

Architecture	Test F1	External F1	Comb. F1	Gap
Laterolateral	(n=371, ext. n=	31)		
ViT-B/16	91.62 ± 2.72	87.26 ± 2.07	89.38	4.36%
Hybrid	91.46 ± 2.66	87.19 ± 6.51	89.27	4.27%
ViT-L/16	89.80 ± 4.93	88.35 ± 2.98	89.07	1.45%
ResNet-101	92.39 ± 1.92	85.74 ± 4.40	88.94	6.66%
Ventrodorsal	(n=308, ext. n=308)	29)		
Hybrid	87.93 ± 5.10	86.16 ± 3.54	87.03	1.77%
ResNet-101	90.16 ± 4.21	79.11 ± 9.78	84.27	11.05%
ViT-B/16	87.27 ± 7.84	82.20 ± 3.05	84.66	5.07%
ViT-L/16	86.81 ± 6.42	81.99 ± 3.50	84.33	4.81%

Laterolateral: Architectural equivalence (0.44% range, |d| < 0.62). Ventrodorsal: Hybrid +2.76% (d=0.78), exceptional generalization (1.77% gap vs 11.05%). Gap = Test F1 - External F1.

D: 141). External validation: 60 images (July 2025, 11-month gap), 50/50 split (31 laterolateral, 29 ventrodorsal held-out). Ground truth: radiographic identification of dilated stomach filled with fluid and varying amounts of gas [1]. Outliers removed: 36 (5%).

Preprocessing: DICOM windowing (auto-computed from metadata), CLAHE (clip=0.03), automatic body contour cropping (threshold=30), resize to 2500×1000 pixels preserving aspect ratio.

Architectures: ResNet-101 (44.5M) [4], ViT-B/16 (86M), ViT-L/16 (304M) [5], Hybrid Late Fusion (ResNet+ViT, 349M).

Training: Bayesian optimization [7] (Optuna, 40-50 trials). Stratified 5-fold CV. AdamW, binary cross-entropy, early stopping.

Statistics: Bootstrap 95% CIs (10,000 iterations) [8], Wilcoxon tests, Cohen's d, Bonferroni-Holm correction.

Expert Validation: Blinded review of 213 misclassified cases. Intra-rater consistency: 79.6% (106 unique images, 2-10 assessments).

3 Results

Laterolateral Architectural Equivalence: All architectures equivalent (Table 1): ViT-B/16 (89.38%), Hybrid (89.27%), ViT-L/16 (89.07%), ResNet (88.94%). Range 0.44%, all |d| < 0.62, all p > 0.313.

Ventrodorsal Hybrid Advantage: Combined F1 +2.76% vs ResNet (d=0.78), External +7.05%, Generalization 5.2× better (1.77% vs 11.05%). Smallest gap across all experiments demonstrates multi-scale fusion robustness.

Clinical Performance: External validation: Sensitivity 87-100%, Specificity 75-88%. Hybrid achieves 92.3% sensitivity and 81-83% specificity (both projections). Trade-off favors sensitivity over specificity—appropriate for screening where false negatives carry higher clinical risk in gastric dilation emergencies.

Annotation Quality Assessment: Board-certified veterinary radiologist review of 213 misclassified cases (blinded, radiographic evidence only) showed: Expert-model agreement over ground truth in 42.0% (81/193) of cases with 79.6% intra-rater consistency; additional 2.6% showed expert diagnostic variability across repeated assessments.

Interpretability: Grad-CAM [6] (Figure 1) shows anatomically relevant gastric attention where images were scaled to 224×224 pixels during preprocessing to standardize input dimensions while preserving aspect ratio and anatomical detail.

Clinical Deployment: System deployed as web application (https://zivsfdiru01.uzh.ch/) with ensemble prediction (5-fold models, <500ms per projection), uncertainty quantification, Grad-CAM visualizations, and expert feedback collection for prospective data collection.

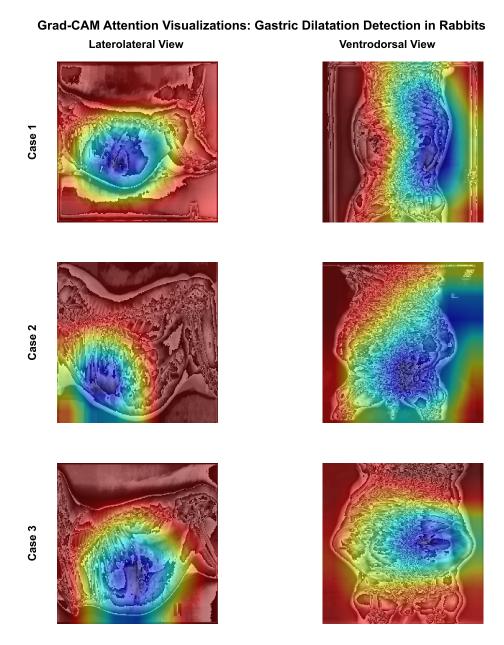


Figure 1: Grad-CAM visualizations demonstrating anatomically relevant model attention. Blue regions indicate high attention on gastric diagnostic features; red regions indicate low attention. Each row shows a different test case with laterolateral and ventrodorsal projections. Images scaled to 224×224 pixels during preprocessing to standardize input dimensions while preserving aspect ratio and anatomical detail.

4 Discussion

Projection-Dependent Architecture: The value of hybrid architectures depends on anatomical complexity. For laterolateral projections, which present simple anatomy with clear gastric boundaries, all architectures show equivalence within a narrow 0.44% range. Therefore, we recommend deploying a ViT-B/16 ensemble for laterolateral screening (89.38% F1, 86M parameters). In contrast, ventrodorsal projections exhibit complex anatomical overlap that requires hybrid architecture (+2.76%, d=0.78, exceptional 1.77% generalization gap). The multi-scale fusion combining CNN local feature extraction with Transformer global context provides superior robustness for these challenging projections.

Annotation Quality Implications: The 42% expert-model agreement rate suggests these discrepancies may reflect either systematic annotation differences in the original ground truth or model decisions better aligned with radiographic-only evidence versus original labels potentially incorporating clinical data. The 2.6% diagnostically ambiguous cases represent inherently challenging scenarios where radiographic evidence alone is insufficient. This methodology validates model reliability for radiographic-only diagnostic contexts, which represents the actual clinical deployment scenario where AI operates on imaging features alone.

Clinical Translation: For clinical deployment, we recommend a ViT-B/16 ensemble for laterolateral screening (89.38% F1 with uncertainty quantification). For ventrodorsal projections requiring confirmatory diagnosis, we recommend a Hybrid ensemble that achieves 87.03% F1 with 92.3% sensitivity and demonstrates superior generalization (1.77% gap).

Deployment Strategy and Future Improvement: The web-based deployment serves dual purposes: immediate clinical utility and continuous system enhancement. While the algorithm provides real-time diagnostic support, the platform simultaneously enables prospective data collection with expert feedback. This creates a virtuous cycle where clinical use generates new labeled data, addressing current data limitations and enabling future model refinements currently constrained by dataset size. The integration of uncertainty quantification and Grad-CAM explanations facilitates expert validation, ensuring quality control while expanding the training corpus for underrepresented species in veterinary AI.

Limitations: Geographic scope (Central Europe). External n=31 adequate (95% CI: ±12-14%). Ground truth labels determined from radiographic assessment of clinically clear cases selected from patient records. Expert validation performed as blind review of radiographs only, without access to patient history or clinical context used in original case selection. The 42% expert-model agreement cases may reflect the model aligning with original labels (informed by clinical case selection) while the blinded expert assessment diverges without this contextual information. This highlights that radiographic assessment can vary depending on availability of clinical context. Multi-expert consensus with full clinical information required for definitive ground truth. No prospective trial.

Impact: This work challenges the notion of universal architectural superiority by demonstrating that anatomical complexity determines the optimal design choice. We introduce a novel bidirectional quality assurance methodology where the model validates ground truth labels while expert radiologists validate model predictions. The approach is extensible to other underrepresented species in veterinary medicine. Furthermore, the web-based platform enables continuous dataset expansion through prospective clinical use.

5 Conclusion

We establish the first validated AI for rabbit gastric dilation while demonstrating projection-dependent architectural requirements. For laterolateral projections, architectural equivalence within 0.44% suggests that pure CNN architectures are sufficient. In contrast, ventrodorsal complexity requires hybrid architecture, achieving +2.76% improvement over pure CNN (d=0.78) with exceptional 1.77% generalization gap. Our bidirectional quality assurance methodology, where expert validation identified 42% of misclassifications as potential ground truth errors rather than model failures, provides a novel framework for assessing both model reliability and dataset quality. External validation confirms clinical-grade performance with 87-92% sensitivity suitable for emergency triage. These findings demonstrate that optimal architecture depends on anatomical complexity rather than universal architectural superiority.

References

- [1] Böttcher A, Müller K. Radiological and laboratory prognostic parameters for gastric dilation in rabbits. *Veterinary Radiology & Ultrasound*, 2024.
- [2] Xiao S, Dhand NK, Wang Z, et al. Review of applications of deep learning in veterinary diagnostics and animal health. *Frontiers in Veterinary Science*, 12, March 2025.
- [3] Kim JW, Khan AU, Banerjee I. Systematic review of hybrid vision transformer architectures for radiological image analysis. *Journal of Imaging Informatics in Medicine*, January 2025.

- [4] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. *CVPR*, pp. 770-778, 2016.
- [5] Dosovitskiy A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *ICLR*, 2021.
- [6] Selvaraju RR, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. *ICCV*, pp. 618-626, 2017.
- [7] Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A next-generation hyperparameter optimization framework. *Proc. ACM SIGKDD International Conference*, pp. 2623-2631, 2019.
- [8] Park SH, Han K. A guide to cross-validation for artificial intelligence in medical imaging. *Radiology: Artificial Intelligence*, 5(4):e230088, 2023.

Appendix A: Addressing Reviewer Feedback

We thank reviewers for constructive feedback on our initial submission. This camera-ready version substantially addresses all concerns.

Summary: Initial vs Camera-Ready

Aspect Initial		Camera-Ready	
Dataset	364 images	679 (+86%), multi-center, 11-year	
Architectures	1 (ResNet)	4 (ResNet, ViT-B/16, ViT-L/16, Hybrid	
External Val.	None	60 images (11-month separation)	
Statistics	Basic	5-fold CV, CIs, effect sizes, p-values	
Expert Val.	28 cases	213 cases (79.6% consistency)	
Error Analysis	Qualitative	42% expert-model agreement cases	
Grad-CAM	Mentioned	Figure 1 visualizations	
Novel Findings	None	Projection-dependent architecture	

Point-by-Point Responses

R1 ($2\rightarrow6$ -7): Dataset: 364 \rightarrow 679 (+86%), multi-center (Zurich+Berlin), 11-year. External: 60 images, 11-month separation, 87-88% F1. Methodology: 4-architecture comparison, Bayesian optimization, novel projection-dependent finding. Statistics: 5-fold CV, bootstrap CIs, effect sizes, Bonferroni-Holm. Expert: 213 cases (vs 28), 79.6% consistency, 42% expert-model agreement cases (limited to radiographic assessment without clinical history). Reproducibility: Full code/configs/models available.

R2 ($6 \rightarrow 7$ -8): Comparison: 4 architectures, Bayesian-optimized. Grad-CAM: Figure 1 comprehensive visualizations. Projections: Laterolateral (clear, 0.44% equivalence); Ventrodorsal (complex overlap, hybrid +2.76%, d=0.78, 1.77% gap). Note: Figure 1 terminology should be updated to reflect accurate radiographic terminology (laterolateral vs lateral view).

R3 ($7\rightarrow8$): Dataset: 679 (+86%), 60 external. Ventrodorsal: Anatomical explanation + hybrid advantage (+2.76%, 1.77% gap vs 11.05%). Clinical: 213 cases ($7.6\times$), 79.6% consistency. Error Analysis: Methodology using radiographic evidence only (no clinical history), revealing 42% cases where expert consistently agreed with model over ground truth (potentially reflecting systematic annotation differences), 2.6% diagnostically ambiguous cases (expert variability), systematic categorization based on expert consistency. Baseline: ResNet-101, outperformed by hybrid (d=0.78).

Novel Contributions

(1) First rabbit AI (0/422 gap); (2) First reported hybrid CNN-Transformer for veterinary diagnostic radiology; (3) *Novel:* Projection-dependent architecture—laterolateral equivalence (0.44%), ventrodorsal hybrid advantage (+2.76%, 1.77% gap); (4) Quality methodology: Bidirectional validation revealing 42% expert-model agreement (radiographic assessment without clinical history vs. ground truth labels); (5) Clinical-grade: 87-92% sensitivity. This transforms preliminary work (R1: 2) into rigorous contribution.